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Abstract 

Background Single-nucleotide polymorphisms (SNPs) are the most widely used form of molecular genetic varia-
tion studies. As reference genomes and resequencing data sets expand exponentially, tools must be in place to call 
SNPs at a similar pace. The genome analysis toolkit (GATK) is one of the most widely used SNP calling software tools 
publicly available, but unfortunately, high-performance computing versions of this tool have yet to become widely 
available and affordable.

Results Here we report an open-source high-performance computing genome variant calling workflow (HPC-
GVCW) for GATK that can run on multiple computing platforms from supercomputers to desktop machines. We 
benchmarked HPC-GVCW on multiple crop species for performance and accuracy with comparable results with previ-
ously published reports (using GATK alone). Finally, we used HPC-GVCW in production mode to call SNPs on a “sub-
population aware” 16-genome rice reference panel with ~ 3000 resequenced rice accessions. The entire process 
took ~ 16 weeks and resulted in the identification of an average of 27.3 M SNPs/genome and the discovery of ~ 2.3 
million novel SNPs that were not present in the flagship reference genome for rice (i.e., IRGSP RefSeq).

Conclusions This study developed an open-source pipeline (HPC-GVCW) to run GATK on HPC platforms, which 
significantly improved the speed at which SNPs can be called. The workflow is widely applicable as demonstrated 
successfully for four major crop species with genomes ranging in size from 400 Mb to 2.4 Gb. Using HPC-GVCW 
in production mode to call SNPs on a 25 multi-crop-reference genome data set produced over 1.1 billion SNPs 
that were publicly released for functional and breeding studies. For rice, many novel SNPs were identified and were 
found to reside within genes and open chromatin regions that are predicted to have functional consequences. Com-
bined, our results demonstrate the usefulness of combining a high-performance SNP calling architecture solution 
with a subpopulation-aware reference genome panel for rapid SNP discovery and public deployment.
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Background
Single-nucleotide polymorphisms (SNPs) are one of the 
most common types of genetic variation (e.g., SNPs, 
insertions, deletions, copy number variations, and 
inversions) used to study genetic diversity among living 
organisms [1, 2], and are routinely detected by mapping 
resequencing data to reference genomes using various 
software tools [3–5]. In major crops, SNPs are routinely 
discovered using genome resequencing or array-based 
hybridization methods on thousands of accessions as 
documented for rice [6, 7], maize [8], soybean [9], and 
sorghum [10]. In order for such data to be used more 
widely for trait discovery, genomic selection, and func-
tional genomics applications, numerous databases have 
been developed for crop plants such as, e.g., SNP-Seek 
[11], ViceVarMap [12], MaizeSNPDB [13], and Rice-
Navi [14]. Unfortunately, as crop communities continue 
to improve their flagship genome assemblies, as well as 
produce multiple new assemblies that take into account 
population structure [15–17], and other factors, it is 
becoming more onerous for such databases to keep pace 
with the onslaught of new data coming online.

The Genome Analysis Toolkit (GATK) [18, 19], one 
of the most popular software tools developed for SNP 
identification, has been widely used for SNP detection 
for many species [9, 20], and was recently modified to 
identify copy number variants (CNVs) in human [21]. 
Although vast amounts of resequencing data have been 
processed using GATK [6, 9, 20–22], the processing 
speed of the publicly available open-source version(s) can 
be very time-consuming when very large resequencing 
data sets are involved. For example, it took our consor-
tia almost 6 months to call SNPs with GATK using ~ 3000 
resequenced rice accessions mapped to a single reference 
genome. Although several commercially and publicly 
available workflows (e.g., Sentieon [23], Clara Parabricks 
[24], Falcon [25], DRAGEN-GATK [26]) are now avail-
able that accelerate GATK processing times, all require 
special and expensive hardware (e.g., graphics process-
ing units, GPUs; field-programmable gate arrays, FPGAs) 
and are normally not suitable for processing large popu-
lation datasets.

To address the need to detect genetic variation on the 
almost daily release of high-quality genome assemblies 
we have identified three challenges that must be solved 
to meet the demand for speed and efficiency of SNP 

detection. First, the exponential increase in sequencing 
and resequencing data requires intelligent data man-
agement solutions [23–25] and compressed data for-
mats to reduce storage [26, 27]; second, data analysis 
needs flexible workflows and monitoring tools for high-
throughput detection and debugging [28]; and third, 
modern high-performance computing (HPC) architec-
tures are needed to complete jobs efficiently [29, 30].

