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Abstract9

Synchronous movements of the entire face, from chewing to grimacing, offer signifi-10

cant insights into internal physiological processes. Mice, with discernible facial responses11

and evolutionarily conserved mammalian facial movement control circuits, provide an ideal12

model to unravel the link between facial movement and internal physiological states in mam-13

mals. However, existing frameworks lack the spatial or temporal resolution to track motion14

of the entire mouse face, due to its small and conical form factor. We introduce Cheese3D,15

a computer vision system that first captures high-speed 3D motion of the entire mouse face16

(including ears, eyes, whisker pad, jaw, while covering both sides of the face) using a cal-17

ibrated six-camera array. The interpretable framework extracts dynamics of anatomically-18

meaningful 3D facial features in absolute world units at sub-millimeter precision. The pre-19

cise face-widemotion data generated by Cheese3D provides clear physiological insights, as20

shown by proof-of-principle experiments predicting time under anesthetic from subtle facial21

patterns, and inferring tooth and muscle anatomy from fast chewing motions. Cheese3D22

can serve as a discovery tool that renders facial movements highly interpretable as a read-23

out of otherwise hidden internal states.24
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1 Introduction25

Facial expressions and movements, from grimacing to chewing, are a powerful reflection of our26

internal states in health and disease [1, 2]. Studying how coordinated movement of individual27

facial regions gives rise to multi-functional whole-face movements can therefore provide unique28

insights into internal physiological processes [3]. Work to-date suggests we can infer pain,29

distress, and sensory input based on subtle facial movement patterns in humans as well as30

rodents [4–10]. Being able to precisely and sensitively track facial dynamics has the potential31

to expand our understanding of how animals experience and respond to various interventions.32

Mice share evolutionarily conserved facial movement control circuits with other mammals,33

including humans. Facial muscles controlling eyes, ears, whiskers, nose, and mouth receive34

direct commands from a motor control network in the brainstem, bypassing the spinal cord, and35

thus, are positioned relatively close to processing centers in the brain [11–13]. This shared cir-36

cuit architecture makes laboratory mice ideally suited to serve as a model system for studying37

the link between facial movements and internal brain and body states. A sensitive method to38

characterize mouse facial motion will allow us to reveal how internal physiological, cognitive,39

and emotional states drive overt dynamics of the face. Although recent advances in computer40

vision have fueled state-of-the-art methods for human facial movement tracking [14, 15], sim-41

ilar approaches to characterizing face-wide movements in mice encounter unique technical42

challenges. Mouse faces are an order of magnitude smaller than human faces, and the conical43

shape of their headmakes it difficult to capture face-widemovement using a single camera (Fig-44

ure 1a). Existing methods rely on zooming into motion of a single facial region (e.g. whiskers,45

tongue) or a subset of facial regions on one side of the face [3, 16, 17]. Alternative methods46

have discarded temporal dynamics by focusing on still images of the face [6, 18]. Recent 3D47

methods hold promise to capture movements of the whole animal [19–21], but the approach48

has not been evaluated at the resolution required to examine the face of mouse.49

2 Results50

2.1 Cheese3D captures robust 3D whole-face movement in mice51

The Cheese3D pipeline captures and analyzes synchronous movement of the entire mouse52

face at 100Hz temporal resolution. The three pairs of high-speed video cameras (six total) are53

positioned compactly to capture the frontal view (Top Center and Bottom Center cameras), the54

profile view (Left and Right cameras), and an elevated half-profile view (Top Left and Top Right55

cameras) (Figure 1b). To acquire high-resolution facial video while maintaining comfort with56

the aim of obtaining more natural behavior, mice are acclimated to sitting in a tunnel with the57

head secured using a lightweight headpost custom-designed to allow unobstructed viewing of58

all facial areas (Figure 1b inset). Individual views from the six-camera array are temporally syn-59

chronized, and spatial alignment between views is captured through ChArUco calibration [22].60

We identified a set of 27 facial keypoints that covers all facial areas on C57BL6/J mouse (Fig-61

ures 1c–1e, Supplementary Video 1). Each keypoint is in sharp focus and visible by at least62

two cameras (see Supplementary Table 1), and reproducibly labeled by different researchers63

following written guidelines. The calibrated hardware setup and labeling protocol enables us to64

adapt existing markerless pose estimation techniques, such as Anipose [20] and DeepLabCut65
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[21], to create a unified 3D view of the whole mouse face at the spatial and temporal resolutions66

necessary to study facial movements.67

As facial movement is inherently constrained in 3D space, existing 2D methods for mouse68

facial analysis either require a single camera view, limiting the type of movement studied to69

those that can be captured in a single plane, or relies on principal component analysis or hid-70

den Markov models to integrate keypoints across multiple uncalibrated views, hindering direct71

interpretation. Moving from 2D to 3D calibrated face space is critical to enable interpretable fea-72

ture selection that is physically grounded and verifiable in world units: we selected a set of 1773

3D geometric features—distances, angles, areas, and volumes in 3D space—constructed from74

shapes defined by facial keypoints (Figure 1f). Furthermore, the features are localized to facial75

regions based upon known muscular anatomy and descriptors of rodent facial movements [5,76

23].77

We evaluated the accuracy of Cheese3D by comparing its resulting 3D geometric features78

with those measured statically using a 3D scanner (resolution: 50µm) for the same mouse79

(Figures 1g–1i, Supplementary Figure 1, Supplementary Video 2). (Mean ± RMSE. Eye80

height: 2.62 ± 0.52mm; Eye width: 3.71 ± 0.63mm; Ear height: 12.45 ± 1.13mm; Ear width:81

