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Dynamic network curvature 
analysis of gene expression reveals 
novel potential therapeutic targets 
in sarcoma
Rena Elkin 1*, Jung Hun Oh 1, Filemon Dela Cruz 2, Larry Norton 3, Joseph O. Deasy 1, 
Andrew L. Kung 2 & Allen R. Tannenbaum 4

Network properties account for the complex relationship between genes, making it easier to identify 
complex patterns in their interactions. In this work, we leveraged these network properties for dual 
purposes. First, we clustered pediatric sarcoma tumors using network information flow as a similarity 
metric, computed by the Wasserstein distance. We demonstrate that this approach yields the best 
concordance with histological subtypes, validated against three state-of-the-art methods. Second, 
to identify molecular targets that would be missed by more conventional methods of analysis, we 
applied a novel unsupervised method to cluster gene interactomes represented as networks in 
pediatric sarcoma. RNA-Seq data were mapped to protein-level interactomes to construct weighted 
networks that were then subjected to a non-Euclidean, multi-scale geometric approach centered on 
a discrete notion of curvature. This provides a measure of the functional association among genes in 
the context of their connectivity. In confirmation of the validity of this method, hierarchical clustering 
revealed the characteristic EWSR1-FLI1 fusion in Ewing sarcoma. Furthermore, assessing the effects of 
in silico edge perturbations and simulated gene knockouts as quantified by changes in curvature, we 
found non-trivial gene associations not previously identified.

Genes function in networks to control all aspects of a cell’s biology, including the morphologic and behavioral 
aberrations of cancer  cells1. Hence, to identify meaningful therapeutic targets, biomarkers of prognosis, or 
sensitivity to drugs, it is critical to gain an understanding not just of gene function but also of the networks in 
which they are active. Regulatory networks are commonly represented as weighted graphs in which each gene 
is represented as a node (vertex), with edges between nodes representing direct interactions at the protein level. 
The strength of the interactions is estimated by the weights of the corresponding edges. In addition to direct 
connections, indirect cooperation occurs, and therefore it is essential for a useful method to identify these as well. 
However, identifying relevant subnetworks in complex biological networks remains challenging, with existing 
methods possibly missing potential therapeutic targets. To overcome this barrier, we have developed, and in this 
paper apply, a method that utilizes a geometric approach, namely curvature, founded on concepts from optimal 
mass transport (OMT)  theory2,3, in combination with analysis of network dynamics.

Representing a weighted network as a Markov chain, one can consider certain graph theoretical properties 
such as random walks. Of particular interest is the notion of Ricci curvature between two nodes on a graph. In a 
continuous setting, curvature is a measure of how the local geometry deviates from Euclidean space. Intuitively, 
curvature is characterized by the degree to which geodesics (local paths of minimal length), obtained via paral-
lel transport, will tend to converge or diverge in the  space4. A standard example of a positively curved space is 
a sphere whose geodesics trace out the great circles (Fig. S1). In the context of networks, curvature reflects the 
connectivity and interdependence among nodes. Several notions of discrete Ricci curvature applicable to graphs 
have been  proposed5,6, each with its according advantages and disadvantages. We chose to employ Ollivier’s 
 formulation7, which we simply refer to as Ollivier-Ricci curvature, due to several considerations, which we now 
outline.
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In the present study, we employed a dynamical model of  curvature8, which is based on starting with delta 
functions at each node, then progressively smoothing via the heat flow defined by the graph Laplacian, computing 
the resulting Wasserstein distances, and finally the Ollivier-Ricci curvature. (This process is described below.) This 
allows us to geometrically study the network at various scales. Out of all the versions of discrete curvature, the 
Ollivier-Ricci approach is the most natural for the type of dynamical model we utilize in this paper. There are a 
number of other useful properties of the Ollivier-Ricci curvature. Complete sets of references may be found  in9,10. 
These include the connection of Ollivier-Ricci curvature to the number of invariant triangles and thus network 
feedback stability, connections to stochastic systems and the rate function for convergence to a stationary state, 
convergence to equilibrium and mixing times for Markov chains, and the positive correlation of curvature to 
changes in entropy and system functional robustness. All of these heavily rely on the optimal mass transport 
underpinnings of the Oliver-Ricci model.

