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ABSTRACT

The emergence of genomic language models (gLMs) offers an unsupervised approach to learn a wide diversity of cis-regulatory
patterns in the non-coding genome without requiring labels of functional activity generated by wet-lab experiments. Previous
evaluations have shown pre-trained gLMs can be leveraged to improve prediction performance across a broad range of
regulatory genomics tasks, albeit using relatively simple benchmark datasets and baseline models. Since the gLMs in these
studies were tested upon fine-tuning their weights for each downstream task, determining whether gLM representations embody
a foundational understanding of cis-regulatory biology remains an open question. Here we evaluate the representational power
of pre-trained gLMs to predict and interpret cell-type-specific functional genomics data that span DNA and RNA regulation.
Our findings suggest that current gLMs do not offer substantial advantages over conventional machine learning approaches
that use one-hot encoded sequences. This work highlights a major limitation with current gLMs, raising potential issues in
conventional pre-training strategies for the non-coding genome.

Introduction

Large language models (LLMs) have demonstrated remarkable capabilities in natural language processing1–4 and protein
sequence analysis5–8. These LLMs, often termed “foundation models”, are trained through self-supervised learning to encode
input data as contextual embeddings (also known as representations). The strength of pre-trained LLMs lies in the versatility of
their embeddings, which can be leveraged for a broad spectrum of downstream predictive tasks. For instance, representations
from pre-trained protein language models have been used to predict protein structures9–11, predict non-synonymous variant
effects12, 13, design novel protein sequences14–16, and study protein evolution17, 18.

LLMs pre-trained on genomic DNA sequences offer a promising new paradigm to accelerate our understanding of functional
elements in the non-coding genome19. Genomic language models (gLMs) could, in principle, help to understand the complex
coordination of transcription factors (TFs) to control the activity of cis-regulatory elements (CREs). They might also enable
more accurate predictions of the functional consequences of non-coding mutations, which can help to prioritize diease-associated
variants. Additionally, gLMs capable of learning cis-regulatory rules could become instrumental in designing novel regulatory
sequences with desirable functional properties. They might also facilitate functional comparisons of non-coding sequences
across different species, a task currently complicated due to substantial evolutionary drift in non-coding regions.

Recently, there has been a surge of pre-trained gLMs20–38, 38–43. gLMs take as input DNA sequences that have undergone
tokenization, an encoding scheme applied to either a single nucleotide or k-mer of nucleotides. Through self-supervised
pre-training, the gLM learns a vector representation for each token in the DNA sequence via masked language modeling
(MLM)1 or causal language modeling (CLM)44. In a standard setting of MLM, a portion of the input tokens, typically 15%1, is
randomly masked, and the task is to predict the masked tokens using the context provided by the rest of the unmasked tokens in
the sequence. On the other hand, CLM is an autoregressive pre-training task where the goal is to predict the next token in a
sequence given the previous tokens. These language modeling objectives result in learning self-supervised representations
of the sequence that capture information about individual tokens and the complex interrelationships between other tokens in
the sequence. The burden of learning biologically meaningful features is paid upfront during the pre-training. Afterward, the
gLM’s representations can be leveraged for a broad spectrum of downstream prediction tasks as inputs to simpler models,
bypassing the need to learn essential features for each task from scratch. In contrast, the conventional one-hot representation of
DNA sequences treats each element independently, assigning an identical representation for the same nucleotide characters
irrespective of their positions in the sequence or what context is nearby. Consequently, the responsibility of extracting important
features falls solely on the machine learning model being employed.

Current gLMs are composed of different choices for the tokenization, base architecture, language modeling objective, and
pre-training data. Tokenization of DNA sequences is employed for either single nucleotide20–22 or k-mer of fixed size23–25 or a
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k-mer of variable sizes via byte-pair tokenization26, 27, 45, which aims to aggregate DNA in a manner that reduces the k-mer bias
in the genome, a problem known as rare token imbalance. The base architecture is typically a stack of transformer layers46,
with a vanilla multi-head self-attention23–25, 27–31 or an exotic attention variant (e.g., flash attention26, 47, sparse attention32, 33,
or axial attention34, 48). Alternatively, the base architecture has also been constructed with a stack of residual-connected
convolution blocks, either with dilated convolutional layers20 or implicit convolutions with a Hyena operator21, 22, 49. The
pre-training data can vary significantly, encompassing the whole genome of a single species20, 24, 32 or the whole genomes
across multiple species23, 25, 26, 28, 33 or focused only within specific regions of the genomes, such as the untranslated regions
(UTRs)29, pre-mRNA30, promoters22, coding regions35–37, non-coding RNA40, or conserved sites34.

Notably, Nucleotide-Transformer23 is a collection of BERT1-style models that consider non-overlapping k-mer tokenization
and is pre-trained via MLM on either a single human genome, a collection of 3,202 human genomes from the 1000 Genomes
Project50 alone or in combination with 850 genomes across diverse species. DNABERT226 is also a BERT-style architecture
but uses flash attention, considers byte-pair tokenization, and is trained via MLM on the genomes of 850 species. Genomic
Pre-trained Network (GPN)20 is a convolution-based model with a stack of residual-connected dilated convolutions, uses
single-nucleotide tokenization, and is trained via MLM on a single Arabidopsis genome. Similarly, HyenaDNA21 comprises
implicit convolution layers, uses single-nucleotide tokenization, and is trained via CLM on the human reference genome.
Supplementary Table 1 summarizes the unique combination of components that comprise other gLMs.

The utility of gLMs pre-trained on whole genomes for studying the non-coding genome has been limited. Previous
benchmarks have largely considered gLMs that have been fine-tuned (i.e., adjusting the weights of the gLM) on each
downstream task23, 24, 26, 30, 40. In each benchmark, a fine-tuned gLM has demonstrated improved predictions on a host of
downstream prediction tasks, often based on the classification of functional elements, such as histone marks or promoter
annotations. However, the chosen benchmarks do not reflect the complexity of cis-regulatory mechanisms observed in gene
regulation, and the baseline models used in the comparisons often do not represent the state-of-the-art. Hence, the capabilities
of gLMs in understanding the regulatory genome have yet to be demonstrated in a fair assessment.

Moreover, the reliance on fine-tuning poses challenges, as foundation models are typically large, and fine-tuning on
individual tasks demands substantial GPU resources, which may not be readily available to academic labs. Although parameter-
efficient fine-tuning methods have emerged, such as LoRA (Low Rank Adaptation)26, 51, (hard or soft) prompt tuning21, 52, and
(IA)323, 53, fine-tuning makes it challenging to assess the contribution of the prior knowledge gained via pre-training on each
downstream task. Thus, it remains unclear the extent to which existing gLMs pre-trained on whole genomes can genuinely serve
as foundation models that can transfer their knowledge to predict and interpret functional genomics data, without necessitating
additional fine-tuning of the gLM weights.

