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Nanopore sequencing of 1000 Genomes Project samples to build a 
comprehensive catalog of human genetic variation 
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ABSTRACT 
Less than half of individuals with a suspected Mendelian condition receive a precise molecular 

diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs 

have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic 

testing, but the absence of control datasets for variant filtering and prioritization has made 

tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project ONT 

Sequencing Consortium aims to generate LRS data from at least 800 of the 1000 Genomes 

Project samples. Our goal is to use LRS to identify a broader spectrum of variation so we may 

improve our understanding of normal patterns of human variation. Here, we present data from 

analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. 

These samples, sequenced to an average depth of coverage of 37x and sequence read N50 of 

54 kbp, have high concordance with previous studies for identifying single nucleotide and indel 

variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we 

identify an average of 24,543 high-confidence SVs per genome, including shared and private 

SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated 

repeats that were not detected using short reads. Evaluation of methylation signatures revealed 

expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and 

novel differentially methylated regions. All raw sequencing data, processed data, and summary 

statistics are publicly available, providing a valuable resource for the clinical genetics community 

to discover pathogenic SVs.   
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INTRODUCTION   
 

As an initiative to sequence a large set of healthy reference genomes from globally diverse 

ancestries, the 1000 Genomes Project (1KGP) marked a significant milestone in genomic 

research, yielding the first sequencing-based map of normal patterns of human genetic variation 

that could be used to filter and prioritize candidate disease-causing variants (International 

HapMap Consortium 2005; Byrska-Bishop et al. 2022; 1000 Genomes Project Consortium et al. 

2015). The impact of 1KGP on our understanding of human genetic diversity has been 

enormous, and the flagship papers have been cited more than 10,000 times in clinical and basic 

research studies. In addition to the profound insights presented in the 1KGP papers, the 

success of the project has been amplified by the use of high-quality, open-access, and diverse 

datasets. Today, databases such as gnomAD (Koenig et al. 2023) and DECIPHER (Firth et al. 

2009) have built on the 1KGP principles for determining the population allele frequency of 

variants, which can aid in variant interpretation. While these databases have benefited from 

pooling data from large projects, such datasets are not readily available for long-read 

sequencing (LRS) data, which are better able to resolve structural variants (SVs) and identify 

variants in complex regions of the genome (Ebert et al. 2021; Liao et al. 2023; Chaisson et al. 

2019).  

Structural variants, defined as insertions, deletions, duplications, inversions, repeat 

expansions, and translocations at least 50 bp in size, are major contributors to genetic diversity 

and disease susceptibility and are more likely to have a larger effect size than single nucleotide 

variants (SNVs) (Eichler 2019). SV calling using short-read sequencing approaches can be 

challenging because they detect fewer than half of the ~25,000 SVs present in an individual, are 

incapable of fully resolving the complex structure of many SVs, and have low concordance 

between callers (Chaisson et al. 2019; Zhao et al. 2021; Cameron et al. 2019). These 

challenges extend into clinical testing where commonly used approaches, such as exome 

sequencing, have low sensitivity for SV detection, meaning individuals with disease-causing 

SVs may remain undiagnosed even after comprehensive clinical genetic testing (Hiatt et al. 

2021; Cohen et al. 2022; AlAbdi et al. 2023; Miller et al. 2021). Therefore, there is broad interest 

in using new technologies like LRS to develop comprehensive catalogs of common human SVs 

to facilitate improved detection of disease-associated variants (Wojcik et al. 2023).  

There are now numerous examples of LRS-based methods being used to identify and 

comprehensively resolve SVs missed by prior clinical testing methods, leading to increased 

interest in the use of LRS as a single data source in the clinical environment. Historical 
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concerns about cost, error rates, and computational tools available for both commercially 

available LRS technologies (Pacific Biosciences, PacBio and Oxford Nanopore Technologies, 

ONT) have also largely been resolved (Logsdon et al. 2020; Wang et al. 2021; Kolmogorov et 

al. 2023). The combination of falling costs, improving error rates, simplified sample preparation 

requirements, and standardization of bioinformatics tools has created a clear path toward the 

clinical use of LRS as a single test in the near future (Wojcik et al. 2023; Damaraju et al. 2024).  

While analyses of 1KGP to date have made profound contributions using arrays or short-

read sequencing technology, these approaches are inherently limited in their ability to capture 

certain types of genetic differences, such as SVs, repeat expansions, and epigenetic markers 

like methylation status. Building on the landmark effort of the 1KGP, the 1000 Genomes Project 

ONT Sequencing Consortium (1KGP-ONT) is leveraging ONT LRS with the goal of generating 

high-coverage, high-quality sequencing data for over 800 samples from the 1KGP sample set. 

This international effort aims to: 1) assess both assembly-based and alignment-based 

approaches to LRS data analysis; 2) evaluate variants in difficult-to-analyze regions of the 

genome; and 3) facilitate the identification of SVs that are uncharacterized or difficult to detect 

by short-read approaches. This effort is complementary to work from other groups performing 

LRS of 1KGP samples, such as the Human Pangenome Reference Consortium (HPRC) (Wang 

et al. 2022), Human Genome Structural Variant Consortium (HGSVC) (Ebert et al. 2021), and 

the recent release of low-coverage ONT sequencing data of nearly 900 1KGP samples (Noyvert 

et al. 2023), and it demonstrates the increasing likelihood that the entire collection will ultimately 

be sequenced using both LRS sequencing platforms commonly used today. Following 1KGP 

principles, all data generated through the 1KGP-ONT consortium are publicly released for 

immediate incorporation into clinical and basic research efforts. 

Here, we present results from analysis of the first 100 samples sequenced by the 1KGP-

ONT consortium. Using these data, we describe variation that would be difficult or impossible to 

detect or fully resolve using short-read technology, including repeat expansions associated with 

disease in RFC1 and ATXN10, skewed patterns of X-chromosome inactivation in 46,XX 

samples, and differentially methylated regions (DMRs) unique to single samples. Because the 

major goal of this effort is to develop a catalog of common human SVs for filtering and 

prioritizing disease-associated SVs, we demonstrate how SVs from a modest number of 

individuals can be used to filter variants in unsolved cases and identify high-priority regions for 

follow-up analysis.  
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RESULTS 
 

Approximately 3,200 cell lines or DNA samples from the 1KGP are available at the National 

Human Genome Research Institute (NHGRI) Sample Repository for Human Genetic Research 

housed at the Coriell Institute for Medical Research repositories (Coriell) (International HapMap 

Consortium 2005; 1000 Genomes Project Consortium et al. 2015). These anonymized samples, 

which are not associated with medical or phenotypic data, are from individuals who self-reported 

ancestry, sex, and good health at the time of sample collection. We selected 100 samples from 

all 5 superpopulations based on their absence from other large-scale sequencing efforts (Liao et 

al. 2023; Ebert et al. 2021; Noyvert et al. 2023); we did not attempt to balance subpopulations 

within these samples, and four of the first 100 samples represent two parent–child pairs (Figure 
1A, Table S1).  
 

Sequencing pipeline 
To create a more comprehensive and accurate catalog of SVs and variants within difficult-to-

sequence or repetitive regions of the genome, we isolated high molecular weight (HMW) DNA 

using an optimized protocol from lymphoblastoid cell lines (LCLs) that were obtained from 

Coriell and cultured in the lab. After sequencing using the R9.4.1 pore and base calling, we 

obtained an average depth of coverage of 37.4x and read N50 of 53.8 kbp for these 100 

samples (Figure 1B, Table S2).  
All samples were processed using two separate pipelines (Figure 1C). First, an in-house 

alignment-only pipeline was developed using minimap2 for alignment, Clair3 for small variant 

calling, and Sniffles2, CuteSV, and SVIM for SV calling (Heller and Vingron 2019; Jiang et al. 

2020; Li 2018; Zheng et al. 2022; Smolka et al. 2024). Single nucleotide variant calls from this 

pipeline were used to ensure sample integrity by comparison with short-read-based variant calls 

from previous studies (Byrska-Bishop et al. 2022). Second, samples were processed using the 

Napu pipeline, which generates assembly-based SV calls using Hapdiff after generating a 

phased de novo assembly using Shasta-Hapdup, minimap2 alignment-based small variant calls 

using Pepper-Margin-DeepVariant (PMDV), and minimap2 alignment-based SV calls using 

Sniffles2 (Kolmogorov et al. 2023; Shafin et al. 2021; Smolka et al. 2024). Outputs from both 

pipelines have been made publicly available. 
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Small variant accuracy 
We evaluated the performance of our variant-calling pipelines by comparing small variant calls 

(SNVs and indels <50 bp) to those generated by prior studies and using orthogonal short- and 

long-read sequencing technologies. To do this, original ONT sequencing data was obtained for 

Figure 1. Summary statistics of samples, sequencing and small variant detection.  
A: Samples selected for sequencing are shown by superpopulation and sex. B: Violin plots showing average read 
length, read N50, and average depth of coverage for all 100 samples. C: DNA was extracted from cells grown from 
aliquots received from Coriell and sequenced using the R9.4.1 pore. Data was analyzed using both alignment- and 
assembly-based approaches. D: Comparison of precision, recall, and F1 scores for SNVs and indels called from ONT 
data (PMDV) or Illumina data (GATK) compared to GIAB or HPRC calls for 5 high-confidence samples genome-wide 
in GIAB high-confidence regions only (GIAB.HG002.mask.incl.HP) and when excluding homopolymers in the GIAB 
high-confidence regions (GIAB.HG002.mask.excl.HP). Homopolymers were defined as any sequence of four identical 
nucleotides or more, including one bp flanking each side of the sequence. E: Precision, recall, and F1 scores for 
SNVs and indels from chromosomes 1–22 called with PMDV in GIAB high-confidence regions (including 
homopolymers) and GIAB high-confidence regions when excluding homopolymers. 
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five samples sequenced using the R9.4.1 pore that were also previously sequenced on the 

Illumina and PacBio platforms (HG002/NA24385, HG003/NA24149, HG004/NA24143, 

HG00733, and HG02723) (Shafin et al. 2020). The ONT data for these five samples was 

downsampled to similar depth of coverage and representative read N50 values as the 100 

samples reported here (Table S3). Each sample was then processed using the in-house 

minimap2 (Clair3) and Napu (PMDV) pipelines. 