To address these challenges, we designed a flexible 
workflow and employed high-performance computing 
(HPC) architectures to develop an open-source genome 
variant calling workflow for GATK (i.e., HPC-GVCW). 
The workflow was divided into four phases that 
include a data parallelization algorithm — “Genome 
Index splitter” (GIS) [31] — that divides genomes into 
megabase (MB) size chunks for parallel GATK process-
ing and file merging. By dividing genomes into 45 Mb, 
10  Mb, and 5  Mb chunks, we found that the smallest 
chunk size tested gave the optimal performance. Using 
HPC-GVCW with a chunk size of 5 Mb enabled us to 
call SNPs from ~ 3000 resequenced rice accessions 
(with 17 × genome coverage) on a single rice genome 
(GS ~ 400  Mb) in 120  h, which is almost ~ 36 times 
faster than previously reported (~ 6 months).

To demonstrate utility, we ran HPC-GVCW on a 25 
crop genomes dataset using publicly available rese-
quencing data sets and the most up-to-date (near) 
gap-free reference genome releases available and called 
an average of 27.3  M, 32.6  M, 169.9  M, and 16.2  M 
SNPs for rice (GS ~ 400  Mb), sorghum (GS ~ 700  Mb), 
maize (GS ~ 2400  Mb), and soybean (GS ~ 1100  Mb), 
respectively.

To demonstrate the novelty of the genetic varia-
tion discovered, our analysis of SNP datasets from a 
16-genome “subpopulation-aware” rice reference panel 
revealed a total of ~ 2.3  M (8.8%) novel SNPs in total 
that have yet to be publicly released based. Analysis of 
these novel SNPs identified 1.3 M SNPs in genes, 20% 
(i.e., 248,403) of which are predicted to have impacts 
on gene function. Analysis of open chromatin regions 
(OCRs) of one accession (i.e., Zhenshan 97) revealed 
the presence of 7441 novel SNP that may have effects 
on gene regulation. Finally, in a test case to evaluate the 
allele status of known agriculturally important genes, 
we identified 180 accessions that contain the submer-
gence tolerant allele in the Sub1A gene that could be 
integrated into accelerated breeding programs.

Keywords High-performance computing (HPC), Genome Analysis Toolkit (GATK), Single-nucleotide polymorphisms 
(SNPs), Rice, Sorghum, Maize, Soybean
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Results
HPC‑GVCW development
HPC-GVCW was designed into four phases: (1) map-
ping, (2) variant calling, (3) call set refinement and con-
solidation, and (4) variant merging (Fig. 1). Briefly, Phase 
1 was designed to map clean resequencing reads to a 
reference genome. Phase 2 was designed to call vari-
ants using GATK for each sample. Phase 3 was designed 
to merge all variants per sample into a non-redundant 
joint genotype file by genome-wide intervals (also called 
“chunks”). Phase 4 was designed to generate a genome-
wide joint genotype by assembling all variant intervals 
(detailed in Additional file  1: Automated Genome Vari-
ant Calling Workflow Design [32–35]; Additional file  2: 
Fig. S1; Additional file 3: Table S1). The GVCW workflow 
was designed to run on high-performance computers 
(Fig.  1a); however, it can also be employed on alterna-
tive computational platforms, including hybrid clusters 
and high-end workstations (Fig. 1b). Of note, each of the 
four phases is independent of one another, flexible, and 
scalable across multiple nodes and platforms (Additional 
file 1: Workflow flexibility).

With this workflow, the most challenging component 
to address was the merging of large sample sets (e.g., 3000 
rice accessions) into a joint file using GATK with a single 
node, i.e., Phase 3. To address this challenge, we modified 
the “genome intervals joint genotype” module supported 
by GATK (“CombineGVCFs” and “GenotypeGVCFs,” 
detailed in Additional file 1: Automated Genome Variant 
Calling Workflow Design) by adding an algorithm called 
“Genome Index Splitter” (GIS) [31] that can optimize the 
size and number of genomics intervals utilized. The GIS 
algorithm creates a “chromosome split table” (CST) to 
index disjoint variant intervals, which can be fine-tuned 
based on genome size and available “central processing 
units” (CPUs) (Additional file  2: Fig. S1c–d). Optimal 
chunks are calculated based on three steps: (1) locate the 
largest chromosome length in a given reference genome; 
(2) calculate the fairness of a divisible integer for a given 
maximum number of cores; and (3) whole genome refer-
ence sequences are divided by the optimal integer num-
ber, as illustrated in Additional file 2: Fig. S1e.

For example, the CST with the entries as fol-
lows: < chromosome name (ChrName), chunk number 
(Chunk_no), chromosome starting position (Start), chro-
mosome end position (End) > (ChrName, Chunk_no, 
Start, End).