6.54±0.43mm; Ear angle: 161.45±4.86◦; Eye area: 8.14±2.27mm2; Ear area: 71.18±7.39mm2;82

Nose bulge: 7.74± 4.75mm3; Whisker pad bulge: 43.87± 13.57mm3; n = 7 mice) (Figure 1i).83

To validate the utility and necessity of having all six cameras, we omitted different pairs84

of cameras and measured changes in accuracy in corresponding facial regions (Supplemen-85

tary Figure 2). Omitting frontal cameras resulted in skewed measurements of midline facial86

features (e.g. whisker pad bulge), whereas omitting elevated half-profile cameras resulted in87

errors of the most lateral features (e.g. ear). The six-camera array is also essential as it builds88

in redundancy which ensures measurements are still possible even when part of the face is89

obstructed in some views, as is often the case when the mouse paws (e.g. during grooming)90

or experimental apparatuses (e.g. to deliver food, drugs, or olfactory stimuli) come into close91

proximity to the face. Collectively, the synchronized and calibrated array of six cameras, com-92

bined with geometric facial features in 3D, reduces the tradeoff between compromising spatial93

versus temporal resolution in characterizing rodent facial movement.94
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Figure 1: Framework and validation of capturing face-wide movement as 3D geometric features in mice

(a) The form factor of mouse face poses technical challenges to track mouse face-wide movement, compared to
existing technology tailored for the human face.
(b) Schematic of the hardware and software framework. Left: The six-camera facial movement capture setup. The
ChArUco board shown below the mouse is required for camera calibration. Inset: a head-post designed to image
mouse face without occluding any facial features. Right: the analysis pipeline which inputs six-camera raw video
and outputs the dynamics of a geometric facial feature set.
(c) Example synchronized frames from the six-camera setup.
(d) 3D facial keypoints visualized as projections onto the frames shown in (c).
(e) 3D facial keypoints overlaid onto a 3D template mouse face from [24] used purely as a visual aid.
(f) Output of Cheese3D. Left: Illustrations of the set of anatomically-based facial features including 3D distances,
areas, volumes, and angles across facial regions (see text and methods for details). Right, example time series of
the 3D feature set.
(g) Experimental design to validate Cheese3D facial feature measurement (anesthetized) compared to 3D scanner.
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Figure 1: (continued)

(h) Example mouse face 3D mesh obtained via 3D scanner Left: with texture overlay, showing fur and color details.
Right: the same mesh overlaid with 3D keypoints obtained from Cheese3D to compare the two.
(i) Comparison of Cheese3D facial feature measurement with 3D scanner data, grouped by distances, areas,
volumes, and angle, from left to right. Measurements for lateralized facial features (eyes, ears) contain both left
and right sides and thus have twice the amount of data points compared to midline features (nose bulge, whisker
pad bulge). Mouth area is the only feature excluded from the comparison since it cannot be reliably measured on
the 3D scanner due to the orientation of the mouse face relative to the projector.

2.2 Measuring subtle movements across facial regions associated with anes-95

thesia96

As a proof-of-principle test that Cheese3D is able to capture subtle and rapid facial move-97

ments with physiological significance, we designed experiments to monitor mice emerging from98

ketamine-induced anesthesia. Small localized facial movements, including whisker deflections,99

both appear during anesthesia as well as signal early stages of recovery [25]. This poses unique100

challenges to sensitively track subtle movements while covering the entire face, compared to101

other overt body movements such as locomotion and reaching, where limbs and appendages102

undergo large translations and rotations relative to their size.103

To measure the sensitivity of Cheese3D to detect and measure small, localized facial move-104

ments, we sought to explicitly quantify keypoint jitter in our setup in a control experiment using105

motionless periods. Keypoint jitter is a known issue whereby local fluctuations in keypoint track-106

ing are unrelated to genuine movement [26]. This can happen due to image noise, inadequate107

lighting, low contrast/texture, label noise in the training data, or keypoint-specific uncertainty108

in the model. Across the facial keypoints selected, human labelers utilize not only texture, but109

also color and shape to determine the location of keypoints. Convolutional neural networks110

often focus on texture to solve object recognition tasks [27], thus it should be expected that111

certain keypoints which rely primarily on texture for their location are learned more confidently112

than others. Keypoint jitters are often mitigated using low-pass filters, but this can attenuate113

dynamics and reduce temporal resolution of detection [26]. A critical benefit of 3D multi-view114

calibration compared to single 2D uncalibrated views is that view redundancy reduces the am-115

plitude of keypoint jitter, allowing us to detect more subtle fast movements. Studying motionless116

periods, we detected jitters of 3D keypoints without any filtering (Figures 2a, 2b. Mean ± std,117

grouped by facial regions. Ear (left): 0.24± 0.10mm/sec; Ear (right): 0.22± 0.11mm/sec; Eye118

(left): 0.11±0.06mm/sec; Eye (right): 0.08±0.04mm/sec; Nose: 0.09±0.04mm/sec; Whisker119

pad: 0.17 ± 0.09mm/sec; Mouth: 0.17 ± 0.06mm/sec; n = 5 mice), and measured the reduc-120

tion in jitter between 2D keypoints and 3D keypoints projected onto 2D views (Supplementary121

Figure 3). We further examined the effect of keypoint jitter on geometric features, which in-122

forms the mouse-specific threshold between keypoint tracking noise and bona fide movements123

that Cheese3D can detect (Figure 2c, Supplementary Figure 4. 99.9th percentile of jitter124

noise: Ear angle (left): 5.01 ± 2.39 °/sec; Ear angle (right): 4.50 ± 2.22 °/sec; Eye area (left):125

