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ABSTRACT12

Predicting T cell receptor (TCR) activation is challenging due to the lack of both unbiased benchmarking datasets and
computational methods that are sensitive to small mutations to a peptide. To address these challenges, we curated a
comprehensive database encompassing complete single amino acid mutational assays of 10,750 TCR-peptide pairs, centered
around 14 immunogenic peptides against 66 TCRs. We then present an interpretable Bayesian model, called BATMAN, that
can predict the set of peptides that activates a TCR. When validated on our database, BATMAN outperforms existing methods
by 20% and reveals important biochemical predictors of TCR-peptide interactions.

13

Introduction14

A single TCR can recognize a variety of peptides, a property known as TCR cross-reactivity [1, 2]. Predicting which15

peptides a TCR cross-reacts to is critical for numerous applications, including predicting viral escape [3], cancer neoantigen16

immunogenicity [4], autoimmunity [2, 5], and off-target toxicity of T-cell-based therapies [6]. However, predicting interactions17

among TCRs, peptides, and major histocompatibility complexes (TCR-pMHCs) remains challenging [7, 8] due to: (a) limited18

TCR cross-reactivity assay data; and (b) few experimentally validated negative examples [9], which are important for model19

discrimination (Figure 1a). Existing computational methods impressively cluster different TCRs that bind the same peptide [7,20

10]. But the opposite task — predicting peptides that bind a given TCR — remains outstanding [8, 11, 12]. This is largely21

due to the sensitivity required to discriminate among single amino acid (AA) mutants [13] of a TCR’s known index peptide,22

i.e. the peptide to which the TCR was identified to strongly bind. To address this challenge, we offer both a comprehensive23

experimental mutational scan database of TCR-pMHC binding (Figure 1b), and a method that can predict how peptide mutations24

affect TCR activation (Figure 1c-d).25

Comprehensive database on TCR-specific mutational scans26

We curated a database of continuous-valued TCR-pHMC binding data measured as T cell activation in mutational scan assays27

(hereafter referred to as TCR activation data; Figure 1c). This database includes 66 fully-sequenced CD8+ mouse and human28

TCR clones (Extended Data Fig 1a), together recognizing 5 class-I MHCs and 14 unique index peptides that are length29

L ∈ [8,11] AA long and involved in cancer, viral infection or autoimmunity. For each TCR, we recorded the activation levels of30

all possible L×19 single-AA mutant peptides (Figure 1b-c). This achieved a coverage of the antigenic space unprecedented31

among existing methods (Figure 1a), and generated high-confidence true positive (TCR activated) and true negative (TCR32

inactive) examples. Our database showed that single AA changes of the index peptide result in both loss and gain of TCR33

activation over orders of magnitude (Figure 1b, Extended Data Fig 1b). Furthermore, different TCRs sharing a common index34

peptide bind with different structures [14, 15], and recognize different mutants of the index peptide [16, 17], demonstrating the35

need for benchmarking TCR-pMHC prediction methods with diverse index peptides and mutants.36
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BATMAN: a Bayesian inference model to predict TCR activation by mutant peptides37

We present BATMAN — "Bayesian Inference of Activation of TCR by Mutant Antigens" — a hierarchical Bayesian model38

that can predict TCR activation by single-AA mutant peptides based on their distances to the TCR’s index peptide (Figure 1d).39

The peptide-to-index distance is a product of (a) a learned positional weight profile, corresponding to effects of mutated40

residues at different positions in the sequence, and (b) a learned AA substitution distance from the index AA to the mutant41

AA (Figure 1d, Methods section). BATMAN does not require an input TCR sequence and can be used for classification and42

continuous regression tasks for both TCR-specific and cross-TCR activation datasets.43

We benchmarked BATMAN over a diverse subset of TCRs from our database — consisting of 1,884 TCR-pMHC pairs,44

spanning 11 human TCRs specific for unique 9-AA-long index peptides. For ease of interpretation, we discretized continuous45

TCR activation values into three levels: strong, weak or no activation. For multiple TCRs with the same index peptide in our46

database, we chose the one with the least class imbalance to construct the benchmarking dataset (Extended Data Figures have47

results for both classification and continuous regression tasks using activation values for all TCRs).48