Chr01 1 1 2277417
Chr01 2 2277418 4554834
Chr01 3 4554835 6832251
Chr01 4 6832252 9109668
Chr01 5 9109669 11387085

Chr02 1 1 2277417
Chr02 2 2277418 4554834
Chr02 3 4554835 6832251
Chr02 4 6832252 9109668
Chr03 1 1 2277417
Chr03 2 2277418 4554834

Once chunk size is optimized, jobs (both GATK’s 
“CombineGVCFs” and “GenotypeGVCFs” functions) 
can be distributed and parallelized by chunks (Additional 
file 2: Fig. S1f–g). Leveraging this algorithm ensures that 
the creation of disjoint variant intervals is optimized 
based on genome size and computational resources, 
thereby preventing the underutilization of resources and 
the reduction of execution times.

HPC‑GVCW benchmarking
To evaluate the precision of SNP identification of GVCW, 
we initially assessed the workflow across three compu-
tational platforms — i.e., supercomputer, clusters, and 
high-end workstations, using a subset of The 3000 Rice 
Genome Project (3  K-RGP) dataset [6] (n = 30) mapped 
to The International Rice Genome Sequencing Project 
(IRGSP) Reference Sequence (RefSeq) [36]. We observed 
a 93.8–94.3% identical call rate across the three plat-
forms and a 83–94% identical call rate when compared 
with previously published results [37] (Additional file 2: 
Fig. 2a).

Using the same data set of 30 resequenced rice acces-
sions mapped to a single reference genome we compared 
execution times for both the standard non-parallelization 
protocol (i.e., GATK) and our genome chuck paralleliza-
tion protocol (HPC-GVCW) for the “combining gvcfs” 
Phase 3 algorithm. GATK used 9.5 h (570 min) to com-
plete, regardless of platform used (Fig. 2a). Using the GIS 
algorithm with different chunk sizes (i.e., 100 Kb, 200 Kb, 
500 Kb, 1 Mb, 5 Mb, 10 Mb, 20 Mb, and whole chromo-
somes) and node combinations (i.e., 2342, 237, 120, 50, 
27, 8, 6, 5, and 4), execution times spanned from a maxi-
mum of 112  min using whole chromosome chunks to 
2  min with 10  kb chunks and 2342 nodes. Overall, the 
execution times were 5–283 times faster than the stand-
ard GATK non-parallelization method.

We further compared the efficiency of total CPU hours 
(i.e., the execution time if all jobs were operated between 
the standard and genome chunk strategies) between 
GATK and HPC-GVCW. For GATK, a total of 304 CPU 
hours was required (9.5  h × 1 node × 32 cores/node) 
(Fig. 2b), vs. HPC-GVCW which ranged from 63 (chunk 
size = 5  Mb, nodes = 8) to 2511 (chunk size = 10  Kb, 
nodes = 2342) hours when using different chunk size/
node combinations (Fig. 2b). This equates to a maximum 
of 4.8 times more efficient, to 8 times less efficient as 
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Fig. 1 Automated and flexible genome variant calling workflow (GVCW) design for a HPC systems and b diversified system architectures
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compared to the standard GATK approach, respectively. 
Of note, we found that the number of CPU hours either 
increased or decreased at chunk sizes greater or less than 
5 Mb when using HPC-GVCW, which is recommended 
when using the workflow.

Overall, our results reveal that execution time can be 
reduced by a maximum of 283 times when the small-
est genome interval is set to 10  Kb/chunk, and CPU 
efficiency could be improved 4.8 times using a genome 
interval set to 5  Mb/chunk for HPC-CVCW, as com-
pared with GATK.

HPC‑GVCW benchmarking for multiple crop species
To test if HPC-GVCW could be widely used across 
multiple crop species, we re-called SNPs using previ-
ously published resequencing/reference genome data 
sets for rice, sorghum, maize, and soybean (Additional 
file  3: Table  S1 and Availability of data and materials 
for details). Using KAUST’s Shaheen 2 supercomputer 
with 30 K cores, processing 3,024 resequenced samples 
(3  K-RGP) mapped to a single rice reference genome 
took 94  h (i.e., 3.91  days) (Additional file  3: Table  S2). 
For the sorghum, maize, and soybean data sets, due to 
the small number of samples, we only benchmarked 
HPC-GVCW on a hybrid cluster with 3000 cores and 
found that even for a 2.4  Gb maize genome [38], SNP 
calling for 282 samples could be completed within ten 
days (Additional file  3: Table  S2). Our benchmarking 
test identified 26.5  M, 32.7  M, 167.6  M, and 15.9  M 
SNPs for rice (IRGSP-1.0), sorghum (BTx623), maize 
(B73 v4), and soybean (Gmax 275 v2.0), respectively 
(Table 1 and Additional file 3: Table S3). To assess the 
accuracy of the SNP calls produced through HPC-
GVCW compared with previous reports, we found that 

86.3% of the rice (22.8  M) and 89.3% of the sorghum 
(29.2  M) SNPs were identical (Additional file  2: Fig. 
S2c–d and Additional file 3: Table S3). For maize, only 
25% of the SNP calls overlapped which was likely due 
to the software and strategy used for SNP calling and 
filtering [39]. For soybean, a direct comparison was not 
possible due to lack of data availability.