The recently developed dynamic formulation of Ollivier-Ricci  curvature8 seems to provide an excellent way 
to explore the multi-scale structure of genomic networks and identify key subgraphs as well as the bridges con-
necting them. In the dynamic setting, curvature is measured as a function of time while information is diffused 
throughout the network. ”Time” in this context is a purely numerical construct used to connote the gradations 
of the network organization and is used interchangeably with scale. The motivation is that networks exhibit 
varying levels of organization at different scales. Thus, persisting communities (with many connections among 
genes) and emerging bridges (with few connections) may identify mechanisms of drug resistance and actionable 
targets for intervention. This dynamic notion of curvature is applicable to networks in general and is particularly 
attractive for gene regulatory networks that typically have strong hub nodes and low modularity, which is chal-
lenging to overcome with standard community detection approaches. We demonstrate its utility with particular 
application in pediatric sarcoma (PS).

PSs are a diverse group of childhood cancers that are typically diagnosed based on immunohistologic features 
and clinical  history11. When the clinical and histologic workup do not unequivocally determine a diagnosis, 
further time-intensive molecular characterization is needed to ascertain the correct  classification12. The delay in 
a definitive diagnosis hinders time-sensitive decisions toward treatment planning and management. Therefore, 
there is a significant need to develop novel methodologies to accelerate the timeline for identifying PS subtypes. 
Moreover, although the genetic drivers for some PS subtypes have been  described13, oncogenic driver mutations, 
like the canonical EWSR1/FLI1 fusion gene characteristic of Ewing sarcoma (EWS), have not been amenable 
to direct targeting and are therefore  undruggable14–20. Thus, understanding the pathways required to maintain 
the cancer system is also pivotal to the identification of existing drugs that can indirectly target the drivers of 
these tumors.

The goal of this study was two-fold: to distinguish PS subtypes from tumor tissue RNA-Seq gene expres-
sion profiles and identify actionable candidate targets for therapeutic intervention. To this end, the focus of the 
work described in this paper is to design a classifier for identifying PS subtypes and to develop a framework for 
investigating the functional relationships between genes or their products. Machine learning techniques such as 
agglomerative hierarchical clustering  methods21,22 and random forest  models22,23 have had success in classifying 
sarcoma tumors and statistical analyses of differential patterns in gene expression (or methylation) between sub-
types have been particularly useful for identifying novel biomarkers. In this work, we exploit functional network 
properties that consider the topology (connectivity) of biological networks in conjunction with gene expression to 
address each objective. More specifically, we employ  curvature2,3, which has not been fully explored in the context 
of weighted cancer networks. Curvature defined on a graph in this manner is related to the feedback connectivity, 
i.e., the number of invariant  triangles24. Informally, curvature provides insight on the shape of the interactome 
landscape, analogous to a surface, by quantifying how easy (or difficult) it is to transport information between 
genes over the network. By accounting for the network topology and gene-prescribed weights, such a geometric, 
functional network representation allows for novel insight that is not apparent from genomic data alone.

Moreover, Ollivier’s notion of Ricci curvature is relevant to studying network functional stability because 
an increase in Ollivier-Ricci curvature (resulting from an external impact exhibited by a change in interaction 
(strength) between network components) is positively correlated to an increase in system  robustness25,26, mean-
ing that an increase in curvature indicates an increase in functional connectivity on the network associated with 
gene-cooperation. The connection between curvature and network robustness/fragility is linked by  entropy25. 
However, unlike entropy which is a nodal attribute and thereby exhibits a loss of information by construction 
due to a weighted contraction of edge dependencies, Ricci curvature is an edge attribute that preserves such 
geometric quantities. The significance of this theoretical result has been demonstrated on real networks sup-
porting the use of curvature as an indicator of network  robustness9,10. Thus, curvature concurrently computed 
with in silico experiments simulating gene knockout or pathway interference is performed to assess the network 
response to targeting the key contributors to gene signaling dysregulation in the cancer network identified by 
the multi-scale dynamical analysis, with particular attention in this work given to EWS.