Here we perform a focused evaluation to assess the informativeness of learned representations by various gLMs pre-trained
on whole genomes (without fine-tuning) for six major functional genomics prediction tasks, which encompass different
levels of cis-regulation complexity at DNA and RNA levels (see Fig. 1). In particular, we compared the predictive power
of representations from pre-trained gLMs – namely Nucleotide-Transformer, DNABERT2, HyenaDNA, and a custom GPN
pre-trained on the human reference genome – versus one-hot encoded DNA and representations acquired from a supervised
“foundation model” pre-trained on a large corpus of functional genomics data. Our results suggest that current gLMs pre-trained
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Figure 1. Experimental overview. Comparison of gLM embeddings versus one-hot representations for various functional
genomics prediction tasks.
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on whole genomes do not provide noticeable advantages over conventional approaches to analyzing human functional genomics
with deep learning using one-hot sequences. Moreover, supervised foundation models pre-trained on functional genomics data
appear to encapsulate more relevant information and transfer better to other functional genomics data, albeit when the source
pre-training tasks and the target tasks are closely aligned. Our results suggest that the standard pre-training schemes for current
gLMs struggle to understand cell-type specific functional elements and, therefore, fall short of achieving a foundation model
status for the non-coding genome of humans.

Results
Task 1: Predicting cell-type specific regulatory activity from lentiMPRA data
Understanding the mechanisms that drive CRE activity is a major goal in functional genomics; it is challenging due to complex
rules of cell-type-specific TF binding54, 55. In the first task, we compared the performance of various machine learning models
that consider different input representations of DNA sequences at predicting experimentally measured enhancer activity via
lentiMPRA (lentiviral Massively Parallel Reporter Assay)56. Specifically, this task involves taking a 230 nucleotide (nt) DNA
sequence as input, represented either as a gLM embedding or one-hot sequence, and predicting a scalar value that represents
the CRE’s functional activity measured in a given cellular context via lentiMPRA (see Methods). This task enables a direct
comparison in performance across matched downstream models for each sequence encoding scheme. By considering two
cell types, namely HepG2 and K562, we can assess whether pre-trained gLM representations capture cell-type-specific CRE
activity.

For each gLM, we considered the embeddings from the penultimate layer using a linear model or multi-layer perceptron
(MLP) based on the classification token (CLS) or the mean embedding, which is standard practice for harnessing sequence
summarization of LLM embeddings. We also employed a baseline convolutional neural network (CNN) that analyzed the
full embeddings of the penultimate layer as well as one-hot sequences for comparison (see Methods). We also considered
embeddings from the penultimate layer of Sei57, a supervised foundation model pre-trained on 21,907 chromatin profiling
datasets across over 1,300 cell lines and tissues. To assess the performance against a more sophisticated supervised model,
we trained a ResidualBind58-like model (ResNet) using one-hot sequences. These choices provide a fair benchmark to assess
whether embeddings from foundation models, acquired via unsupervised gLMs or supervised CNNs, are more informative for
downstream models than naive one-hot sequences.

We found that CNNs trained on the whole sequence embedding led to improved performance over the linear or MLP
models that analyzed CLS or mean embeddings (Fig. 2a). This suggests that summarized gLM representations lack sufficient
information to predict cell-type specific regulatory activity, whereas CNNs can build upon the full embeddings to better
discriminate cell-type specific features. Moreover, the performance gap between MLPs and linear models suggests that the
mapping between the pre-trained representations and the functional readouts of lentiMPRA data is highly non-linear.

We also observed that CNNs trained using sequence embeddings from gLMs generally under-performed standard one-hot
sequences, with the exception of our custom-trained GPN (Fig. 2b). Notably, the performance of all gLM-based representations

Figure 2. Test performance on predicting cell-type-specific regulatory activity from lentiMPRA data. a, Comparison of
prediction performance across various downstream machine learning models, including ridge regression and MLP using either
the gLM’s CLS token or mean embedding, and a CNN trained using the full embedding of the penultimate layer of gLMs. b,
Prediction performance using a baseline CNN trained using different gLM embedding inputs, one-hot sequences, or supervised
embeddings from Sei. ResNet represents the performance of a more sophisticated model that is trained using one-hot
sequences.
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were significantly lower than the supervised representations given by Sei. Due to differences in the data splits for Sei, it is
unclear to what extent data leakage might lead to performance inflation. Nevertheless, the ResNet model trained using one-hot
sequences on the LentiMPRA dataset also achieved high performance (Fig. 2b). These results suggest that gLM embeddings
may not provide beneficial context for CREs that cannot already be learned from one-hot sequences for the lentiMPRA dataset.

To control for the possibility that gLM embeddings from the penultimate layer may not be optimal, we performed the same
analysis using embeddings from other layers of Nucleotide-Transformer. While some layers yielded modest improvements,
particularly layer 10, the overall trends held and thus did not change the conclusions (Supplementary Fig. 1).

Task 2: Predicting TF binding sites from ChIP-seq data
Since TF binding is a cell-type-specific phenomenon, but standard language modeling objectives are not cell-type aware, we
surmised that the low performance of gLMs on the lentiMPRA prediction task may be due to losing information about key
motifs during the pre-training. To test this hypothesis, we evaluated whether the gLM embeddings can predict TF binding sites
measured via ChIP-seq (Chromatin Immuno-Precipitation sequencing59). Briefly, this task is framed as a binary classification
where a model takes a 200 nt DNA sequence, either as a gLM embedding or a one-hot sequence, as input and predicts whether
the sequence corresponds to a ChIP-seq peak. We consider ten ChIP-seq datasets spanning different TFs in GM12878 cells; a
separate single-task model was trained for each TF (see Methods).

Evidently, CNNs trained using one-hot sequences modestly outperformed the whole embeddings from DNABERT2,
HyenaDNA, and Nucleotide-Transformer. On the other hand, the custom GPN occasionally led to improved performance (Fig.
3). Nevertheless, the performance differences across all sequence encoding schemes were modest, suggesting that gLMs do not
appear to lose TF-related information in their embeddings. However, it is unclear whether the information provided by gLM
embeddings actively encodes for TF motifs or whether the embeddings are simply not losing essential information about the
input sequence from which a downstream CNN can learn TF binding information directly from the gLM embeddings, similar
to one-hot sequences.

As a control experiment, we trained MLP or linear models using the CLS token of Nucleotide-Transformer. In this way,
any information about motifs must be fully encoded in these summarized embeddings. We observed that CNNs trained on the

Figure 3. Performance comparison on TF binding prediction tasks from ChIP-seq data. Comparisons of CNNs trained using
different gLM embeddings versus CNNs trained using one-hot sequences for 10 TF ChIP-seq datasets. Performance is
measured by the average area-under the receiver-operating characteristic curve (AUROC) and error bars represent the standard
deviation of the mean across 5 different random initializations. Average AUROC represents the average performance across all
ChIP-seq datasets.
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Table 1. Zero-shot variant effect generalization on CAGI5 dataset. The values represent the Pearson correlation between the
variant effect predictions with experimental saturation mutagenesis values of a given CRE measured via MPRAs. Values are
reported for a single CRE experiment for K562 and the average of three CRE experiments for HepG2.