Using published SNV and indel calls from Genome in a Bottle (GIAB; HG002, HG003, 

and HG004) and the HPRC(HG002, HG00733, and HG02723) as benchmark sets, we 

calculated precision, recall, and F1 scores: 1) genome-wide; 2) only for GIAB HG002 v4.2.1 

high-confidence regions (Wagner et al. 2022); and 3) for GIAB HG002 v4.2.1 high-confidence 

regions excluding homopolymers (defined as 4 or more consecutive identical nucleotides +/–1 

bp on each side) (Figure 1D, Figure S1). The same statistics were calculated for the published 

small variant calls from Illumina short-read data for two samples (HG00733 and HG02723). 

Similar to prior studies, we observed slightly higher precision, recall and F1 scores for SNVs 

called from ONT data within GIAB high-confidence regions both including and excluding 

homopolymers; we observed lower scores for indels when comparing ONT to Illumina in GIAB 

high-confidence regions only, which markedly improved when homopolymer regions were 

excluded (Kolmogorov et al. 2023; Harvey et al. 2023).  

We performed similar recall, precision, and F1 calculations using small variant calls from 

chromosomes 1–22 for the 100 samples presented here (Figure 1E, Figure S2). Because high-

quality “truth set” assemblies do not exist for these 100 samples, we used the previously 

published Illumina short-read data as a truth set. Within HG002 high-confidence regions as 

above, the average SNV precision and recall were 0.969 and 0.993, respectively, while indel 

precision and recall were 0.817 and 0.690 (Figure 1E). When homopolymers were excluded, 

SNV precision and recall improved to 0.970 and 0.995. While indel precision improved slightly to 

0.857, homopolymer masking had a more substantial effect on indel recall, which increased to 

0.899. Overall, these results validated that both of our variant-calling approaches (Clair3 and 

PMDV) were capable of providing high-quality small variant calls that were concordant with prior 

studies (Kolmogorov et al. 2023). 

 

Genome assembly 
We performed de novo genome assemblies for each of the 100 samples using both the Napu 

pipeline (which runs Shasta-Hapdup) and Flye (Kolmogorov et al. 2023; Shafin et al. 2020). In 

general, we found that Flye assemblies had a higher contig NG50 than Shasta-Hapdup 
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assemblies (Figure 2A), and results were robust to read N50 differences (Figure 2B). We saw 

similar contig NG50 patterns when our analysis included the 5 benchmarking genomes with 

similar average depth of coverage and read N50. The assembled genomes were highly 

complete, with each assembly covering approximately 93.5% (Flye) and 93.6% (Shasta-

Hapdup) of the GRCh38 reference genome (Figure S3) and a consensus accuracy similar to 

previously published studies using the R9 pore (Figure 2C) (Kolmogorov et al. 2023).  

We investigated why many of the Flye assemblies had similar contig NG50 values by 

plotting the contig breakpoints for both the Shasta-Hapdup and Flye assemblies. Among the 

100 Flye assemblies, 97.1% of assembly breaks occurred within regions annotated as 

segmental duplications (segdups), satellite sequence, or both while 2.9% occurred within 

nonrepetitive sequence (Table S4). Among the 2.9% of assembly breaks in nonrepetitive 

sequence, 90% were seen only in a single sample, suggesting stochastic artifacts of the 

assembly process. Performing a focused analysis of chromosome 7 revealed an increased 

number of contig breaks in the telomeric and pericentromeric regions for both Flye and Shasta-

Hapdup assemblies (Figure 2D), and at positions flanking well-described recurrent copy 

number changes associated with disease (Morris 1993). Among all contig breaks on 

chromosome 7, 1.9% of those in Flye assemblies were breaks in nonrepetitive sequence that 

are not within 10 kbp of a segdup, similar to the genome-wide average of 2.9%. This was 

surprising, and visual analysis of these regions did not reveal sample-specific differences that 

would easily explain the break in assembly, such as a duplication, inversion, or increased 

number of SNVs, suggesting that local sequence variation did not influence the position of 

assembly breaks in these nonrepetitive regions (Figure S4).  
We then evaluated contig size across superpopulation groups and assembly of disease-

associated OMIM genes. Calculating the median contig size per sample excluding contigs <1 

Mbp (Figure 2E) revealed a higher median contig size for African samples compared to all non-

African samples, which was expected given the higher genetic diversity of the African samples. 

We then evaluated how well disease-associated genes were assembled in these samples. 

Among 4,615 disease-associated OMIM genes (excluding genes on the X and Y 

chromosomes), we found that 2.7% (123/4,615) and 3.0% (140/4,615) of genes in the Flye or 

Shasta-Hapdup assemblies, respectively, were incompletely or incorrectly assembled (i.e., they 

were not spanned by a single, complete contig) in at least 5 samples (File S1). Among the 200 

assemblies (100 Flye and 100 Shasta-Hapdup), we found that 5 OMIM genes were 

incompletely assembled in all 200 assemblies and another 45 OMIM genes were incompletely 

assembled in at least 50 or more of the 200 assemblies (Figure 2F). We observed more 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.05.24303792doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.05.24303792
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gustafson, Gibson, Damaraju et al.  |  MANUSCRIPT 

Page 10 of 49 

incompletely assembled genes in the Shasta-Hapdup assemblies, partly due to the requirement 

for a single gene to be entirely spanned by a single contig in both haplotypes for it to be 

considered fully assembled.  

We subsequently applied PGGB to construct chromosome-level pangenome graphs 

from the 100 Shasta-Hapdup assemblies and generate multisample variant calls including all 

types of variants (Garrison et al. 2023). To investigate the differences between assembly 

approaches, we performed principal component analysis (PCA) on a chromosome 20 
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pangenome graph created by combining the 100 Shasta-Hapdup assemblies with 44 

assemblies from the HPRC (Liao et al. 2023). The PCA showed a clear separation between the 

two pangenomes (Figure S5A). However, a PCA based on the euchromatic, noncentromeric 

fraction of the chromosome 20 graph demonstrates that this difference is primarily due to the 

improved resolution of highly repetitive sequences by the HiFi-based HPRC assemblies (Figure 
S5B), supporting the high-quality nature of our assemblies.  

 

Variation within active transposable elements  
The largely repetitive and polymorphic nature of active transposable elements, especially full-

length L1 and ERV, makes them challenging to fully resolve and characterize using short-read 

assemblies (Yang et al. 2024). We anticipated that long-read assemblies would allow us to 

overcome these challenges. Using RepeatMasker (http://www.repeatmasker.org/), we identified 

interspersed repeats in the 100 Shasta-Hapdup assemblies and found that the fraction of major 

interspersed repeats differs by no more than 3% compared to that of the T2T-CHM13 assembly 

(Nurk et al. 2022) (Table S5). Furthermore, there was minimal variation among the 100 

assemblies in interspersed repeat content. 

Among the youngest polymorphic interspersed repeats that are too long to resolve with 

short reads (Chaisson et al. 2019), LINE-1s (~6,000 bp) are the only type that are actively 

expanding in the human genome. We found that the total base pairs of LINE-1 sequence 

(including young and old LINE-1s) in the 100 assemblies (496 Mbp average) is lower than 

observed in the CHM13 T2T assembly (512 Mbp), likely due to LINE-1s within unassembled 

regions. To measure the ability of these ONT-based assemblies to resolve young LINE-1s, we 

Figure 2. Summary of de novo assembly results. 
A: Contig NG50 compared to total number of contigs for both assembly methods shows that the haploid assemblies 
generated by Flye are longer and have fewer contigs than Shasta-Hapdup, but no contigs generated by Flye exceed 
40 Mbp. Assemblies for each benchmarking sample show similar statistics. B: Read N50 compared to assembly 
NG50 shows that assembly NG50 does not significantly improve with higher read N50. C: QV scores for both Flye 
and Shasta-Hapdup assemblies show slightly higher assembly QV scores for the haploid Flye assemblies. Values for 
the five benchmarking genomes are shown. D: Count of contig breaks for all 100 samples on chromosome 7 
demonstrate that assembly breaks cluster in similar locations when using both assembly approaches and that there 
are a large number of single breaks spread across the chromosome. The 1.5–1.8 Mbp Williams-Beuren syndrome 
critical region is indicated with a dashed box and is flanked by clusters of assembly breaks within segdups (Morris 
1993). The position of assembly breaks were categorized as “Satellite” (only satellite repeats), “SegDup+Satellite” 
(segdups and satellite repeats), “SegDup” (only segdups) or “Neither” (outside segdups and satellite repeat regions). 
E: Contig sizes filtered for contigs longer than 1 Mb for each superpopulation. F: OMIM genes incompletely 
assembled in 50 or more samples using either Flye (orange) or Shasta-Hapdup (blue). For Shasta-Hapdup, if one 
haplotype was completely assembled in a sample but the other was incomplete, the gene is counted as incompletely 
assembled. Assembly of 5 genes (FAM20C, HYDIN, NOTCH2NLC, PRKAR1B, and SHANK2) was incomplete for all 
100 samples using both assemblers. Genes that are not in or do not contain a segdup are in bold with an asterisk. 
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calculated the number of the youngest LINE-1 elements (L1HS) and the number of full-length 

(≥6 kbp) L1HS elements. Overall, we found similar numbers of L1HS and full-length L1HS 

sequences compared to HG002 and HG005 from GIAB and the CHM13 T2T assembly (Figure 
S6). Although HERV-Ks (~9,000 bp) are unlikely to be actively replicating in modern humans, 

like LINE-1s, they are known to be polymorphic in the human population (Li et al. 2019; 

Subramanian et al. 2011). Therefore, we also counted the number of full-length HERV-Ks 

(HERVK-int) and found that the number per genome is similar among the 100 assemblies and 

CHM13 T2T, HG002, and HG005. This demonstrates that these assemblies are of sufficient 

quality to resolve the youngest long interspersed repeats and that there is variation in the 

number of these insertions among different human populations. 