We validated BATMAN in two modes:49

1. Within-TCR mode, where the train and test peptides were associated with the same TCR, and positional weight profiles50

were TCR-specific. We first used conventional AA substitution distance matrices, and performed 5-fold cross validation51

separately for each TCR, using about 144 random peptides from the set of single-AA mutants for the TCR for training,52

and the remaining 36 for testing. Then, we combined activation data from all TCRs to learn a TCR-independent AA53

distance matrix.54

2. Leave-one-TCR-out mode, where peptides were tested for activation of a TCR left out of the training data, and positional55

weight profile was common across all TCRs. Here, we combined TCR activation data to infer both the AA distance56

matrix and a single positional weight profile across TCRs.57

We compared BATMAN’s performance to a host of other machine learning-based methods designed to predict TCR-pMHC58

interactions, including pTEAM [13], which, to our knowledge, is the only existing method dedicated for predicting peptide59

mutation effects on TCR activation.60

BATMAN outperforms existing TCR-pMHC methods and learns TCR-pMHC biochemistry61

BATMAN outperformed all other methods in both within-TCR (mean AUC=0.80 over next best method pTEAM at AUC=0.71)62

and leave-one-TCR-out (mean AUC=0.69 over next best method pTEAM at AUC=0.59) classification (Figure 2a). Previously63

developed neural network models trained on large publicly available databases (e.g., VDJdb [18], McPAS-TCR [19], and64

single-cell immune repertoire profiling data [20]) that excel at predicting different TCRs that bind a given peptide [7, 10],65

predicted only marginally better than random. Predicted TCR-pMHC interaction likelihood scores from these models were66

uncorrelated with true TCR activation values for the mutant peptides (Extended Data Fig 5).67

Critical to achieving BATMAN’s performance was learning TCR-pMHC-specific AA distance matrices by pooling training68

data across TCRs (Methods). For example, applying BATMAN with the conventionally-used [21] Hamming distance dropped69

the within-TCR AUC to 0.74 (Figure 2b). Extended Data Figs 2 to 4 further highlight the superior performance of BATMAN70

over previous methods when tested on all 66 TCRs using 70 different AA matrices, of which BLOSUM100 performed the best71

(within-TCR AUC=0.785, Figure 2b, Extended Data Fig 2a,b).72

BATMAN’s learned positional weight profiles (Figure 2c, Extended Data Fig 6) and AA distance matrix (Figure 2d,Extended73

Data Fig 7b-e) recapitulated three known biochemical features of TCR-pMHC interactions: (1) Positional weights peak near74

the middle of the peptide chain, reflecting the fact that central AA residues more directly affect TCR binding compared to75

anchor residues [17, 21–25] (see also Extended Data Fig 1b), (2) large changes in TCR activation correspond to non-aromatic76

to aromatic AA substitutions (e.g., valine-phenylalanine) affecting side-chain interactions [22, 26, 27], and (3) swapping in77

hydrophobic isoleucine and leucine residues for non-hydrophobic residues overall increases TCR activation, in line with these78

residues considered to increase immunogenicity [26–28]. BATMAN positional weight profiles were also consistent across79

different AA matrices and between classification and continuous regression tasks (Extended Data Fig 6), indicating that they80

indeed correspond to learned TCR-intrinsic features.81

Discussion82

We curated the largest database to date of experimentally validated TCR-pMHC interactions containing all single AA peptide83

mutations with positive and negative examples (Figure 1a). BATMAN fills a hitherto unoccupied niche of TCR-pMHC84

prediction methods by discriminating between small differences in peptide sequences for TCR activation. While existing85

methods seem to learn large-scale TCR activation properties across the antigenic space, they fail to predict single AA mutational86
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effects, which are essential for predicting neoantigen immunogenicity and TCR targets. This demands more high-throughput,87

high-confidence experiments [29] generating positive and negative TCR-pMHC interactions by similar peptides, as well as88

training TCR-pMHC methods by datasets like ours.89

BATMAN could be further improved by: (a) incorporating TCR sequence information, (b) training on datasets from other90

types of experimental TCR cross-reactivity assays [29] (e.g., yeast display library enrichment [5, 30], T-Scan [31], and SABR91