HPC‑GVCW at production scale — a 25‑genome SNP 
dataset for multiple crop species
Since the majority of publicly available SNP data for 
major crop species have yet to be updated on the recent 
wave of ultra-high-quality reference genomes coming 
online, we applied HPC-GVCW to call SNPs, with the 
identical large resequencing datasets, on the most cur-
rent and publicly available genome releases for rice (i.e., 
the 16 genome Rice Population Reference Panel) [15, 
40, 41], maize (B73 v4, B73 v5, and Mo17v2) [16, 42], 
sorghum (Tx2783, Tx436, and TX430) [43], and soy-
bean (Wm82 and JD17) [44].

As a result, a total of 1.1 billion SNPs were identified 
across the 25-genome data set, including 438.4 million 
SNPs based on a subpopulation-aware 16-genome rice 
reference panel (RPRP, avg. 27.3 M/reference), 133.1 mil-
lion SNPs for 4 sorghum reference genomes (avg. 32.6 M/
reference), 509.9 million SNPs for 3 maize reference 
genomes (avg. 169.9 M/reference), and 32.3 million SNPs 
for 2 soybean reference genomes (avg. 16.2 M/reference) 
(Table  1). Of these, 1.67–16.49% (0.93–12.96  M SNPs) 
and 0.71–6.44% (0.37–3.76 M SNPs) of total SNPs were 
predicted (with SNPEff [45]) to fall within and around 
genes, and their effects on genes, respectively (Table  1 
and Additional file 3: Table S4).

Fig. 2 Benchmarking of the Phase 3 GIS parallelization HPC-GVCW as compare with the standard GATK pipeline using 30 resequenced rice 
accessions mapped to a single reference genome, a execution time and b CPU hours (execution time × number of nodes) for job completion. 
Notes: Comparisons were tested between the standard GATK pipeline without chunks using 1 node (blue dots), and HPC-GVCW using a range 
of computing nodes chunked length combinations, i.e., chunks sizes of 10 Kb, 100 Kb, 200 Kb, 500 Kb, 1 Mb, 5 Mb, 10 Mb, 20 Mb, and chromosome 
level, which use 2342, 237, 120, 50, 27, 8, 6, 5, and 4 nodes, respectively (yellow dots)
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Novel SNPs in rice
Having the ability to map large-scale resequencing data-
sets rapidly (e.g., 3 K-RGP) to multiple genomes (e.g., the 
16-genome RPRP dataset), HPC-GVCW opens the pos-
sibility to discover and rigorously interrogate popula-
tion-level pan-genome datasets on multiple scales — i.e., 
pan-genome, genome and single gene scale.

Pan‑genome scale
Our analysis of the 3  K-RGP dataset [6] mapped to the 
16-genome RPRP dataset [15] revealed a core genome of 
314.1  Mb, an average dispensable genome of 56.55  Mb, 
and a private genome of ~ 745  Kb/genome (see Meth-
ods for definitions), that contain ~ 22.4  M, 3.2  M and 
33.8  K SNPs, respectively (Additional file  2: Fig. S3, 
and Additional file 3: Table S5). We found that an aver-
age of 36.5  Mb of genomic sequence is absent in a sin-
gle rice genome but is present in at least one of the other 
15 RPRP data sets, which is equivalent to ~ 2.1  M SNPs 
(Fig.  3, Additional file  2: Fig. S3, and Additional file  3: 
Table  S5). For example, when considering the flagship 
reference genome for rice, i.e., the IRGSP RefSeq [36], 
a total of ~ 36.6  Mb of genomic sequence is completely 
absent in the IRGSP RefSeq but is found spread across 
at least one of the 15 genomes (~ 2.43  Mb/genome), 
and includes ~ 2.3 M previously unidentified novel SNPs 
(Fig. 3, Additional file 3: Table S5).

Performing a similar analysis on gene content using the 
subpopulation-aware Rice Gene Index (RGI) [41] enabled 
us to identify an average of 24,700, 6577, and 293 core, 
dispensable and private homologous gene groups (see 
Methods for definitions) across the 16-genome RPRP 
data set, respectively (Additional file 3: Table S5), equat-
ing to 5.5  M SNPs (2.4  M exonic), 0.8  M SNPs (0.2  M 
exonic), and 37.8 K SNPs (9.6 K exonic) (Fig. 3, Additional 
file 2: Fig. S4 and Additional file 3: Table S5), respectively. 
Importantly, on average, a total of ~ 10.3 K genes present 
in 15 of the 16 RPRP genomes (687 genes/genome) are 
absent in a single RPRP genome, and equates to ~ 1.4 M 
SNPs (Fig.  3, Additional file  2: Fig. S4 and Additional 
file  3: Table  S5). Again, taking the IRGSP RefSeq as an 
example, a total of 9812 genes detected across the rice 
pan-genome reference panel (RPRP) of 15 genomes are 
absent in the IRGSP RefSeq. Across these genes lie 1.3 M 
novel SNPs [46], of which 19.22% (i.e., 248,403) are pre-
dicted to have impacts on gene function (i.e., 4537 5′ 
UTR premature start codon gain variants; 229,184 mis-
sense variants; 1519 stop codon lost variants; 11,869 stop 
gained variants; and, 1294 stop lost variants) (Fig. 3 and 
Additional file 3: Table S6).