1.63± 0.86mm2/sec; Eye area (right): 1.24± 0.66mm2/sec; Mouth area: 0.88± 0.41mm2/sec;126

Whisker pad bulge: 7.71± 2.33mm3/sec; Nose bulge: 2.18± 0.83mm3/sec; n = 5 mice).127
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Figure 2: Measuring subtle facial movements fast and slow during anesthesia

(a) Distribution of keypoint-specific jitter (frame-to-frame velocity) during a motionless period for an example mouse.
Each subpanel indicates a different facial region, and each curve indicates a different keypoint.
(b) Summary of keypoint-specific jitter across mice, where each column group indicates a facial region and each
column indicates a keypoint.
(c) Summary of facial feature-specific jitter across mice.
(d) Example movement raster plot across facial regions, where each tick corresponds to velocity above the 99.9-th
percentile jitter threshold as shown in (c).
(e) Zoom in of movement raster plot from (d) to show the early moments of movement recovery following anesthesia.
(f) Cumulative movement as measured by cumulative percentage of motion raster during anesthesia across mice,
where each subpanel indicates a mouse and each curve indicates a facial feature.
(g) The moving average (over a 10-sec window) of ear angle and eye height (shown for only the left side) prior to
(grey) and after (black) anesthesia injection (dotted line) in an example mouse.
(h) Output from a quadratic model (fit across mice) predicting time since injection using the current facial feature
value (e.g. eye height) and value at time of injection as input. Models are trained on unfiltered traces of the facial
feature. The dotted identity line indicates an optimal prediction.
(i) Root-mean-square error for predicting time since injection where each column indicates a model trained on either
all facial features (orange) or a particular facial feature (black). Paired two-sided t-test with Bonferroni correction
(vs. all-features value, orange), n = 4 mice.
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We next applied the thresholds defined by the jitter analysis to facial movements recorded128

by Cheese3D during anesthesia onset and offset, a common procedure that is associated with129

subtle facial movements [25]. We selected one representative geometric feature per each of130

the seven facial regions. Motions within different facial regions are visualized in the movement131

raster plot, in which each vertical line represents displacement above jitter threshold in the cor-132

responding video frame. A detailed examination of facial movement velocity during induction,133

maintenance, and recovery of anesthesia reveals temporal patterns across different facial re-134

gions (Figures 2d–2f). These data demonstrate that Cheese3D can be used to detect small135

movements associated during anesthesia and recovery in mice.136

2.3 Uncovering underlying physiology from external facial movements137

We examined if Cheese3D can be used to study facial movements associated with physiologi-138

cal processes that are not otherwise externally visible, in addition to detecting movements that139

are fast and subtle. Visualizing the anesthesia data over the entire period (1h to 2h) revealed140

gradual changes in ears and eyes that are stereotyped across mice (Figure 2g, Supplemen-141

tary Video 3). This suggests that certain facial features can be used as a “stopwatch” to track142

time since anesthesia induction. To test this hypothesis, we fit a single model across all mice to143

predict the time elapsed since anesthesia induction (intraperitoneal injection of ketamine and144

xylazine) using only the initial and current value of unfiltered facial features (Figures 2g–2i).145

Using features across facial regions yielded the most accurate results (RMSE: 5.12± 1.63min,146

n = 4 mice) compared to single-feature models (Figure 2i. Single-feature model RMSE. Eye147

height: 15.83±3.78min; Ear angle: 16.56±2.44min; Mouth area: 21.13±2.76min; Whisker pad148

bulge: 18.37± 2.31min; Nose bulge: 20.93± 2.10min; n = 4 mice). We further assessed mod-149

els where a single feature was omitted systematically and found that they did not significantly150

impact the accuracy (Supplementary Figure 5. Omit-one-feature model RMSE. Eye height:151

5.70 ± 1.98min; Ear angle: 6.24 ± 2.20min; Mouth area: 5.30 ± 1.77min; Whisker pad bulge:152

5.37 ± 1.68min; Nose bulge: 5.16 ± 1.73min; n = 4 mice). In short, combining motions from153

different facial regions provides a useful visual indicator to track time elapsed in anesthesia.154

We tested Cheese3D with facial movements that are vigorous in amplitude: chewing in ro-155

dents is difficult to characterize externally as teeth, along with food that has entered the mouth,156

cannot be seen. However, being able to track and measure chewing is essential to studies157

of nutrient absorption and efficient digestion [28]. Existing techniques to characterize chew-158

ing rely on invasive methods such as electromyography, to infer what is happening inside the159

mouth [29]. We hypothesized that Cheese3D would enable more direct assessment of chew-160

ing dynamics from careful examination of external facial movements during food consumption.161

Using the same Cheese3D multi-camera array and 17 geometric facial feature identification162

system with no modifications, we recorded mice as they ate crunchy food (3mm diameter pre-163

cision pellets), and visualized 3D trajectory of mouth keypoints (upper lip corners and lower lip,164

forming a triangle in 3D space; Figures 3a, 3b). Plotting the area of this triangle (i.e., mouth165

opening) over time revealed two distinct modes of eating, with either elevated or reduced lower166

signal envelope, corresponding respectively to a food pellet obstructing the mouth opening or167

the mouth shut (Figure 3c). The transition between the two modes is abrupt and reliably identi-168

fiable across all mice (5.20±1.71 sec; ranging from 2.77 sec to 8.12 sec; n = 7mice. Figure 3d,169