 

Structural variant analysis 
We called SVs using four alignment-based and one assembly-based method (see Methods). 
To validate our SV-calling methods, we compared them against a known set of SV calls 

generated by the HPRC (Liao et al. 2023). We generated SV calls from three of the five 

genomes used for small variant benchmarking (HG002/NA24385, HG00733, and HG02723) 

and identified an average of 23,732 SVs across all five callers. This is similar to the average of 

22,755 SVs among 15 human genomes assembled by Audano et al. (2019) but less than those 

predicted by the HPRC and HGSVC (Ebert et al. 2021; Liao et al. 2023). The greater number 

than Audano is expected given that they were called with older PacBio chemistries (RSII CLR) 

and an approach, SMRT-SV, that excluded SV calls in some pericentromeric regions or regions 

where variant calls were considered less reliable (Audano et al. 2019). Benchmarking against 

the HPRC Sniffles2 SV calls (Liao et al. 2023) and restricting calls to regions within the GIAB 

HG002 SV Tier1 v0.6 benchmarking regions (GIAB Tier1 Regions) (Zook et al. 2020) revealed 

F1 scores greater than 90% for both methods among all three samples (Figure 3A). When 

comparing genome-wide SV calls (not restricted to the GIAB Tier1 regions) our F1 score 

decreased to approximately 70% for all three samples, suggesting difficulty in generating 

concordant SV calls in low-complexity or repetitive regions of the genome (Table S6). 
We observed high per-caller concordance between the number of SV calls from the 

three benchmarking genomes and the 100 genomes presented here (Figure 3B). Across the 

five callers, we identified an average of 24,543 SVs per sample (min: 20,068, max: 28,734), 

similar to the 23,000–28,000 SVs per sample reported by the HGSVC (Ebert et al. 2021). 

Consistent with prior work, we observed more total SV calls in samples from the African 

superpopulation (Ebert et al. 2021; Audano et al. 2019; 1000 Genomes Project Consortium et 
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al. 2015). The distribution of insertions and deletions called in this dataset was also as 

expected, with peaks around 300 bp for Alu elements and at 6 kbp for LINE elements (Figure 
3C). A generally proportional number of SVs per chromosome was observed and, on average, 

more insertion than deletion events were identified per chromosome for all SV callers (Figure 
S7). The distribution of total SV events genome-wide was similar to prior work, with an 

increased number of insertions and deletions near the telomeres and centromeres (Figure S8). 
We identified an increasing number of novel SVs, excluding breakends (BNDs), for each 

additional sample sequenced among all SV callers (Figure 3D).  
Because a primary goal of our study is to identify and catalog high-quality SVs among 

the 1KGP samples, we merged the SVs from each of the five SV callers per sample using 

Jasmine (Kirsche et al. 2023). We observed high concordance between SV callers across all 

samples (Figure 3E), with an average of 16,722 SVs per sample called by all callers and no 

individual sample having an SV type that was noticeably higher or lower than other samples 

within the same superpopulation (Figure S9A). Analysis of SVs called by at least four, three, 

two, or one callers per sample identified an average of 20,242, 22,685, 25,540, and 34,796 SVs, 

respectively (Figure S9B).  
The SVs per sample called exclusively by hapdiff represent the majority of SVs called 

exclusively by a single caller. Because hapdiff was the only assembly-based caller in our 

dataset, we examined whether these calls represented false positives or SVs in regions where 

alignment may be challenging. Our analysis found that of the 407,779 SVs (excluding BNDs) 

called only by hapdiff across all 100 samples (i.e., not merged), 151,575 (37.1%) were fully or 

partially within a segdup or within 1,000 bp of a segdup, suggesting that they may be in complex 

copy-number polymorphic regions of the genome, and thus potential artifacts because of their 

proximity to a segdup. Of the SVs that were not fully or partially within a segdup or within 1,000 

bp of a segdup, 119,255 (46.5% of the remaining SVs) overlap a VNTR region. Analysis of SVs 

called only by hapdiff did not reveal any individual sample or population outliers (Figure S9C), 
and visual analysis of 30 randomly selected SVs from this set found that 28/30 were likely false-

positive calls. These false-positive SV calls were either located within centromeric (6/30), 

telomeric (8/30), or other low-complexity regions (3/30), or they had allelic representations 

different from those observed with alignment-based methods (10/30) (Figure S10). This 

suggests that difficult-to-assemble regions are a major source of false-positive assembly-based 

SV calls.  
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Figure 3. SV call set. 
A: SV calls were benchmarked against HPRC Sniffles2 SV calls within the GIAB HG002 SV Tier1 benchmarking 
regions. B: A similar number of genome-wide SVs were identified by all five callers used in this study, with the highest 
number of SVs per sample identified by hapdiff. The confident call set is defined as variants called by hapdiff and at 
least 2 unique alignment-based callers. For each call set the average number of deletions (DEL), insertions (INS) and 
total SVs (including INV, DUP and BND events) per sample is shown below the plot. C: Histogram of insertion and 
deletion counts stratified by size using Sniffles2 from the Napu pipeline. The peak around 300 bp represents Alu 
insertions or deletions, and the peak around 6 kbp represents LINE insertions or deletions. D: Cumulative novel SVs 
per sample. The frequency of new SVs observed increases when samples from individuals of African ancestry are 
included. E: Upset plot of overlap among SV callers after merging with Jasmine. For each sample, 5 vcf files were 
merged, demonstrating that the majority of calls in each sample were called by all 5 callers. The next highest violin 
plots are calls made by all callers except for hapdiff (the only assembly-based caller) and calls made only by one 
caller. F: Among 113,696 SVs from the Jasmine-merged confident call set, 12,432 were found in exactly 2 samples, 
with 6,181 (50%) of those calls in pairs in which both samples are from the African superpopulation. 

 An SV frequency call set was generated that represented SVs called by all five callers 

(100,915 total SVs), four or more (119,805 total SVs), three or more (133,766 total SVs), two or 

more (155,407 total SVs), or at least one caller (252,954 total SVs). Among the 100 samples 

described here, there were a total of 113,696 shared or unique high-confidence SVs (SVs 

identified by hapdiff and 2 or more unique callers, excluding BNDs), with 32% found in only one 

sample (36,096 of 113,696). We found that 12,432 (11%) of these shared SVs were seen in 

exactly 2 samples, and that approximately half of these shared SVs were in samples only from 

the African superpopulation (Figure 3F), similar to previous analysis (1000 Genomes Project 

Consortium et al. 2015). Among 50,458 high-confidence SVs that intersect protein-coding 

genes, 97% (49,142/50,458) are within or include intronic sequence, 3.3% (1,654 / 50,458) are 

within or include coding sequence, and 2.0% (992/50,458) are within or include a 5’ or 3’ 

untranslated region (UTR).  

To investigate the functional significance of SVs intersecting protein-coding genes, we 

performed an SV-eQTL analysis using the merged SV call sets and the recently published 

MAGE RNAseq dataset, which was derived from the same HapMap samples (Taylor et al. 

2023). This revealed a strong overlap with SVs and SV-eQTLs previously found using a 

collection of 31 diverse LRS-based genomes (Kirsche et al. 2023), including a 1,235-bp deletion 

associated with TNFSF13, a gene implicated in a number of cancers and autoimmune diseases 

(Chen et al. 2021; Ortiz-Aljaro et al. 2022). This analysis revealed several new associations, 

including a 96-bp deletion not previously detected by Kirsche et al. (2023) that is associated 

with the IFFO2 gene, a potential factor in breast cancer susceptibility (Danforth 2016) (Figure 
S11).   
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Structural variation within medically relevant genes 
Sequencing of samples from all five superpopulations allowed us to evaluate population-specific 

SVs intersecting genes associated with an OMIM phenotype (n = 4,866) and revealed 349 high-

confidence SVs in or including at least one defined exon (Figure S12A, Table S7). These 

events ranged in size from 50 bp – the lower limit for a variant to be considered an SV – 

(deletions in TNFRSF13C and TF and an insertion in IMPG2) to 87,776 bp (a deletion that fully 

includes IGHM). Visual analysis of 30 randomly selected events confirmed that all were likely to 

be true positives. These 349 SVs are distributed across all chromosomes and impact 335 exons 

in 236 unique OMIM genes, with 123 of those 335 exons containing ClinVar variants that are 

annotated as pathogenic or likely pathogenic (Figure S12B). We found that 150/349 (43%) of 

these SVs are found in only one sample, and no single sample has more than 6 unique SVs 

(HG01369). Three SVs (a 458-bp insertion in ABCC11, a 243-bp insertion in XYLT1, and a 118-

bp insertion in MED13L) are seen in all 100 samples, suggesting the reference genome 

represents a minor allele at some or all of these positions. Indeed, GRCh38 has been patched 

to include a similar insertion in XYLT1. We then evaluated whether SVs intersecting genes also 

clustered within specific superpopulations and found that of the 38 SVs observed in only 2 

samples, 76% (29/38) were superpopulation-specific with 55% of those (16/29) seen in samples 

from the African superpopulation. 

In this dataset, we observed 4 SVs spanning multiple genes, some of which are known 

population variants. This includes a 22.8-kbp deletion spanning HBB, HBD, and HBG1 (Figure 
4A) associated with beta thalassemia (Huisman et al. 1972) (MIM: 613985) and two samples 

with a 19,304-bp deletion including HBA1 and HBA2 commonly referred to as the Southeast 

Asian deletion (Farashi and Harteveld 2018) (MIM: 604131) (Figure S13).  
We did not expect to find rare SVs in X-linked OMIM genes in 46,XY samples, since 

those events would be more likely to be associated with a disease. However, five SVs were 

found in our confident set that intersected an X-linked OMIM gene in at least one 46,XY sample. 

Of these, four are in a 3’UTR and were observed in at least two 46,XX samples. One of the four 

events, found in only one sample, was an approximately 141-bp insertion in exon 15 of RPGR 

(OMIM: 312610), a gene associated with several X-linked conditions including retinitis 

pigmentosa, cone-rod dystrophy, and macular degeneration (Fahim et al. 1993). A similar 

insertion at this position has been reported twice in ClinVar as a variant of uncertain significance 

(VUS) associated with primary ciliary dyskinesia, once as a 141-bp insertion (ClinVar entry 

2121719) and once as a 69-bp insertion (ClinVar entry 1975740). Evaluation of the short-read 

sequencing data for this sample at this position did not clearly demonstrate the insertion, but the 
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insertion consists of only C- and T- nucleotides, which makes it difficult to align and evaluate 

using short-read technology (Figure S14). The presence of this insertion in a 46,XY 1KGP 

sample suggests that this variant may be present at a higher allele frequency than expected, is 

difficult to reliably call using short-read technology, or could be associated with a later onset of 

the associated phenotype. 

