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Abstract: This paper investigates the problem of personalized chemotherapy scheduling using a
system-modeling approach based on a nonlinear impulsive control technique. In particular, this
work deals with the so-called Norton-Simon-Massagué (NSM) model, a minimal biologically
grounded model for controlled tumor growth, which has been accepted in clinical oncology
for breast cancer treatment. In this paper, we continue this line of research, to advance the
concept of closed-loop control a step further towards widespread clinical use. In the present
work, the problem of chemotherapy drug scheduling is approached using an impulsive control
strategy combined with a state-space observer. The technical challenges of the nonlinearity of
the controlled system and the impulsive nature of control input are handled via the utilization
of a novel mapping that transforms the control problem into a “simplified” linear discrete-time
control problem. Theoretical guarantees regarding the sign and invertibility of the proposed
transformation are demonstrated. Then, an observer-based state feedback controller is proposed
for chemotherapy drug scheduling as a proof-of-concept control strategy. Simulation results
showing the performance of the designed closed-loop controlled chemotherapy schedules in
reducing and eradicating tumor volume are provided using model’s parameters derived using
real tumor data and Doxirubicin drug.
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1. INTRODUCTION

Cancer, the uncontrolled development and proliferation
of cells is one of the leading causes of death worldwide
despite the tremendous efforts made during the last sev-
eral years (Bray et al., 2018). Various therapeutic clini-
cal options are available to treat cancerous tumors, e.g.,
surgery, chemotherapy, radiotherapy, and immunotherapy.
Chemotherapy, either used alone or in combination with
other therapies remains one of the most extensively uti-
lized treatments worldwide. A revolutionary new era in
the field of oncology that aims to provide more effective
treatment to patients was ushered in with targeted per-
sonalized therapy. A key factor in personalized therapy is
how drug schedules may be delivered in terms of amount,
“how much,” and injection time, “how often and when,”

to a given patient. This leads to the important issue of
setting drug dosage and injection time in a more system-
atic and personalized manner, instead of being selected
and chosen from a fixed set of given protocols in an ad-
hoc fashion. This has led to the concept of dynamic-
decision making (DDM) in cancer treatment (Engelhardt
and Michor, 2021). In the last few decades, several math-
ematical models for tumor growth have been proposed.
They may be divided into a broad spectrum ranging from
simple macroscopic models, which usually have fewer de-
tails and fewer parameters, trying to capture the clinically
observed growth of tumor volume to more sophisticated
and complex models involving more details about the
microscopic and/or molecular processes that contribute
to tumor growth process (Wodarz and Komarova, 2014),
(Araujo, 2004),(Michor and Beal, 2015). A number of
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grounded model for controlled tumor growth, which has been accepted in clinical oncology
for breast cancer treatment. In this paper, we continue this line of research, to advance the
concept of closed-loop control a step further towards widespread clinical use. In the present
work, the problem of chemotherapy drug scheduling is approached using an impulsive control
strategy combined with a state-space observer. The technical challenges of the nonlinearity of
the controlled system and the impulsive nature of control input are handled via the utilization
of a novel mapping that transforms the control problem into a “simplified” linear discrete-time
control problem. Theoretical guarantees regarding the sign and invertibility of the proposed
transformation are demonstrated. Then, an observer-based state feedback controller is proposed
for chemotherapy drug scheduling as a proof-of-concept control strategy. Simulation results
showing the performance of the designed closed-loop controlled chemotherapy schedules in
reducing and eradicating tumor volume are provided using model’s parameters derived using
real tumor data and Doxirubicin drug.

Keywords: Controlled tumor growth, Nonlinear impulsive control, Norton-Simon-Massagué
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(Araujo, 2004),(Michor and Beal, 2015). A number of