To validate these potentially functional SNPs, we 
measured the frequency of all 248,403 SNPs across the 

3 K-RGP data set as shown in Additional file 2: Fig. S5a. 
The results show that 76.31% (189,564) of these puta-
tive functional SNPs could be identified within three or 
more rice accessions, thereby confirming the presence 
and quality of these SNP variants. These results show that 
much of the collective rice pan-genomes remain to be 
explored for crop improvement and basic research.

Genome scale — Zhenshan 97 (ZS97)
Open chromatin regions (OCRs) are special regions of 
the genome that can be accessed by DNA regulatory ele-
ments [47, 48]. Chromatin accessibility (CA) of OCRs 
can affect gene expression, epigenetic modifications, 
and patterns of meiotic recombination of tissue cells 
that could lead to important regulatory effects on biol-
ogy observation [49, 50]. For rice, using the IRGSP Ref-
Seq and the 3  K-RGP dataset, we previously annotated 
5.06  M variants that were located in OCRs, of which 
∼2.8% (~ 142,000) were classified as high-impact regula-
tory variants that may play regulatory roles across multi-
ple tissues [51].

To search for novel SNPs in OCRs that are not pre-
sent in the IRGSP RefSeq, we scanned for SNPs in OCRs 
of ZS97, a Xian/Indica variety, as a test case. First, our 
analysis revealed that approximately 14.6% of the ZS97 
genome contains OCRs across the 6 tissues investigated, 
i.e., flag leaf, flower, lemma, panicle, root, and young leaf 
(Additional file 2: Fig. S6). We then conducted an inter-
section analysis of identified OCRs (peak regions) with 
variant call format (VCF) files and discovered 3,303,820 
SNPs located within OCRs of the ZS97 genome (Addi-
tional file  3: Table  S7), of which 7,441 were novel (i.e., 
relative to the IRGSP RefSeq). This equates to 6.23% of 
the 1.19 M ZS97 novel SNPs discussed above (Additional 
file 3: Table S7).

To validate these SNP, we again measured SNP fre-
quency across 3  K-RGP for all 7441 novel SNPs and 
found that 78.13% (5814) of these SNPs could be identi-
fied in three or more accessions (Additional file  2: Fig. 
S5b).

To assess the potential functional impact of these novel 
ZS97 SNPs, we established thresholds by selecting the 
top and bottom five percent of variation scores from 
previously scored SNP variation data across as reported 
[51], which led to the identification of 855 SNPs (Addi-
tional file  3: Table  S6). Notably, these SNPs accounted 
for approximately 33.3% of the loci with significant vari-
ations, which are considered large-effect SNP loci with 
a greater impact on chromatin accessibility (CA). These 
results indicate the effects of physical access to chromati-
nized DNA, to binding, allowing for active gene tran-
scription for novel SNPs.
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Single gene scale — Sub1A
Many of the genes and SNPs identified in our pan-
genome variant analysis have yet to be tested for their 
contributions to agronomic performance and biotic and 
abiotic stresses. For example, prolonged submergence 
during floods can cause significant constraints to rice 
production resulting in millions of dollars of lost farmer 
income [52]. One solution to flooding survival has been 
to cross the Sub1A gene, first discovered in a tolerant 
indica derivative of the FR13A cultivar (IR40931-26) 
in 2006 [52], into mega rice varieties such as Swarna, 
Sambha Mahsuri, and IR64 [52, 53]. Our analysis of the 
Sub1A locus across the pan-genome of rice showed that 
this gene could only be observed in 4 out of 16 genomes 
in the RPRP data set, including IR64 (Fig.  3c, d). Since 
Sub1A is absent in the IRGSP RefSeq, the genetic diver-
sity of this locus can only be revealed through the analy-
ses of reference genomes that contain this gene. Thus, we 

applied the IR64 reference as the base genome for SNP 
comparisons, and identified a total of 26 SNPs in the 
Sub1A locus across 3 K-RGP, 6 of which have minor allele 
frequencies (MAF) greater than 1% (Fig. 1F), including a 
previously reported SNP (7,546,665-G/A), which is also 
validated by 4 gene sequences, i.e., OsIR64_09g0004230, 
OsLima_09g0004190, OsGoSa_09g0004200, and 
OsARC_09g0004070. This variation resulted in a non-
conservative amino acid change from serine (S, Sub1A-
1, tolerance-specific allele) to proline (P, Sub1A-2, 
intolerance-specific allele) [52] (Fig.  3e, f ). The major-
ity of accessions in the 3  K-RGP data set (i.e., 2173) do 
not contain the Sub1A gene, while 848 do, 668 of which 
(22.11%) have the Sub1A-2 allele, while 180 accessions 
(5.96%) contain the Sub1A-1 allele (Fig.  3f ). Under-
standing the genetic diversity of the Sub-1A gene at the 
population level helps us understand and filter variants 
that are predicted to show flooding tolerance across 

