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Quantitative models of sequence-function relationships, which de-
scribe how biological sequences encode functional activities, are
ubiquitous in modern biology. One important aspect of these mod-
els is that they commonly exhibit gauge freedoms, i.e., directions
in parameter space that do not affect model predictions. In physics,
gauge freedoms arise when physical theories are formulated in ways
that respect fundamental symmetries. However, the connections that
gauge freedoms in models of sequence-function relationships have
to the symmetries of sequence space have yet to be systematically
studied. Here we study the gauge freedoms of models that respect a
specific symmetry of sequence space: the group of position-specific
character permutations. We find that gauge freedoms arise when the
transformations of model parameters that compensate for these sym-
metry transformations are described by redundant irreducible matrix
representations. Based on this finding, we describe an “embedding
distillation” procedure that enables analytic calculation of the dimen-
sion of the space of gauge freedoms, as well as efficient computation
of a sparse basis for this space. Finally, we show that the ability to
interpret model parameters as quantifying allelic effects places strong
constraints on the form that models can take, and in particular show
that all nontrivial equivariant models of allelic effects must exhibit
gauge freedoms. Our work thus advances the understanding of the
relationship between symmetries and gauge freedoms in quantitative
models of sequence-function relationships.
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Introduction1

Understanding the quantitative nature of sequence-function2

relationships is a major goal of modern biology (1). To study a3

specific sequence-function relationship of interest, researchers4

often propose a mathematical model, fit the parameters of5

the model to data, then biologically interpret the resulting6

parameter values. This interpretation step is often complicated,7

however, by gauge freedoms—directions in parameter space8

along which model parameters can be changed without altering9

model predictions. If any gauge freedoms are present in a10

model, the numerical values of individual model parameters11

cannot be meaningfully interpreted in the absence of additional12

constraints.13

Researchers performing quantitative studies of sequence-14

function relationships routinely encounter gauge freedoms in15

their models. In practice, one of two methods is typically16

used to overcome the difficulties that such gauge freedoms17

can present. One method—called “gauge fixing”—removes18

gauge freedoms by introducing additional constraints on model19

parameters (2–18). Another method limits the mathematical20

models that one uses to models that do not have any gauge21

freedoms (19–24). But despite being frequently encountered in22

the course of research, the gauge freedoms present in models of23

sequence-function relationships have received little attention 24

(though see e.g. 3, 5–7, 12, 25). In particular, the mathe- 25

matical properties of these gauge freedoms have yet to be 26

systematically studied. 27

In physics, by contrast, gauge freedoms are a topic of fun- 28

damental importance (26). Gauge freedoms are well-known 29

to arise when a physical theory is expressed in a form that 30

manifestly respects fundamental symmetries. For example, 31

the classical theory of electricity and magnetism (E&M) is 32

invariant to Lorentz transformations, i.e., changes in an ob- 33

server’s velocity (27). Lorentz invariance is obscured, however, 34

when the equations of E&M are expressed directly in terms of 35

electric and magnetic fields. To express E&M in a form that is 36

manifestly Lorentz invariant, one must instead formulate the 37

equations in terms of an electromagnetic four-potential. Doing 38

this introduces gauge freedoms because the four-potential, un- 39

like electric and magnetic fields, is neither directly measurable 40

nor uniquely determined by the configuration of a physical 41

system∗. Nevertheless, working with the four-potential greatly 42

simplifies the equations of E&M and often aids in both their 43

solution and their physical interpretation. 44

Motivated by the connection between gauge freedoms and 45

symmetries in physics, we investigated whether the gauge 46

freedoms in mathematical models of sequence-function rela- 47

tionships have a connection to the symmetries of sequence 48

space. Here we study the gauge freedoms of linear models that 49

are equivariant under a specific symmetry group of sequence 50

space—the group of position-specific character permutations. 51

These models include many of the most commonly used models, 52

including models with pairwise and/or higher-order interac- 53

tions. Using techniques from the theory of matrix representa- 54

tions, we find that the gauge freedoms of these models arise 55

when model parameters transform under redundant irreducible 56

matrix representations of the symmetry group. Based on this 57

finding, we describe an “embedding distillation” procedure 58

that facilitates the analysis of the vector space formed by the 59

gauge freedoms of a large class of commonly used models. 60

Finally, we investigate the connection between parameter 61

interpretability and model transformation behavior. We show 62

that the ability to interpret the individual parameters of an 63

equivariant model as quantifying the effects of specific alleles 64

requires that these parameters transform under a permuta- 65

tion representation of the symmetry group, rather than a 66

more general matrix representation. A consequence is that 67

∗Results in quantum physics, such as the Aharanov-Bohm effect (28, 29), suggest a reality to the
four-potential beyond what can be inferred solely from classical E&M, though there are arguments
against this interpretation (30).
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all nontrivial models that satisfy this interpretation criterion68