versions of macroscopic tumor growth models based on
ordinary differential equations (ODEs) exist in the litera-
ture, see, e.g., (Wodarz and Komarova, 2014), (et al., 2014)
and the cited references therin. Moreover, modeling the
effect of cytotoxic chemotherapy on tumor growth dynam-
ics has seen several important developments. The log-kill
hypothesis, which states that a given dose of chemotherapy
kills the same fraction of tumor cells regardless of the
size of the tumor at the time of administration, has for
decades guided the clinical treatment of many types of
cancer (Norton, 2014), (Traina and Norton, 2015). This
model led to the administration of a maximum tolerated
dose (MTD) of a cytotoxic agent with prolonged treatment
breaks to counteract disease progression and to kill as
many cancer cells as possible while allowing the body
to recover from the induced treatment toxicity. Based on
clinical observations many types of solid tumors were not
in agreement with the outcomes of the log-kill hypothesis
(Norton, 2014). Thus, the Norton–Simon (NS) hypothesis
has emerged (Norton and Simon, 1986), (Norton, 2014). It
states that cancer cell death in response to a chemothera-
peutic drug agent is proportional to the untreated tumor
growth rate at the time of treatment. This model led to the
finding that not only dose intensity but also dose density
is important. The major success story of “dose-densing”
protocols that was the outcome of the NS hypothesis was
based also on a minimal mathematical model that we will
refer to as the “Norton-Simon-Massagué” (NSM) tumor
growth model (Belkhatir et al., 2021).

The concept of DDM, which is an area of very active re-
search among cancer researchers, may be considered from
the standpoint of feedback or closed-loop control theory as
it is related to the fundamental question of identifying the
best anticancer chemotherapeutic treatment for a specific
patient, which remains challenging to answer conclusively.
A particular class of controllers that has received great
attention in the last decade, especially in biomedical re-
search, is impulsive control. Many research works have
been proposed to deal with linear impulsive control (Wang
and Lu, 2020), (Rivadeneira et al., 2018), but to a less
extent nonlinear impulsive control strategies. This type
of control scheme has a great potential to benefit cancer
treatments. However, to make a real clinical impact and
to turn the concept of impulsive closed-loop control into
real clinical protocols, the formulated problem should be
biologically sound and based on hypotheses and models
sufficiently clear and well-accepted by clinicians. This is
the main objective and contribution of this work. We
propose an impulsive control strategy for chemotherapy
treatment based on the NSM tumor growth model. More-
over, we propose a simplification of the nonlinear impulsive
control problem by transforming it into a linear discrete-
time control problem that has the potential to be more
readily adopted and may be more easily implemented and
tested not only in simulation but also in pre-clinical and
clinical settings.

The remainder of this paper is structured as follows. Sec-
tion 2 provides the NSM model both in absence and in
presence of chemotherapy. In Section 3, the transformation
proposed to deal with the non-linearity and impulsive
nature of the control is provided along with its theoret-
ical properties. Section 4 provides a linear observer-based

state feedback controller design for designing the dosage of
chemotherapy assuming that the injection times are known
and set by the oncologist after each measurement time.
Simulation results of the designed closed-loop controlled
chemotherapy are provided in Section 5 to test the perfor-
mance of the proposed transformation and control design.
Conclusions and future work directions are set in Section
6.

2. THE CONTROLLED
NORTON-SIMON-MASSAGUÉ (NSM) TUMOR

GROWTH MODEL

In this work, we investigate the chemotherapy drug
scheduling problem using the biologically grounded mini-
mal order NSM tumor growth model with the aim of mov-
ing the concept of closed-loop control for cancer treatment
a step forwards towards real clinical implementation.

The so-called NSM model given by

dV (t)

dt
= aV α(t)− bV (t), (1)

where V (t) denotes the tumor volume, was first proposed
to describe the growth of biological organisms based on ba-
sic energetic principles and then formulated and analyzed
in the tumor growth context. More details can be found in
(von Bertalanffy, 1957; Norton, 2005) and the references
therein. The parameters a and b are the growth and death
constants, respectively. Equation (1) posits that the net
growth rate of an organism results from the balance of
synthetic and degradative processes. While the rate of the
former process follows a law of allometry (i.e., the rate
is proportional to the volume V (t) via the power function
V α), the rate of the latter process scales linearly with V (t).