TRAINING TASK MODEL VARIANT EFFECT PREDICTION HEPG2 K562

SELF-SUPERVISED

NT (2B51000G) COSINE DISTANCE 0.125 0.007

PRE-TRAINING

NT (2B5SPECIES) COSINE DISTANCE 0.112 0.135
NT (500MHUMAN) COSINE DISTANCE 0.020 0.088
NT (500M1000G) COSINE DISTANCE 0.041 0.068
GPN (HUMAN) LOG2-RATIO 0.002 0.037
HYENADNA COSINE DISTANCE 0.064 0.021

LENTIMPRA-EMBEDDING
CNN-GPN DIFFERENCE FROM WILD TYPE 0.377 0.457
CNN-NT DIFFERENCE FROM WILD TYPE 0.137 0.240
CNN-SEI DIFFERENCE FROM WILD TYPE 0.559 0.719

LENTIMPRA-ONE-HOT

CNN DIFFERENCE FROM WILD TYPE 0.313 0.426
RESIDUALBIND DIFFERENCE FROM WILD TYPE 0.486 0.551
MPRANN DIFFERENCE FROM WILD TYPE 0.301 0.369

SUPERVISED ONE-HOT
SEI COSINE DISTANCE 0.545 0.641
ENFORMER (DNASE) DIFFERENCE FROM WILD TYPE 0.510 0.685

whole embedding yielded substantially higher performance than an MLP trained using the CLS token (Supplementary Fig.
2a). Nevertheless, the MLP still demonstrated aptitude in predicting TF binding overall. To rule out the possibility that biases
in the dataset create a trivial prediction task, where low-level sequence statistics can be used to discriminate class labels, we
also trained an MLP model on bag-of-dinucleotide frequencies. Indeed, the MLP based on dinucleotide frequencies yielded
comparable performance to the CLS token (Supplementary Fig. 2a), except for CTCF, a protein that plays an important role in
chromatin structure for all cell types. Together, these results suggest that gLMs do not appear to lose TF-related information in
their embeddings, albeit only a slight information boost is gained regarding TF binding compared to low-level dinucleotide
statistics. Nevertheless, downstream models that analyze conventional one-hot sequences can easily rectify any information
deficiencies, leading to higher performances.

Task 3: Zero-shot variant effect prediction with MPRA data
A major use case of highly accurate sequence-function models is their ability to predict the functional consequences of
non-coding mutations60. In previous studies, Nucleotide-Transformer and GPN have demonstrated an ability to predict single-
nucleotide variant effects, albeit as part of a binary classification task20, 23. However, it is not intuitive how gLMs pre-trained
on whole genomes could yield good zero-shot predictions of cell-type-specific variant effects in the non-coding region of
human genomes since they are trained without any cell-type information. Thus, we assessed the ability of gLMs, specifically
Nucleotide-Transformer, GPN, and HyenaDNA, to quantitatively predict single-nucleotide variant effects within CREs using
saturation mutagenesis data measured via MPRAs (Massively Parallel Reporter Assay)61. This task involves calculating
the zero-shot variant effect predictions of gLMs either by the cosine similarity of embedding vectors for the input sequence
with mutant or wild-type allele (e.g. Nucleotide-Transformer and Hyena) or the log2-ratio of predicted variant and wild-type
nucleotide via single-nucleotide masking (e.g. GPN). These variant effect scores are compared with experimentally measured
variant effects according to the Pearson correlation coefficient (see Methods). This analysis includes MPRA measurements for
three CREs in HepG2 cells and one CRE in K562 cells as part of the CAGI5 challenge61.

We found that all tested gLMs (without fine-tuning) exhibited poor variant effect predictions in this quantitative zero-shot
generalization task (Table 1). These results extended to all Nucleotide-Transformer models23, including a 2.5 billion parameter
BERT-based gLM trained on 3,202 diverse human genomes and 850 genomes from various species. On the other hand,
CNNs trained on lentiMPRA data using gLM embeddings yielded substantially better performance relative to their pre-trained
counterparts (Table 1). Moreover, sophisticated models trained using one-hot sequences, such as Enformer60, which is a
state-of-the-art model trained with supervised learning on a wide variety of functional genomics data using one-hot sequences,
and Sei yielded better performance than all CNNs trained using gLM representations. However, the CNN trained using Sei
embeddings on the lentiMPRA dataset yielded the best overall performance. Together, these results highlight a major gap in the
zero-shot variant effect performance of gLMs with the state-of-the-art.
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Task 4: Predicting alternative splicing from RNA-seq data
Previous studies demonstrated that Nucleotide-Transformer and GPN has learned properties related to gene definition and
splice sites20, 23. Thus, we surmised that gLMs pretrained on whole genomes may be more beneficial for RNA regulation
tasks. To investigate this, we tested the informativeness of gLM embeddings to predict mRNA alternative splicing quantified
using RNA-seq (RNA-sequencing) from the ASCOT dataset62. Specifically, the prediction task takes as input two sequences –
a sequence with 300 nt upstream of the splice acceptor and 100 nt downstream of the acceptor and a sequence with 100 nt
upstream of the splice donor and 300 nt downstream of the donor – with the goal of predicting the percentage-spliced-in (PSI)
across 56 tissues as a multi-task regression; a task introduced by MTSplice63. Similar to the DNA analysis, a baseline CNN was
trained to take as input the full embeddings from gLMs or the embeddings of a pre-trained supervised model (see Methods).

Our results mirrored those seen for regulatory DNA, with embedding-based models largely under-performing compared
to one-hot-based models (Fig. 4a). In contrast, Sei’s embeddings led to substantially lower performance than most gLM
embeddings for this task. This is likely due to Sei’s pre-training focus on DNA-based functional genomics data, which
leads to learning a set of DNA regulatory features that do not transfer well to RNA regulation. To test whether a more
relevant set of features acquired through supervised learning could transfer better for RNA regulation, we trained a multi-task
ResidualBind-like model to classify RNA-protein binding (RBP) sites from a large trove of eCLIP-seq data (see Methods). The
task is to take 1,000 nt sequences as input and predict binding for 120 RBPs in K562 cells as a multi-task classification. Indeed,
the embeddings from this RBP-trained supervised model led to substantially better performance than the gLM embeddings,
except GPN, which yielded comparable results (Fig. 4a).

Task 5: Predicting RNA pol II elongation potential from INSERT-seq data
Next, we performed a similar analysis for a prediction task that takes 173 nt RNA sequences as input and predicts RNA
pol II elongation potential measured via INSERT-seq (INtegrated Sequences on Expression of RNA and Translation using
high-throughput sequencing)64. The INSERT-seq dataset is modest in size, containing only 10,774 sequences. This small
data regime may not provide sufficient examples to learn all relevant patterns using one-hot sequences. Training a large deep
learning model on this dataset can easily lead to over-fitting. Thus, this task can help evaluate a scenario (i.e., the low data
regime) where a baseline CNN that uses gLM embeddings might have an advantage over one-hot sequences.