have gauge freedoms. This shows in particular that models69

that have gauge freedoms can have important advantages over70

mathematically equivalent models that do not have gauge free-71

doms. A companion paper (31) reports specific gauge-fixing72

strategies that can be applied to the most commonly used73

models that can be interpreted as quantifying allelic effects.74

Background75

We now establish definitions and notation used in Results.76

We also review basic results regarding gauge freedoms in77

mathematical models of sequence-function relationships. Our78

companion paper (31) provides an expanded discussion of79

these results together with corresponding proofs.80

Sequence-function relationships. Let A denote an alphabet81

comprising α distinct characters. Let S denote the set of αL
82

sequences of length L built from these characters. A model83

of a sequence-function relationship, f(s; θ⃗), is defined to be a84

function that maps each sequence s ∈ S to a complex number.85

The vector θ⃗ denotes the parameters of the model and is86

assumed to comprise M complex numbers.87

Linear models. Linear models of sequence-function relation-88

ships are linear in θ⃗ and thus have the form89

f(s; θ⃗) = θ⃗ †x⃗(s) =
M∑

i=1

θixi(s), [1]90

where x⃗(·) is a vector of M distinct sequence features, and91

each feature xi(·) is a function that maps sequences in S to92

the complex numbers. We refer to the space CM in which93

these feature vectors live as feature space, and each specific94

feature vector x⃗(s) as the embedding of sequence s.95

Note that we let both sequence embeddings x⃗ and model96

parameters θ⃗ be complex. By contrast, ref. (31) limited embed-97

dings and parameters to the reals. We choose here to work in98

complex spaces because, in addition to the added generality of99

the results, the algebraic completeness of the complex numbers100

simplifies some of our proofs. All of our results, however, hold101

if the parameters and embeddings are restricted to the reals.102

See SI Sec. 10 for details.103

Generalized one-hot (GO) models. GO models are linear mod-104

els in which the sequence features indicate only the presence105

or absence of specific characters at specific positions (1). An106

example of a GO is the pairwise-interaction model, which has107

the form108

f pair(s) = θ0x0(s)+
∑

l

∑
c

θc
l xc

l (s)+
∑
l<l′

∑
c,c′

θcc′

ll′ xcc′

ll′ (s), [2]109

where l, l′ ∈ {1, . . . , L} index positions within sequences s110

and c, c′ ∈ A index characters at these positions. Pairwise-111

interaction models comprise three types of GO feature: the112

constant feature, x0(s), which equals one for every sequence s;113

additive features, xc
l (s), which equal one if sl = c and equal114

zero otherwise (where sl denotes the character at position l in115

sequence s); and pairwise features, xcc′

ll′ (s), which equal one if116

both sl = c and sl′ = c′, and which equal zero otherwise.117

GO models are defined in a similar manner: as sums of 118

terms that each have the form 119

θc1c2...cK
l1l2...lK

xc1c2...cK
l1l2...lK

(s). [3] 120

Here, K ∈ {0, . . . , L} is a term-specific number, {l1, l2, . . . , lK} 121

is a term-specific set of positions, and {c1, c2, . . . , cK} is a term- 122

specific set of characters at the corresponding positions. Each 123

feature xc1c2...cK
l1l2...lK

(s) is a K-order one-hot feature defined to 124

be equal to one if sk = ck for all k ∈ {1, . . . , K} and equal to 125

zero otherwise. For example, the pairwise-interaction model 126

is a GO model that contains a K = 0 term† as well as all 127

possible terms of order K = 1 and K = 2. 128

Gauge freedoms. Gauge freedoms are transformations of 129

model parameters that do not affect model predictions. For- 130

mally, a gauge freedom is any vector g⃗ ∈ CM that satisfies 131

f(s; θ⃗) = f(s; θ⃗ + g⃗) for all s ∈ S. [4] 132

For linear sequence-function relationships, the set of gauge 133

freedoms G is a vector space in CM . G is the orthogonal 134

complement of the space spanned by sequence embeddings, 135

which we denote by spanx⃗ (31). In what follows, we use γ to 136

represent the dimension of G, and often refer to this quantity 137

somewhat informally as the number of gauge freedoms. 138

Gauge freedoms arise from linear dependencies among se- 139

quence features. For example, one-hot pairwise-interaction 140

models have M = 1 + αL +
(

L
2

)
α2 parameters, but span x⃗ 141

has only 1 + (α − 1)L +
(

L
2

)
(α − 1)2 dimensions due the 142

presence of L +
(

L
2

)
(2α − 1) constraints on the embedding. 143

Specifically, x0(s) =
∑

c′ xc′
l (s) for all positions l (yielding 1 144

constraint per position), and both xc
l (s) =

∑
c′ xcc′

ll′ (s) and 145

xc
l′ (s) =

∑
c′ xc′c

ll′ (s) for all characters c and for all pairs of 146

positions l < l′ [yielding 2α − 1 independent constraints per 147

pair of positions (31)]. The one-hot pairwise interaction model 148

therefore has γ = L +
(

L
2

)
(2α − 1) gauge freedoms; See also 149

(3, 5, 7, 10). 150

Fixing the gauge. Fixing the gauge is the process of removing 151

gauge freedoms by restricting θ⃗ to a subset of parameter space, 152

Θ, called the gauge. Linear gauges are choices of Θ that 153

are themselves vector spaces. One useful property of linear 154

gauges is that gauge-fixing can be accomplished by projection. 155

Specifically, for any linear gauge Θ, there exists a projection 156

matrix P that projects each parameter vector θ⃗ ∈ CM onto 157

an equivalent parameter vector θ⃗fixed that lies in Θ, i.e., 158

θ⃗fixed = P θ⃗. [5] 159

Given Θ, the projection matrix P is uniquely defined by the 160

requirement that P is idempotent, the image P is Θ, and 161

the kernel of P is G. Our companion paper (31) describes 162

a parametric family of linear gauges (including an explicit 163

formula for the projection matrix) that includes many of the 164

most commonly used gauges as special cases. 165

Results 166

In what follows, we define the group of position-specific char- 167

acter permutations, as well as the linear models that are 168

equivariant under this group. Next, we use methods from the 169

†Here and in what follows, K = 0 corresponds to feature x0 and parameter θ0 .
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theory of group representations (32) to identify all possible170