There are two interesting special cases of (1) that can be
distinguished: (i) power law with b = 0, and (ii) second
type growth with α = 2/3; which was successfully applied
to describe tumor growth (Vaidya and Alexandro, 1982),
(Gerlee, 2013). The more general fractal case, 0 < α < 1,
was introduced in (Norton and Massagué, 2006) to ex-
plain the self-seeding hypothesis. Moreover, a geometrical
interpretation was hypothesized and proposed in (Norton,
2005), (et al., 2014), which relates the exponent α = d/3
to the fractional Hausdorff dimension of the proliferative
tissue, where d denotes the fractal dimension of the pro-
liferative tissue. Furthermore, the growth model (1) was
derived mechanistically in 2011, where the tumor growth
was linked to the metabolic rate and vascularization prop-
erties (Herman et al., 2011). In the rest of the paper, model
(1) is referred to as the NSM tumor growth model 1

The problem of the continuous delivery of a cytotoxic
agent using the controlled NSM model has been investi-
gated in (Belkhatir et al., 2021) using a combined extended
Kalman filtering and model predictive control approach.
To the best of our knowledge, the problem of impulsive
injections has not been previously addressed for the NSM
tumor growth model, and this work is the first proof-
of-concept study devoted to this purpose, and where we
1 The NSM name was given to refer to the authors L. Norton and J.
Massagué who introduced the self-seeding concept introduced, and
also R. Simon who proposed with L. Norton the “Norton-Simon”
hypothesis that is used in this study to model the chemotherapeutic
drug agent.
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will extend the previous work by treating the case of
intravenous (IV) delivery, which is more frequently used
in clinics. In the course of IV administration, the plasma
concentration changes in under a minute, and so by con-
sidering one day as the time unit, the absorption phase
may be considered to be instantaneous. Hence, it is very
reasonable to consider the IV administered drug as an
impulsive input.

The evolution of the controlled dynamic changes for the
tumor volume using the NS chemotherapy modeling hy-
pothesis is given by the following dynamical equations:



V̇ (t) = (aV α(t)− b V (t)) (1− ξ C(t)) ,

Ċ(t) = −k C(t) + u(t),
V (0) = V0,
C(0) = C0,

(2)

where V (t) ≥ 0 is the tumor volume (with initial condition
V0) and C(t) ≥ 0 is the drug concentration. The rate
of flow of drug into the body is represented by the
control variable u(t). The constants a, b, α, k, ξ are positive
real parameters, with k denoting the elimination rate
constant of the drug from bloodstream and ξ reflecting the
sensitivity of the tumor to the drug. The linear dynamics
of C(t) describes the one compartment pharmacokinetics
model.

Let us consider the set of execution times {th|h ∈ N} ⊆ N
of the control input, where N denotes the set of natural
numbers and such that th+1 > th, for all h ∈ N, and
t0 = 0, The corresponding control input is then written
as:

u(t) :=


ūh, if t = th,

0, otherwise,
(3)

where ūh ≥ 0 represents the amplitude of the rate of flow
of drug into the body at time th.

3. EXACT LINEARIZED DISCRETE
TRANSFORMATION

3.1 Linearized Transformation

The dynamics (2)-(3) may be captured by the following
deterministic impulsive system (Li et al., 2001):

V̇ (t) = (aV α(t)− b V (t)) (1− ξ C(t)) ,

Ċ(t) = −k C(t),
t ∈ [th, th+1),

(4)
V (t+) = V (t),
C(t+) = C(t) + u(t),

t = th.

(5)

First, we note that the state variables V (t) and C(t)
remain positive for all times. In fact, under the assumption
that V (0) ≥ 0, V (t) cannot change its sign during the

continuous flow since the derivative V̇ (t) becomes zero
when V (t) = 0 while the discrete jumps do not affect
V (t). Moreover, C(t) also cannot change its sign during the

flows since the derivative Ċ(t) becomes zero when C(t) = 0
while the value of C(t) can only increase during the jumps
since u(t) ≥ 0.

Now, since the dynamics of C(t) are linear and depend
only on the impulsive input u(t), it is straightforward to
integrate (4)-(5) between th and t ∈ [th, th+1] and write:

C(t+h ) = C(t−h ) + u(th), (6)

C(t) = C(t+h ) exp(−k(t− th)), th ≤ t < th+1, (7)

where C(t+h ) denotes the value of C(t) right after the time
th (after the treatment u(th) is injected) or more formally
defined as C(t+h ) = limϵ→0+ C(th + ϵ). Similarly we have

C(t−h ) = limϵ→0+ C(th − ϵ).
Next, let us define the following state-dependent map
that will enables the linearization of the nonlinear tumor
growth model (4)-(5):

G(V ) := a− bV 1−α. (8)

The following lemma studies the sign of G(V (t)) under the
dynamics (4)-(5).