Next, we wondered how many SVs we would find in genes that are often difficult to 

evaluate using short-read technology and found a substantial number of high-confidence SVs in 

Figure 4. SVs, including multi-exon deletions are found in medically relevant genes.  
A. Phased IGV view of a 22,791-bp deletion in GM19035 that includes all or part of HBB, HBD, HBBP1, BGLT3, and 
HBG1. Variants in this region are associated with beta thalassemia (MIM: 613985) with this specific deletion known 
as Hemoglobin Kenya with this individual likely being an asymptomatic carrier (Huisman et al. 1972). GM19035 is 
from an individual from the Luhya population within the African superpopulation. B. Phased IGV view from LRS data 
showing a CYP2D6 full gene deletion on one haplotype (HP1) and a hybrid tandem arrangement (*36+*10) 
represented by an insertion on the second haplotype (HP2) in HG02396, compared to short-read whole genome 
sequence data from the same sample in which the complex nature of this event cannot be resolved. 
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challenging regions of the genome. For example, 42% (47,315/113,696) of the high-confidence 

SVs occur fully outside of the GIAB Tier 1 regions, and visual inspection of 30 events confirmed 

the presence of an SV. We also identified 407 high-confidence SVs within coding regions 

defined as unreliable for variant identification using short-read sequencing based on analysis of 

gnomAD data (Hijikata et al. 2024). In both cases, these SVs reside in regions that may be 

filtered by variant annotation pipelines. Finally, 9,788 of the high-confidence insertions were ≥ 

500 bp, which may preclude accurate resolution of these events and limit our understanding of 

their impact on gene expression or splicing when evaluated using short-read technology.  

Cytochrome P450 (CYP) genes are among the gene sets that are challenging to 

interrogate using short-read technologies and may require separate variant calling approaches 

to fully evaluate (Lee et al. 2019). There is interest in characterizing star alleles (haplotypes of 

SNVs and structural variation) in these pharmacogenes, as they are known to impact drug 

response (Zanger and Schwab 2013). Within this dataset, we observed that LRS enabled better 

resolution of full gene deletion and duplication SV events in highly polymorphic CYP 

pharmacogenes such as CYP2D6, a major pharmacogene involved in the metabolism of over 

20% of clinically prescribed medications (Zanger and Schwab 2013). For example, we identified 

one individual (HG02396) with a CYP2D6 gene deletion (*5) on one haplotype and a hybrid 

tandem arrangement (*36+*10)—shown via an insertion—on the second haplotype (Figure 4B). 
In the equivalent short-read WGS data, it can be difficult to identify both the gene deletion and 

the hybrid tandem star allele in the same individual. Separate analysis of a complex CYP2B6 

star allele (CYP2B6*29) identified in previous short-read analysis (Twesigomwe et al. 2024) 

showed that it was called by hapdiff but not the alignment-based callers used in this study, 

demonstrating that some of these complex alleles may not be represented in our initial high-

confidence SV set (Figure S15). 

Finally, because a major goal of this project is to create a dataset that can be used for 

filtering and prioritizing disease-associated SVs, we tested whether the SVs identified in these 

first 100 samples could be used to accurately filter SVs in cases with known disease-associated 

SVs. We used Jasmine to identify unique SVs—those not found in the high-confidence set from 

the 100 samples presented here—in 16 positive control cases known to carry a pathogenic SV 

previously identified by whole-genome (8 cases) or targeted (8 cases) ONT sequencing 

(Wilderman et al. 2024; Miller et al. 2021) (Table 1). Among the 8 cases that had undergone 

whole-genome LRS, filtering reduced the average number of high-confidence SVs by 93% (from 

22,743 to 1,664), and in all 16 cases the pathogenic SV was retained after filtering. This 

demonstrates that the high-confidence SV calls generated here can be used to filter and 
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prioritize disease-causing SVs in cases where there is a high suspicion of a Mendelian 

condition.  

 

Table 1. Results from filtering known disease-associated SVs using SV calls from 1KGP. 
SV lengths may be rounded or approximate.  

Number Gene SV type (type or length) 
Beginning 
SV Count 

SVs 
remaining 

after filtering 

Remaining 
SVs in genic 

regions 
Filtering 
Result 

Targeted long-read sequencing 

1 ALMS1 Insertion (Alu)a N/A N/A N/A Present 

2 HPS1 Deletion (1.9 kbp)a N/A N/A N/A Present 

3 AGL Deletion (1.5 kbp)a N/A N/A N/A Present 

4 HYDIN Deletion (1.7 kbp)c N/A N/A N/A Present 

5 HYDIN Deletion (10 kbp)c N/A N/A N/A Present 

6 Multiple Duplication (2 Mbp)b N/A N/A N/A Present 

7 TP53 Insertion (300 bp)c N/A N/A N/A Present 

8 HPRT1 Inversion (17 Mbp)a N/A N/A N/A Present 

Whole-genome long-read sequencing 

1 NSD1 Insertion (110 bp)c 18422 1584 685 Present 

2 FGA Deletion (4.1 kbp)c 22834 1999 269 Present 

3 FANCD2 Deletion (410 bp)c 22933 1503 327 Present 

4 ABCD1 Insertion (2.8 kbp)c 23216 1757 557 Present 

5 DBT Deletion (3 kbp)c 23800 3194 1361 Present 

6 AGRN Deletion (2.3 kbp)c 23346 419 171 Present 

7 COL5A1 Inversion (1.5 Mbp)c 24361 2038 417 Present 

8 AGL Insertion (Alu)c 23033 820 259 Present 

SVs reported in other studies include: a Miller et al. 2021, b Wilderman et al. 2024, c unpublished. 

 

Analysis of disease-associated repeat expansions  
Tandem repeat expansions—such as short tandem repeats (STRs) and variable number 

tandem repeats (VNTRs)—at more than 60 loci have been implicated in human diseases such 

as the GGC expansion in the 5’UTR of XYLT1 (MIM: 608124) associated with Baratella-Scott 

syndrome (MIM: 300881) or the intronic GGGGCC expansion in C9orf72 (MIM: 614260) 
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associated with amyotrophic lateral sclerosis and/or frontotemporal dementia (MIM: 105550) 

(Depienne and Mandel 2021; Hannan 2018; Tanudisastro et al. 2024; Chaisson et al. 2023). 

Many pathogenic repeat expansions associated with Mendelian disease are difficult to size or 

fully sequence-resolve using short-read sequencing methods, meaning clinically relevant 

interruptions in the repeat may not be easily identified (Chaisson et al. 2023; Tanudisastro et al. 

2024). Thus, there is interest in using LRS to evaluate repeat expansions genome-wide and at 

clinically relevant loci (Dolzhenko et al. 2023; Reis et al. 2023; Sulovari et al. 2019).  

We used vamos to perform genome-wide haplotype-resolved analysis of 562,005 loci—

including 66 loci associated with disease—that consisted of both simple and complex repeat 

units (Figure 5A, Figure S16, File S2). Using these data, we identified candidate pathogenic-

sized expansions in three genes: RFC1, ATXN10, and FGF14. Expansions in RFC1, which are 

associated with autosomal recessive cerebellar ataxia, neuropathy, vestibular areflexia 

syndrome (CANVAS, MIM #614575), were observed in five samples ranging from 359 to 712 

repeat units in size (Figure 5B, Figure S17). Pathogenic expansions in this gene are typically 

400 repeat units or larger and are motif-dependent, with expansions of an AAGGG repeat being 

the most common pathogenic expansion (Cortese et al. 2019; Scriba et al. 2020; Beecroft et al. 

2020). Our observation that some of these samples carried the AAGGG repeat unit while others 

carried a nonpathogenic repeat unit, such as AAAAG, was similar to recent work that identified 

expansions in RFC1 of varying repeat motifs in 5 of 100 HPRC samples (Dolzhenko et al. 2023; 

Cortese et al. 1993) (Figure 5C). That we observed an expansion in 5% of samples was not 

unexpected, as the carrier frequency of RFC1 expansions has been reported to be 1–5% across 

at least two populations (Cortese et al. 2019; Fan et al. 2020; Akçimen et al. 2019). 

Expansions were also observed in ATXN10, which is associated with autosomal 

dominant spinocerebellar ataxia type 10 (SCA10, MIM #603516), a slowly progressive ataxia 

with typical age of onset between 12 and 48 years and full-penetrance alleles varying from 800 

to 4,500 ATTCT repeats (Matsuura and Ashizawa 1993; Alonso et al. 2006; Raskin et al. 2007). 

Two of the 100 samples were heterozygous for alleles larger than 800 motifs, one of which had 

a second allele with 511 repeat units (Figure 5D, Figure S18). In addition, two other samples 

harbored expansions close to or larger than 280 repeat units, which has been reported as 

causative in one individual with ataxia (Matsuura et al. 2006). However, three of the four large 

alleles are purely ATTCT and there is evidence suggesting that interruptions of ATTCC are 

necessary for the allele to be pathogenic (Morato Torres et al. 2022). 
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Finally, we also identified a single sample with an expansion of 272 GAA units in FGF14, the 

locus associated with autosomal dominant spinocerebellar ataxia 27B (SCA27B, MIM: 620174) 

(Pellerin et al. 2023), within the range (250–400 repeat units) previously reported to be 

associated with reduced penetrance (Figure S19).  
To determine whether any of the 10 expansions (5 expanded RFC1 alleles, 5 expanded 

ATXN10 alleles) would be identified using short-read data, we ran ExpansionHunter on short-

read data from all affected samples (Dolzhenko et al. 2023). In all cases, when an expanded 

allele was present, the corresponding ExpansionHunter estimate was larger than the normal 

allele but, in most cases, still significantly underestimated the size of the expansion (Figure 5C, 
Figure 5D, Table S8). For example, in ATXN10, LRS identified a normal allele (15 repeat units) 

and an expansion in ATXN10 of more than 1,000 repeat units in HG01122. The 

ExpansionHunter estimates for this position in this sample are 15 repeat units (range 15–15) 

and 73 units (range 56–101), thus the normal allele was correctly estimated but the expanded 

allele was markedly underestimated. 