equivariant linear models. In the process, we also describe a171

procedure we call “embedding distillation” that allows one to172

compute the gauge freedoms of any equivariant linear model.173

After demonstrating embedding distillation on the one-hot174

pairwise-interaction model, we apply embedding distillation to175

GEO models and derive expressions for the number of gauge176

freedoms (i.e., the dimension of the space of gage freedoms)177

of a variety of commonly used models. Finally, we explore178

the relationship between model transformation behavior and179

parameter identifiability.180

Position-specific character permutations. Let Hl
CP denote the181

group of permutations among the α possible characters at182

position l in a sequence. Note that Hl
CP is isomorphic to183

the symmetric group on α elements, Sα (32). The group of184

position-specific character permutations is given by the direct185

product of all Hl
CP, i.e.,186

HPSCP = H1
CP × · · · × HL

CP. [6]187

Given any h ∈ HPSCP, the transformation of a sequence s by188

h is written as hs, and the transformation of sequence space189

S by h is written as hS.190

Equivariant embeddings and equivariant models. A represen-191

tation R of a group H is a function that maps each h ∈ H to192

a complex matrix R(h) such that R(h1h2) = R(h1)R(h2) for193

all h1, h2 ∈ H. In what follows, we say that an embedding x⃗194

is “equivariant” if and only if there is a representation R of195

HPSCP such that196

x⃗(hs) = R(h) x⃗(s) [7]197

for all h ∈ HPSCP and all s ∈ S (Fig. 1A). We also say that a198

linear model is equivariant if and only if it is defined with an199

equivariant embedding x⃗ in Eq. 1. For any equivariant model,200

the transformation of sequence space by any h ∈ HPSCP can be201

compensated for by a corresponding transformation of model202

parameters. Specifically, the sequence-space transformation203

S → hS, h ∈ HPSCP, is compensated for by the parameter204

transformation θ⃗ → R(h)−1†θ⃗, in the sense that f
(
s; θ⃗

)
=205

f
(
hs; R(h)−1† θ⃗

)
for every s ∈ S and θ⃗ ∈ CM (see SI Sec.206

3.2). Using terminology from representation theory, every207

R(h) is an M × M matrix where M is called the degree of R208

(denoted deg R). Similarly x⃗(s) is an M -dimensional vector,209

where m is called the degree of x⃗ (denoted deg x⃗).210

Maschke decomposition of equivariant embeddings. Every211

group representation is either reducible or irreducible. A212

representation is irreducible if and only if it has no proper213

invariant subspace. Maschke’s theorem, a basic result in repre-214

sentation theory, says that all representations of finite groups215

are equivalent (i.e., equal up to a similarity transformation) to216

a direct sum of irreducible representations. Any representation217

R of HPSCP can therefore be expressed as218

R ≃
K⊕

k=1

QkRk, [8]219

where ≃ denotes equivalence, each Rk is an irreducible repre-220

sentation of HPSCP, all Rk are pairwise inequivalent, and Qk221

denotes the multiplicity of Rk in the direct sum.222

Fig. 1. Embedding distillation. (A) Given an M -dimensional embedding x⃗ that is
equivariant under HPSCP, let R be the representation of HPSCP that acts on x⃗.
(B) By Maschke’s theorem, R can be decomposed into a direct sum of irreducible
representations, Rk (k ∈ {1, . . . , K}), each of which occurs with multiplicity Qk

(Eq. 8). Similarly, x⃗ can be decomposed into a direct sum of irreducible embeddings
x⃗kq (q ∈ {1, . . . , Qk}), where each x⃗kq transforms under Rk (Eq. 9). (C) By
Theorem 1, an additional similarity transformation can be performed that, for each
value of k, zeroes out all but one x⃗kq ; the remaining x⃗kq is denoted by x⃗k (Eq. 11
and Eq. 12). Consequently, x⃗ decomposes into a direct sum of a distilled embedding,
x⃗ dist, and a zero vector, 0⃗γ , having dimension γ (Eq. 11). x⃗ dist is given by the
direct sum of all x⃗k (Eq. 12) and is full rank by Theorem 2. The distilled representation,
R dist, describes how x⃗ dist transforms and contains one copy of each Rk . The
redundant representation, R redun, operates on 0⃗γ and encapsulates the Qk − 1
redundant copies of each Rk . γ, the degree of R redun, is equal to the number of
gauge freedoms (Eq. 15).

p. 3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2024. ; https://doi.org/10.1101/2024.05.12.593774doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.12.593774
http://creativecommons.org/licenses/by/4.0/