Lemma 1. Under the dynamics (4)-(5), the sign ofG(V (t)),
as defined in (8), remains constant for all times t ≥ 0.

Proof. First, note that the nonlinear function G(V ) is not
differentiable at V = 0. In view of the dynamics of V (t),
the time derivative of G(V (t)) satisfies

Ġ(V (t)) =


−b(1− α)(1− ξC(t))G(V (t)) V (t) ̸= 0,

0 otherwise.

(9)

At G(V (t)) = 0, the time derivative of G(V (t)) satisfies

Ġ(V (t)) = 0 and, therefore, the variable G(V (t)) cannot
change its sign as this would require a non-zero derivative
at G(V (t)) = 0.

In the next proposition, we show that it is possible to
integrate the dynamics to obtain an explicit expression of
G(V (t)) as a function of time.

Proposition 1. For all t ∈ [th, th+1], one has

G(V (t)) =


Γ(t, th), Γ(t, th) < a,

a, otherwise,
(10)

where the function Γ(t, th) is given by:

Γ(t, th) := G(V (th)) exp (−g(t, th)) , (11)

g(t, th) := b(1− α)

(t− th)+

ξ

k
C(t+h ) (exp(−k(t− th))− 1)


.

(12)

Proof. Let us assume that V (t) ̸= 0 on the interval [th, t]
for some t ∈ [th, th+1], we can integrate (9) between th and
t. This yields

ln (|G(V (t))|)− ln (|G(V (th))|) =

− b(1− α)

 t

th

(1− ξC(τ))dτ,

= −b(1− α)(t− th)+

b(1− α)ξ

 t

th

C(t+h ) exp(−k(τ − th))dτ,

= −b(1− α)(t− th)−

b(1− α)
ξ

k
C(t+h ) (exp(−k(t− th))− 1) ,

=: −g(t, th).

Therefore, one has |G(V (t))| = |G(V (th))| exp(−g(t, th)).
However, in view of Lemma 1, G(V (t)) and G(V (th))
must have the same sign; hence G(V (t)) = Γ(t, th) when
V (t) > 0 one the interval [th, t]. Note that V (t) > 0
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when V (t) = 0 while the discrete jumps do not affect
V (t). Moreover, C(t) also cannot change its sign during the

flows since the derivative Ċ(t) becomes zero when C(t) = 0
while the value of C(t) can only increase during the jumps
since u(t) ≥ 0.

Now, since the dynamics of C(t) are linear and depend
only on the impulsive input u(t), it is straightforward to
integrate (4)-(5) between th and t ∈ [th, th+1] and write:

C(t+h ) = C(t−h ) + u(th), (6)

C(t) = C(t+h ) exp(−k(t− th)), th ≤ t < th+1, (7)

where C(t+h ) denotes the value of C(t) right after the time
th (after the treatment u(th) is injected) or more formally
defined as C(t+h ) = limϵ→0+ C(th + ϵ). Similarly we have

C(t−h ) = limϵ→0+ C(th − ϵ).
Next, let us define the following state-dependent map
that will enables the linearization of the nonlinear tumor
growth model (4)-(5):

G(V ) := a− bV 1−α. (8)

The following lemma studies the sign of G(V (t)) under the
dynamics (4)-(5).

Lemma 1. Under the dynamics (4)-(5), the sign ofG(V (t)),
as defined in (8), remains constant for all times t ≥ 0.

Proof. First, note that the nonlinear function G(V ) is not
differentiable at V = 0. In view of the dynamics of V (t),
the time derivative of G(V (t)) satisfies

Ġ(V (t)) =


−b(1− α)(1− ξC(t))G(V (t)) V (t) ̸= 0,

0 otherwise.

(9)

At G(V (t)) = 0, the time derivative of G(V (t)) satisfies

Ġ(V (t)) = 0 and, therefore, the variable G(V (t)) cannot
change its sign as this would require a non-zero derivative
at G(V (t)) = 0.