Supplementary Video 4). The clear separation is also evident in movements within the facial170
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area close to the back of the mouth (Figures 3e, 3f). This finding is consistent with the unique171

tooth anatomy of rodents, in which a distinct gap, termed diastema, separates the incisors (for172

ingestion) from the molars (for mastication), as labeled in microCT images (Figure 3g). Whole-173

facemovement analysis also revealed temporally correlated eye protrusion with chewing during174

mastication but not ingestion or other spontaneous facial movement for every mouse examined175

(peak cross-correlation: 38.05±19.45 for mastication; 2.80±2.81 for ingestion; n = 7mice, Fig-176

ures 3h–3k, Supplementary Video 5). This could potentially be attributed to the anatomy177

of the rodent muscles of mastication since they wrap around the base of the eye socket [23].178

The phenomenon has been frequently observed and named “eye boggling” in the pet rodent179

community, but to our knowledge has not been quantified in the scientific literature. Our data180

indicate that Cheese3D detects facial movements during rodent food consumption consistent181

with known characteristics of food placement, tooth anatomy, and muscle engagement.182
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Figure 3: Chewing kinematics in mouth and surrounding facial areas

(a) 3D trajectory of three mouth keypoints for 1 sec of chewing motion for three example mice.
(b) Time evolution of the mouth opening triangle formed by the three mouth keypoints in (a) for 0.5 sec from the
moment the food pellet comes into contact with the tongue for an example mouse.
(c) Area of the mouth opening triangle over time during consumption of one pellet for an example mouse. Blue
dashed vertical line indicates putative transition time from ingestion (incisor chewing) tomastication (molar chewing),
with a zoomed in view around the transition time (yellow shaded area) shown in inset.
(d) Summary of ingestion to mastication transition times. Each column is one mouse; each dot is one food pellet.
(e) Visualizing mouth opening area concurrent with nose bulge volume (z-scored per feature) while an example
mouse consumes a single pellet (same pellet as shown in (c)).
(f) Same data as in (e) where each dot represents a time point, colored based on before the transition time (gray,
putative ingestion phase) or after (green, putative mastication phase).
(g) MicroCT image of the mouse with diastema, the gap between incisors (for ingestion) and molars (for mastica-
tion), labeled in color lines.
(h) Example time segments of mouth area with eye protrusion, during putative mastication (green), ingestion (gray),
and during spontaneous movement outside of chewing (gray).
(i) Cross-correlation between mouth area and eye protrusion for one example pellet for one mouse for putative
mastication (green) and ingestion (gray) phases.
(j) Summary of peak cross-correlation (computed as shown in (i)) across pellets, where each column is one mouse.
(k) Summary of mean peak cross-correlation (computed as shown in (h)) across pellets, where each point is one
mouse. One-sided Wilcoxon matched-pairs test (mastication mean value > ingestion mean value), n = 7 mice.
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3 Discussion183

The goal of Cheese3D is to provide an interpretable framework for using mouse face-wide184

movement to discover underlying physiological functions across a wide range of applications.185

Recognizing the unique and underexplored potential to use whole-face dynamics as a nonin-186

vasive readout of moment-to-moment changes of body and brain states in mice, we crafted187

Cheese3D as a specialized high-resolution tool to study mouse facial movements, compared188

to and built upon emerging animal behavioral tracking methods aimed to generalize across189

body parts and species [19–21, 30–35]. Moreover, in contrast to existing methods that focus190

on static facial images, motion of a subset of facial features, or aggregates of orofacial behavior191

optimized to predict cortical neural activities [3, 6], Cheese3D is specifically designed to cap-192

ture and represent whole-face movement while maintaining spatial and physical interpretability.193

Recording the motion of both individual facial regions and their spatial and temporal relationship194

to the whole face could be meaningful, since the building blocks of facial movement, i.e., com-195

partments of facial musculature and the brainstem nuclei that directly control them, are highly196

topographically arranged [11, 12]. The multi-camera array setup facilitates reliable, markerless197

identification of facial keypoints in 3D space, counteracting occlusion and distortion found in198

single-camera setups, and reduces keypoint jitter compared to 2D methods. These precise199

spatial locations relative to other facial regions are preserved in the 3D geometric features.200

The proof-of-principle work demonstrates the utility of Cheese3D in detecting and char-201

acterizing both subtle movements (anesthesia) as well as significant and temporally variable202

movements (food ingestion and mastication). Our analysis revealed informative synchronous203

facial movement patterns that could be used to infer unseen (internal anatomy and physiolog-204

ical functions) from seen (external synchronized facial motion). Although not in the scope of205

the current work, the framework described in detail here can be adapted for different strains of206

mice, in freely moving setup, as well as for tracking development. We anticipate the method207

will enable important discoveries across fields in biology and medicine by allowing for noninva-208

sive readout of moment-to-moment changes in body states in mice. The potential applications209

of high-resolution, whole-face kinematics data made possible by Cheese3D are vast and are210

likely to inspire a new era of quantitative studies linking facial movements to changes in internal211

states brought on by disease, drug exposure, neural processes, or other physiological functions212

we would otherwise have limited access to based on external observations.213
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Supplementary Information326

Supplemental Figures327

Supplementary Figure 1: 3D facial keypoint comparison between Cheese3D and 3D scanner