In what follows, we say that a sequence embedding is223

irreducible if and only if it transforms under an irreducible224

representation of HPSCP. One consequence of Eq. 8 is that225

any embedding x⃗ that transforms under R can be decomposed226

as227

x⃗ ≃
K⊕

k=1

Qk⊕
q=1

x⃗kq, [9]228

where each x⃗kq is an irreducible embedding that transforms229

under Rk. This decomposition is illustrated in Fig. 1B. We230

assume in what follows that all x⃗kq are nonzero, but this231

assumption can be removed without fundamentally changing232

our results.‡233

Distillation of equivariant embeddings. We now describe how234

equivariant models are analyzed via the distillation of their235

embeddings. In SI Sec. 5.1, we prove the following:236

Theorem 1 Any two nonzero sequence embeddings that trans-237

form under the same irreducible representation of HPSCP are238

equal up to a constant of proportionality.239

Using Theorem 1, then performing additional similarity trans-240

formations to remove the constants of proportionality, we241

obtain,242

x⃗ ≃
K⊕

k=1

Qkx⃗k, [10]243

where x⃗k is any one of the x⃗kq, and Qk is the multiplicity of x⃗k244

in the direct sum. Additional similarity transformations can245

then be performed to zero out all except one copy of x⃗k. We246

therefore find that there is an invertible “distillation matrix”247

T such that248

T x⃗ = x⃗ dist ⊕ 0⃗γ , [11]249

where 0⃗γ is a γ-dimensional vector of zeros, and250

x⃗ dist =
K⊕

k=1

x⃗k, [12]251

is the distilled embedding. Similarly, the matrix representation252

R decomposes as253

T RT −1 = R⃗ dist ⊕ R⃗ redun [13]254

where the distilled representation, R dist =
⊕K

k=1 Rk, con-255

tains one copy of each Rk, and the redundant representation,256

R redun =
⊕K

k=1(Qk − 1)Rk, contains all of the other copies257

of each Rk that are present in R. These decompositions are258

illustrated in Fig. 1C.259

Identification of gauge freedoms in equivariant models. To260

identify the gauge freedoms of any equivariant model, we use261

the fact that x⃗ dist is full rank. This is a consequence of the262

following Theorem, which is proven in SI Sec. 3.4:263

Theorem 2 For each k ∈ {1, . . . , K}, let x⃗k be a nonzero264

embedding that transforms under an irreducible representation265

Rk of the group HPSCP. Then the direct sum of all x⃗k is full266

rank if all Rk are pairwise inequivalent.267

‡See SI Sec. 5.2 for a statement of our main results when this assumption is removed.

Because x⃗ dist is full rank, g⃗ †x⃗(s) = 0 for all s ∈ S if and only 268

if 269

g⃗ = T † [⃗
0M−γ ⊕ g⃗γ

]
, [14] 270

for some γ-dimensional vector g⃗γ . The space of gauge transfor- 271

mations, G, is therefore given by the set of vectors having the 272

form in Eq. 14. In particular, the number of gauge freedoms 273

is, 274

γ = deg x⃗ − deg x⃗ dist = deg R redun. [15] 275

We thus see that the number of gauge freedoms is equal to the 276

sum of the degrees of all redundant irreducible representations 277

in R. 278

From Eq. 14, we also see that G is spanned by the last γ 279

column vectors of T †. One can therefore compute a basis for G 280

simply by computing T , and computing T only requires keeping 281

track of the similarity transformations needed to express x⃗ in 282

the distilled form shown in Eq. 11. 283

Identification of all equivariant embeddings. The specific struc- 284

ture of HPSCP allows us to identify all possible inequivalent 285

irreducible equivariant embeddings, x⃗k. Because x⃗k is irre- 286

ducible and HPSCP is a product group, x⃗k can be expressed 287

as 288

x⃗k ≃
L⊗

l=1

x⃗k
l , [16] 289

where each x⃗k
l is an embedding that depends only on the 290

character at position l and that transforms under an irreducible 291

representation of Hl
CP. Moreover, because Hl

CP is isomorphic 292

to Sα and Sα supports only two inequivalent embeddings (see 293

SI Sec. 4.3 for proof), there are only two inequivalent choices 294

for each x⃗k
l : the trivial embedding and the simplex embedding. 295

The trivial embedding, denoted x⃗ triv, maps every sequence to 296

a one-dimensional vector and transforms under what is called 297

the “trivial representation” of Sα. The simplex embedding, 298

denoted x⃗ sim
l , maps sequences to the α vertices of an α − 1 299

dimensional simplex and transforms under what is called the 300

“standard representation” of Sα. One example of the simplex 301

embedding is the tetrahedral embedding of DNA and RNA 302

(20, 22). Note: to lessen the notational burden in what follows, 303

we avoid writing x⃗triv within tensor products over positions 304

l, and only show factors that contribute nontrivially to these 305

products. 306

We now identify all equivariant embeddings x⃗. Because 307

there are 2 inequivalent choices for each x⃗k
l (x⃗ triv or x⃗ sim

l ), 308

there are 2L inequivalent choices for x⃗k, and thus
(2L

K

)
in- 309

equivalent choices for the set {x⃗k}K
k=1. Letting K in Eq. 12 310

range from 0 to 2L, we find that there are
∑2L

K=0

(2L

K

)
= 22L

311

inequivalent choices for x⃗ dist. Every equivariant embedding x⃗ 312

can therefore be expressed, using one of these 22L

inequivalent 313

distilled embeddings x⃗ dist together with a zero vector 0⃗γ and 314

an invertible matrix T . Conversely, choosing any of the 22L

315

inequivalent distilled embeddings x⃗ dist, any non-negative inte- 316

ger γ, and any invertible matrix T of the appropriate size will 317

yield an equivariant embedding x⃗ via Eq. 11. We therefore 318

find that, modulo the choice of the similarity matrix T and 319

number of gauge freedoms γ, there are 22L

distinct choices for 320

x⃗. 321
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Fig. 2. Structure of GEO models. (A,B) Models analyzed in Table 1, illustrated for L = 5. Open circles represent sequence positions. Closed circles represent sets of
parameters that are closed under the action of HPSCP, as in Eq. 23. Edges indicate position indices shared by all the parameters within each closed set. (A) Structure of
specific models of interest. (B) Structure of K-order models and K-adjacent models for various interaction orders K.