Methods
Data
RNA-Seq data were generated from tumor tissues in PS patients who were treated at our institute. RNA-Seq 
data were preprocessed using regularized log (rlog) normalization prior to analysis. This study was approved by 
Internal Review Board at Memorial Sloan Kettering Cancer Center. The patients provided their written informed 
consent to participate in this study and all methods were performed in accordance with the relevant guidelines 
and regulations. In total, the cohort consisted of 102 samples from 21 different subtypes that were predominantly 
sequenced from metastatic or relapsed tumors. In this work, we considered the 70 samples from the four largest 
subtypes: osteosarcoma (OST; n = 29 ), desmoplastic small round cell tumor (DSRCT; n = 20 ), EWS ( n = 12 ) 
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and embryonal rhabdomyosarcoma (embryonal RMS; n = 9 ) and concentrated on the EWS cohort for functional 
analysis. The criterion for gene inclusion was a minimum of 10 samples with 10 read counts in RNA-Seq data.

Graph topology
The network topology was derived from the Human Protein Reference Database (HPRD)27,28. The graph was 
then constructed by restricting the set of genes in the given dataset to the HPRD and extracting the largest con-
nected component network, resulting in a simple graph with 8,127 nodes, 32,750 edges, and an average degree 
of 8.1 after removing multi-edges and self-edges. GC is used to denote the graph used for tumor clustering while 
G is used when referring to an arbitrary graph, which is assumed to be simple, undirected and connected. As the 
nodes of the graph refer to genes, the terms gene and node are used interchangeably.

Unsupervised sample clustering
We follow the construction of forming a Markov chain based on RNA-Seq gene expression  data29. The Ollivier-
Ricci curvature is defined on such a Markov chain as we will describe below.

Gene expression data x ∈ R
n for each sample is mapped to the graph G = (V ,E ) where V denotes the set of 

n nodes and E denotes the set of edges by assigning node weights wi = xi for all nodes i ∈ V . Treating the weighted 
graph as a Markov chain, the probability of going from node i to node j on a random walk is expressed as

where Ni denotes the neighborhood of node i: Ni = {j ∈ V |(i, j) ∈ E } . The random walk on G with a transi-
tion probability matrix P corresponds to an irreducible Markov chain since G is connected. This along with the 
Perron-Frobenius theorem for nonnegative matrices guarantees the existence of a unique stationary distribution 
π , which is the probability distribution defined on V that satisfies

The stationary distribution may be efficiently computed from its closed form

where K is a normalization factor.
The stationary distribution is the limiting behavior of a random walk on G and the value πi of its i-th com-

ponent is related to the relative amount of time a random walker spends at the corresponding node i. We expect 
that the stationary distribution encodes subtype-specific relative node importance and therefore expect that 
stationary distributions associated with transition matrices, constructed from gene expression data of samples 
with the same subtype, would be more similar than those associated with different subtypes. This motivates 
the use of the Wasserstein distance W1 , the metric associated with OMT which gives a rigorous notion of the 
“shortest distance” between probability distributions, to compute the distance between stationary distributions 
as a measure of similarity between the corresponding samples. The Wasserstein distance between two discrete 
probability distributions µ and ν on Rn is formally expressed as

where Ŵ(µ, ν) denotes the set of joint probabilities on Rn × R
n with marginals µ and ν and dij is the prescribed 

distance between the corresponding genes i and j. For details on the Wasserstein distance, more general formula-
tions and its connection to OMT,  see2,3,30.

The unsupervised Wasserstein distance-based clustering of the samples proceeds in the following manner: 
invariant distributions π(s) are computed for each sample s, s = 1, . . . , S where S is the number of samples. The 
sample-pairwise Wasserstein distance matrix W ∈ R

S×S is then computed where Wqr = W1(π
(q),π(r)) is the 

Wasserstein distance between the stationary distributions associated with samples q and r using the hop distance 
as the graph metric dij . Hierarchical clustering is then performed using W as the distance matrix.