[32]), which sample outside the one AA-mutational scan space, and (c) extending its predictions to MHC class-II restricted92

peptides [21, 33, 34].93
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Figure 1. Database and method overview. a. Training dataset summary metrics for TCR-pMHC interaction prediction methods. Data
balance is defined as the ratio of total number of TCR-pMHC pairs to the absolute difference in the number of positive and negative pairs.
b. Curated mutational scan database for TCR activation, with each column corresponding to a TCR clone, grouped by their index peptide
(indicated below each column) and recognized MHC (above), and each row corresponding to the substituted AA at a specific position, ordered
alphabetically. c. Mutational scan assays report activation of a TCR clone against all single-AA mutants of its index (here, NLVPMVATV).
d. BATMAN integrates mutational scan datasets across many TCRs to build a hierarchical Bayesian inference model. BATMAN infers
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Figure 2. BATMAN outperforms existing TCR-pMHC interaction prediction methods and learns TCR-pMHC biochemistry. a.
Average classification area under the curve (AUC) scores for within-TCR and leave-one-TCR-out classification of BATMAN compared with
AUC scores from different methods, with their respective requirements indicated (dot matrix). b. Within-TCR AUCs when conventional AA
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BLOSUM100, the best performing conventional AA distance matrix, for within-TCR classification. AAs are ordered by their hydropathy.
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Extended Data Figure 1. (a) CDR3α and CDR3β sequence diversity of antigen-specific TCRs present in our database. (b) Normalized
TCR activation by mutant peptides, grouped by mutation position.
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Extended Data Figure 3. Pooling across TCRs improves within-TCR classification performance. (a) Pairwise classification area under
the curve (AUC) with different amino acid matrices (BLOSUM_*, inferred Symmetric_*, and inferred Full_* matrices) and pooling modes
(*_within TCRs specific for a index peptide and *_across TCRs specific for all index peptides of same length). Unpooled results shown for
comparison. All BLOSUM results are shown for BLOSUM100, as the best performer as per Extended Data Fig 2a.

10/18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2024. ; https://doi.org/10.1101/2024.01.22.576714doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.22.576714
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

Non/Weak

Non/Strong

Weak/Strong

Av
er

ag
e 

AU
C

ALYDKTKRI

0.6

0.7

0.8

0.9

T1

FMNKFIYEI

0.4

0.6

0.8

1.0

TCR1−T TCR2−T TCR3−T

GRLKALCQR

0.60

0.65

0.70

0.75

0.80

0.85

TCR7

IMDQVPFSV

0.4

0.5

0.6

0.7

0.8

0.9

TCR4 TCR5 TCR6

LLFGYPVYV

0.6

0.7

0.8

0.9

A6 B7

NLVPMVATV

0.2

0.4

0.6

0.8

NLV2
NLV3

TCR1
TCR2

TCR3

SIINFEKL

0.25

0.50

0.75

1.00

Educated Naive

SLFLGILSV

0.5

0.6

0.7

0.8

0.9

A23

SLLMWITQC

pT
EAM_a

cro
ss

pT
EAM_w

ith
in

BLO
SUM_a

cro
ss

BLO
SUM_w

ith
in

Sym
metr

ic_
ac

ros
s

Sym
metr

ic_
with

in

Full
_a

cro
ss

Full
_w

ith
in

0.6

0.7

0.8

0.9

1G4
NYE−S1

NYE−S2
NYE−S3

SLYNTVATL

pT
EAM_a

cro
ss

pT
EAM_w

ith
in

BLO
SUM_a

cro
ss

BLO
SUM_w

ith
in

Sym
metr

ic_
ac

ros
s

Sym
metr

ic_
with

in

Full
_a

cro
ss

Full
_w

ith
in

0.6

0.7

0.8

868Z11

TPQDLNTML

pT
EAM_a

cro
ss

pT
EAM_w

ith
in

BLO
SUM_a

cro
ss

BLO
SUM_w

ith
in

Sym
metr

ic_
ac

ros
s

Sym
metr

ic_
with

in

Full
_a

cro
ss

Full
_w

ith
in

0.25

0.50

0.75

1.00

11A10
12A11
13A10

14A4
14D7
16A11

18A2
7A10

YIMSDSNYV

pT
EAM_a

cro
ss

pT
EAM_w

ith
in

BLO
SUM_a

cro
ss

BLO
SUM_w

ith
in

Sym
metr

ic_
ac

ros
s

Sym
metr

ic_
with

in

Full
_a

cro
ss

Full
_w

ith
in

0.5

0.6

0.7

0.8

FLT3DY
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Methods191

TCR activation dataset collection and processing192

We collected continuous TCR-pMHC datasets for complete single-AA mutational scans from all publications containing raw193