Similarly, we found that the baseline CNNs trained using gLM embeddings yielded lower performance than one-hot RNA
sequences, except for the custom GPN, which performed slightly better (Fig. 4b). Again, the CNN performance based on
Sei’s supervised embeddings was worse, and the best-performing model was achieved using embeddings from the supervised
multi-task model pre-trained to classify RBPs. These results highlight that generic pre-training strategies are not always
beneficial; when carefully selecting pre-training tasks, one should consider which relevant features are needed to ensure more
positive outcomes on downstream applications.

Figure 4. Performance on RNA regulation tasks. a, Box-plot shows average Pearson correlation across tissues on test data for
various models trained with different encoding schemes on an alternative splicing prediction task using MTSplice data. b,
Box-plot shows Pearson correlation for various models trained with different encoding schemes on a RNA poll II elongation
potential prediction task using INSERT-seq data. Box-plots show the first and third quartiles, central line is the median, and the
whiskers show the range of data. Box-plots represent 5 different random initializations for a and 50 different random
initializations for b. Statistical significance represents the Mann-Whitney U test with a p value < 0.05 (∗), < 0.01 (∗∗), and
< 0.001 (∗∗∗).
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While the custom GPN was the only embedding that demonstrated improved performance over one-hot sequences, we
hypothesized that further down-sampling of the training data could lead to situations where gLM embeddings become more
beneficial than one-hot sequences. We systematically down-sampled both the alternative splicing and INSERT-seq datasets and
retrained the same baseline CNNs using different input encoding schemes. Interestingly, the GPN embeddings consistently
outperformed other embeddings (Supplementary Fig. 3). The improved performance by GPN suggests that gLMs may
specialize more effectively in specific genomic regions. Specifically in this dataset, capturing 5’ splice sites is a critical feature64.
Thus, understanding what features gLMs learn well can help to identify suitable downstream tasks for which they can thrive.

Task 6: Predicting RNA-binding protein binding with eCLIP-seq data
RBPs are essential for various RNA processing stages, so next, we examined the ability of gLMs to predict RBP binding sites
using eCLIP-seq (enhanced chromatin immunoprecipitation sequencing) datasets65. Briefly, the task involves taking 200 nt
DNA sequences as input and predicting binary labels of whether the sequence corresponds to an eCLIP-seq peak or not (see
Methods). Ten eCLIP-seq datasets spanning different RBPs were used in the evaluation. We trained a baseline CNN model
using different sequence encoding schemes similar to previous tasks.

We found that CNNs trained using gLM embeddings performed slightly worse on average compared to the one-hot
sequences (Fig. 5a), in agreement with the ChIP-seq results of Task 2. The narrow performance difference between models
using gLM embeddings and one-hot sequences also indicates that RBP motif information is not lost in the gLM embeddings.
In a similar control, we found that an MLP based on Nucleotide-Transformer’s CLS token led to slightly better performance
than an MLP based on dinucleotide frequencies (Supplementary Fig. 2b). This supports that gLM embeddings encode beyond
low-level sequence statistics in regulatory regions of RNA. Again, we found that Sei embeddings lead to a substantial decline in
performance, further highlighting the importance of selecting appropriate pre-training tasks.

Uncovering cell-type-specific motifs learned by gLMs is challenging
As a follow up, we performed attribution analysis to identify motifs that are captured by gLMs. Attribution maps were
generated for a given sequence by systematically masking one input token (i.e., a single nucleotide position for GPN and a

Figure 5. Performance comparison on RBP binding prediction tasks from eCLIP-seq data. Comparisons of CNNs trained
using different gLM embeddings versus CNNs trained using one-hot sequences for 10 RBP eCLIP-seq datasets. Performance is
measured by the average area-under the receiver-operating characteristic curve (AUROC) and error bars represent the standard
deviation of the mean across 5 different random initializations. Average AUROC represents the average performance across all
eCLIP-seq datasets.
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non-overlapping k-mer for Nucleotide-Transformer) at a time and calculating the entropy over the predicted distribution of
the masked token; ∆Entropy, which is the difference between the maximum entropy value across the whole sequence and
the entropy values at each position, was used to identify positions that yielded informative nucleotides (see Methods). For
comparison, we generated gradient-corrected Saliency Maps66 for a CNN trained using one-hot sequences. The analysis
focused on lentiMPRA and CTCF ChIP-seq data to cover tasks from different systems with varying levels of complexity.

As expected, the attribution maps for pre-trained gLMs alone (i.e., not considering the downstream task) were difficult to
interpret for both lentiMPRA (Fig. 6a) and ChIP-seq data (Supplementary Fig. 4a). The attribution maps did not reflect any
known motifs, nor did they match any of the patterns captured in the CNN’s Saliency Maps. This disparity can arise if the

Figure 6. Attribution analysis comparison for sequences from the lentiMPRA dataset. a, Representative example of
attribution maps for a regulatory sequence from the lentiMPRA dataset. Attribution maps include (top to bottom): the
gradient-times-input of a one-hot-trained CNN; the delta entropy of predicted nucleotides via single-nucleotide masking from a
pre-trained GPN; the delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained
Nucleotide-Transformer; the gradient of a CNN-trained using GPN embeddings multiplied by the delta entropy of predicted
nucleotides via single-nucleotide masking from a pre-trained GPN; and the gradient of a CNN-trained using
Nucleotide-Transformer embeddings multiplied by the delta entropy of predicted nucleotides via single-nucleotide masking
from a pre-trained Nucleotide-Transformer. b, Box-plot of the predicted activity for 300 dinucleotide-shuffled sequences from
a, dinuc-shuffled sequences with the annotated patterns from the Saliency Map of the one-hot-trained CNN, and dinuc-shuffled
sequences with the annotated patterns from the CNN trained using GPN embeddings (GPN-CNN). Green triangle represents
the global importance analysis value. Red dashed line represents the prediction of the wild type sequence according to the
one-hot-trained CNN. Box-plots show the first and third quartiles, central line is the median, and the whiskers show the range
of data. c, Scatter plot comparison of the attribution map correlations for different pre-trained gLMs (left) and CNNs trained
using gLM embeddings (right). Attribution map correlations reflect the Pearson correlation coefficient between the attribution
map generated by the gLM-based attribution method with the Saliency Map generated by a one-hot-trained CNN. Each dot
represents a different sequence in the lentiMPRA dataset (N=500).
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probed locus is used for multiple purposes across different cell types. If cell-type-specific cis-regulatory patterns are projected
onto a single DNA sequence, the overlapping set of motifs can lead to complex attribution maps that may not resemble distinct
cell-type-specific motifs. Alternatively, the complex patterns that seem to span the length of the sequence could also reflect
low-level sequence statistics that are memorized. Without ground truth, interpreting attribution maps remains challenging.