Geometric network analysis
Graph construction
The graph for functional analysis GF was constructed by extracting the largest connected component from GC 
restricted to the set of genes provided by the OncoKB  database31, resulting in a simple graph with 675 nodes, 
2,667 edges and an average degree of 7.9. Note that the analysis performed in this work may also be applied to 
the full GC as well. The constricted network of established oncogenes and tumor suppressor genes was opted for 
to reduce the computational burden.

For each PS subtype, the strength of interaction on an edge (i, j) ∈ E , denoted w̃ij , was computed as

where cij is the Pearson correlation between the corresponding genes i and j. Pearson correlation is known to 
be sensitive to outliers so a de-sensitized correlation was computed where samples that drastically affected the 

(1)Pij =







wj
�
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correlation value were removed. Mapping the interaction strengths w̃ to edge weights, as described in Equation 8, 
on the fixed GF topology yielded the subtype-specific weighted graph.

Graph distance
Unless specified otherwise, the graph distance d is hereon assumed to be the weighted hop distance dw (i.e., 
d ≡ dw ). More specifically, denote by pij a path between nodes i and j ∈ V by the set of m+ 1 nodes connecting 
them, i.e., pij := i = v0 ∼ v1 ∼ · · · ∼ vm = j , where consecutive nodes vk , vk+1 ∈ pij ( k = 0, 1, . . . ,m− 1 ) cor-
respond to an edge ek = (vk , vk+1) ∈ E and each node only appears once. Denoting the set of all possible paths 
between i and j by P = {pij0 , p

ij
1 , . . . , p

ij
r } (this set is finite since the graph is finite), let {ws

0,w
s
1, . . .w

s
m−1} be the 

set of edge weights associated with path pijs ∈ P where ws
k ≡ ws

k(k+1) is the weight for edge esk = (vk , vk+1) . The 
corresponding length of the path is then expressed as

The weighted hop distance dwij  between nodes i and j ∈ V is the minimal accumulated edge weight among all 
paths connecting i and j formally defined as

The graph under consideration is assumed to be simple, connected and undirected so at least one path is guar-
anteed to exist between any two nodes i, j ∈ V . For each edge (u, v) ∈ E , the edge weight wuv is taken to be

where w̃uv was previously prescribed in Equation (5).

Ollivier–Ricci graph curvature
Treating a graph as a metric measure space equipped with a graph metric d and probability measures µk at each 
node k ∈ V , Ollivier’s7,26 coarse definition of curvature between any two nodes i, j ∈ V is expressed as

One possibility is to take the distribution µk to be the probability of a 1-step random walk starting at node k 
given by Pk , i.e.,  the k-th row of the transition matrix P in Equation 1. Alternatively, distributions based on lazy 
walks or edge weights may be used. As mentioned previously, Ricci curvature on a Riemannian manifold can 
be assessed by the local tendency of geodesics to converge (positive curvature) or diverge (negative curvature)4. 
Put another way, curvature may be characterized by the ratio of the distance between geodesic balls to the dis-
tance between their centers: positive (respectively, negative) curvature is characterized by the distance between 
geodesic balls (on average) being closer (respectively, farther) than their centers. The ratio is balanced, meaning 
the distance between geodesic balls is the same as the distance between their centers, in flat space, e.g., Euclidean 
space. In Equation 9, Ollivier’s definition replaces geodesic balls centered at a point with distributions supported 
on a node’s neighborhood and the Wasserstein distance is kindred to the distance between geodesic balls. Thus, 
analogous to Ricci curvature, Ollivier-Ricci curvature is characterized by the ratio of the distance between 
neighborhoods to the graph distance between the nodes the distributions are centered on.