  

Evaluation of genome-wide methylation patterns and identification of novel differentially 
methylated loci 
A major advantage of LRS is the ability to simultaneously capture both DNA sequence and 

modification information (Logsdon et al. 2020). This allows for a more detailed evaluation of how 

changes in sequence, such as a repeat expansion or transposable element insertion, may alter 

the local epigenetic landscape and may identify variants missed by prior analysis or lead to 

prioritization of an unexpected locus. We evaluated methylation both genome-wide and at loci 

associated with imprinting disorders. Among 69 of the 70 46,XX samples sequenced, we found 

Figure 5. Evaluation of repeat expansions known to be associated with Mendelian conditions. 
A: Haplotype-resolved repeat expansions of selected repeat loci for simple and complex repeat units. Pathogenic 
repeat size is shown to the right of each plot (*), the associated condition is in parentheses, and the full name of each 
condition can be found in Table S10. The pathogenic repeat size for FMR1 is listed as 200 repeats, but a dashed 
vertical line represents the 55-repeat threshold that puts 46,XX and 46,XY individuals at risk for fragile X-associated 
tremor/ataxia syndrome (FXTAS, MIM #300623) and 46,XX individuals at risk of fragile X-associated primary ovarian 
insufficiency (POF1/FXPOI, MIM #311360). (AD, autosomal dominant; AD/AR, autosomal dominant/recessive; AR, 
autosomal recessive; XR, X-linked recessive; XD, X-linked dominant.) B: Among 200 haplotypes (y-axis), an 
expansion in RFC1 near or over 400 repeat units was seen in 5 haplotypes. The fraction of each motif within a single 
haplotype is shown. AAGGG is the most common pathogenic repeat expansion; additional pathogenic expansions 
include ACAGG (not shown), and a mixed AAAGG/AAGGG expansion.(Cortese et al. 1993) C: Haplotype (HP)-
resolved detail of RFC1 repeat expansions in five samples with an expansion of one allele. Haplotypes are assigned 
arbitrarily. Dotted line represents the position of full penetrance alleles typically seen at 400 repeat units. D: Three 
samples with expansions in ATXN10 larger than 280 ATTCT repeats were observed, one of which carries one allele 
larger than 800 repeat units and one allele around 500 repeat units in size. The dotted line at 800 repeat units 
represents the position of the lower end of the full penetrance range. ExpansionHunter (EH) estimates are overlayed 
atop the bar plots in (C) and (D), placed on HP1 or HP2 based on their length. 
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that 39% (27/69) had X-chromosome methylation patterns suggesting skewed X-inactivation 

(Figure 6A, Table S9).  
We then performed genome-wide principal component analysis of methylation to 

evaluate whether samples would correlate with ancestry or if patterns of X-inactivation would be 

apparent (Figure S20). This analysis revealed one sample, GM18864, that clustered with 46,XY 

samples but was reported to be 46,XX. Because we validated each sample using SNVs from 

short-read sequencing, we wondered whether this sample had lost, or was losing, an X-

chromosome and found that the average X chromosome depth of coverage was approximately 

55% of the full-length autosomes in the LRS data, and approximately 75% in the short-read 

sequencing data, suggesting loss of an X chromosome in this sample (Pedersen et al. 2020).  

Next, we evaluated methylation patterns at two disease-associated loci: 11p15.5, which 

is associated with both Beckwith-Wiedemann Syndrome (BWS, MIM #130650) and Silver-

Russell syndrome (SRS, MIM #180860) (Saal et al. 1993; Shuman et al. 1993); and 15q11.2-

q13, which is associated with both Prader-Willi syndrome (PWS, MIM #176270) and Angelman 

syndrome (AS, MIM #105830) (Dagli et al. 1993; Driscoll et al. 1993). Each of these regions 

contains CpG islands known to be differentially methylated depending on which parent the locus 

is inherited from. For the 11p15.5 region, we found that in all samples, one haplotype was 

completely methylated while the other was completely unmethylated at two imprinting centers 

known as IC1 and IC2 (Figure 6B). Evaluation of haplotype-resolved methylation at the 

SNURF-SNRPN locus on 15q11.2 revealed two samples, GM19473 and HG00525, where one 

haplotype was 25%–75% methylated. Visual evaluation of these samples showed that one 

haplotype of GM19473 had increased methylation while one haplotype of HG00525 had 

reduced methylation, which was unexpected and further demonstrates that changes in 

methylation can occur throughout the genome in these cell lines, even at well-established 

differentially methylated loci (Figure S21).  
We used MeOW to analyze differences in methylation at CpG sites genome-wide and 

identified 134 CpGs with methylation differences across 37 samples, with a median of 2 DMRs 

per sample. Among the 134 sites, 125 were observed in only one sample, 8 were seen in 2 

samples, and 1 CpG had a distinct methylation pattern in 3 samples (Table S10). As an 

example, 3 DMRs were found in HG02389 (Figure 6C), including a hypermethylated CpG in 

SLC29A3 not present in controls (Figure 6D). We observed both hypermethylation (86 CpGs) 

and hypomethylation (48 CpGs) among the 134 CpGs and identified four samples with more 

than 10 DMRs, with 3 of 4 having mixed patterns of methylation (GM19462, HG03548, and 

HG02817) and one (GM19473) with only increased methylation (Figure S22). We investigated  
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Figure 6. Patterns of methylation among the 1000 Genomes samples.  
A. Among 69 46,XX samples, 42 had mixed X-chromosome inactivation (top, example from HG01414), while 27 were 
skewed (bottom, example from HG01801). The color differences are related to breaks in phasing and do not suggest 
methylation is mixed along a single haplotype. B. Haplotype-resolved methylation fraction is shown for three 
imprinted loci associated with four imprinting disorders. Methylated (>75%) or unmethylated (<25%) fraction at IC1 in 
H19 and IC2 in KCNQ1OT1, which are associated with BWS and SRS on 11p15.5. Haplotype-resolved methylation 
fraction is also shown for the CpG island within SNURF-SNRPN that is evaluated when testing for PWS or AS. Two 
samples have either gain (GM19473) or loss (HG00525) of methylation at this locus. C. Unique distinct methylation 
differences within defined CpG islands were identified in individual samples. An example from HG02389 shows three 
CpG sites with increased methylation (red boxes) compared to controls (gray). D. As an example, we identified one 
haplotype in HG02389 that has increased methylation at an internal CpG site (3007) within an intron of SLC29A3. 
Methylation frequency by haplotype is shown for HG02389 and one control (HG03022). Methylation status is shown 
for individual reads for each haplotype from HG02389 only (red indicates a methylated CpG; blue indicates an 
unmethylated CpG). 
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whether changes in gene expression were associated with these changes and found that 

among the 15 samples from the African superpopulation with a DMR, there was an enrichment 

of expression outliers near the DMR with increasingly stringent z-score thresholds, suggesting 

changes in gene expression corresponding to these methylation changes (Figure S23).   
 

 

DISCUSSION 
 

Current approaches to clinical genetic testing are incomplete as they are unable to capture the 

full spectrum of disease-causing variation (Wojcik et al. 2023). These limitations exist because: 

1) new technologies, such as LRS, are not yet widely implemented in the clinical testing lab; 2) 

computational tools are not yet able to efficiently capitalize on the data provided by these new 

technologies and those that can have substantial computational requirements; and 3) databases 

for filtering and prioritizing variants identified using new technologies are not yet available. The 

1KGP-ONT Consortium plans to sequence at least 800 1KGP samples to characterize variation 

in genomic regions that are difficult to evaluate using short-read technology. Sequencing ≥800 

samples will capture a more complete catalog of variation, especially rare yet presumably 

benign variants across the 1KGP populations. The expanded collection will enable a more 

accurate estimate of allele frequency for these challenging variants and an expanded analysis 

of haplotypic and epigenetic variation.  

Here, we describe the initial analysis of the first 100 samples sequenced to >30x depth 

of coverage and a read N50 >50 kbp, which was possible because of the use of HMW DNA 

isolated directly from cell culture (Figure 1). This resulted in high sensitivity for SV detection 

using both assembly- and alignment-based approaches, which allowed us to identify an average 

of 24,543 SVs per sample, similar to prior analysis of other 1KGP samples by the HGSVC and 

HPRC (Ebert et al. 2021; Liao et al. 2023). Our efforts complement recent work that identified 

an average of 16,065 SVs in 888 1KGP samples sequenced to lower coverage (15x median 

depth of coverage) and median read length (6.2 kbp), while demonstrating the advantage of 

sequencing HMW DNA (Noyvert et al. 2023).  

We performed one of the most comprehensive benchmarking analyses to date of SNVs, 

indels, and SVs using data from the ONT platform. We found that, consistent with prior studies, 

data generated on the ONT platform has a higher recall and precision than Illumina-based 

approaches for SNVs in well-characterized genomic regions and performs well for indels, 

specifically outside of homopolymers (Kolmogorov et al. 2023). Because all data from these first 
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100 samples were generated on the R9.4.1 pore, we anticipate that improvements in chemistry, 

such as the use of the R10.4.1 pore, will reduce context-specific errors (such as are seen in 

homopolymers) and result in improved concordance with truth sets for SNV and indel calls. 

Because of this expectation, we have transitioned ongoing sequencing to the R10.4.1 pore. SV 

benchmarking also revealed high F1 scores for three samples for which orthogonal calls were 

available, highlighting how the R9.4.1 pore is sufficient for this application.  

SVs were called using four alignment-based and one assembly-based caller. After 

merging, a high-confidence SV call set comprising 124,927 SVs was generated that we show 

can be used for filtering and variant prioritization. Genome-wide evaluation of these high-

confidence SVs revealed 378 that were within or encompassed an exon of a medically relevant 

gene. The low number of SVs intersecting medically relevant genes was reassuring, as we 

expect there to be selection against these events within coding regions of the genome. 