Fig. 3 Rice Population Reference Panel (RPRP) [15] pan-genome variant analysis. a Circos plot depicts the distribution of genomic attributes 
along the IRGSP RefSeq (window size = 500 Kb). b Comparison of genomic attributes, i.e., genes, SNPs, Pi, and Theta on chromosome 9 across the 16 
RPRP pan-genome data sets (window size = 10 Kb). c Rice Gene Index (RGI) comparison of the Sub loci across the 16 RPRP pan-genome data 
set. d Phylogenetic analysis of Sub1A, Sub1B, and Sub1C across the 16 RPRP pan-genome data set. e Amino acid alignment of the Sub1A gene 
across the RPRP. f Survey of SNPs within the Sub1A gene across the 3 K-RGP resequencing data set. This analysis revealed the genomic status 
of the Sub1A gene (presence/absence; submergence tolerance/intolerance) across the 3 K-RGP data set
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the 3  K-RGP, which could be further applied to precise 
molecular-assisted selection (MAS) breeding programs. 
In addition, such pan-genome analyses may also reveal 
new variants that could provide valuable insights into the 
molecular mechanisms of flooding tolerance.

Discussion
With the ability to produce ultra-high-quality reference 
genomes and population-level resequencing data — at 
will — accelerated and parallel data processing methods 
must be developed to efficiently call genetic variation 
at scale. We developed a publicly available open-source 
high-performance (CPU-based) computing pipeline 
(HPC-GVCW) that is supported across diversified 
computational platforms, i.e., desktops, workstations, 
clusters, and other high-performance computing archi-
tectures. In addition, HPC-GVCW was containerized 
for both Docker [54] and Singularity [55] for reproduc-
ible results without reinstallation and software version 
incompatibilities.

Comparison of SNP calls on identical data sets (i.e., rice 
3 K-RGP to the IRGSP RefSeq and 400 samples from Sor-
ghum Association Panel to the BT623v3.1) yielded simi-
lar results, however, run times could be reduced from 
more than six months to less than one week, as in the 
case for rice 3 K-RGP [6]. The GVCW pipeline enabled 
the rapid identification of a large amount of genetic vari-
ation across multiple crops, including sorghum, maize, 
and soybean on the world’s most up-to-date, high-qual-
ity reference genomes. These SNPs provide an updated 
resource of genetic diversity that can be utilized for both 
crop improvement and basic research, and are freely 
available through the SNP-Seek [56], Gramene web por-
tals [57], and KAUST Research Repository (KRR [58]).

Key to our ability to rapidly call SNPs on a variety of 
computational architectures lies in the design of the HPC 
environment and the distribution of work across mul-
tiple nodes. Our next steps will be to apply GVCW on 
improved computing platforms, e.g., KAUST Shaheen 
III with unlimited storage and file numbers, 5000 nodes, 
faster input and output (I/O), and tests on larger forth-
coming data sets [59]. In addition to GATK, other SNP 
detection strategies such as the machine learning-based 
tool “DeepVariant” [3], which shows better performance 
in execution times with human data [5], have yet to be 
widely used in plants. With a preliminary analysis of the 
rice 3  K-RGP dataset, “DeepVariant” identified a larger 
number of variants at a similar or lower error rate com-
pared to GATK [60]. To test how artificial intelligence 
(AI) can be used to improve food security by accelerat-
ing the genetic improvement of major crop species, we 
plan to integrate “DeepVariant” into our HPC workflow 
to discover and explore new uncharacterized variation. 

In addition, we also plan to apply similar pan-genome 
strategies on more species beyond rice, sorghum, maize, 
and soybean to discover and characterize hidden SNPs 
and diversity, which could provide robust and vital 
resources to facilitate future genetic studies and breeding 
programs.