Next, we evaluated attribution maps generated by the downstream CNN that used gLM embeddings as input. Specifically,
we scaled the gLM’s entropy-based attribution map with the maximum gradients at each position based on the downstream
CNN (see Methods). Through a qualitative comparison, we noticed that the attribution maps generated by GPN appear to be
visually aligned with Saliency Maps generated by the one-hot-trained CNN compared to Nucleotide-Transformer (Fig. 6a),
even after accounting for the block-like structure which arises due to the k-mer tokenization. This trend was observed for other
loci as well (Supplementary Fig. 5).

To validate the importance of the putative binding sites identified via Saliency Maps for the one-hot-trained CNN, we
employed global importance analysis (GIA)58. Specifically, we embedded the 3 annotated patterns into different dinucleotide-
shuffled sequences, which serve as background sequences with low CRE activities, and measured the effect of including the
patterns on model predictions. Indeed, GIA shows that the motif patterns identified by Saliency Maps for the one-hot-trained
CNN are more-or-less sufficient to explain model predictions (Fig. 6b).

We then quantified the correlation between the attribution maps generated by the one-hot-trained CNN and the gLM-based
attribution maps. We found that attribution maps generated by pre-trained gLM are not well-aligned with each other, nor
the attribution maps generated by the one-hot-trained CNN (Fig. 6c, Supplementary Fig. 4b). By contrast, attribution maps
generated by CNNs trained with gLM embeddings led to improved alignment between their attribution maps and with one-hot-
trained CNNs. These results suggest that the gLMs learn non-overlapping features during pre-training, but a downstream model
can still use them to build cell-type-specific motifs (that are better aligned with motifs learned by one-hot-trained CNNs).

Together, the attribution maps given by pre-trained gLMs seem to visually capture a more diffuse set of patterns, which
speculatively reflect low-level statistics of genomic sequences. Downstream models, like CNNs, appear to use these seemingly
uninformative gLM embeddings (especially from GPN) to build cell-type-specific regulatory features that are relevant for
downstream prediction tasks.

Discussion
To assess the transferability of knowledge acquired during pre-training for current genome language models for regulatory
genomics, we evaluated four gLMs pre-trained on whole genomes (without fine-tuning) across six functional genomics
prediction tasks with appropriate baselines for comparison. We found that the gLM representations provide little to no
advantage compared to standard one-hot sequences. On a relative basis, we found that GPN, a convolution-based LLM, yielded
slightly more informative representations in the non-coding genome compared to highly parameterized BERT-style LLMs. This
suggests that stronger inductive biases toward learning relevant features in the model architecture can improve gLMs, albeit
modestly.

Notably, we elected to not fine-tune weights of the gLM on each downstream task, which is how gLMs have been previously
benchmarked23, 24, 26, 30, 40. While gLM performance would likely improve with fine-tuning, the scope of this study was to
strictly gauge the knowledge of cis-regulatory biology learned during pre-training. The poor performance observed in this
study suggests that cell-type-specific cis-regulatory mechanisms are predominantly learned during fine-tuning. Our results
suggest that the benefit of pre-training gLMs appears to be initializations that are pre-loaded with just a little more information
than low-level statistical properties for non-coding genomic sequences.

In previous studies, pre-trained gLMs have found some success by focusing on specific regions of the genome during
pre-training or working with simpler organisms with compact genomes28, 34, 67. For instance, a BERT-based LLM trained
strictly in the coding genome can provide more context than only considering amino-acids with protein language modeling
(e.g., codon usage)35–37. However, our evaluation shows that extending the pre-training task across the whole genome struggles
to capture meaningful representations in the non-coding genome.

The performance gap may be due to differences in the structure of the coding regions versus the non-coding regions. To
elaborate, protein sequences have a clear start and end with low-level grammars (i.e., secondary structures) and high-level
grammars (i.e., protein domains) shared throughout most globular proteins, with structures that are conserved across species.
On the other hand, the non-coding genome contains a variety of short sequence motifs that vary broadly in binding affinities
and are sparsely located in seemingly random DNA, with usage and rules that vary across loci and cell types. Few non-coding
elements exhibit deep conservation that is typical in proteins. The differing selection pressures in the non-coding regions lead
to loss of syntenty, which makes it difficult to study sequence and functional conservation. Thus, treating each nucleotide
position equally, whether informative or uninformative, makes this a challenging language modeling task. In the non-coding
genome, this is tantamount to expecting the LLM to predict predominantly random nucleotides, which, by definition, can only
be achieved via memorization. Hence, this may explain why gLMs have also found greater utility in learning cis-regulatory
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features in simpler organisms with compact genomes, such as bacteria41, 67, arabidopsis20, or yeast28, which have substantially
reduced junk DNA68–70.

By contrast, supervised deep learning models trained on large troves of functional genomics data in a multitask setting can
learn discriminative features related to cis-regulatory mechanisms in the non-coding genome71–75. However, the representations
learned by these models are biased towards the experiments they are trained on, which are predominantly generated within
a few cell lines. Hence, their generalization capabilities to other cell types remain limited. A major benefit of gLMs is their
lack of reliance on labels generated from wet-lab experiments during training, allowing them to learn a broader set of patterns.
However, our results suggest that gLMs have yet to learn a foundational set of cis-regulatory features in the non-coding genome
of humans that can be harnessed in prediction tasks across cell types.

Evaluating what gLMs have learned through predictive modeling remains an endless endeavor. A more efficient approach
can be achieved through model interpretation of the gLMs, which should help to understand the alignment between gLMs
and prior biological knowledge. Our preliminary analysis of attribution maps was inconclusive, highlighting the need for a
more in-depth understanding of what gLMs are learning from pre-training. Further development of domain-inspired model
interpretation tools is needed to bridge this gap.

Looking forward, it remains an open question whether LLMs will bring the same revolution in human genomics as seen in
other fields. The current trends in scaling gLMs (via larger models and considering broader sequence contexts21, 32) might only
produce incremental gains, albeit achieved inefficiently according to Chinchilla scaling laws76, as the availability of diverse and
informative genomics data is a major limiting factor. It remains unclear whether continued scaling of the gLMs pre-trained
with standard language modeling objectives (i.e., MLM or CLM) will eventually lead to realizing emergent capabilities, such
as learning cell-type-specific cis-regulatory biology in the non-coding genome. The amount of genetic variation required to
capture the full complexity of the human genome may be simply too great, as a single genome encodes for the spatio-temporal
regulation for all cell types. Incorporating additional information, such as functional genomics data, is likely needed during the
pre-training for gLMs to become proficient in characterizing cell-type specific functional elements. Even protein language
models trained solely on amino-acid sequences can learn elements of conservation and protein structure and yet struggle to
generalize well to a wide diversity of functional tasks77. In the least, a separate language modeling objective for different
regions in the genome to account for the high entropy in the non-coding regions is needed. Due to the high upfront costs to
train gLMs with the lack of reciprocal performance gains on downstream tasks, gLMs will likely require a more focused,
domain-inspired revelation in pre-training objectives to achieve the esteemed “foundation” status for the non-coding genome.
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Methods

Pre-trained language models
Nucleotide-Transformer. Nucleotide-Transformer consists of multiple BERT-based language models with 2 different model
sizes (i.e., 500 million and 2.5 billion parameters) and trained on various sets of genome sequences: human reference genome,
1000 genomes project, and 850 genomes from several species. Details of the tokenizer, model structure, and training procedure
can be found in the original paper23. We acquired weights for each Nucleotide-Transformer model from the official GitHub
repository. In this analysis we mostly used representations from NT2.5B-1000G, except for the zero-shot variant effect
generalization analysis, which considered all Nucleotide-Transformer models. Since Nucleotide-Transformer models allow
flexible input sizes, no padding was necessary for any evaluation tasks.