(a) Example textured (above) and untextured (below)mesh of mouse face obtained in 3D scanner used for validating
Cheese3D keypoint placement.
(b) 3D scatter plot showing corresponding 3D scanner (solid circle) and Cheese3D (star) triangulated keypoints for
all mice shown in Figure 1i.
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Supplementary Figure 2: Utility and necessity of six cameras in capturing mouse face

(a) Default setup for Cheese3D with a calibrated array of six (three pairs of) cameras: hardware schematic (Left)
and 3D facial keypoints from the Cheese3D model projected onto example video frames (Right), same as Figure 1.
(b)Omitting a pair of midline cameras results in distorted keypoint inference andmeasurements of midline structures
(Whisker pad bulge RMSE: 231.92µm3) but intact lateralized structures (Eye area RMSE: 1.27µm2; Ear area RMSE:
9.22µm2) compared to the default Cheese3D setup (Figure 1i).
(c) Omitting a pair of half-profile cameras results in altered keypoint inference and measurements of the most later-
alized structures (Ear area RMSE: 1349.22µm2) but intact midline structures (Whisker pad bulge RMSE: 8.34µm3)
and eye area (RMSE: 0.95µm2) compared to the default Cheese3D setup.
(d) A variation of setup of (c) with altered camera positions and angles does not rescue keypoint inference and
measurements of the most lateralized structures (Ear area RMSE: 1311.45µm2) but has similarly intact midline
structures (Whisker pad bulge RMSE: 9.89µm3) and eye area (RMSE: 1.90µm2).
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Supplementary Figure 3: Keypoint jitter comparison between 2D and 3D

(a) Distribution of keypoint-specific jitter (frame-to-frame velocity) during a motionless period for an example mouse
(shown for four keypoints from the left eye region). Each column indicates a different camera view. The top row
(shaded) indicates 2D keypoints (prior to triangulation) and the bottom row indicates 3D keypoints (after triangula-
tion) reprojected onto the 2D camera view planes.
(b) Summary of keypoint-specific jitter where each pair of panels represents a different camera view, and each
pair shows the jitter pre- (shaded) and post-triangulation (Mean jitter velocity, pre-triangulation. Ear (left): 17.37 ±
5.86 px/sec, Ear (right): 14.12 ± 5.26 px/sec, Eye (left): 7.29 ± 3.39 px/sec, Eye (right): 5.67 ± 2.67 px/sec, Nose:
10.05 ± 4.68 px/sec, Whisker pad: 13.55 ± 5.86 px/sec, Mouth: 13.86 ± 6.12 px/sec; Mean jitter velocity, post-
triangulation. Ear (left): 3.16 ± 1.37 px/sec, Ear (right): 2.85 ± 1.50 px/sec, Eye (left): 1.29 ± 0.67 px/sec, Eye
(right): 1.02± 0.50 px/sec, Nose: 1.23± 0.55 px/sec, Whisker pad: 2.21± 1.15 px/sec, Mouth: 2.10± 0.74 px/sec;
all p < 0.0001, one-sided Wilcoxon matched-pairs test (pre-triangulation > post-triangulation)).
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Supplementary Figure 4: Tracking jitter by 3D facial feature

(a) Distribution of facial feature-specific jitter (frame-to-frame velocity) relative to the mean jitter during a motionless
period for an example mouse. Each column indicates a different facial region, and each row indicates a different
type of measurement.
(b) Summary of facial feature-specific jitter where each panel represents a different type of measurement.
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Supplementary Figure 5: Prediction accuracy of anesthesia time using different facial features

(a)We consider one feature from each facial region—eye height, ear angle, mouth area, whisker pad bulge volume,
and nose bulge volume. The “whole face” feature set includes features from all regions. The “gain” condition
indicates a model trained on only the specified region, and the “loss” condition indicates a model trained on all
regions except the specified region.
(b) Summary of RMSE for different models where each column indicates a different feature set as described in (a).
For all gain condition p < 0.05, paired two-sided t-test with Bonferroni correction (vs. all-features value, orange),
n = 4 mice. For all loss condition, p > 0.1, paired two-sided t-test with Bonferroni correction (vs. all features value,
orange), n = 4 mice.
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Supplementary Figure 6: Visualizing putative division between ingestion and mastication across mice

(a) Mouth opening area and nose bulge volume (z-scored) scatter plot across mice, sorted by ascending putative
transition time between ingestion (gray) and mastication (green) (see Figure 3d). The example mouse shown in
Figure 3f is second from the right.
(b) Segmentation of muscles of mastication shown wrapping around the eye socket [23].
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Supplemental Videos328

Supplementary Video 1: Cheese3D tracks whole-face movement in mouse

Supplementary Video 2: Facial keypoints from Cheese3D model overlaid on mesh from 3D scanner

Supplementary Video 3: Example of gradual change in eye height and ear angle during anesthesia (sped
up 500×)

Supplementary Video 4: Example transition from ingestion (using incisors) to mastication (using molars) as
capitulated in mouth opening area in 3D (slowed down 4×)

Supplementary Video 5: Example eye protrusion during chewing (slowed down 2×)
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Supplemental Tables329

Facial keypoint Left Right Top Left Top Right Top Center Bottom Center

nose(bottom) Y Y Y
nose(tip) Y Y Y Y Y Y
nose(top) Y Y Y Y Y Y
pad(top)(left) Y Y Y
pad(side)(left) Y Y
pad(top)(right) Y Y Y
pad(side)(right) Y Y
pad(center) Y Y Y
lowerlip Y Y Y
upperlip(left) Y Y Y
upperlip(right) Y Y Y
eye(front)(left) Y Y Y
eye(top)(left) Y Y Y
eye(back)(left) Y Y Y
eye(bottom)(left) Y Y Y
eye(front)(right) Y Y Y
eye(top)(right) Y Y Y
eye(back)(right) Y Y Y
eye(bottom)(right) Y Y Y
ear(base)(left) Y Y
ear(top)(left) Y Y
ear(tip)(left) Y Y
ear(bottom)(left) Y Y
ear(base)(right) Y Y
ear(top)(right) Y Y
ear(tip)(right) Y Y
ear(bottom)(right) Y Y