Analytical analysis of pairwise-interaction models. We now322

demonstrate the embedding distillation procedure on the323

pairwise-interaction model. First we specify the pairwise-324

interaction embedding, x⃗ pair, as a direct sum of direct products325

of simpler embeddings:326

x⃗ pair = x⃗ triv ⊕

{⊕
l

x⃗ ohe
l

}
⊕

{⊕
l<l′

x⃗ ohe
l ⊗ x⃗ ohe

l′

}
, [17]327

where x⃗ ohe
l is a position-specific one-hot embedding of dimen- 328

sion α given by 329

x⃗ ohe
l (s) =

 xc1
l (s)

...
xcα

l (s)

 [18] 330

for all sequences s, where c1, . . . , cα denote the elements of A. 331

The number of model parameters is equal to the dimension 332

of x⃗ pair, which is seen from Eq. 17 to be deg x⃗ pair = 1 + Lα + 333(
L
2

)
α2. 334

The gauge freedoms of pairwise-interaction models arise 335

because x⃗ pair is not full rank. The reduced rank of x⃗ pair is 336

a consequence of the fact that x⃗ ohe
l is reducible. To derive a 337
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model type interaction orders no. parameters (M ) no. gauge freedoms (γ)

constant 0 1 0
additive 0, 1 1 + Lα L

pairwise 0, 1, 2 1 + Lα +
(

L
2

)
α2 L +

(
L
2

)
(2α − 1)

nearest-neighbor 0, 1, 2 1 + Lα + (L − 1)α2 L + (L − 1)(2α − 1)
all-order 0, 1, . . . , L (α + 1)L (α + 1)L − αL

all-adjacent 0, 1, . . . , L 1 + α
(α−1)2

[
αL+1 − (L + 1)α + L

]
1 + α

(α−1)2

[
2αL − αL−1 − (L + 1)α + L

]
K-order K

(
L
K

)
αK

(
L
K

)
αK −

∑K

k=0

(
L
k

)
(α − 1)k

hierarchical K-order 0, 1, . . . , K
∑K

k=0

(
L
k

)
αk

∑K

n=0

(
L
k

) [
αk − (α − 1)k

]
K-adjacent† K (L − K + 1)αK (L − K)αK−1

hierarchical K-adjacent† 0, 1, . . . , K 1 +
∑K

k=1
(L − k + 1)αk (L − K)αK−1 + 1 +

∑K−1
k=1

(L − k + 1)αk

Table 1. Number of parameters and gauge freedoms of various GEO models. Columns show model type, the orders of interaction included in
each model, the number of parameters of each model, and the number of gauge freedoms of each model. See SI Sec. 6 for derivations of these
results. GEO, generalized equivariant one-hot. †Assumes K ≥ 1.