Custom GPN. The GPN model is a convolutional neural network that was originally trained on Arabidopsis genome sequences
via masked language modeling with an input size of 512 nucleotides20. It consists of 25 convolutional blocks, where each
convolutional block includes a dilated convolutional layer followed by a feed-forward layer, connected by intermediate residual
connections and layer normalization. The dilation rate for each convolutional layer cycles with increasing exponentially by
factors of 2, from 1 to 32. The embedding dimension was kept fixed at 512 throughout the layers. For our custom GPN (human)
model, we created training datasets using the human reference genome (hg3878). The genome was split into contigs and filtered
for a minimum length of 512 nucleotides, with chromosome 8 held out as test set. During training, 15% of the nucleotide
positions were masked and the model is tasked to predict the nucleotide probabilities for each masked location. The model was
trained for 2 million steps with a constant learning rate of 0.001 using ADAM79.
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HyenaDNA. The HyenaDNA model is a gLM pretrained on the human reference genome, with context lengths up to 1 million
tokens at the single nucleotide-resolution21. Architecturally, it adopts a decoder-only, sequence-to-sequence configuration,
organized into a succession of blocks each encompassing a Hyena operator49, followed by a feed-forward neural network. The
model weights and representation extraction code was acquired through the Hugging Face repository80. For all experiments in
this study, we used the “hyenadna-tiny-1k-seqlen-d256” model due to the sequence length limitation of the functional genomics
datasets.

DNABERT2. DNABERT2, a second generation version of the original DNABERT model24, is constructed on the BERT
architecture, comprising 12 Transformer blocks. In this new iteration, the authors improved the model by replacing learned
positional embeddings with Attention with Linear Biases (ALiBi) and utilizing Flash Attention to increase computation and
memory efficiency26. In the context of this study, analyses were done with the representations generated by the last Transformer
block. The model was acquired through the Hugging Face repository, using the “ DNABERT-2-117M” model.

Pre-trained supervised models
Sei. The Sei model is composed of three sequential modules: (1) a convolutional network with dual linear and nonlinear
paths; (2) residual dilated convolution layers; (3) spatial basis function transformation and output layers. Sei was trained to
take as input 4 kb length sequences and predict 21,907 TF binding, histone marks and DNA accessibility from peak data of
cis-regulatory profiles. For this study, we extracted our representations after the spline basis function transformation, before
inputting into fully connected layers. The pre-trained Sei model was acquired through zenodo from the original study57.

RBP. Our custom RBP model was trained using eCLIP-seq65 data of 120 RBPs in K562 from ENCODE81. The dataset was
organized into a multi-task binary classification format. The model has a ResidualBind-like structure:

1. 1D convolution (96 filters, size 19, batch-norm, exponential)
dropout (0.1)

2. Dilated residual block82

convolution (96 filters, size 3, batch-norm, ReLU)
dropout (0.1)
convolution (96 filters, size 3, batch-norm, dilation rate 2)
dropout (0.1)
convolution (196 filters, size 3, batch-norm, dilation rate 4)
dropout (0.1)
skip connection to input
ReLU activation
max-pooling (size 10)
dropout(0.1)

3. 1D convolution (192 filters, size 7, batch-norm, ReLU)
dropout (0.1)
global average-pooling

4. flatten
5. fully-connected (512 units, batch-norm, ReLU)

dropout (0.5)
6. output layer (120 units, sigmoid)

Data
lentiMPRA. The lentiMPRA dataset for K562 and HepG2 cell lines was acquired from the Supplementary Tables in Ref.56.
The HepG2 library consists of 139,984 sequences, each 230 nucleotides long, and the K562 library contains 226,253 sequences.
Each sequence is paired with a target scalar value that represents the transcriptional activity. Each cell line was treated
independently as a single-task regression. For each dataset, we randomly split the training, validation, and test sets according to
the fractions 0.7, 0.1, 0.2, respectively. Unlike the original study, we treated reverse-complement sequences separately; they
were not aggregated or augmented during test time. The results represent the performance over a single fold.

CAGI dataset. The CAGI5 challenge dataset61 was used to evaluate the performance of the models on zero-shot single-
nucleotide variant effect generalization as following the same procedure as Ref.83. We only considered MPRA experiments in
HepG2 (LDLT, SORT1, F9) and K562 (PKLR). We extracted 230 nucleotide sequences from the reference genome centered on
each regulatory region of interest. Alternative alleles are then substituted correspondingly to construct the CAGI test sequences.
Pearson correlation was calculated between the varient effect scores by the model and experimentally measured effect size per
experiment. For HepG2 performances, we report the average Pearson’s r across the three experiments.
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ChIP-seq. Ten transcription factor (TF) chromatin immunoprecipitation sequencing (ChIP-seq) datasets were acquired from
the zenodo repository of Ref.66. The prediction task is a binary classification of whether 200nt input DNA sequences are
associated with a ChIP-seq peak (positive label) versus sequences from DNase I hypersensitive sites from the same cell type
(i.e., GM12878) that do not overlap with any ChIP-seq peaks (negative label). The number of negative sequences were randomly
down-sampled to exactly match the number of positive sequences to ensure balanced classes. The dataset was split randomly
into training, validation, and test set according to the fractions 0.7, 0.1, and 0.2, respectively.

Alternative splicing data. Data was acquired from direct correspondence with the authors of Ref.63 Briefly, 61,823 cassette
exons from ASCOT was split into a training, validation, and test set. The training set consisted of 38,028 exons from
chromosome 4, 6, 8, 10-23, and the sex chromosomes. The 11,955 exons from chromosome 1, 7, and 9 were used as the
validation set, and the remaining 11,840 exons were used as the test set (chromosomes 2, 3, and 5). Models are evaluated based
on their performance on the test set. The prediction task takes as input two sequences – a sequence with 300 nt upstream of the
acceptor and 100 nt downstream of the acceptor and a sequence with 100 nt upstream of the donor and 300 nt downstream of
the donor – and the goal is to predict PSI across 56 tissues as a multi-task regression.