Supplementary Table 1: Keypoints labeled per camera view
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4 Methods330

4.1 Mouse331

All experiments were performed in compliance with protocols approved by the Institutional An-332

imal Care and Use Committee at Cold Spring Harbor Laboratory (protocol number 22-6). Both333

female and male C57BL/6Jax mice 2-8 months of age were used for experiments. Unless334

stated otherwise, animals were housed in an inverse light:dark cycle with constant temperature335

(68 °F to 72 °F) and humidity (54-59%), and had ad libitum access to water and food.336

4.2 Video capture, synchronization, and 3D calibration system337

Six high-speed monochrome cameras (FLIR CM3-U3-13Y3M-CS 1/2” Chameleon®3) were338

used to record the video data at 100 fps. Based on their location relative to the face, the cam-339

eras are labeled LEFT (L), RIGHT (R), TOP LEFT (TL), TOP RIGHT (TR), TOP CENTER (TC)340

and BOTTOM CENTER (BC) (see Figure 1b). The camera location and orientation is selected341

such that each facial keypoint is in the focused view of at least 2 cameras (see Supplementary342

Table 1 for details). The lateral cameras (L, R, TL, TR) are equipped with an 8mm EFL, f /1.4343

lens (MVL8M23, Thorlabs) and the center cameras (TC and BC) with a 12mm EFL, f /1.4 lens344

(MVL12M23, Thorlabs). Lenses are connected to the body of the camera through a C-to-CS-345

mount (03-618 Edmund Optics) and 3D-printed 1.1mm (L, R, TL, TR cameras) or brass 2mm346

spacer rings (TC, BC cameras) (03-633, Edmund Optics) for fine focal adjustment. The face347

is illuminated using two infrared lamps (CMVision IR30 WideAngle) with a piece of Kimwipe348

(Kimtech Science) covering the LED surface acting as a light diffuser to minimize glare.349

Cameras were synchronized using Bonsai (v2.8.1) and an Arduino Mega 2560 REV3, which350

sends a start signal to Bonsai through the serial port. Upon receiving the trigger signal, Bonsai351

begins recording frames from all cameras as well as associated metadata for each frame. To352

verify that the camera frames are synchronized, a miniature infrared LED (SML-S13RTT86,353

Mouser Electronics) is positioned to appear in the field of view of all cameras. As a synchro-354

nization signal, the LED is on for 10ms every 10 sec, and verified post hoc in video analysis.355

We calibrate camera views using amanufactured calibration board with a standard ChArUco356

template imprinted on its surface. A vectorized template for the ChArUco board was cre-357

ated using https://github.com/dogod621/OpenCVMarkerPrinter. The template used is for358

a 7 × 7 ChArUco board (4.5mm marker length, 6mm square side length, ArUco dictionary359

DICT_4x4_50). Prior to recording any experimental data, an experimenter held and rotated the360

ChArUco board in the focused view of all cameras for at least one minute. This calibration361

video acquisition step is repeated upon completion of the experiment. These calibration videos362

were used in Anipose to calibrate the pipeline for triangulation.363

4.3 Headpost design and surgery364

The custom-designed stainless steel headpost for head-fixation consists of a 6mm × 4mm ×365

1mm rectangular base and a small 10mm × 3mm post that fits into the headpost holder. A366

groove was added on each lateral end of the base design to facilitate metabond adhesion367

during implant surgery. The headpost has a conical notch etched on the side to secure in368
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the headpost holder with a screw fastener. The headpost holder is angled at 27.9◦ following369

observation of the natural head angle of mouse eating to maximize comfort.370

To implant the headpost, 2-month-old mice were anesthetized with isoflurane (SomnoFlo,371

Kent Scientific; 3–5% induction, 1–2% maintenance). Once anesthetic depth was achieved,372

mice were placed onto a stereotaxic apparatus where body temperature was maintained using373

a heating pad. After flattening the skull using skull landmarks, the base of the headpost is posi-374

tioned above the medial-lateral midline, and immediately anterior to lambda, and secured using375

adhesive cement (Metabond, C&B). Following surgery, animals were administered buprenor-376

phine (0.1mgkg−1) and allowed to recover on a heating pad before returning to their home377

cages, where the mice continue to recover for one week before being acclimated to sitting in a378

tunnel and head-fixation for one to two weeks.379

4.4 Neural network keypoint detections and validations380

We utilize video data from across all mice and experimental conditions (feeding experiments,381

awake recordings from the anesthesia experiment, and recordings from the structure experi-382

ment) to train a single DeepLabCut (DLC) model to track 2D keypoints. A total of 491 frames383

are selected using the K-means clustering algorithm for frame extraction provided by DLC, as384

well as selected manually (136 frames are manually taken from the feeding experiment). Ran-385

dom uniform sampling is used to separate 20% of the frames for testing, while the remaining386

80% are used to train the model. Following the standard guidelines provided by DLC, we se-387

lect the built-in ResNet-50 model architecture and image augmentation pipeline for our training388

procedure. The model is trained for 1 030 000 iterations using a learning rate schedule of 0.005389

for 10 000 iterations, 0.02 for 420 000 iterations, 0.002 for 300 000 iterations, and 0.001 for 300 000390

iterations. After training, the train set error was 2.16px and the test set error was 4.6px.391