Nevertheless, we did identify one SV—an approximately 141-bp insertion in exon 15 of RPGR, 

a gene with an X-linked phenotype—in a 46,XY sample near two similar insertions that have 

been reported as VUSs in ClinVar. Because the 1KGP samples came from presumably healthy 

individuals, it could be that this event is associated with a later onset of an associated 

phenotype or that the insertion is benign. Identification of this insertion in a 1KGP sample is 

valuable as it may lead to functional studies that clarify the nature of the variant. Analogous to 

what has been reported for the relatively common occurrence of single nucleotide loss-of-

function mutations in otherwise healthy individuals, the presence of an SV in a gene does not 

necessarily imply the variant is pathogenic (MacArthur et al. 2012). Indeed, early studies of 

human population samples using SNP microarrays identified extremely rare CNVs > 500 kbp in 

length among individuals without overt disease (Cooper et al. 2011).  

We also ascertained whether LRS might provide better resolution of SVs in key 

pharmacogenes such as CYP2D6. While it was clear that LRS enabled unambiguous 

characterization of gene deletions (e.g. CYP2D6*5) and duplication events (even within the 

same individual) (Figure 4B), some hybrid rearrangements (e.g. CYP2B6*29) remained difficult 

to fully resolve. Alleles such as this can be used to: 1) evaluate assembly, alignment, and SV 

calling algorithms; 2) evaluate how differences in read quality contribute to SV resolution; and 3) 

establish best practices for accurately interrogating SVs in complex pharmacogenes using LRS 

(Twesigomwe et al. 2023, 2024).  

 Genome-wide evaluation of select repeat expansions revealed expansions in complex 

alleles not previously reported and difficult to identify using short-read technology (Figure 5). 
Repeat expansions in three genes (RFC1, ATXN10, and FGF14) were seen in 9 total samples 
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and included repeat units that have been associated with diseases in the past. Because the 

individuals recruited to the 1KGP were presumably healthy, these individuals may be at risk of 

developing symptoms associated with these conditions later in life, or they may be carrying 

alleles that are nonpathogenic because of sequence interruptions that we did not detect. 

Alternatively, these expansions may simply be an artifact of the cell culture process and should 

be considered when these samples are used in other experiments. 

 Finally, we evaluated patterns of methylation genome-wide and at loci associated with 

disease. We observed large-scale changes, such as skewed X-inactivation, in over one-third of 

46,XX samples and unique changes, such as novel differential methylation that correlates with 

changes in local gene expression. These changes provide a mechanism by which distinct 

signals from samples maintained in cell culture can be explained. Furthermore, this finding 

demonstrates the potential limitations of using immortalized cell lines to infer epigenetic 

signatures.  

 Sequencing of 1KGP samples is ongoing and we expect the analysis of a larger number 

of samples to further refine many of the findings in this study. A majority of the analysis 

presented here was performed using GRCh38 as a reference due to its widespread use in 

clinical and research laboratories; work is ongoing to evaluate the impact of the more complete 

CHM13 T2T genome on variant calling (Nurk et al. 2022). Overall, we anticipate that the dataset 

provided here will hasten the use of LRS to evaluate individuals with suspected Mendelian 

conditions for whom a precise molecular diagnosis remains elusive. This work not only provides 

valuable resources for candidate variant filtering and analysis but also emphasizes the critical 

need for ongoing investment in technology, software, and database development to fully realize 

the benefits of LRS. The more comprehensive analysis that can be performed using LRS— 

such as the identification and resolution of complex SVs, improved phasing, and incorporation 

of associated methylation information—will allow clinical and research teams to stop focusing on 

“what’s the next best test” when evaluating an individual with a suspected genetic condition and 

instead focus on interpreting those variants that were previously difficult to detect or that may 

involve a novel gene. Together, these efforts will lead to improved clinical outcomes, new gene-

phenotype associations, the use of novel therapies, and an end to the diagnostic odyssey for 

many of the individuals and their families who are living with an unsolved or incompletely 

understood genetic condition. 
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METHODS 
 

Cell culture 
B-Lymphocyte LCLs from the 1000 Genomes Project were purchased from the NHGRI Sample 

Repository for Human Genetic Research at the Coriell Institute for Medical Research. Cells 

were shipped overnight at ambient temperature in T25 flasks filled with carbon dioxide-

equilibrated transport media. Upon receipt in the lab (day 0), cells were transferred directly to an 

incubator at 37°C and kept overnight. On day 1, cells and media were transferred to a T75 flask 

and 20 mL fresh complete RPMI-1640 media (15% fetal bovine serum, 1% penicillin-

streptomycin) was added. On day 2, 10 mL of cells were removed for cryopreservation and 10 

mL of fresh media was replaced. On day 3, cells were harvested by centrifugation at 300 rcf and 

resuspended in PBS for counting. An aliquot of 2.5x10^7 cells were pelleted by centrifugation at 

300 rcf and resuspended in 3 mL Puregene Cell Lysis Buffer. 

 

DNA isolation, library preparation, sequencing, and base calling 
HMW DNA was isolated from LCLs using either the NEB Monarch HMW DNA Extraction from 

Cells kit according to manufacturer’s directions or the Puregene DNA Purification from Cultured 

Cells kit. Puregene extractions were performed using the manufacturer instructions for large 

volume extractions or a small volume extraction protocol with the following modifications. Small 

volume cells were resuspended in 1.0 mL of Purgene Cell Lysis Buffer and 6 µL of Qiagen 

RNase A Solution was added. Both extraction methods were incubated at 37 °C for 40 min. For 

the small volume method, 333 µL of Puregene Protein Precipitation Solution was added, and 

both methods were incubated on ice for 10 minutes following homogenization. After DNA 

precipitation, washes were performed using 666 µL of 70% EtOH. DNA was resuspended with 

Puregene DNA Hydration Solution or Tris-EDTA buffer and allowed to incubate for 48 hr at 4°C 

or 24 hr at room temperature before quantifying. Extracted DNA was quantified on a Qubit 

Fluorometer (Invitrogen) using the dsDNA High Sensitivity Assay. DNA quality for sequencing 

was assessed using a NanoDrop Spectrophotometer (ThermoFisher) and Agilent Femtopulse 

following quantification. 

After isolation and QC of HMW DNA, libraries for sequencing were prepared using the 

ligation sequencing kit (SQK-LSK110, ONT), loaded onto a R9.4.1 flow cell, and run on a 

PromethION 24 sequencer for 24 hr before being washed and reloaded. On average, 3 libraries 

were loaded and 1.5 flow cells were used per sample. A unique library identifier was used for 

each wash and reload. Following sequencing, libraries were basecalled using Guppy version 6 
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(ONT) using the super accurate model with 5mCG modifications or with 5mCG and 5hmCG 

modifications. Run performance was evaluated using cramino (v0.14.1) (De Coster and 

Rademakers 2023) (Table S2).  
 

Alignment and variant calling pipeline 
After base calling, FASTQ files with methylation tags were created from unaligned bam files 

using samtools (v1.17) (Li et al. 2009) and aligned to GRCh38 

(GCA_000001405.15_GRCh38_no_alt_analysis_set) with minimap2 (v2.24) (Li 2018). SNVs 

and indels were called with the Clair3 (v1.0.4) R9 model and bam files were haplotagged using 

Longphase (Lin et al. 2022; Zheng et al. 2022). Structural variants were called by Sniffles2 

(v2.0.7) (Smolka et al. 2024) using default parameters, SVIM (v1.4.2) (Heller and Vingron 2019) 

using default parameters, and cuteSV (v2.0.3) (Jiang et al. 2020) using the following specific 

parameters: --max_cluster_bias_INS 100 --diff_ratio_merging_INS 0.3 --max_cluster_bias_DEL 

100 --diff_ratio_merging_DEL 0.3 --genotype.  

 

Napu pipeline  
The Napu pipeline (Nanopore Analysis Pipeline) was run using default parameters (Kolmogorov 

et al. 2023). Input files were merged unaligned BAM files for each sample, the GRCh38 

reference genome 

(GCA_000001405.15_GRCh38_no_alt_analysis_set_maskedGRC_exclusions) and 

corresponding VNTR annotations provided in the Napu GitHub repository.           

 

Sample validation 
For each sample, Clair3 variant calls from the in-house minimap2 alignment pipeline were 

validated against 1KGP Illumina GATK VCF files (Byrska-Bishop et al. 2022). Specifically, SNVs 

on chr21 and within the GIAB HG002 high confidence regions were compared using hap.py 

(Krusche) with Illumina GATK as the truth set and ONT Clair3 calls as the query set. All 

samples were confirmed to have a SNV precision > 0.98, suggesting sample concordance 

(nonconcordant samples showed SNV precision <0.50).  

 

SNV and indel benchmarking 
Original sequencing data for 5 benchmarking samples (HG002/NA24385, HG003/NA24149, 

HG004/NA24143, HG00733, and HG02723) was downloaded and converted from FAST5 to 

POD5 format using the POD5 Python Package (ONT), then base called with Dorado 0.5.0 
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(ONT) using the super accurate model with 5mCG modifications. Each sample was 

downsampled using samtools to match the approximate depth of coverage of the 100 samples 

presented here and processed with both the in-house alignment pipeline and the Napu pipeline.  

SNV and indel calls made using DeepVariant for HG002, HG00733, and HG02723 from 

the HPRC as well as those for HG002, HG003/NA24149, and HG004/NA24143 from GIAB were 

obtained (Shafin et al. 2020; Liao et al. 2023). Short-read SNV and indel calls made by GIAB 

using GATK for HG00733, and HG02723 for chromosomes 1–22 were downloaded and 

concatenated using bcftools (Danecek et al. 2021; Wagner et al. 2022). All VCFs were 

preprocessed for ‘FILTER = PASS’ and limited to variants on chromosomes 1–22.  

We used hap.py (Krusche) to compare SNV and indel calls from the Napu pipeline to 

calls from the HPRC and GIAB. The HG002 SNV and indel high-confidence benchmarking bed 

(HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed) was used to limit analysis to 

high-confidence regions. While sample-specific benchmarking beds are available from GIAB for 

HG003 and HG004, we chose to use the HG002 bed file for all samples as similar sample-

specific filters do not exist for other samples, such as HG00733 or HG02723. In addition, a 

modified version of HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed which 

excluded homopolymers 4 bp or larger +/– 1 bp (based on GIAB_hg38_Stratifications_v3.3) 

was used (Dwarshuis et al. 2023).  