In the next proposition, we show that it is possible to
integrate the dynamics to obtain an explicit expression of
G(V (t)) as a function of time.

Proposition 1. For all t ∈ [th, th+1], one has

G(V (t)) =


Γ(t, th), Γ(t, th) < a,

a, otherwise,
(10)

where the function Γ(t, th) is given by:

Γ(t, th) := G(V (th)) exp (−g(t, th)) , (11)

g(t, th) := b(1− α)

(t− th)+

ξ

k
C(t+h ) (exp(−k(t− th))− 1)


.

(12)

Proof. Let us assume that V (t) ̸= 0 on the interval [th, t]
for some t ∈ [th, th+1], we can integrate (9) between th and
t. This yields

ln (|G(V (t))|)− ln (|G(V (th))|) =

− b(1− α)

 t

th

(1− ξC(τ))dτ,

= −b(1− α)(t− th)+

b(1− α)ξ

 t

th

C(t+h ) exp(−k(τ − th))dτ,

= −b(1− α)(t− th)−

b(1− α)
ξ

k
C(t+h ) (exp(−k(t− th))− 1) ,

=: −g(t, th).

Therefore, one has |G(V (t))| = |G(V (th))| exp(−g(t, th)).
However, in view of Lemma 1, G(V (t)) and G(V (th))
must have the same sign; hence G(V (t)) = Γ(t, th) when
V (t) > 0 one the interval [th, t]. Note that V (t) > 0

corresponds to G(V (t)) = Γ(t, th) < a. In the case where
V (t) = 0 at some time in [th, t], one has G(V (t)) = a
for all future times due to the fact that V (t) = 0 is
an invariant set for the dynamics under consideration.
Therefore, the expression G(V (t)) = Γ(t, th) will hold only
when Γ(t, th) < a; otherwise G(V (t)) = a.

3.2 Exact Integration of the Original NSM Model

We note that the inverse function of (8) is given by
G−1(y) = ((a − y)/b)1/(1−α) when y ≤ a. This along
with (10) and (6)-(7) allows us to obtain an exact integra-
tion scheme for the tumor growth model (4)-(5) for any
given impulsive input signal u(t). This is summarized in
the following Theorem whose proof directly follows from
Proposition 1 and the above discussion.

Theorem 1. Given the impulsive system (4)-(5), the states
V (t) and C(t) can be explicitly obtained via the exact
integration scheme given in Algorithm 1. This integration
scheme may be implemented using any desired sampling
time (including continuous-time integration).

Algorithm 1 Exact Integration Scheme for the Tumor
Growth Model (4)-(5)

1: Set the model parameters a, b, α, ξ, k.
2: Initialize V (0), C(0) to be non-negative.
3: Input the impulsive control u(t).
4: for h ∈ N do
5: Update V (t+h ) = V (t−h ).

6: Update C(t+h ) = C(t−h ) + u(th).
7: for t ∈ [th, th+1) do
8: Calculate Γ(t, th) = G(V (th)) exp(−g(t, th))

with g(t, th) defined in (12).
9: Update V (t) = G−1 (Γ(t, th)) only if Γ(t, th) <

a. Otherwise V (t) = V (t−) = 0.
10: Update C(t) = C(t+h ) exp(−k(t− th)).
11: end for
12: end for
13: Output solutions V (t) and C(t)

3.3 Discrete-Time System Formulation for Periodic Inputs

The nonlinear change of variable defined in (8) is upper
bounded by the growth parameter a, since V (t) ≥ 0 for all
times. Moreover, without loss of generality, we may assume
that G(V (0)) ≥ 0. In fact, in the uncontrolled case with
u(t) ≡ 0 and C(0) = 0, the tumor growth model reduces
to

V̇ (t) = aV α(t)− b V (t) = V α(t)G(V (t)), (13)

and, hence, the tumor will grow only if G(V (t)) ≥ 0
for all times which, according to Lemma 1, is satisfied if
G(V (0)) ≥ 0. In other words, if G(V (0)) < 0 the tumor
will anyway decrease in the uncontrolled system.