Back-to-back 3D scanner and Cheese3D recordings in anesthetized mice were used to392

measure the spatial accuracy and resolution of keypoint detection (see Figure 1, Supplemen-393

tary Fig. 1). Each mouse underwent intraperitoneal injection of Ketamine (100mgkg−1) and394

Xylazine (10mgkg−1) cocktail to induce anesthesia, scanned first on the 3D scanner (Einscan-395

SP, SHINING 3D) and then immediately on the Cheese3D setup. To test the robustness of396

Cheese3D in detecting 3D keypoints, an alternative set-up was constructed using only four397

cameras with altered positions and angles (Supplementary Figure 2d). The four cameras398

were equipped with an 8mm EFL, f /1.4 lens (MVL8M23, Thorlabs), a C-to-CS-mount adaptor399

(03-618 Edmund Optics), and 3D-printed 1.1mm spacer ring.400

4.5 Triangulation and 3D tracking optimization401

We use the trained DLC model to track keypoints in videos for each camera view separately402

per experiment. No post-processing is applied to the tracked keypoints. Anipose is used to403

triangulate 2D keypoints from multiple cameras into a single 3D keypoint per frame. Next, Ani-404

pose optimized the 3D keypoint tracking for the full recording by reprojecting the 3D keypoints405

to 2D in each camera view and minimizing the mean squared error of the reprojected points.406

Concurrently, the frame to frame velocity of the 3D keypoints is minimized to prevent spurious407

tracking errors. No post-processing or filtering is applied to the optimized 3D keypoints. To408

evaluate the performance of the tracking pipeline, we overlaid the optimized 3D keypoints re-409
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projected onto each camera view, and an experimenter curated the accuracy and precision of410

the tracking results.411

4.6 Anatomical-based interpretable feature selection412

Features are selected and calculated in five tiers with increasing spatial dimension. First, 3D413

facial keypoints (see Figure 1, Supplementary Figure 1) are selected based on the following414

criteria: 1) can be unambiguously and correctly pinpointed by at least three experimenters415

independently; 2) (for the purpose of 3D calibration) in focused view by at least two cameras; 3)416

reflect natural facial features and anatomy. Second, Euclidean distances between 3D keypoints417

within a localized facial region (e.g. the left eye) are calculated; Third, areas are calculated for418

the sets of keypoints that form a closed polygon; these include the eye, ear, and mouth areas.419

Fourth, the angle between the ear and snout is calculated as a measure for how forward-420

orienting the ears are with respect to the whole face. Fifth, the volumes of the nose bulge and421

whisker pad bulge are calculated to reflect anatomically relevant volumes [5].422

The area of the eye and ear groups are calculated based on a flattened 2D ellipse. Each423

group consists of four points defining the major and minor axis endpoints of the ellipse. Since424

all four points are not necessarily coplanar, we assume that the ellipse can be bent along the425

minor axis. To compute the area of this bent ellipse, we begin by defining the major axis (using426

the front and back of the eye or the base and tip of the ear). Next we compute the midpoint of427

the major axis and calculate the Euclidean distance from this midpoint to each of the remaining428

two minor axis endpoints. The sum of these two distances defines the length of the minor axis429

after a potential bend has been flattened. Using the major and minor axis lengths, we compute430

the final ellipse area as the standard area of a 2D ellipse in Euclidean space. The area of the431

mouth can be computed as the standard area of a triangle in Euclidean space. The right and432

left upper lip points and one central lower lip point form the vertices of the triangle. The volume433

of the nose bulge is calculated for an irregular tetrahedron defined by the nose top, left and434

right pad top, and the midpoint between the front of the eyes. We use the standard volume for435

an irregular tetrahedron in Euclidean space. The volume of the whisker pad bulge is calculated436

for an irregular pyramid defined by the nose bottom, left and right pad top, and left and right pad437

side points. We compute the convex hull defined by these points, then calculate the volume of438

the hull by dividing the hull into smaller tetrahedrons. The specific choice of tetrahedrons used439

is determined by the SciPy library.440

4.7 Analysis of kinematics during anesthesia441

For the anesthesia experiments (see Figure 2), awake spontaneousmovements were recorded442

in Cheese3D for 5min, followed by intraperitoneal injection of Ketamine (100mgkg−1) and Xy-443

lazine (10mgkg−1) cocktail to induce anesthesia, before returning to Cheese3D to record facial444

movement during and recovery from anesthesia. Temperature was maintained on a heating445

pad, and the exact time of injection was recorded.446

Prior to analyzing the kinematics during the anesthesia experiment, we quantified the track-447

ing jitter of 3D keypoints and facial features using a five-minute video segment where the ex-448

perimenter identified no rapid movement (referred to as the ’motionless period’). Next, we449

calculated the magnitude of the frame to frame velocity of each keypoint during the selected450
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periods which we refer to as the jitter velocity of a keypoint. We use frame to frame velocity451

as our metric for jitter so that we focus on short time scale noise in the tracking instead of slow452

moving trends in the tracking that may occur over minutes or hours. To visualize the distribu-453

tion of keypoint jitter velocity in Figure 2a, we compute a Gaussian kernel density estimate454

(KDE) using the histplot function in the Seaborn plotting library (v0.13.2). The bin size is set455

to 0.05mm/sec, and the KDE bandwidth is set using the scotts_factor function in the SciPy456

library (v1.10.1). We summarize the distribution of jitter velocity during the motionless period457

by computing the average velocity over the entire period per mouse in Figure 2b.458

