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ABSTRACT

Deep neural networks (DNNs) have been widely applied to predict the molecular functions of regulatory regions in the non-
coding genome. DNNs are data hungry and thus require many training examples to fit data well. However, functional genomics
experiments typically generate limited amounts of data, constrained by the activity levels of the molecular function under study
inside the cell. Recently, EvoAug was introduced to train a genomic DNN with evolution-inspired augmentations. EvoAug-trained
DNNs have demonstrated improved generalization and interpretability with attribution analysis. However, EvoAug only supports
PyTorch-based models, which limits its applications to a broad class of genomic DNNs based in TensorFlow. Here, we extend
EvoAug’s functionality to TensorFlow in a new package we call EvoAug-TF. Through a systematic benchmark, we find that
EvoAug-TF yields comparable performance with the original EvoAug package.

Availability: EvoAug-TF is freely available for users and is distributed under an open-source MIT license. Researchers
can access the open-source code on GitHub (https://github.com/p-koo/evoaug-t£). The pre-compiled package is
provided via PyPI (https://pypi.org/project/evoaug-tf) with in-depth documentation on ReadTheDocs (https:
//evoaug-tf.readthedocs.io). The scripts for reproducing the results are available at (https://github.com/p-koo/
evoaug-tf_analysis).

Introduction

Deep neural networks (DNNs) have emerged as a promising tool for supervised learning of regulatory genomics data, taking
DNA sequences as input and predicting the readouts of functional genomics experiments'-2. Due to their overparameterization,
DNNs are data hungry, requiring large amounts of data to learn discriminative features that ensure good generalization’.
However, most functional genomics experiments only observe a limited number of molecular interactions within the context
of a cell. For instance, the number of binding sites available for a transcription factor can be limited to the finite number of
accessible DNA within a given cell type. Hence, dataset size is a major limiting factor when analyzing functional genomics
data with DNNs.

Data augmentation is a widely practiced strategy in machine learning to provide additional training samples. In practice,
random transformations that maintain the same training labels are imposed on the input data, leveraging the natural symmetries
in the data. For example, in natural images, the objects can undergo affine transformations, flips, color perturbations, and blurs,
which do not alter the object’s label. In genomics, the available transformations that can maintain the same training labels are
limited to reverse complements and small random shifts*>.

To expand the available augmentations, EvoAug® was recently introduced to provide evolution-inspired data augmentations,
including translocations, insertions, deletions, inversions, and mutations. In nature, genetic variation is sampled by evolution
to increase phenotypic diversity. Thus, genetic mutations can alter the function of the sequence and, hence, change its label.
Nevertheless, EvoAug asserts that the transformed sequences retain the same training label as the wild-type sequence, which can
be considered imposing a prior. For instance, small random translocations impose a prior that the activity of motifs is invariant
to shifts. Moreover, insertions and deletions impose a prior that the distance between motifs is insignificant. Considered as a
prior, evolution-inspired augmentations can introduce a bias in the DNN that may break the underlying rules of cis-regulatory
grammars in the data. Thus, EvoAug employs a second stage of training that finetunes the DNN on the original, unaltered
data, ensuring functional integrity towards the observed biology. This two-stage training curriculum has proven beneficial for
genomic DNNs using synthetic data augmentations® and natural data augmentations’, as well as for protein-based DNNs®?.

However, the availability of EvoAug has been limited to a PyTorch!® implementation, posing a barrier for researchers
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working in TensorFlow!!. To address this demand, we present EvoAug—TF, a TensorFlow implementation that builds upon the

same principles as EvoAug. Below, we describe EvoAug-TF, highlighting its adaptations and unique features that are specific
to the TensorFlow framework. Additionally, we present experimental results showcasing the effectiveness of EvoAug-TF in
improving the generalization of genomic DNNS.

Methodology and Implementation

EvoAug-TF adapts the functionality of the PyTorch-based EvoAug framework in TensorFlow (Fig. 1a), including all of the
augmentation techniques (e.g., random transversion, insertion, translocation, deletion, mutation, and noise). EvoAug-TF
employs the same two-stage training curriculum, where stochastic augmentations are applied online to each mini-batch during
training, followed by a finetuning step on the original, unperturbed data. Since EvoAug-TF imposes transformations on the
input data while maintaining the same labels as the wildtype, in its current form, EvoAug-TF should be applied to DNNs that
output scalars in single-task or multi-task settings. In contrast, profile-based DNNs> %13 may require transformations to the
corresponding labels.