Under the assumption of G(V (0)) ≥ 0, let us introduce
the following change of variable:

Z(V (t)) := − ln


G(V (t))

a


= − ln


1− b

a
V 1−α


. (14)

The function Z(V ) maps the interval [0, (a/b)1/(1−α)],
where it is defined, to the non-negative reals in [0,+∞).
Note that this new variable is well-defined since G(V (t)) ≥

0 for all times according to Lemma 1. Moreover, in view
of (4)-(5), one has

Ż(t) =


b(1− α) (1− ξ C(t)) . Z(t) > 0,

0 Z(t) = 0.
(15)

This is a linear discontinuous positive system, and in view
of (9), the integration of the above ODE gives:

Z(t) =


Z(th) + g(t, th), t ∈ [th, th+1], Z(t−) ̸= 0,

Z(t−) = 0 otherwise.

(16)

Now, let us assume periodic drug administration, i.e., we
have th+1 − th = δ for some positive parameter δ. We
denote Z(h) := Z(t−h ) and C(h) := C(t−h ) the values of
the state variable just before the hth treatment class and
u(h) := uh. In view of (6)-(7) and (16), we have

Z(h+ 1) =



Z(h)− γ2C(h) + γ1, if Z(h) >

min(0, γ2C(h)− γ1))

0, elsewhere

(17)

C(h+ 1) = γ3C(h) + γ3u(h). (18)

where we have defined the following non-negative param-
eters:

γ1 := b(1− α)δ, (19)

γ2 := γ1(1− γ3)ξδ
−1k−1, (20)

γ3 := e−kδ. (21)

The state-space representation, equivalent to equations
(17)-(18), is given as follows:

X(h+ 1) =



A X(h) +B v(h), if X1(h) >

min(0, γ2X2(h))

A0X(h) +Bv(h), elsewhere

(22)

where the state vector X(h) ∈ R2 and the matrices
A,A0 ∈ R2×2 and B ∈ R2 are given as follows:

X(h) =


X1(h)
X2(h)


:=


Z(h)

C(h)− γ1
γ2


, A =


1 −γ2
0 γ3


,

(23)

A0 =


0 0
0 γ3


, B =


0
γ3


, (24)

with v(h) := u(h) − γ4 and γ4 :=
γ1

γ2 γ3
(1 − γ3). The ob-

tained model in (23)-(24) is a linear discrete-time dynami-
cal system with discontinuous right-hand side. It captures
the exact evolution of the impulsive system (4)-(5) when
the input is injected periodically.

4. LINEAR OBSERVER-BASED STATE FEEDBACK
CONTROLLER FOR LINEARIZED NSM MODEL

In this section, we propose a linear saturated state feed-
back controller cascaded with a Luenberger-like observer
to estimate the state vector variables. Note that the in-
put control is practically bounded, i.e., there exists umax

such that 0 ≤ u(t) ≤ umax for all times. The value of
umax can be chosen depending on the maximum safe drug
concentration. Therefore, we propose to employ saturated
state feedback. Many research works have dealt with the
problem of state-feedback control design with constrained
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inputs, e.g., (Gutman and Hagander, 1985), (Saberi et al.,
1996), (Memon and Khalil, 2008) to cite few examples.

In this work, the proposed state-feedback control law takes
the following form:

u(h) =




sat(−KX(h) + γ4) if X1(h) >

min(0, γ2X2(h))

0 otherwise

(25)

where K is a feedback gain that is selected such that
the eigenvalues of (A − BK) lie inside the unit circle.
Our proposed feedback is a discontinuous saturated linear
state-feedback. The saturation function is defined as:

sat(u) :=


u if u ≤ umax,

umax if u ≥ umax.
(26)

Moreover, in practice, we have measurement only of the
the tumor growth V (t). Therefore, it is suitable to design
an output feedback for this control problem. For this
purpose, we consider the following output equation:

y(h) = DX(h) := (1 0)X(h). (27)

We propose the following observer for system (17)-(18):


X̂(h+ 1) = AX̂(h) +Bv(h) + L(y(h)−DX̂(h))

if y(h) > 0,

X̂(h+ 1) = A0X̂(h) +Bv(h) and DX̂(h) = 0

otherwise,

(28)

where L is tuned such that the eigenvalues of the matrix
(A−LD) lie inside the unit circle. When the tumor growth
is non-zero (y(h) > 0), the observer takes the form of
a linear Luenberger observer. When the measured tumor
growth becomes zero, we assign 0 to both the current
and the future estimates of the tumor growth state (i.e.,