distilled version of x⃗ pair that is full rank, we reexpress x⃗ ohe
l338

as a direct sum of irreducible embeddings using339

x⃗ ohe
l ≃ x⃗ triv ⊕ x⃗ sim

l ; [19]340

see SI Sec. 2.4 for details. Plugging Eq. 19 into Eq. 17, ex-341

panding the direct product, and grouping like terms, we get342

x⃗ pair ≃
[

1+L+
(

L

2

)]⃗
x triv⊕

{⊕
l

L x⃗ sim
l

}
⊕

{⊕
l<l′

x⃗ sim
l ⊗ x⃗ sim

l′

}
,

[20]343

where the scalar coefficients denote the multiplicity of each344

term in the direct sum. Because x⃗ triv, x⃗ sim
l , and x⃗ sim

l ⊗ x⃗ sim
l345

are irreducible and pairwise inequivalent, the distillation of346

x⃗ pair is seen from Eq. 20 to be347

x⃗ dist
pair = x⃗ triv ⊕

{⊕
l

x⃗ sim
l

}
⊕

{⊕
l<l′

x⃗ sim
l ⊗ x⃗ sim

l′

}
. [21]348

From this we observe that deg x⃗ dist
pair = 1+L(α−1)+

(
L
2

)
(α−1)2.349

The number of gauge freedoms then follows from Eq. 15:350

γ = L +
(

L

2

)
(2α − 1), [22]351

which matches the well-known result (3).352

Generalized equivariant one-hot (GEO) models. For a GO353

model to be equivariant, it is sufficient for the model to be354

expressible as a sum of equivariant terms, each term of the355

form356 ∑
c1∈A

· · ·
∑

cK ∈A

θc1c2...cK
l1l2...lK

xc1c2...cK
l1l2...lK

(s), [23]357

for some term-specific choice of K and term-specific set of358

positions {l1, . . . , lK}. Observe that GEO models differ from359

GO models in that, for every set of positions used to define a360

term, a GEO model sums over all possible characters at all361

positions in the set, whereas a GO model need not include362

terms for every possible choice of characters. An example363

of GO models that are not GEO models are those based on364

wild-type embeddings, i.e., embeddings that exclude features365

that involve character-positions pairs that occur in a chosen366

“wild-type” sequence.367

The embeddings of GEO models all have the following form. 368

Let Aj denote a set of sequence positions, and let {Aj}J
j=1 369

denote the sets of positions used to construct an GEO model 370

with sequence embedding x⃗. By analogy to Eq. 17, x⃗ can then 371

be written as 372

x⃗ =
J⊕

j=1

⊗
l∈Aj

x⃗ ohe
l . [24] 373

Because each direct product in Eq. 24 yields an embedding of 374

dimension α|Aj |, the full dimension of x⃗ (and thus the number 375

of model parameters) is 376

deg x⃗ =
J∑

j=1

α|Aj |. [25] 377

Analytical analysis of GEO models. Now we derive the cor- 378

responding distilled embedding. Using Eq. 19 to decompose 379

each x⃗ ohe
l in terms of x⃗ triv and x⃗ sim

l , then expanding each 380

tensor product and grouping the resulting terms, we find that 381

x⃗ is given by Eq. 10 where 382

x⃗k =
⊗
l∈Bk

x⃗ sim
l , [26] 383

where each Bk (k ∈ {1, . . . , K}) denotes a subset of positions 384

that occurs among at least one of the Aj , and Qk denotes the 385

number of Aj in which Bk occurs.§ By inspection we see that 386

each x⃗k in Eq. 26 has dimension (α − 1)|Bk|. Therefore, the 387

dimension of x⃗ can alternatively be written as 388

deg x⃗ =
K∑

k=1

Qk(α − 1)|Bk|. [27] 389

Every x⃗k is irreducible because every x⃗ sim
l is irreducible. Con- 390

sequently, the distilled embedding x⃗ dist is given by Eq. 12 and 391

has dimension 392

deg x⃗ dist =
K∑

k=1

(α − 1)|Bk|. [28] 393

§Formally, {Bk}K
k=1 =

⋃J

j=1
P (Aj ) where P (·) denotes the powerset, and Qk =∑J

j=1
1P (Aj )(Bk) where 1P (A)(·) is the indicator function for membership in P (A).
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Fig. 3. Illustrated distillation computation. (A) Embedding x⃗ of sequence s = ABC for an all-order interaction model based on the alphabet A = {A, B, C}. Embedding
has degree M = 64. (B) Result of multiplication by the decomposition matrix, Tdecom. (C) Result of subsequent multiplication by the thinning matrix Tthin. (D) Result of
subsequent multiplication by the sorting matrix Tsort, which yields x⃗dist ⊕ 0⃗γ with γ = 37 gauge freedoms. In B-D, dots indicate x⃗ triv, dashes indicate zero vectors, and
numbers indicate x⃗ sim

l or Kronecker products thereof for specified positions l. (E) Distillation matrix T that implements the full distillation procedure in A-D. Last γ rows of T

provide a sparse basis for the gauge space, G. In A-E, vector and matrix elements are colored using: blue, +1; yellow, -1; gray, 0.

Using Eq. 15, the number of gauge freedoms of the embedding394

x⃗ is thus seen to be395

γ =
K∑

k=1

(Qk − 1)(α − 1)|Bk|. [29]396

This result provides a way to analytically compute the number397

of gauge freedoms of any GEO model. Table 1 reports the398

number of gauge freedoms thus computed for a variety of such399

models. SI Sec. 6 provides expanded descriptions for each400

model, as well as detailed computations of the results in Table401

1.402

We note that the only GEO models that have no gauge403

freedoms are those that have embeddings built from only one404

tensor product in Eq. 24. To see this, observe from Eq. 29 that405

γ = 0 if and only if none of the Qk are greater than 1. This406

requires that none of the Bk are subsets of two or more Aj .407

But the empty set, ∅, is a subset of every Aj , which means408

that Qk = J whenever Bk = ∅. Gauge freedoms will therefore409

be present unless J = 1, i.e. the direct sum in Eq. 24 includes410

only one term.411

Computational analysis of GEO models. To derive a basis412

for the space of gauge freedoms, we must choose a specific413

realization of the irreducible embeddings x⃗ triv and x⃗ sim. In414

what follows we choose x⃗ triv(s) = [1] and 415

x⃗ sim
l (s) =



 xc1
l (s)

...
x

cα−1
l (s)

 if sl ̸= cα,

 −1
...

−1

 if sl = cα,

[30] 416

for all sequences s, where c1, . . . , cα represent an ordering of 417

the characters in A. With these choices in hand, Eq. 19 can 418

be written as an equality: 419

T (1)x⃗ ohe = x⃗ triv ⊕ x⃗ sim, [31] 420

where T (1) is an α × α matrix given by 421

T (1) =


1 1 · · · 1 1
1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1

 . [32] 422

Using T (1) one can compute the distillation matrix for any 423

GEO model as the product of three matrices: 424

T = T sort T thin T decom. [33] 425

The effects of these three matrices are illustrated in Fig. 3. 426

The “decomposition matrix”, T decom, decomposes the one-hot 427
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embedding x⃗ (Fig. 3A) into a direct sum of irreducible embed-428