Several adaptations were made to EvoAug-TF compared to the PyTorch implementation, incorporating key design choices
specific to the TensorFlow version. To ensure compatibility with TensorFlow’s graph mode and optimize training speed,
tf.Tensors are used as substitutes for NumPy arrays, which were utilized in the PyTorch implementation. Additionally,
EvoAug-TF employs t £.while_loop to achieve the same effects as the for loops used in the PyTorch implementation. The
implementation of EvoAug-TF relies on TensorFlow 2 and its relevant libraries and dependencies; it has been tested thoroughly
on versions 2.7 and 2.15.

A key difference between EvoAug-TF and EvoAug lies in the approach to applying augmentations to the mini-batch
during training. In the PyTorch implementation, the number of augmentations and the augmentation type are randomly
chosen for each sequence. In the TensorFlow implementation, the same number of augmentations and augmentation types
are employed for each sequence. However, the selected augmentation type(s) are sampled in a stochastic manner to impose
a unique perturbation to each sequence in the mini-batch, similar to EvoAug. This design choice was made to simplify the
process of imposing augmentations, while still sampling a high degree of genetic variation. Moreover, for some augmentations —
such as translocation, insertion, deletion, and transversion (i.e., reverse-complement) — we offer an additional option to perform
the same perturbation across all of the sequences within the mini-batch (Fig. 1b), which we term batch mode. This feature
provides a faster way to deploy augmentations, improving computational efficiency at the expense of sampling diversity.

Results and Discussion

To benchmark the performance of EvoAug-TF, we utilized the data and deep learning model from the DeepSTARR study'4.
The prediction task is set up to take as input 249 nucleotide (nt) sequences and predict enhancer activity (measured via
STARR-seq'?) for developmental and housekeeping transcriptional promoters in D. melanogaster S2 cells as a multi-task
regression. We systematically trained the DeepSTARR model with different EvoAug-TF augmentations individually and in
combinations and compared their performance with the original EvoAug, using the same hyperparameters as in the original
study6. To ensure the robustness of the results, we conducted five trials for each set of augmentations with different random
initializations.

We found that models trained with EvoAug-TF augmentations achieved comparable performance to the original EvoAug-
trained models with the same augmentation settings (Fig. 1c and 1d). Notably, EvoAug-TF consistently yielded improved
performance compared to the original EvoAug after stage 1 (i.e., before finetuning) with the exception of random noise
augmentation. However, the original EvoAug yielded slightly better performance than EvoAug-TF upon finetuning. In most
cases, models trained with data augmentations led to improved performance compared to standard training.

In terms of computational costs, we found that running EvoAug-TF exhibited similar training times per epoch as EvoAug
(Fig. le). Thus, EvoAug-TF’s approach of applying the same numbers and types of augmentations to each sequence maintains
a comparable computational cost as EvoAug’s approach of applying different numbers and types of augmentations to each
sequence. Notably, both approaches are effective in improving model performance.

To further demonstrate the breadth of the EvoAug-TF package, we explored the use of batch mode augmentations. First,
we trained convolutional neural networks on ChIP-seq peak classification from the original EvoAug study using batch mode
augmentations (i.e., insertion, deletion, and translocation only). As expected, models trained with EvoAug-TF augmentations
in batch mode consistently found improved performance (Fig. 1f). We also explored the effectiveness of EvoAug-TF in the low
data regime with the same batch mode augmentations. Strikingly, a DeepSTARR model trained with EvoAug-TF on only 25%
of the training data yields better performance than the same DeepSTARR model trained on the whole dataset with standard
training (Fig. 1g). Thus, EvoAug-TF can greatly improve data efficiency when training genomic deep learning models, and
batch mode is an effective way to improve performance over standard training.
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Figure 1. Performance comparison between EvoAug and Standard training. a Flowchart illustrating EvoAug-TF’s two-stage
training curriculum. b Schematic demonstrating the difference between sequence mode and batch mode, where each column
represents a mini-batch of sequences and different colors represent different data augmentations. ¢, d Performance comparison
between EvoAug (PyTorch-based) and EvoAug-TF (TensorFlow-based) with DeepSTARR models trained with individual or
combinations of augmentations (i.e., insertion + translocation + deletion; all augmentations) and finetuned on original
STARR-seq data for two promoters: developmental (c¢) and housekeeping (d). e Comparison of the training time per epoch
between EvoAug (PyTorch) and EvoAug-TF (TensorFlow). c-e Each scatter plot includes the data from 5 trials with random
initialization. f Box-plots comparing the performance (area under the receiver operating characteristic curve, AUROC) of a
convolutional neural network trained with standard training, EvoAug-TF augmentations in batch mode, and with finetuning on
various Chip-seq peak classification tasks. g Performance comparison of DeepSTARR models with various training methods fit
to training sets with varying levels of down-sampling. EvoAug-TF augmentations employed insertion + translocation +
deletion in batch mode. The shaded region represents the standard deviation of the mean across five models with different
random initializations. h Box-plot comparison of the consistency of patterns within Saliency Maps, as measured by the
k-attr-mean, for DeepSTARR models with standard training or EvoAug-TF augmentations (All). i Box-plot comparison of the
attribution variation score, calculated according to the root-mean-squared attribution scores, for attribution maps generated by
different methods (i.e., Saliency Maps, Integrated Gradients, and DeepSHAP) using a DeepSTARR model trained with
standard training or EvoAug-TF augmentations (All). h,i Mann-Whitney U test with p-values less than 0.001 (***) and 0.01
(**). Boxes represent five identical models with different random initializations.