datasets (n=12). To normalize datasets across publications, we scaled TCR activation values by the maximum activation value194

over all recorded peptides tested against that TCR. The only exceptions to this normalization scheme were for experiments195

where the TCR activation measurements were on a logarithmic scale (e.g., EC50 values), in which case we used the logarithm196

of the TCR activation values and linearly transformed them to map to the [0,1] interval. Following previous works [13],197

we discretized the normalized TCR activation values to 3 ordered levels for downstream classification tasks: no activation198

(ano ∈ [0,0.1)), weak activation (aweak ∈ [0.1,0.5)), and strong activation (astrong ∈ [0.5,1]). For regression tasks, we directly199

used the normalized TCR activation values. More technical TCR-specific notes on data collection and processing, as well as200

links to source publications, can be found in the Supplementary Notes. A number of publications (see Supplementary Materials201

for citations) contained further mutational scan experiments relevant for our database, but the associated raw datasets were not202

readily available to us.203

Web application for visualizing TCR-pMHC interactions from our database204

TCR-pMHC interactions from our database (Figure 1b) are visualized via the web application at https://batman.cshl.edu/. All205

interactive plots are deployed as a RShiny application, using ShinyDashboard (v. 0.7.2). The scatter plot displaying peptide206

clustering based on index-to-mutant distance was generated via ggplot2 (v. 2_3.4.4) and rendered using plotly (v. 4.10.3). The207

heatmap presenting normalized peptide activation per index peptide was generated with InteractiveComplexHeatmap (v. 1.8.0).208

The Alluvium plot visualizing the binding of index and mutated peptides to TCRs was generated with ggplot2 and ggalluvial (v.209

0.12.5). The code for the application will be available upon publication.210

Training and validation of BATMAN211

Bayesian hierarchical classifier for TCR activation212

We first describe how BATMAN works for a given TCR in within-TCR validation. For classification tasks, BATMAN
(Figure 1d) performs Bayesian logistic regression to predict the ordered categorical activation level for the given TCR and
peptide, a(peptide) ∈ {ano,aweak,astrong}, using the peptide-to-index distance d (peptide, index) corresponding to the index
peptide of the TCR, using this link function:

Prob [a(peptide) |d (peptide, index)] =
1− logit−1 (d0 −d (peptide, index)− c1) , if a(peptide) = anon

logit−1 (d0 −d (peptide, index)− c1)− logit−1 (d0 −d (peptide, index)− c2) , if a(peptide) = aweak

logit−1 (d0 −d (peptide, index)− c2) , if a(peptide) = astrong

(1)

where the inverse logit function is defined as logit−1(x) = 1
1+e−x , d0 is a constant intercept and c1 and c2 are two constant

cutpoints with the constraint c1 < c2, with the following hyperprior distributions:

d0 ∼ Normal(µ0,σ0) , (2)

c1,c2
iid∼ Normal(0,2) , (3)

µ0 ∼ Normal(0,2) , (4)
σ0 ∼ HalfNormal(2) . (5)

For any peptide-index sequence pair, the peptide-to-index distance d (peptide, index) is computed based on position-
dependent weights w(position) and a 20x20 AA substitution distance matrix M:

d (peptide, index) = ∑
position

∈{1,2,..,L}

w(position)M [aa(index, position) ,aa(peptide, position)] , (6)

where each element in M [aa(index, position) ,aa(peptide, position)] corresponds to the substitution of amino acid residue213

aa(index, position) to aa(peptide, position) at a given position in the index and peptide sequences, respectively. The diagonal214

elements of M are all zero, such that the distance from the index peptide to itself is zero. BATMAN infers the weights215

w(position) and AA distance matrix elements of M [aa1,aa2] with aa1,aa2 ∈ {A,C,D,...,W,Y}.216