dings (Fig. 3B). The “thinning matrix”, T thin, then zeros out429

all except the first copy of each irreducible embedding (Fig.430

3C). The “sorting matrix”, T sort, then rearranges the direct431

sum so that the remaining nonzero embeddings come first (Fig.432

3D). SI Sec. 8 provides explicit algorithms for constructing433

T decom, T thin, and T sort, as well as the inverse of each of these434

three matrices, for a large class of GEO models. Each of these435

six matrices has only O(L) nonzero elements, and the algo-436

rithm for constructing each matrix has O(L) computational437

complexity. The resulting distillation matrix T , as well as its438

inverse, are also sparse. Moreover, every nonzero element of439

T is +1 or -1 (Fig. 3E). Because the last γ columns of T †
440

provide a basis for G, we thus obtain a basis for the gauge441

space consisting of sparse vectors whose only nonzero elements442

are +1 and -1.443

This result can also be used to efficiently fix the gauge of444

any GEO. Define the projection matrix445

P = T †∣∣
M−γ

T −1†, [34]446

where |M−γ denotes that the last γ columns of a matrix have447

been set to zero. P projects parameter vectors θ⃗ onto the448

spaced spanned by the first M − γ columns of T †. Moreover,449

by expanding P as450

P = T †
decom T †

thin T †
sort I|M−γ T −1†

sort T −1†
thin T −1†

decom, [35]451

and applying each matrix factor to θ⃗ individually, this projec-452

tion can be performed in O(L) time. Projection by P therefore453

provides and efficient way to remove gauge freedoms by project-454

ing model parameters into a linear gauge. We note, however,455

that the resulting linear gauge is not one of the parametric456

gauges discussed in our companion paper (31).457

Interpretability of pairwise-interaction models. The ability to458

interpret the parameters of equivariant models as quantify-459

ing allelic effects is closely related to how those parameters460

transform under HPSCP. To illustrate this point, we consider461

two equivariant models: a pairwise-interaction GEO model462

with embedding x⃗ pair, and the corresponding distilled model463

with embedding x⃗ dist
pair, both operating on sequences built from464

a three-character alphabet, A = {A, B, C}. The two embed-465

dings encode the same set of interactions but do so in different466

ways: x⃗ pair is built from the single-position one-hot encodings467

x⃗ ohe
l , whereas x⃗ dist

pair is built from the single-position simplex468

encodings x⃗ sim
l (Fig. 4A). And as we show above, the GEO469

model has gauge freedoms whereas the distilled model does470

not.471

We now focus on how the features and parameters of these472

two models are affected by the transformation h ∈ HPSCP that473

exchanges the characters A and C at all positions l. For the474

GEO model, h induces a permutation of embedding coordi-475

nates (Fig. 4B) and thus of model parameters. Consequently,476

h preserves the set of values taken by the GEO parameters; it477

simply permutes which parameters have which values. This478

mirrors the action of h on the alleles that drive model predic-479

tions: h permutes sequences and thus the one-position and480

two-position alleles they contain, but does not alter the full481

set of alleles present among the full set of sequences. And in482

fact we see that individual parameter values track their corre-483

sponding alleles: θA
l and θC

l switch values, θAA
ll′ and θCC

ll′ switch484

values, etc.. The transformation behavior of the GEO model 485

is therefore consistent with individual parameters quantifying 486

the effects of individual alleles. 487

For the distilled model, however, h induces a non- 488

permutation transformation of embedding coordinates (Fig. 489

4C) and thus of model parameters. Using the embedding 490

shown in Fig. 4A, one finds that the value of θ1
l transforms to 491

−θ1
l + θ2

l , the value of θ11
ll′ transforms to θ11

ll′ − θ12
ll′ − θ21

ll′ + θ22
ll′ , 492

etc.. The transformation h therefore changes the full set of 493

values taken by the distilled model parameters. Consequently, 494

the individual parameters of this model cannot be interpreted 495

as quantifying the effects of individual alleles. 496

Nontrivial equivariant allelic models have gauge freedoms. To 497

clarify the connection between the interpretation and transfor- 498

mation behavior of model parameters, we now formalize the 499

notion of an allele, and allelic effect, and related concepts. We 500

define an allele a to be a pattern of characters that is either 501

present or absent in every sequence. The corresponding allelic 502

set Sa is defined to be the set of sequences that have allele 503

a, and the corresponding allelic feature xa is defined be the 504

indicator function for membership in Sa. An allelic model is 505

defined to be a linear sequence-function relationship in which 506

every feature is an allelic feature. The effect of allele a is 507

defined, in the context of a specific allelic model, to be the 508

parameter θa that multiplies the allelic feature xa. 509

Requiring an allelic model to be equivariant puts strong 510

constraints on which alleles it can describe, and on how the 511

corresponding allelic features and allelic effects transform. 512

Given a specific allele a, the action of HPSCP on a generates 513

a set of alleles O, which we call an allelic orbit. If the allelic 514

model is equivariant, the allelic sets Sa′ corresponding to 515

all a′ ∈ O will tile sequence space without overlaps. This 516

requirement greatly constraints the set of possible alleles such 517

a model can describe. Moreover, the model must include 518

one feature xa′ for every allele a′ ∈ O. These features will 519

then transform among themselves according to a permutation 520

representation. See SI Sec. 9 for details. 521

An equivariant allelic model must therefore contain features 522

that can be partitioned into a set of complete allelic orbits. 523

The features of the model will then transform under a direct 524

sum of permutation representations, one for each allelic orbit. 525

Because every permutation representation contains the trivial 526

representation in its Maschke decomposition, the allelic model 527

will have at least as many gauge freedoms as the number of 528

allelic orbits minus one. Perhaps more intuitively, the sum of 529

all allelic features corresponding to each orbit is equal to one 530

for all sequences. Therefore, each orbit’s features are sufficient 531

to represent a constant function on sequence space. Including 532

features from multiple orbits therefore overparameterizes the 533

model and introduces gauge freedoms. We emphasize, however, 534

that additional gauge freedoms can be present as well, so this 535

result only provides a lower bound on γ. 536

It is readily seen that all GEO models are allelic models. 537

In a GEO model, each allelic orbit corresponds to a position 538

set Aj in Eq. 24, and the number of allelic orbits is given 539

by J . Our lower-bound on the number of gauge freedoms 540

recapitulates the finding above that only GEO models with 541

J = 1 have no gauge freedoms. We also show in SI Sec. 9 542

that, given a model defined by a direct sum of direct products 543

of single-position embeddings, the corresponding GEO model 544

has the smallest number of gauge freedoms possible. 545
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Fig. 4. Transformation behavior of two single-position embeddings. (A) Two
single-position embeddings, x⃗ ohe

l and x⃗ sim
l , for the three-character alphabet

A = {A, B, C}. The specific features corresponding to each element of x⃗ ohe
l

and x⃗ sim
l are also shown. (B) The three-dimensional one-hot embedding, x⃗ ohe

l (c),
for each c ∈ A. (C) The two-dimensional simplex embedding, x⃗ sim

l (c), for each
c ∈ A. Pink arrows indicate the transformation of each embedding vector induced by
permuting characters A and C at position l.