Conclusions
We developed HPC-GVCW for variant calling in major 
crops, which can reduce execution times > 280 fold, as 
well as increase efficiency > 4.8 fold as compared with 
the GATK ‘best practice’ workflow [19]. A new algorithm 
(“Genome Index splitter”) for running ‘CombineGVCFs’ 
was designed to parallelize this step and was found to 
be 19 times faster than available default options. We 
demonstrated that the entire workflow can be used on a 
variety of computing platforms, such as hybrid clusters, 
and high-end workstations using Docker and Singularity 
images. Using HPC-GVCW, we called population panel 
variants for the latest high-quality genome references and 
created 25 immediately applicable datasets with an aver-
age of 27.3 M, 32.6 M, 169.9 M, and 16.2 M SNPs for rice 
(16 population panel references), sorghum (4), maize (3), 
and soybean (2), respectively. Analysis of a 16-genome 
rice reference panel revealed ~ 2.3 M novel SNPs relative 
to the IRGSP RefSeq, which equates to an approximate 
8% overall increase in SNP discovery that can be applied 
immediately to precise molecular-assisted selection 
(MAS) breeding programs and functional analyses.

Methods
SNP identification workflow
The SNP identification workflow presented here (i.e., 
genome variant calling workflow (GVCW)) was devel-
oped to provide a freely available and containerized 
high-performance computational platform to run the 
Genome Analysis Toolkit (GATK) “best practice” soft-
ware (https:// gatk. broad insti tute. org/ hc/ en- us/ secti ons/ 
36000 72266 51- Best- Pract ices- Workfl ows) for the analy-
sis of large resequencing data sets mapped to multiple 
reference genomes (see Additional file  1 for a detailed 
description). Briefly, genome resequencing data from 
multiple crop species was used for quality control, map-
ping, SNP calling, and multi-sample joint genotyping. 
Raw Illumina read data was scanned by Fastqc (0.11.8) 
[61], and trimmed with Trimmomatic (v0.38) [62] with 
the following parameters: “ILLUMINACLIP: TruSeq3-
PE-2.fa: 2:30:10 LEADING: 3 TRAILING: 3 SLIDING-
WINDOW: 4:15 MINLEN: 36.” Trimmed reads were then 
aligned to their respective high-quality reference genome 
sequences using Burrows-Wheeler Alignment (BWA-
MEM, v0.7.17) [63] under default parameters. Mapped 
reads with quality scores ≥ 30 were then sorted using 

https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows
https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows
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SAMTools [64] (v1.8). Duplicate reads were marked 
and re-grouped using GATK’s (v4.1.6) [18] “MarkDupli-
cates” and “AddOrReplaceReadGroups” functions. SNPs 
for each accession (gVCF) were called using the GATK’s 
HaplotypeCaller [19]. GATK functions “CombineG-
VCFs” and “GenotypeGVCFs” were then used for joint 
genotyping to produce merged VCFs from gVCFs for 
each sample by intervals. Finally, SNPs were extracted 
from the joint genotypes using GATK’s “SelectVari-
ants” and “VariantFiltration” functions with the follow-
ing parameters: “QUAL < 30.0 || QD < 2.0 || MQ < 20.0 
|| MQRankSum < -3.0 || ReadPosRanKSum < -3.0 || 
DP < 5.0” to filter for high-quality of SNPs.

Sequence data
Twenty-five reference genome sequences, including the 
latest gap or near gap-free assemblies of rice, sorghum, 
maize, and soybean, are listed in Table 1. All resequenc-
ing data was downloaded from the following public data-
bases: rice 3 K-RGP data set (3,024 samples) [6]; sorghum 
association panel (SAP, 400 samples) [10], maize asso-
ciation mapping panel (AMP, 282 samples) [39], soybean 
mini-core collection (MCC, 198 samples) [9] (Additional 
file 3: Table S3 and Data Availability).

SNP annotation
SNPs located in coding regions across the 25 reference 
genome data sets were identified using their respective 
annotation files, and functional SNPs were predicted 
using SnpEff (v5.0e) [45].

SNP visualization for rice and sorghum
SNP data for rice (i.e., ARC, N22, AZU, IR64, IRGSP, 
MH63 ZS97) and sorghum (Tx2783) genome data 
sets can be visualized at the following web portals, 
respectively:

Rice: https:// oryza. grame ne. org/ (Gramene release 6, 
https:// oryza. grame ne. org/ News).
Sorghum: https:// sorgh umbase. org/ (Sorghumbase 
Release 6, https:// www. sorgh umbase. org/ relno tes). 
Instructions for visualization can be found in Addi-
tional file  4. Two examples of putative SNPs that 
result in premature stop codons are shown in Addi-
tional file 2: Fig. S7.

Structural variation (SV) update across the 16‑genome rice 
population reference panel (RPRP)
In 2020, we published an index of large structure vari-
ations (> 50  bp, SVs) across the 16-genome RPRP that 
included the MH63RS2 and ZS97RS2 genome assem-
blies [40]. Here, we updated this index using the latest 

gap-free genome assemblies for these genomes — i.e., 
MH63RS3 and ZS97RS3 [65] — using the same meth-
ods as previously described. To validate this updated 
SV index, we randomly selected 50 insertions and 50 
deletions across the 16 rice genome (RPRP), using the 
IRGSP RefSeq as the reference and the remaining 15 
rice genomes as queries, which included a total of 1,500 
entries ((50 + 50) × 15 = 1500).