15/18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2024. ; https://doi.org/10.1101/2024.01.22.576714doi: bioRxiv preprint 

https://batman.cshl.edu/
https://doi.org/10.1101/2024.01.22.576714
http://creativecommons.org/licenses/by-nc-nd/4.0/


Position-dependent weights w(position)∈ [0,1] with position ∈ {1,2, ..,L} where L is the length of the TCR’s index peptide
have the prior:

w(position) iid∼ Beta(α,β ) . (7)

Elements of M follow:

M [aa1,aa2] = D [aa1,aa2] (1+δ [aa1,aa2]) , (8)

δ [aa1,aa2]
iid∼ Normal(µ,σ) (9)

where D is a pre-defined AA distance matrix (e.g., BLOSUM100) used for constructing the prior for the inferred AA matrix M.217

The hyperparameters of d (peptide, index) have the following, weakly informative hyperprior distributions,

α ∼ Gamma(4,4) , (10)
β ∼ Gamma(25,5) , (11)
µ ∼ Normal(0,0.5) , (12)
σ ∼ Exponential(1) . (13)

We verified via prior predictive sampling that these assumptions can yield all anticipated outcomes i.e. activation levels.218

Regression tasks with BATMAN219

To use BATMAN for regression tasks of predicting continuous-valued normalized TCR activation a(peptide) ∈ [0,1], we
modified Equation (1) to

Prob [a(peptide) |d (peptide, index)] = Normal(d0 −d (peptide, index) ,σ) ,σ ∼ Exponential(1), (14)

with all other steps being identical as described above for classification tasks. An example of such an application is shown in220

Extended Data Fig 2b.221

Pooling across TCRs for training BATMAN222

The hierarchical Bayesian inference set-up allows BATMAN to integrate datasets from multiple TCRs having the same index
peptide length (‘pooling across TCRs’). In such cases, the positional weight profiles w(position, TCR) and the intercepts
d0 (TCR) are TCR-specific, but have the same prior distributions as specified above, i.e.,

w(position, TCR) iid∼ Beta(α,β ) , (15)

and

d0 (TCR) iid∼ Normal(µ0,σ0) , (16)

with the hyperparameters α,β ,µ0 and σ0 having hyperpriors as above. These TCR-specific weight profiles are used to calculate
TCR-specific peptide-to-index distances d (peptide,index,TCR) similarly as above,

d (peptide,index,TCR) = ∑
position

∈{1,2,..,L}

w(position,TCR)M [aa(index, position) ,aa(peptide, position)] . (17)

TCR-specific peptide-to-index distances are consequently used, similar to Equation (1), to construct TCR-specific activation
probabilities a(peptide,TCR),

Prob [a(peptide,TCR) |d (peptide,index,TCR)] =
1− logit−1 (d0 (TCR)−d (peptide, index,TCR)− c1) , if a1

logit−1 (d0 (TCR)−d (peptide, index,TCR)− c1)− logit−1 (d0 (TCR)−d (peptide, index,TCR)− c2) , if a2

logit−1 (d0 (TCR)−d (peptide, index,TCR)− c2) . if a3

(18)
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where

a1 : a(peptide,TCR) = anon

a2 : a(peptide,TCR) = aweak

a3 : a(peptide,TCR) = astrong

In both within-TCR and cross-TCR cases, pooling was performed over different positions in the peptide sequence, and different223

elements of the matrix M, corresponding to different AA substitutions. Pooling across AA substitutions allowed us to assign224

M [aa1,aa2] = D [aa1,aa2] (1+µ) for AA substitutions absent in the training set but present in the test set.225

Unpooled BATMAN is implemented in both python (v. 3.11.5) and R (v. 4.2.3), using pymc (v. 5.6.1) and brms (v. 2.20.4)226

packages respectively. For all unpooled results shown in this paper, we sampled from the exact posterior using the default227

settings of the ‘No U-Turn Sampler" of brms. Hyperprior selection options are less flexible in brms than pymc, so we used228

only pymc for applications involving pooling. In all such cases, we sampled inferred parameters from approximated posteriors229

using the "Automatic Differentiation Variational Inference" (ADVI) method, with the convergence criterion being that the loss230

function did not change by more than 0.1% if the number of iterations was doubled.231