INSERT-seq. INSERT-seq data was obtained from Ref.64. INSERT-seq measures the impact of transcribed sequences on the
RNA polymerase II elongation potential and expression in mouse embryonic stem cells. 11,417 insert sequences of length
173nt long were used as inputs and the goal is to predict the totalRNA output, which measures the relative abundance in RNA
relative to genomic DNA, as a regression task. Training, validation, and test sets were split according to the fractions 0.8, 0.1,
and 0.1, resulting in 9,131, 1,149, and 1,137 sequences, respectively.

eCLIP datasets. The in vivo eCLIP-based datasets were downloaded from the ENCODE. For each RBP experiment, the
bed narrowPeaks (two replicates) and the bam file for the corresponding mock inputs experiment were downloaded. For each
replicate, we removed peaks with a signal value less than 1 and a log-p-value greater than 3. Using bedtools, the remaining
peaks that share at least one nucleotide across the two replicates were selected as positive peaks. A correlation filter across the
replicates was applied: (2(s1

i − s2
i )/(s

1
i + s2

i ))
2 < 1.0, where s j

i represent the signal value for the ith peak in replicate j. The
median peak size was about 50 nt with a positive tail that exceeded 200 nt in some cases. Positive sequences were generated by
extracting 200 nucleotide sequences about the center position of the peak coordinates. Sequences with undefined nucleotides
were filtered out. Negative peaks were generated by employing Piranha peak caller on the bam file of the mock inputs with
a bin size of 20 and a p-value threshold of 0.01. We then removed negative peaks which overlap with any unfiltered peaks
from each replicate. Negative peaks were generated by extracting 200 nt sequences about the center position of the remaining
negative peak coordinates. Because the negative peaks usually had more entries compared to the positive peaks, we randomly
selected a similar number of negative peaks as positive peaks. All sequences were given a corresponding label 1 for sequences
which contain a positive peak and 0 for sequences which contain a negative peak. All sequences were then randomly split into a
training set, validation set, and test set according to the fractions 0.7, 0.1, and 0.2, respectively.

Models for downstream tasks
Linear models. Linear models with L2 regularization (i.e., Ridge) serve as the baseline, representing a simple downstream
model. The inputs of the model were based on the embeddings of the CLS token or the average embedding across sequences
for Nucleotide-Transformer models. For regression and classification tasks, the linear model was a linear regression or logistic
regression, respectively. The strength of the L2 regularization was set to 1e-3.

MLP. A multi-layer perceptron model was used to train on CLS token embeddings or the average embedding across sequences
for Nucleotide-Transformer models. The model is constructed by two fully connected blocks. The first block includes a
fully-connected layer with 512 units and ReLU ativation, followed by batch-normalization and a dropout rate of 0.5. The
second block consists of a fully-connected layer with 256 units and the same activation, batch-normalization, and dropout
layers. The model was trained on lentiMPRA dataset with Adam optimizer, learning rate of 0.0001, mean-squared error loss
function, learning rate decay with a patience of 5 epochs and a decay factor of 0.2, and early stopping patience of 10 epochs.

MPRAnn for lentiMPRA. MPRAnn is a convolutional based model with a total of 4 convolutional and 3 dense layers trained
on the lentiMPRA dataset. It takes 230 nt one-hot encoded sequences including the adapters as input to predict the mean
log2(RNA/DNA) values from forward and reverse strands. We augmented the batches using the reverse-complement of the 200
nt target sequence, while keeping the two 15 bp adapters fixed. To fit the model, we used a learning rate of 0.001, an early
stopping criterion with patience of 10 on 100 epochs, and the Adam optimizer with a mean square error loss function. Model
structure and training parameters obtained from Github directory of original publication56.

Baseline CNN for lentiMPRA. We designed a baseline CNN model with the following structure:
1. batch-norm (optional)
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2. 1D convolution (196 filters, size 1) (optional)
3. 1D convolution (196 filters, size 7, batch-norm, exponential)

dropout (0.2)
max-pooling (size 5)

4. 1D convolution (256 filters, size 7, batch-norm, ReLU)
dropout (0.2)
max-pooling (size 4)

5. flatten
6. fully-connected (512 units, batch-norm, ReLU)

dropout (0.5)
7. fully-connected (256 units, batch-norm, ReLU)

dropout (0.5)
8. output layer (1 unit, linear)

CNN models were trained with Adam optimizer, mean-squared error loss function, learning rate of 0.0001 with a learning
rate decay patience of 5 epochs with a decay rate of 0.2, and early stopping with patience of 10 epochs for both one-hot
sequence and language model embedding-based training on the lentiMPRA dataset. For one-hot sequences, batch-norm and the
convolution with kernel 1 were not employed.

ResidualBind for lentiMPRA. We designed the ResidualBind model by adding a dilated residual block after the first
convolutional layer of the baseline CNN model, according to:

1. 1D convolution (196 filters, size 15, batch-norm, exponential)
dropout (0.2)

2. Dilated residual block
convolution (196 filters, size 3, batch-norm, ReLU)
dropout (0.1)
convolution (196 filters, size 3, batch-norm, dilation rate 2)
dropout (0.1)
convolution (196 filters, size 3, batch-norm, dilation rate 4)
dropout (0.1)
convolution (196 filters, size 3, batch-norm, dilation rate 8)
dropout (0.1)
convolution (196 filters, size 3, batch-norm, dilation rate 16)
dropout (0.1)
convolution (196 filters, size 3, batch-norm, dilation rate 32)
skip connection to input
ReLU activation
max-pooling (size 10)
dropout(0.2)

3. 1D convolution (256 filters, size 7, batch-norm, ReLU)
dropout (0.2)
max-pooling (size 5)

4. flatten
5. fully-connected (512 units, batch-norm, ReLU)

dropout (0.5)
6. fully-connected (256 units, batch-norm, ReLU)

dropout (0.5)
7. output layer (1 unit, linear)

ResidualBind was trained with Adam optimizer, mean-squared error loss function, learning rate of 0.001 with a learning
rate decay patience of 5 epochs with a decay rate of 0.2, and early stopping with patience of 10 epochs.

Baseline CNN for ChIP-seq and CLIP-seq. We designed a baseline CNN model with the following structure:
1. batch-norm (optional)
2. 1D convolution (512 filters, size 1) (optional)
3. 1D convolution (64 filters, size 7, batch-norm, ReLU)

max-pooling (size 4)
dropout (0.2)
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4. 1D convolution (96 filters, size 5, batch-norm, ReLU)
max-pooling (size 4)
dropout (0.2)

4. 1D convolution (128 filters, size 5, batch-norm, ReLU)
max-pooling (size 2)
dropout (0.2)

5. flatten
6. fully-connected (256 units, batch-norm, ReLU)

dropout (0.5)
8. output layer (1 unit, linear)

CNN models were trained with Adam optimizer, binary cross-entropy loss function, learning rate of 0.001 with a learning
rate decay patience of 5 epochs with a decay rate of 0.2, and early stopping with patience of 10 epochs for both one-hot
sequence and language model embedding-based training on the lentiMPRA dataset. For one-hot sequences, batch-norm and the
convolution with kernel 1 were not employed.

Insert-seq model. For the RNA pol II elongation potential dataset, we developed a residual convolutional network structure
and used it for all embedding and one-hot-based models. The model was trained using mean square error loss function, Adam
optimizer, learning rate of 0.0001, learning rate decay patience of 5 epochs with a decay rate of 0.2, and early stopping patience
of 10 epochs.