In the original study, EvoAug-trained models were found to improve motif representations in attribution maps. To explore
whether EvoAug-TF trained models also improve the interpretability of attribution maps, we generated Saliency Maps'® for
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500 sequences with the highest observed enhancer activity for the developmental promoter and a different set of 500 sequences
for the housekeeping promoter in the DeepSTARR dataset. We then quantified the consistency of essential features across a
population of attribution maps using the Kullback-Liebler Divergence (KLD) of the distribution of locally embedded attribution
scores versus an uninformative prior, which is termed k-attr-mean metric!”. A higher KLD suggests that the attribution scores
reflect similar recurring patterns across the 500 attribution maps. Indeed, EvoAug-TF-trained DeepSTARR yielded significantly
higher KLD scores than standard training (Fig. 1h).

Attribution methods are sensitive to local function properties and thus can yield spurious attribution scores for reasons
that are not biological'”. To test the robustness of attribution maps, we developed a translational robustness test, similar to
the robustness test for model predictions introduced in>. The assumption is that small shifts to the sequence should not affect
the importance of binding sites (when no significant attribution scores are present near the ends of the sequence). Hence, the
attribution scores for the binding sites should also shift with the translations while maintaining the same importance levels. In
the translational robustness test, the input sequence was randomly translated by up to 30nt in either direction with np.roll,
the (corrected) attribution scores'® were calculated for the translated sequence, and then the inverse translation was imposed
on the attribution maps to align with the wild type attribution map. This process was repeated 20 times for each sequence,
which resulted in 20 translated attribution maps realigned to the input sequence. Next, a variation score was calculated using
the root-mean-squared error to summarize the variation across the aligned attribution maps with a scalar value. As expected,
DeepSTARR trained with EvoAug-TF yields a significantly lower variability score compared to standard training for Saliency
Maps'®, Integrated Gradients'®, and DeepSHAP? (Fig. i). Thus, EvoAug-TF training has the benefit of resulting in more
robust attribution maps for various attribution methods.

Each augmentation has corresponding hyperparameters that can be tuned to optimize performance gains. Previously,
EvoAug identified hyperparameters through a simple grid search, focusing on one augmentation at a time. EvoAug-TF now
provides Google Colab notebooks that show how to integrate EvoAug-TF with comprehensive hyperparameter searches, such
as population-based training?! and the asynchronous hyperband algorithm?? provided by Ray Tune?®. These should offer an
alternative strategy to help navigate the combinatoric search space of discovering optimal hyperparameters when deploying
multiple augmentations.

Conclusion

EvoAug-TF is a TensorFlow implementation of EvoAug (a PyTorch package) that provides the ability to train genomic DNNs
with evolution-inspired data augmentations. Our results demonstrate the effectiveness of EvoAug-TF to improve generalization
and model interpretability with attribution methods. We found that models incorporating EvoAug-TF augmentations achieved
comparable or improved performance with similar computational efficiency as the original EvoAug models in PyTorch.
Similar to EvoAug, EvoAug-TF is extensible — it can easily accommodate new types of custom augmentations within its data
augmentation framework. While the current implementation only supports model outputs as scalars in single- or multi-task
settings, we plan to extend these capabilities for multivariate predictions in the future to provide data augmentations for
quantitative models that output profiles of read coverages> %13, Overall, EvoAug-TF offers a new tool for TensorFlow users in
the genomics research community to improve data efficiency in training genomic deep learning models, leading to improved
generalization and interpretability with attribution analysis.
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