Pooling schemes for BATMAN232

We tested different parameter inference and pooling schemes for BATMAN. In Figure 2b (except for the results highlighted233

as ‘BATMAN’), Extended Data Fig 2a-c, and ‘unpooled’ results in Extended Data Fig 3, we did not pool across TCRs, i.e.,234

BATMAN was trained individually for each TCR separately. In these cases, the unpooled inferred weights had a Beta(2,2)235

distribution as the prior.236

In Figure 2b (except for the results highlighted as ‘BATMAN’), Extended Data Fig 2a-c, unpooled and for all BLOSUM237

matrices in Extended Data Figs 3 and 4, we did not infer the AA matrix, i.e., M was set to the indicated AA distance matrix238

(and BLOSUM100 for the unpooled results). In other cases where we inferred the matrix M, the pre-defined matrix D was239

always chosen to be BLOSUM100, since it performed the best among all the conventional AA distance functions in unpooled240

training for both classification and regression tasks (Extended Data Fig 2). For a subset of cases where we inferred the AA241

matrix (Extended Data Figs 3, 4 and 7 Symmetric_* results), we constrained M to be symmetric. For the TCRs in our database,242

we did not find a significant change in performance if we constrained the inferred AA matrix to be symmetric Extended Data243

Figs 3, 4 and 7, even though the asymmetric part of the inferred full AA matrix was prominent for hydrophobic AA residues244

(Figure 2d,Extended Data Fig 7b). For plotting the inferred AA matrices in Figure 2d and Extended Data Fig 7b-e, we divided245

all matrices by the corresponding values of 1+µ in each case to make their ratios to BLOSUM100 more interpretable.246

When pooling across TCRs, for Figure 2a, we pooled across the selected 11 TCRs, and in Extended Data Figs 3, 4 and 7,247

we pooled within TCRs specific for an index peptide (*_within) or across TCRs specific for all index peptides of same length248

(*_within). BATMAN performance improved by pooling the training data across TCRs, even when inferring TCR-specific249

weights and using BLOSUM100 (Extended Data Fig 3).250

Finally, while in most cases we inferred TCR-specific positional weight profiles, for leave-one-TCR-out tasks (Figure 2a,251

Extended Data Figs 4 and 7) we inferred a common weight profile for all TCRs in the training set.252

Training schemes for BATMAN253

For within-TCR validation tasks, we performed 5-fold cross-validation of BATMAN. The folds were stratified by TCR activation254

levels for classification tasks and TCR activation deciles for regression tasks, and kept identical among all methods (averaged255

over folds) for comparison.256

For TCRs with a sufficient number of peptide examples (≥5) of all 3 activation levels to perform 5-fold cross validation,257

BATMAN classification performance was quantified in terms of 3 pairwise AUCs based on the peptide-to-index distance258

d (peptide, index) of each mutant peptide, calculated using TCR-specific or cross-TCR positional weight profile and AA259

distance matrix inferred by BATMAN. In Figure 2a,b, Extended Data Fig 2a,b, and Extended Data Fig 7a an average of the 3260

AUCs are plotted, whereas the rest of the result figures show individual AUCs. For the rest of the TCRs, we discarded examples261

belonging to the least-represented activation level, and used BATMAN as a two-class classifier. All AUCs were calculated262

using the multiclass.roc function from the pROC (v. 1.18.4) package in R.263

AA distance matrices in prior distribution264

To convert conventional AA substitution matrices (D′ set to BLOSUM_*, PAM_*, Dayhoff, or Gonnet) into distance matrices
D suitable to be used in priors for BATMAN, we performed the transformation

D [aa1,aa2] =

(
1− D′ [aa1,aa2]

D′ [aa1,aa1]

)(
1− D′ [aa2,aa1]

D′ [aa2,aa2]