DX̂(h) and DX̂(h + 1) are zero). In the latter case, the
observer ensures convergence in finite-time. This results
in a zero output error and therefore the remaining state is
updated normally using the A0 matrix (second equation

of (17)-(18)). The update step DX̂(h) = 0 when y(h) = 0
is important to correct a potential false previous update
of the estimated state X̂ due to the fact that the condition
Z(h + 1) > 0 (which appears in (23)) is unknown at the
current step and was not used in the first equation of the
observer.

5. NUMERICAL SIMULATIONS

In this section, we will implement the proposed observer-
based state feedback controller and test the performance
of the closed-loop drug scheduling in eradicating the tumor
burden. We will focus on the Doxirubicin drug treatment
(DDT) that is used in the treatment of different types
of cancer 2 , where the dose of the drug is DDT =
60 mg/m2 given intravenously with administration time
of ti = 1 minute and it is provided in non-densified
and densified regimens, every 3 weeks and 2 weeks. This
means that maximum drug dose umax = DDT/ti =
150 mg.m−2.day−1. The model’s parameters estimated
in (Belkhatir et al., 2021) using real lung mouse data

2 List of clinical protocols used for different types of cancer is avail-
able in: https://www.just.edu.jo/DIC/ClinicGuidlines/Breast%

20cancer%20regimens.pdf

are used, with an initial volume considered to be V0 =
105 mm3. Regarding the PK paramaters of the Doxirubicin
drug, its half-life is between τ1/2 ≈ 20 − 48 hours

leading to an elimination constant k =
ln(2)

τ1/2
≈ 0.0347 −

0.0144 hours−1. In the simulation, we considered a half
time of τ1/2 = 1 day.

The numerical implementation carried out in this section is
performed using MATLAB. Figure 1 depicts the controlled
tumor volume using proposed closed-loop impulsive con-
troller in the case where the drug is administrated in a non-
densified manner, every 3 weeks. However, Figure 2 shows
the case of densified injections, every 14 days. We observe
that the tumor is eradicated faster in the more densified
regimen and given the longer break between drug injec-
tions in the non-densified regimen the relapse of tumor
is higher between designed closed-loop injection. Those
observations are interesting because they are matching the
experiments of dose-dense protocols (Norton, 2005) even
in closed-loop DDM stand point.
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Fig. 1. Designed impulsive closed-loop drug scheduling
in the non-densified regimen (injection given every
21 days) along with tumor volume (upper panel).
Drug Concentration dynamics along with impulsive
scheduling (lower panel). Eradication time of tumor
around ∼ 22 days.

6. CONCLUSION

This present paper explores the problem of chemother-
apy scheduling using closed-loop output impulsive con-
trol along with a minimally biologically-grounded tumor
growth model. The study aims to advance the problem
of controlled cancer treatment towards clinical use by
imposing constraints on the inputs and model that are
clinically sound. Accordingly, we have converted a non-
linear impulsive control problem into a (discontinuous)
linear discrete-time control system. This makes the real
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inputs, e.g., (Gutman and Hagander, 1985), (Saberi et al.,
1996), (Memon and Khalil, 2008) to cite few examples.

In this work, the proposed state-feedback control law takes
the following form:

u(h) =




sat(−KX(h) + γ4) if X1(h) >

min(0, γ2X2(h))

0 otherwise

(25)

where K is a feedback gain that is selected such that
the eigenvalues of (A − BK) lie inside the unit circle.
Our proposed feedback is a discontinuous saturated linear
state-feedback. The saturation function is defined as:

sat(u) :=


u if u ≤ umax,

umax if u ≥ umax.
(26)

Moreover, in practice, we have measurement only of the
the tumor growth V (t). Therefore, it is suitable to design
an output feedback for this control problem. For this
purpose, we consider the following output equation:

y(h) = DX(h) := (1 0)X(h). (27)

We propose the following observer for system (17)-(18):