 

SNV and indel comparison between ONT and Illumina 
We obtained Illumina GATK SNV/indel VCFs generated for these 100 samples from 

chromosomes 1–22 (Byrska-Bishop et al. 2022). Variants in this dataset were previously filtered 

for the following: FILTER=PASS, Genotype missingness < 5%, Pass HWE test (i.e., HWE p-

value > 1e-10 in at least 1 of the 5 superpopulations), Mendelian error rate ≤ 5%, and Minor 

allele count (MAC) ≥ 2. PMDV VCFs for these 100 samples were generated using the Napu 

pipeline. Clair3 VCFs for the 100 samples were generated using our in-house alignment 

pipeline. Both PMDV and Clair3 VCFs were preprocessed for ‘FILTER = PASS’ and only 

variants on full chromosomes 1–22 using bcftools (Danecek et al. 2021). We then ran hap.py in 

a pairwise fashion (GATK vs. PMDV, GATK vs. Clair3) for each of the 100 samples using GATK 

as the truth set to calculate precision, recall, and F1 for each sample. For each VCF pair, 3 

iterations were run: 1) no masking (all variants included); 2) using the GIAB high-confidence bed 

file to define confident regions; and 3) using the GIAB high-confidence bed file plus 

homopolymers 4 bp or greater +/– 1 bp removed. 
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De novo genome assembly and assembly evaluation 
Flye (v2.9.2) was run on all samples using the ‘--nano-hq’ option to obtain haploid assemblies 

(Kolmogorov et al. 2019). Assembled fasta files were aligned to the GRCh38 reference genome 

(GCA_000001405.15_GRCh38_no_alt_analysis_set_maskedGRC_exclusions) using minimap2 

(v2.24) (Li 2018) with the following parameters: ‘-ax asm20 -B 2 -E 3,1 -O 6,100 --cs -K 5G’. 

Starts and ends of aligned contigs were determined using bedtools (v2.3.0) (Quinlan and Hall 

2010). The process was repeated for diploid assembly files ‘hapdup_dual_1.fasta’ and 

‘hapdup_dual_2.fasta’ from the Napu (Shasta-Hapdup) pipeline (Kolmogorov et al. 2023).  

To compute the fraction of the genome covered by assemblies and the contig NG50s, 

QUAST (v5.2.0) (Mikheenko et al. 2018) was run using the ‘--large’, ‘-x-for-Nx 75’ and ‘--

fragmented’ options on assembled fasta files from Flye and individually on diploid assembly files 

from the Napu (Shasta-Hapdup) pipeline. Mean QV scores used to evaluate the Flye and Napu 

(Shasta-Hapdup) assemblies were estimated using yak (r56) (https://github.com/lh3/yak). K-mer 

hash tables for each sample were generated from matching Illumina short-reads and the QV for 

the corresponding long-read assembly file was then computed. 

For the Napu (Shasta-Hapdup) assemblies, yak (r56) was individually run on the two 

haplotype-resolved assembly files ‘hapdup_dual_1.fasta’ and ‘hapdup_dual_2.fasta’ and a 

mean QV for the two files was reported per sample. Matching Illumina datasets for the 100 

samples and 2 benchmarking datasets (HG00733 and HG02723) were downloaded from 

https://www.internationalgenome.org/data-portal/data-collection/30x-grch38. Illumina data for 

the remaining 3 datasets used for benchmarking (HG002, HG003 and HG004) were 

downloaded from https://www.nist.gov/programs-projects/genome-bottle. 

 

Pangenome construction 
Contigs of the 100 Shasta-Hapdup assemblies were partitioned by chromosome by mapping 

them against the GRCh38, CHM13 (v2.0) and HG002 (v1.0.1) human reference genomes using 

WFMASH (v0.12.6, commit 0b191bb) pangenome aligner (Marco-Sola et al. 2021). On each set 

of contigs, we used PGGB (v0.5.4, commit 0317e7f) to build chromosome-level unbiased 

pangenome variation graphs (Garrison et al. 2023). We used ODGI (v0.8.3, commit 861b1c0) to 

compute similarity matrixes from the pangenome graphs and used R (v4.2.2) to perform the 

principal component analysis (Guarracino et al. 2022; R Core Team 2021).  
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Analysis of assembly contig breakpoints  
We characterized the position of assembly breakpoints using precomputed segdup and 

RepeatMasker positions downloaded from UCSC (Bailey et al. 2002; Kent et al. 2002). The 

position of assembly breaks were categorized as “Satellite” (only satellite repeats), 

“SegDup+Satellite” (segdups and satellite repeats), “SegDup” (only segdups) or “Neither” 

(outside segdups and satellite repeat regions). 
 
Gene assembly stats 
A list of medically relevant genes was downloaded from OMIM (https://www.omim.org/). Gaps in 

either the Flye or Napu (Shasta-Hapdup) assemblies were defined using the GenomicRanges R 

package (Lawrence et al. 2013). Gaps were defined as regions in the genome where no contig 

was mapped. After filtering for regions representing OMIM genes, mapping_fraction for each 

OMIM gene was calculated as follows: 

 

 𝑚𝑎𝑝𝑝𝑖𝑛𝑔_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	 = 	1	 − 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦	𝑔𝑎𝑝𝑠	𝑖𝑛	𝑂𝑀𝐼𝑀	𝑔𝑒𝑛𝑒	(𝑖𝑛	𝑏𝑝)
	𝑙𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑂𝑀𝐼𝑀	𝑔𝑒𝑛𝑒	(𝑖𝑛	𝑏𝑝)  

 

Data from the Shasta-Hapdup and Flye assemblies were filtered for OMIM genes with 

mapping_fraction less than 1 or for genes where more than one contig spanned the gene 

indicating an incomplete or broken assembly. If at least one of two Shasta-Hapdup assemblies 

had a mapping_fraction less than 1 or multiple contigs spanning a gene it was counted as an 

incomplete assembly for that gene.  

 
Calculation of median contig sizes by superpopulation 
Contig sizes for each sample were calculated by taking the difference between the start and end 

position in the BED file. For each sample, the median contig size for contigs larger than 1 Mb 

was calculated separately for the Shasta-Hapdup and Flye assemblies.  

 

SV analysis, merging, and benchmarking 
All SV VCFs were preprocessed to standardize SV type annotations and to include SVs that 

passed filtering (FILTER = PASS), were ≥ 50 bp in length (if SV length was not reported for the 

SV type, the variant was kept), and were located on full-length chromosomes (chromosome 1-

22, X, Y, and M) using bcftools commands specific to each caller. After preprocessing, the 

number of SVs (INS, DEL, INV, DUP, and BND) were counted per sample and individual VCFs 

for each call set (minimap2 pipeline: Sniffles2, cuteSV, and SVIM; Napu pipeline: Sniffles2 and 
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hapdiff) were concatenated and parsed by SV type. After concatenation, the length of all INS or 

DEL events for all 100 samples were calculated. We then calculated novel SVs per sample (for 

each caller) by adding samples in reverse alphanumeric order by reverse alphabetical ancestry 

and counting the number of new SVs included, with samples of AFR ancestry added last. For 

each iteration, SVs within a call set were merged with Jasmine (--allow_intrasample --

output_genotypes --ignore_strand --dup_to_ins --centroid_merging) and then the resultant 

output VCF was parsed by SV type. 

To analyze overlapping SVs, calls from all 5 callers were merged using Jasmine. The 

Jasmine output for each sample was parsed using the “SUPP_VEC'' field indicating which of the 

5 callers supported each output variant. The minimum support flag was included to retain only 

SVs that were called by at least a minimum number of the 5 callers. A confident call set was 

defined by variants called (per sample) by hapdiff and at least 2 unique alignment-based callers 

(i.e., Sniffles2 and CuteSV from our in-house pipeline, or Sniffles2 from the Napu pipeline and 

SVIM from the in-house pipeline), but not if the call was supported only by Sniffles2 calls from 

both the Napu and in-house pipeline. 

To perform SV benchmarking, downsampled ONT data from HG002/GM24385, 

HG00733, and HG02723 were processed using the Napu pipeline and SV calls from Sniffles2 

and hapdiff were preprocessed as above. We obtained Sniffles2 calls from the HPRC and 

preprocessed them as above. Each ONT sample (for both Sniffles2 and hapdiff) was 

benchmarked to the HPRC (truth) calls using Truvari (v4.1.0) (English et al. 2022) with the 

following options: --pick multi --chunksize 2000 -r 2000 --dup-to-ins --pctseq 0. A GRCh19 to 

GRCh38 liftover of the GIAB HG002 SV Tier1 benchmarking bed was used to define regions for 

inclusion.  

We benchmarked HG002 SV calls against the draft GIAB T2TQ100 HG002 GRCh38 SV 

benchmark (https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_HG002_Dr

aftBenchmark_defrabbV0.015-20240215/). The draft benchmark was generated using v0.015 of 

DeFrABB (https://github.com/usnistgov/giab-defrabb). Briefly, DeFrABB uses the variant calls 

and diploid assembled regions identified by dipcall (Li et al. 2018) from assembly–assembly 

alignments. V1.01 of the HG002 Q100 assembly (https://github.com/marbl/hg002) and a 

modified version of GRCh38 (https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/references/GRCh38/GRCh38_GIABv3_

no_alt_analysis_set_maskedGRC_decoys_MAP2K3_KMT2C_KCNJ18.fasta.gz) were used as 

inputs. We started with regions with a 1:1 alignment between each assembled haplotype and 
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the reference (except the X and Y chromosomes) and then excluded gaps in the assembly and 

their flanking sequences as well as any large repeats (satellites, tandem repeats >10 kb, and 

segdups) that have a break in the assembly to reference alignment on either haplotype. The SV 

call sets were compared to the draft GIAB SV benchmark set using truvari refine 

(v4.2.2.dev0+1cd03b2) (English et al. 2022). First, truvari bench was run using the options (--

sizemin 50 --pick ac), then truvari refine was run using the truvari bench results as input with 

options (--recount --use-region-coords --use-original-vcfs --align mafft --use-original --reference 

ref/GCA_000001405.15_GRCh38_no_alt_analysis_set.fasta.gz --regions candidate.refine.bed), 

where candidate.refine.bed is a bed file with target regions for refinement generated by truvari 

bench. 