1. convolution(48 filters, size 1) (optional)
2. convolution (96 filters, size 19, batch-norm, exponential)

dropout (0.1)
3. dilated residual block

convolution (96 filters, size 3, batch-norm, ReLU)
dropout (0.1)
convolution (96 filters, size 3, batch-norm, dilation rate 2)
dropout (0.1)
convolution (96 filters, size 3, batch-norm, dilation rate 4)
skip connection to block input
ReLU activation
max-pooling (size 10)
dropout(0.1)

4. convolution (128 filters, size 7, batch-norm, ReLU)
global average-pooling
dropout (0.1)

5. fully-connected layer (128 units, ReLU)
dropout (0.5)

6. output layer (1 unit, linear)
CNN models were trained with Adam optimizer, mean-squared error loss function, learning rate of 0.0001 with a learning

rate decay patience of 5 epochs with a decay rate of 0.2, and early stopping with patience of 10 epochs for both one-hot
sequence and language model embedding-based training on the lentiMPRA dataset. For one-hot sequences, the convolution
with kernel 1 was not employed.

Zero-shot variant effect prediction methods
For Nucleotide-Transformer, we derived the zero-shot predictions using cosine similarity as suggested in the original study23.
For each variant, we passed the sequences with the centered reference allele and the alternative allele through the model to
extract embeddings. The cosine similarity between the two complete sequence embeddings was calculated and used as the
zero-shot score. A negative correlation is expected between the score and effect size. Since this distance-based zero-shot score
only reflects the magnitude, not the direction, of function change, we calculated the Pearson correlation using the absolute
value of the effect size.

For GPN, we followed a similar procedure as the original study20. First, we input sequences with the center variant loci
masked and acquired the predicted allele probabilities for the masked loci. Then, we calculate the zero-shot prediction score as
the log-likelihood ratio between the alternate and reference alleles. Again, since the likelihood ratio doesn’t reflect the direction
of function change associated with the variants, we calculated the correlation score using the absolute value of effect size.
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Finally, for the embedding-based and one-hot based models, we used the difference in predictions between the alternative
and reference allele sequence as the zero-shot prediction score. For Enformer, we use the cell-type agnostic approach of
averaging the effect size across all DNase-seq tracks. To reduce predictions to scalars, we summed across the profile predictions.

Attribution methods
For CNN models, the attribution analysis was based on grad-times-input with saliency maps. The gradients of the prediction
were calculated with respect to the input sequence to yield an L x A map, where L is the length of the sequence and A is 4
(one for each nucleotide). By subtracting the position-wise average saliency scores from this map and then multiplying by
the one-hot encoded sequence, the method isolates the sensitivity of each observed nucleotide at every position, enhancing
interpretability by pinpointing nucleotide-specific contributions to predictions.

For gLMs, the analysis involved sequentially masking each token of the input sequence and predicting the probability of
the masked token by the model. The entropy of the probability distribution for each position was computed to quantify the
information content represented by the gLM. Given that lower entropy signifies a higher information level, the saliency score
was derived as the difference between the maximum entropy value and the entropy at each position, ensuring that a higher
saliency score reflects greater information retention.

Sequence logos were visualized using Logomaker84.

Global importance analysis
Global importance analysis was carried out according to Ref.58. A example sequence was selected from the LentiMPRA (K562)
dataset. We sampled 300 dinucletoide shuffled versions of the sequence to be used as background sequences. The shuffling
aims to preserve the dinucleotide frequency while destroying any coherent patterns. The LentiMPRA trained One-Hot-CNN
models’ predictions for the shuffled sequences are considered to be the baseline for predicted CRE activity. The top three
positive motif patters identified separately in the One-hot-CNN and GPN-CNN saliency maps (Fig. 6c) were inserted into the
corresponding position of the shuffled sequences, creating two experiment sequences sets. The One-Hot-CNN model was used
to make predictions for the motif embedded sequences. The difference in prediction for the three sets of sequences reflect the
global importance of these motif patterns to the CNN model.

Data and Code Availability
Open-source code to reproduce this study can be found at https://github.com/amberT15/LLM_eval. Processed
data can be found at: https://doi.org/10.5281/zenodo.8279716.
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Supplementary Figure 1. Layer-wise performance of Nucleotide-Transformer on the lentiMPRA dataset. Test performance
of various machine learning models trained using embeddings from different layers of Nucleotide-Transformer. Embeddings
include the CLS token, mean embedding (Mean), and the full embedding (Embedding). Machine learning models include
linear regression (linear), ridge regression (ridge), multi-layer perceptron (MLP) and a convolutional neural network (CNN).
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Supplementary Figure 2. Control experiments with different embeddings. Performance comparison between a CNN
trained using full embeddings of the penultimate layer from Nucleotide-Transformer, an MLP trained using
Nucleotide-Transformer’s CLS token, and an MLP trained using dinucleotide frequencies of the sequence on (a) ChIP-seq data
and (b) eCLIP-seq data. Performance is measured by the average area-under the receiver-operating characteristic curve
(AUROC) and error bars represent the standard deviation of the mean across 5 different random initializations. Text valeus
represent the average AUROC across all ChIP-seq or CLIP-seq datasets.
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Supplementary Figure 3. Down-sampling performance on RNA regulation tasks. Average performance of machine
learning models on (a) alternative splicing, task 4, and (b) RNA Pol II elongation potential, task 5, down-sampled by various
factors. Shaded region represents standard deviation of the mean across 5 different random initializations.
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Supplementary Figure 4. Attribution analysis comparison for sequences from CTCF ChIP-seq data. a, Representative
example of attribution maps for a CTCF binding sequence. Attribution maps include (top to bottom): the gradient-times-input
of a one-hot-trained CNN; the delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained GPN;
the delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained Nucleotide-Transformer; the
gradient of a CNN-trained using GPN embeddings multiplied by the delta entropy of predicted nucleotides via
single-nucleotide masking from a pre-trained GPN; and the gradient of a CNN-trained using Nucleotide-Transformer
embeddings multiplied by the delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained
Nucleotide-Transformer. b, Scatter plot comparison of the attribution map correlations for different pre-trained gLMs (left) and
CNNs trained using gLM embeddings (right). Attribution map correlations reflect the Pearson correlation coefficient between
the attribution map generated by the gLM-based attribution method with the Saliency Map generated by a one-hot-trained CNN.
Each dot represents a different sequence in the CTCF ChIP-seq dataset (N=500).
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Supplementary Figure 5. Representative examples of attribution maps for sequences from the lentiMPRA dataset. In each
panel, attribution maps are shown for different sequences in order of (top to bottom): the gradient-times-input of a
one-hot-trained CNN; the delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained GPN; the
delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained Nucleotide-Transformer; the gradient
of a CNN-trained using GPN embeddings multiplied by the delta entropy of predicted nucleotides via single-nucleotide
masking from a pre-trained GPN; and the gradient of a CNN-trained using Nucleotide-Transformer embeddings multiplied by
the delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained Nucleotide-Transformer.
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