X̂(h+ 1) = AX̂(h) +Bv(h) + L(y(h)−DX̂(h))

if y(h) > 0,

X̂(h+ 1) = A0X̂(h) +Bv(h) and DX̂(h) = 0

otherwise,

(28)

where L is tuned such that the eigenvalues of the matrix
(A−LD) lie inside the unit circle. When the tumor growth
is non-zero (y(h) > 0), the observer takes the form of
a linear Luenberger observer. When the measured tumor
growth becomes zero, we assign 0 to both the current
and the future estimates of the tumor growth state (i.e.,

DX̂(h) and DX̂(h + 1) are zero). In the latter case, the
observer ensures convergence in finite-time. This results
in a zero output error and therefore the remaining state is
updated normally using the A0 matrix (second equation

of (17)-(18)). The update step DX̂(h) = 0 when y(h) = 0
is important to correct a potential false previous update
of the estimated state X̂ due to the fact that the condition
Z(h + 1) > 0 (which appears in (23)) is unknown at the
current step and was not used in the first equation of the
observer.

5. NUMERICAL SIMULATIONS

In this section, we will implement the proposed observer-
based state feedback controller and test the performance
of the closed-loop drug scheduling in eradicating the tumor
burden. We will focus on the Doxirubicin drug treatment
(DDT) that is used in the treatment of different types
of cancer 2 , where the dose of the drug is DDT =
60 mg/m2 given intravenously with administration time
of ti = 1 minute and it is provided in non-densified
and densified regimens, every 3 weeks and 2 weeks. This
means that maximum drug dose umax = DDT/ti =
150 mg.m−2.day−1. The model’s parameters estimated
in (Belkhatir et al., 2021) using real lung mouse data

2 List of clinical protocols used for different types of cancer is avail-
able in: https://www.just.edu.jo/DIC/ClinicGuidlines/Breast%

20cancer%20regimens.pdf

are used, with an initial volume considered to be V0 =
105 mm3. Regarding the PK paramaters of the Doxirubicin
drug, its half-life is between τ1/2 ≈ 20 − 48 hours

leading to an elimination constant k =
ln(2)

τ1/2
≈ 0.0347 −

0.0144 hours−1. In the simulation, we considered a half
time of τ1/2 = 1 day.

The numerical implementation carried out in this section is
performed using MATLAB. Figure 1 depicts the controlled
tumor volume using proposed closed-loop impulsive con-
troller in the case where the drug is administrated in a non-
densified manner, every 3 weeks. However, Figure 2 shows
the case of densified injections, every 14 days. We observe
that the tumor is eradicated faster in the more densified
regimen and given the longer break between drug injec-
tions in the non-densified regimen the relapse of tumor
is higher between designed closed-loop injection. Those
observations are interesting because they are matching the
experiments of dose-dense protocols (Norton, 2005) even
in closed-loop DDM stand point.
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Fig. 1. Designed impulsive closed-loop drug scheduling
in the non-densified regimen (injection given every
21 days) along with tumor volume (upper panel).
Drug Concentration dynamics along with impulsive
scheduling (lower panel). Eradication time of tumor
around ∼ 22 days.

6. CONCLUSION

This present paper explores the problem of chemother-
apy scheduling using closed-loop output impulsive con-
trol along with a minimally biologically-grounded tumor
growth model. The study aims to advance the problem
of controlled cancer treatment towards clinical use by
imposing constraints on the inputs and model that are
clinically sound. Accordingly, we have converted a non-
linear impulsive control problem into a (discontinuous)
linear discrete-time control system. This makes the real
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Fig. 2. Designed impulsive closed-loop drug scheduling in
the densified regimen (injection given every 14 days)
along with tumor volume (upper panel). Drug Con-
centration dynamics along with impulsive scheduling
(lower panel). Eradication time of tumor around ∼ 15
days.

implementation in pre-clinical and clinical studies easier
and hopefully more accessible to clinicians. Moreover, we
designed an observer-based state feedback controller and
tested its performance against open-loop clinical schedules.

For future work, and to move deeper into real clinical
practice, we plan to investigate the problem of impulsive
closed-loop optimal drug scheduling and test its robustness
against external and internal disturbances. Moreover, the
proposed transformation is sought to be generalised for the
case of non-periodic unknown injection time instants.
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