)
, (19)
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so that the AA distance matrix D was always symmetric, with diagonal elements equal to zero. The Hamming matrix had all265

off-diagonal elements equal to 1. To construct Atchley_* matrices (for Figure 2b and Extended Data Figs 2 and 6), we calculated266

pairwise L2 (for Atchley or Atchley_l2) and cosine (for Atchley_cos) distances between 5-dimensional Atchley embedding267

vectors for respective AAs to construct the matrix Di j.268

Other TCR-pMHC interaction prediction methods269

Training dataset summary of different TCR-pMHC methods270

We compared our benchmarking dataset with the training datasets of existing TCR-pMHC interaction prediction methods271

(Figure 1a). We estimated (1) the total number of TCRs and pMHCs considered by each, and (2) the statistics of all272

experimentally validated examples of TCR-pMHC interactions spanning their respective full training datasets (Figure 1a).273

We discarded any subsampling and artificial generation of training dataset (e.g., by random pairing of pMHCs and TCRs,274

commonly used to generate artificial negative examples). Further method-specific notes on acquisition of training dataset275

statistics can be found in the Supplementary Notes.276

Implementation of different TCR-pMHC methods277

We tested a subset of pre-trained TCR-pMHC methods on our database. The selection was based on availability of webservers,278

pretrained models, and ease of installing and running models locally. We trained pTEAM in both within-TCR and leave-279

one-TCR-out modes. For the rest of the methods, we used available pre-trained models on our dataset. Each tested method280

yielded a continuous-values TCR-pMHC interaction score for each mutant-TCR pair, which was used to calculate 3 AUCs for281

classification tasks that were subsequently averaged in the final results. The Supplementary Notes section contains links and282

summaries of different methods tested, and more technical details on their applications on our database.283

Implementing pTEAM284

A recent method, pTEAM, was specifically developed to predict TCR activation by mutants. We implemented pTEAM following285

the description in its source preprint [13]. Briefly, we used Atchley embeddings for index and mutant peptides, and, for286

leave-one-TCR-out tasks, aligned TCR sequences. These embeddings were used as inputs to random forests with 250 trees for287

classification and regression tasks, with same folds as BATMAN. Each Pairwise AUC was calculated by averaging over two288

AUCs corresponding to 3 activation level probabilities output from the random forests. We used R to align TCR sequences with289

the muscle (v 3.40.0) package and implement the random forests with the randomForest (v 4.7-1.1) package. All AUCs were290

calculated using the multiclass.roc function from the pROC (v. 1.18.4) package in R.291

While BATMAN classifiers outperformed pTEAM over the diverse set of 11 selected TCRs (Figure 2a) and for most TCRs292

in within-TCR tasks (Extended Data Fig 2a), the performance difference was not as pronounced in leave-one-TCR-out tasks293

(Extended Data Fig 4) when training and test sets both contained TCRs specific for the same index peptide. This demonstrated294

the importance of validating mutant effect prediction methods on diverse, unbiased collections of TCRs, covering as many295

unique index peptides and mutants as possible, which is absent in the original work introducing pTEAM [13]. Note that except296

for BATMAN and pTEAM, all the methods score similarly in within-TCR and leave-one-TCR-out tasks in Figure 2a, since they297

are pre-trained, and so the difference in AUC is caused solely by the difference in the test sets in these two tasks.298

Data availability299

The publicly available subset of the fully curated database of TCR-pMHC interactions can be downloaded as an excel sheet300

from https://github.com/meyer-lab-cshl/BATMAN/tree/main/TCR_epitope_database. The full database will be available upon301

publication.302

Code availability303

Custom analysis code was written in python (version ≥ 3.10.11) or R (version ≥ 3.4.0). The python implementation of304

BATMAN (‘pyBATMAN’) can be installed from https://pypi.org/project/pybatman/ and run locally. pyBATMAN installation305

instructions and input file specifications can be found at https://github.com/meyer-lab-cshl/BATMAN/. Example TCR-306

pMHC input dataset and python script for running pyBATMAN can be found at https://github.com/meyer-lab-cshl/BATMAN/307

tree/main/run_batman. An interactive Jupyter notebook tutorial on pyBATMAN usage can be downloaded from https:308

//github.com/meyer-lab-cshl/BATMAN/blob/main/run_batman/pyBATMAN_Tutorial.ipynb.309
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