We therefore see that there is an incompatibility between546

two distinct notions of parameter interpretability. In all except547

a limited class of models, the ability to interpret parameters548

as quantifying allelic effects is incompatible with the ability549

to interpret parameter values in the absence of gauge-fixing550

constraints. The only exceptions to this rule are single-orbit551

allelic models, but these models are trivial in the following552

sense:¶ each sequence has only one allele, the effect of which553

is the model’s prediction for the sequence. In a single-orbit554

allelic model, each sequence has only one allele–and thus one555

feature and one parameter–that contributes to its activity.556

The parameters are therefore essentially just a catalog of al-557

lelic effects. By contrast, the reason researchers quantitatively558

model sequence-function relationships in the first place is to559

deconvolve the influence of multiple co-occurring alleles. We560

conclude that, among nontrivial equivariant models (i.e., mod-561

els that support co-occurring alleles), the ability to interpret562

model parameters as quantifying allelic effects requires that563

the model have gauge freedoms.564

Discussion565

Motivated by the connection between gauge freedoms and566

symmetries in physics, we investigated the relationship be-567

tween gauge freedoms and symmetries in quantitative models568

of sequence-function relationships. We found that, for models569

that are equivariant under the group of position-specific char-570

acter permutations (denoted HPSCP), gauge freedoms arise571

due to model parameters transforming according to redundant572

irreducible matrix representations of HPSCP. From a practical573

standpoint, this result facilitates the analytic calculation of574

¶This is the same sense in which the “trivial gauge” described in (31) is trivial.

the dimension of the space of gauge freedoms in a large class 575

of commonly used models, as well as the efficient computation 576

of a sparse basis for this space. From a conceptual standpoint, 577

the results link the gauge freedoms of models of sequence- 578

function relationships to the transformation behavior of these 579

models under a specific symmetry group of sequence space. 580

We also investigated the link between parameter transfor- 581

mation behavior and parameter interpretability. In doing so, 582

we identified a tension between two different notions of pa- 583

rameter interpretability: in all nontrivial equivariant models, 584

the ability to interpret the values of model parameters in the 585

absence of gauge-fixing constraints is incompatible with the 586

ability to interpret parameters as quantifying allelic effects. 587

Consequently, models that do have gauge freedoms (including 588

nontrivial additive models, pairwise-interaction models, etc.) 589

have important advantages over equally expressive models that 590

do not have gauge freedoms. 591

We now return to the analogy with theoretical physics. In 592

classical field theories like E&M, there are specific symme- 593

tries that are well-established by experiment and that any 594

mathematical formulation of the theory must be consistent 595

with. This does not, however, mean that the equations of the 596

theory must transform in a simple way under those symme- 597

tries. Mathematically formulating physical theories so that the 598

equations themselves manifestly respect the symmetries of the 599

theory generally requires over-parameterizing the equations, 600

thereby introducing gauge freedoms. Physicists often find it 601

worthwhile to do this, as having fundamental symmetries be 602

reflected in one’s equations can greatly facilitate the inter- 603

pretation and application of those equations. Solving such 604

equations, however, requires fixing the gauge—introducing 605

additional constraints that make the solution of the equations 606

unique. 607

Unlike in physics, there is no experimentally established 608

requirement that models of sequence-function relationships be 609

equivariant under symmetries of sequence space. The specific 610

mathematical form one uses for such models is subjective, 611

and different models are commonly used in different contexts. 612

Citing the ambiguities caused by gauge freedoms, some have 613

argued for restricting one’s choice of model to those that have 614

no gauge freedoms. Nevertheless, models that have gauge 615

freedoms remain dominant in the literature. We suggest that 616

a major reason for this may be that researchers prefer to use 617

models that both (a) reflect symmetries of sequence space 618

and (b) have parameters that can be interpreted as allelic 619

effects. As we showed, these criteria require the use of over- 620

parameterized models. And in this way, the origin of gauge 621

freedoms in models of sequence-function relationships does 622

mirror the origin of gauge freedoms in physical theories. 623

There is still much to understand about the relationship 624

between models of sequence-function relationships, the symme- 625

tries of these models, and how these modes can be biological 626

interpreted. This paper and its companion (31) have only 627

addressed gauge freedoms and symmetries in linear models 628

of sequence-function relationships. Some work has explored 629

the gauge freedoms and symmetries of nonlinear models of 630

sequence-function relationships (33, 34), but important ques- 631

tions remain. The sloppy modes (35, 36) present in sequence- 632

function relationships are also important to understand but, 633

to our knowledge, these have yet to be systematically studied. 634

Addressing these problems is becoming increasingly urgent, 635
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not just because of the rapidly expanding use of quantita-636

tive models of sequence-function relationships, but also be-637

cause of the emerging use of surrogate models for interpreting638

sequence-function relationships described by genomic deep639

neural networks (37).640

Materials and Methods641

See Supplemental Information for full derivations of the mathe-642

matical results. Python code implementing the embedding distil-643

lation algorithm described the section “Computational analysis of644

GEO models”, as well as used for generating Fig. 3, is available at645

https://github.com/jbkinney/23_posfai.646
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