We then manually validated each SV with alignment 
information in the Integrative Genomics Viewer (IGV) 
using raw reads and alignment blocks with Nucmer [66]. 
SVs were considered valid if the two methods could iden-
tify the identical insertion or deletion and resulted in 
94.6% of the insertions and 99.3% of the deletions being 
validated as true SVs.

Homologous gene identification across the 16‑genome 
Rice Population Reference Panel (RPRP) based on sequence 
alignment and syntenic position
As with SVs above, we also updated our rice gene index 
(RGI) using updated MH63RS3 and ZS97RS3 gene anno-
tations with identical pipeline [41]. Briefly, homologous 
gene sets across the 16-genome RPRP were identified 
using GeneTribe software [67], by combining protein 
sequence similarity and collinearity (i.e., synteny) infor-
mation. Homologous relationships included “recipro-
cal best hits” (RBHs), “single-side best hits” (SBHs), 
one-to-many, and singletons. Based on the one-to-one 
relationships (both RBH and SBH), and considering the 
collinearity blocks, we removed redundant homologous 
gene groups to obtain 79,111 non-redundant homolo-
gous gene groups. Finally, these non-redundant homolo-
gous gene groups were clustered with the “Connected 
Graph Algorithm” [68] to obtain 41,137 homologous 
gene groups.

Rice pan‑genome SNP analysis
Using the updated SV and RGI data sets in combina-
tion with the 16-genome RPRP SNP data set, we con-
ducted a pan-genome SNP analysis to classify genomic 
regions into core, dispensable, genome-specific, and 
genome-absent regions [69]. Core regions are defined 
as sequences that are present in all 16 RPRP genomes. 
Dispensable regions are defined as sequences that are 
observed in 2 to 15 of the 16 RPRP genomes. Genome-
specific regions are defined as sequences that are pre-
sent in only one of the 16 RPRP genomes, but absent in 
the remaining 15. Genome-absent regions are defined 
as sequences that are not present in one of the 16 RPRP 
genomes, but are present in at least one of the other 15 
genomes. For the presence and absence of genes, we clas-
sified homologous gene groups as core, dispensable, spe-
cific, and absent genes, representing the same logic flow 

https://oryza.gramene.org/
https://oryza.gramene.org/News
https://sorghumbase.org/
https://www.sorghumbase.org/relnotes
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as large SVs. Bedtools (v2.30.0) [70] subcommand “sub-
tract” was used for core region identification, and the 
subcommand “intersect” was used for SNP extraction.

Chromatin accessibility of novel SNPs in open chromatin 
regions
Accessible Chromatin, combined with high-through-
put sequencing (ATAC-seq) is widely used as one of the 
mainstream OCR detection methods [51, 71, 72]. In this 
study, ATAC-seq data from 6 tissues of ZS97RS3, i.e., flag 
leaf, flower, lemma, panicle, root, and young leaf were 
obtained from NCBI BioProject PRJNA705005 [73]. 
In the initial steps of analyzing raw ATAC-seq data, we 
conducted quality control using FastQC [74]. This qual-
ity control process involved evaluating the quality of 
sequenced bases, average GC content, and the presence 
of repetitive sequences. Notably, we observed variations 
in the content of the first four bases at the 5′ end of each 
sample. To address this issue, we further refined our data 
by using fastp (v0.12.4) [75] to remove low-quality data 
and trim 20 base pairs from the 5’ ends. Subsequently, 
we employed BWA’s mem [76] algorithm to align the 
sequencing data with the ZS97RS3 rice genome while fil-
tering out reads that mapped to mitochondrial and chlo-
roplast DNA. Peak regions of open chromatin regions 
(OCRs) within the ATAC-seq data were identified using 
MACS2 [77] with specific parameters: “–shift -100 –ext-
size 200 –nomodel –B –SPMR -g 3.0e8 –call-summits -p 
0.01.” Following this, peak call results from each individ-
ual sample were combined using BEDtools (v2.26.0) [70] 
with default settings for merging.

To assess the potential functional impact of novel SNPs, 
we employed the intragroup Basenji model to study their 
variation scores [51]. Based on the Basenji model train-
ing, we predict the effect of variation in different tissues 
on chromatin accessibility (CA) in neighboring genomic 
regions. For each variation, we construct two sequences 
that contain the mutation site and the sequences around 
it, differing only at the mutation site. We then predict 
CA in each of these two sequences and score the effect 
of variants by comparing the CA differences between 
the two genotypes in the 1  kb region around the muta-
tion site. The higher the score of the SNP, the greater the 
effect on CA in open chromatin regions.
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