To assess how the jitter velocity of keypoints affects our anatomical features, we computed459

the absolute frame to frame velocity of each feature during the selected periods which we460

refer to as the jitter velocity of an anatomical feature. We selected the 99.9th-percentile of the461

anatomical jitter velocity distribution per mouse as our motion threshold. Any movement with462

a frame to frame velocity below this threshold will be considered noise. The motion threshold463

across mice is summarized in Figure 2c.464

To measure the wakefulness of each mouse during anesthesia, we compute the magnitude465

of the frame to frame velocity of each anatomical feature over the entire recording. We labeled466

each time point as movement if the frame to frame velocity crosses the previously computed467

motion threshold, while time points where the velocity is below the threshold is labeled as no468

movement. Figure 2d shows an example raster plot of time points labeled as movement for469

one mouse. In Figure 2e, the cumulative motion during anesthesia was calculated by counting470

the number of time points labeled as movement from the start of anesthesia until a given time471

point (normalized by the total number of time points labeled as movement for the entire period472

post-injection).473

We analyzed slow drift of the anatomical features during anesthesia using amoving average474

of each feature during the entire recording period. The moving average is computed using a475

10 sec wide sliding window average. Figure 2f shows exemplar filtered features for one mouse476

over the entire recording period. We visualized the filtered features across all mice and selected477

one feature per facial region—ear angle, eye height, mouth area, whisker pad bulge, and nose478

bulge. We trained a model across mice to predict time since injection using a subset of the479

selected unfiltered features during anesthesia. Our model’s input consists of quadratic terms480

of the feature at the current time point and initial time point (quadratic terms computed using481

Scikit Learn’s (v1.4.2) PolynomialFeatures class) as well as a constant bias. We performed482

a linear regression from our quadratic input terms to the current time since injection using the483

LinearRegression class from Scikit Learn (v1.4.2). A separate model is trained for features484

from all facial regions, a single facial region at a time, and all but one facial region at a time.485

We assessed the performance of each model by predicting the time since injection for each486

mouse individually. A moving average filtered (using the same filter as Figure 2f) prediction for487

a single mouse and exemplar feature sets is shown in Figure 2g. We compute the root mean488

squared error of each model’s prediction per mouse in Figure 2h.489

4.8 Analysis of chewing kinematics490

FED3 [36] was used to dispense chocolate-flavored 20mg pellets (Dustless Precision Pellets,491

F05301, Bio-Serv) on demand during the feeding experiment (see Figure 3). A funnel and492

tubings are placed underneath the FED3 spout to collect the dispensed pellet and deposit it493
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on a translucent plastic spoon (Measuring Scoop S378, Parkell). The spoon was attached to494

a servo motor connected to a 3D printed linear actuator to bring the pellet to the mouth, and495

then retracted to await the next pellet. Animals in the feeding experiments were gently food-496

restricted and acclimated for two days to eating from the spoon while head-fixed, to facilitate497

food consumption during the experiment. Each mouse was recorded eating 10 to 13 pellets in498

one session, and allocated 30 sec per pellet. Dropped pellets were excluded from subsequent499

analysis.500

We distinguished the ingestion and mastication phases of chewing based on the shape501

of the lower envelope of the mouth area during the consumption of each pellet per mouse.502

An example lower envelope is shown in Figure 3c. To compute the envelope, we invert the503

mouth area by negating it, then identifying the peaks of the negated signal using the find_peaks504

function in SciPy (v1.10.1) with a window of 200msec. The lower envelope is defined by linearly505

interpolating the calculated peaks, then median filtering the interpolated curve with a window506

of 1.49 sec. We defined the transition time from ingestion to mastication as when the lower507

envelope drops sharply as shown in Figure 3c. To quantify the time when the envelope drops,508

we computed the cumulative area under the envelope during the consumption of each pellet.509

The cumulative area quickly increases during ingestion, then sharply transitions to a slower510

increase during mastication. The “knee” in the cumulative area under the envelope was used511

to quantitatively define the transition time. We used the Kneedle algorithm (with the sensitivity512

parameter set to 1) to identify the knee point (transition time) for each pellet per mouse shown513

in Figure 3d. The Python kneed (v0.8.5) library was used as our Kneedle implementation.514

In Figures 3e, 3f, we compared the mouth area and nose bulge during the consumption of515

pellets by z-scoring each anatomical feature separately per pellet per mouse. For Figure 3f,516

we plot the normalized mouth area and nose bulge against each other for an example mouse517

where each point constitutes a single frame. We color each point based on whether it occurs518

before or after the transition time for the corresponding pellet.519

We defined the eye protrusion in Figures 3h–3k as the Z coordinate of the left eye back520

keypoint (we observed similar behavior for the right eye back). To quantify the degree of co-521

ordination between the mouth area and eye protrusion, we z-scored each feature per pellet522

per mouse. Next, we computed the cross-correlation between the normalized features per523

pellet per mouse separately for the ingestion and mastication phases. Figure 3i shows the524

mean cross-correlation taken across pellets for a single mouse. We identified the peak cross-525

correlation by selecting the time point with the largest absolute cross-correlation per pellet per526

mouse as shown in Figures 3j, 3k.527

4.9 Data and Code Availability528

Data presented in this paper and code to reproduce the reported results are available from529

the corresponding author upon request. Following acceptance of the manuscript they will be530

archived in a permanent public repository.531
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