 

Filtering and prioritization of SVs 
Sniffles2 SV calls made using our in-house pipeline from cases sequenced on the ONT platform 

that were known to have a disease-causing SV were preprocessed as above and merged using 

Jasmine (parameters above) along with Sniffles2 SV calls from the Napu pipeline from the 100 

samples. The Jasmine output was parsed for SVs present only in the case sample and 

annotated with the following: 1) does the variant intersect a protein-coding gene as defined by 

GENCODE release 45 (Frankish et al. 2021); 2) is the gene associated with a phenotype in 

OMIM; 3) does the SV intersect an exon of a canonical protein-coding exon defined by 

GENCODE release 45; and 4) does the SV intersect a complex genomic feature such as a 

centromere, segdup, or gap in GRCh38. 

 

eQTL analysis 
Following the SV-eQTL method presented by Kirsche et al. (2023), we performed SV-eQTL 

calling within the 65 samples that have both long-read ONT DNA sequencing data and short-

read RNA sequencing data from MAGE (Figure S11). Briefly, this approach fits a linear model 

between the SV genotypes (0=homozygous ref, 1=heterozygous alt, 2=homozygous alt) with 

the normalized MAGE expression measurements and sex information using the OLS module in 

python. To calculate gene-level eQTL p-values, we applied Bonferroni correction to the minimal 

eQTL p-value for each gene, adjusting by the number of eQTLs associated with that gene. 

Then, we further adjusted these gene-level p-values for multiple testing using the Benjamini-

Hochberg method with an FDR rate below 20%. The higher FDR rate was needed due to the 

limited number of samples, but we noted that SV-eQTL pairs common to this analysis and the 

Kirsche et al. analysis typically had more significant p-values reported in Kirsche et al. (2023). 
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Identification of SVs in medically relevant genes 
The 5 SV callers (in-house pipeline: Sniffles2, cuteSV, and SVIM; Napu pipeline: Sniffles2 and 

hapdiff) for each of the 100 samples were merged using Jasmine and parsed for confident calls 

for each sample. The confident calls for each sample were then merged using Jasmine. The 

output from the intersample Jasmine merge was intersected with a custom-built bed file of 

genomic coordinates of medically relevant exons. An ideogram of the genomic locations of each 

of the “custom confident” SVs that intersects a medically relevant exon was plotted in R using 

KaryoploteR (Gel and Serra 2017). All genomic boundaries were defined by GENCODE release 

45 using the following definitions: 1) protein-coding genic regions are genes with gene_type and 

protein_coding, 2) UTRs are defined as Ensembl_canonical and in protein_coding genes, 3) 

intronic regions are defined as protein_coding genic regions outside of Ensembl_canonical 

protein_coding exons, and 4) medically relevant exons are defined as Ensembl_canonical 

exons in OMIM genes. 

 

Repeat masking of the first 100 assemblies 
Each assembled haplotype from the Napu pipeline (Shasta-Hapdup) was masked using 

RepeatMasker (http://www.repeatmasker.org/)  with the rmblast search engine (‘-e rmblast’) and 

the built-in human transposable element database (‘-species human’). HG002 and HG005 

RepeatMasker output was downloaded from the HPRC. CHM13 T2T (hs1) RepeatMasker 

output was downloaded from UCSC (Nurk et al. 2022). The transposable element fraction data 

of the Shasta-Hapdup assemblies, HG002, and HG005 were extracted from the standard ‘.tbl’ 

output of Repeat Masker. The CHM13 T2T genome transposable element fraction data was 

adapted from Hoyt et al. (Hoyt et al. 2022). The number of L1HS in each genome was counted 

by extracting lines matching ‘L1HS’ from the RepeatMasker standard ‘.out’ output. The number 

of full-length L1HS elements was counted by extracting the lines from the RepeatMasker output 

file by searching for ‘L1HS’ and filtering for the distance between the starting and ending 

coordinate of the L1HS is ≥ 6,000 bp. 

  

Tandem Repeat Genotyping 
Repeats were genotyped using vamos v1.2.6 (Ren et al. 2023) and a list of genome-wide 

simple repeat loci was made by intersecting the original motif set from vamos 

(https://zenodo.org/records/8357361) with the GIAB Tier 1 regions and the UCSC simple repeat 

regions (Benson 1999; Zook et al. 2020). This was combined with the position and motifs for 66 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.05.24303792doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.05.24303792
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gustafson, Gibson, Damaraju et al.  |  MANUSCRIPT 

Page 36 of 49 

disease-associated loci derived from the STRchive (https://github.com/hdashnow/STRchive). 

This resulted in 562,005 total loci. Nonreference alleles for ATXN10 not included in the 

STRchive were obtained from (Morato Torres et al. 2022). A bed file with the coordinates and 

metadata for each locus is provided (Table S9). The haplotype-resolved hapdiff assemblies 

from the NAPU pipeline were used to genotype the repeat and evaluate sequence context. 

Since haplotypes are assigned arbitrarily, all “mat” assemblies were assigned haplotype 1, and 

all “pat” assemblies were assigned haplotype 2. Because the haplotype-resolved assemblies 

can fill in missing sequences, only the haplotype 1 value for X chromosome loci was considered 

for 46,XY individuals. The output from vamos is a per-sample per-haplotype VCF of the 

genotype of each allele. The VCFs were combined with the vamos combine_vcf.py script 

(https://github.com/ChaissonLab/vamos/blob/master/snakefile/pyscript/combine_vcf.py). Each 

haplotype is a separate sample in the combined VCF in File S2. 

 ExpansionHunter v5.0.0 was run to genotype STRs on all samples using the 

ExpansionHunter genome-wide STR catalog v1.0.0 

(https://github.com/Illumina/RepeatCatalogs/tree/master) containing 174,293 STR loci using the 

streaming analysis mode (-m streaming) as recommended for large variant catalogs 

(Dolzhenko et al. 2019). TRTools v5.0.2 mergeSTR method was then used to generate a multi-

sample VCF file (Mousavi et al. 2021).  

 

Methylation analysis 
Haplotype-resolved, whole-genome methylation pileup files were generated using modkit 

v0.1.11 (ONT) using the flags --cpg --ref --ignore h --combine-strands --partition-tag HP. Strands 

were combined for one read count value using the ‘--combine_strands’ option for each CpG 

corresponding to CpGs in the GRCh38 reference 

(GCA_000001405.15_GRCh38_no_alt_analysis_set_maskedGRC_exclusions_v2.fasta). Pileup 

files were generated from the PMDV haplotagged bam file from the Napu pipeline. Haplotype-

resolved pileup files were subset for CpGs within defined X chromosome CpG islands using 

bedtools v2.30.0 (Quinlan and Hall 2010). For X chromosome analysis, the average fraction of 

methylated reads was calculated for each CpG island on the X chromosome. Visualizing 

patterns at this level, we selected 20 samples that exhibited a skewed distribution and filtered 

CpG islands found in the majority of samples (≥16) where the average fraction methylated +/– 

the standard deviation did not overlap across haplotypes. This resulted in 397 informative CpG 

islands, which were plotted for each sample. Samples were filtered to include only CpG islands 

within that list where the mean coverage was ≥ 5 reads. The X-chromosome inactivation pattern 
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was then predicted by taking the median difference between the fraction methylated between 

haplotypes at each informative CpG island. 

We subsetted CpG islands at the H19 (chr11:1997582-2003510) and KCNQ1OT1 

(chr11:2698718-2701029) loci and SNURF-SNRPN (chr15:24954857-24956829) (Akbari et al. 

2022). The average fraction of reads methylated was calculated per sample and per haplotype. 

Unique DMRs were identified with the Methylation Operation Wizard (MeOW) using a 

leave-one-out analysis (Zalusky and Miller 2024). Whole-genome methylation frequencies were 

quantified for CpG dinucleotide positions within previously defined CpG islands. To simplify 

analysis, 24 datasets that included 5hmCG methylation in addition to 5mCG methylation were 

excluded. The probability of methylation across all reads for each position was averaged and 

rescaled to a [0,1] interval. The probability of differential methylation was determined using the 

bootstrapped beta regression test option in MeOW and filtered using both the benjamin-

hochberg corrected p-values and a Cohen’s d cutoff of 1.5. Comparisons were restricted to CpG 

islands with 50 or more CpG positions containing non-N bases in all 76 sample datasets, 

comprising 20,836 regions. Methylation for the SLC29A3 DMR was visualized with 

modbamtools v0.4.8 (Razaghi et al. 2022).  

Principal component analysis of methylation data was performed by taking the average 

fraction methylated of each CpG island calculated from the per-CpG dataset. PCA was 

performed comparing 75 samples using prcomp from the stats package in R 4.3.1. 

To evaluate associated changes in gene expression, DMRs were subset to those 

occurring in African Functional Genomics Resource (AFGR) samples that had RNA-sequencing 

data available for analysis (n=15 individuals, n=66 DMRs) (DeGorter et al. 2023). The 

coordinates of each DMR were expanded by 10 kbp and intersected with protein-coding genes 

based on Gencode v35 gene models using plyranges left_overlap_join (Frankish et al. 2021). 

Expression z-scores were pulled for the 85 genes occurring near DMRs based on that criteria. 

To test enrichment, a varying expression absolute z-score threshold (0.1, 0.5, 1, 1.5,  . . . , 4) 

was set to determine expression outliers, then the log odds ratio estimates and standard errors 

(SE) were calculated from a logistic regression across all sample-gene pairs, (model: 

Expression_Outlier ~ Sample_has_DMR + ε). Log odds ratios were plotted with 95% CI, 

estimate +/– 1.96*SE. 
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DATA ACCESS 
Data for all samples sequenced as part of the 1000 Genomes Project ONT Sequencing 

Consortium are publicly available at https://s3.amazonaws.com/1000g-ont/index.html. Data from 

the 100 samples reported here, as well as summary analysis data, are available at 

https://s3.amazonaws.com/1000g-ont/index.html?prefix=FIRST_100_FREEZE/. Data and code 

related to pangenome analyses are available at https://github.com/AndreaGuarracino/1000G-

ONT-F100-PGGB. 
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