Dynamic curvature
In this paper, we employ a multi-scale extension of the Ollivier-Ricci curvature on weighted graphs to identify 
robust and fragile components of the genomic network that are obscured by the complexity (non-linear, non-
Euclidean) of the network  representation8. The multi-scale functional organization is captured by replacing 
the random walk µi with a network diffusion process ηi(τ ) as a function of scale τ ∈ [0,T] seeded at individual 
nodes i, expressed as

where δi is the Dirac measure at node i such that δi(j) = 1 for i = j and 0 otherwise, and L = I − K−1A is the 
(random-walk) normalized graph Laplacian. To construct L, I is the n× n identity matrix where n is the number 
of nodes in the network, K is the diagonal degree matrix where Kii =

∑

j Aij and A is the weighted adjacency 
matrix. In this work, A is defined as

where dmax = maxij dij is the largest distance. Accordingly, Gosztolai and  Arnaudon8 define a dynamic version 
of Ollivier-Ricci curvature as
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Notice that initially, the dynamic curvature is 0 at τ = 0 ( κij(0) = 0) when no information has been shared and 
the nodes are independent. Then when the measures diffuse to steady state π , and the diffusion processes have 
completely mixed, one gets that κij(τ ) = 1 . The key idea, as the authors argue, is that the characteristic scales 
should be related to the overlap of pairs of diffused measures (a.k.a. the mixing rate) over the network. This is 
used as a measure of information propagation on the various subnetworks. Indeed, they derive an upper bound 
on the mixing time of the diffusion pair. Thus, information shared to ”communal” neighbors is reflected by 
clusters with positive curvature at early times, whereas negative curvature is characteristic of inter-community 
connections (bridges) with restricted information exchange (Fig. 1).

Critical curvature filter
In addition to the multi-scale representation, there is also a hierarchical aspect within a fixed scale, as curvature 
measures the strength of the functional connections. The first scale that the dynamic curvature of an edge reaches 
a critical value, here set to 0.75, is called the critical scale tc , i.e., κij(tc) = 0.75 . The critical scale based on this 
critical value is not arbitrary; it is related to the scale at which information has sufficiently diffused throughout 
communities but has not crossed bridge (bottleneck) edges and is therefore an ideal scale to capture functional 
 subnetworks8. Bridges may be identified as edges with negative curvature at the critical scale. Connected com-
ponents that emerge by removing these bridges characterize communal affiliation amongst the nodes. Moreover, 
iteratively pruning edges by the critical curvature value in increasing order reveals a hierarchical structure of the 
functional association between nodes.

Multi-scale functional clustering
Incorporating information from multiple scales in the dynamic range lends additional information for character-
izing the intricate fabric of the network and its key sub-structures. In order to utilize the multi-scale information, 
we define the average critical curvature κ̃ij of an edge (i, j) as the average curvature over the critical dynamic 
range, expressed as

In this manner, κ̃ provides an enhanced measure of the interaction between nodes. The edges of the network are 
then iteratively pruned by their κ̃ value, starting by removing all edges with negative κ̃ and then proceeding in a 
monotonically increasing order. We keep track of the number of iterations nodes i and j are found in the same 
connected component, denoted Rij for every two nodes i, j ∈ V in a persistent component score matrix R ∈ R

n×n , 
where n is the number of nodes. With the rationale that the longer two genes remain in the same connected 
component, the stronger their functional association, and the “closer” they are to each other. Accordingly, we 
construct a gene-pairwise distance matrix between nodes D ∈ R

n×n where

(12)κij(τ ) = 1− W1(ηi(τ ), ηj(τ ))

dij
.

(13)κ̃ij := t−1
c

tc
∑

τ=0

κ(τ , i, j).

(14)Dij = max
rs

Rrs − Rij .

Figure 1.  Utility of the dynamic curvature framework illustrated on an idealized stochastic block model 
network with two communities. (a) Bridges between clusters characteristically have negative curvature (red) 
while edges within clusters are positive (blue). (b) Multi-scale functional organization exhibited for node 0 is 
encoded by (c) the curvature evolution of incident edges, seen by the largest gap obtained in the evolution of the 
bridge edge (0,34), denoted with an asterisk, that connects the two communities.
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Hierarchical clustering of the genes is then performed using D (Equation 14) as the distance matrix. This process 
of hierarchical clustering based on how often nodes are found in the same connected component while iteratively 
filtering out edges by the average critical curvature is illustrated in Fig. S2 and is referred to as hierarchical-acc.

Edge perturbation simulations
To assess the network response to targeting a particular edge, curvature is re-computed while dampening a spe-
cific edge-weight. Specifically, for a fixed edge (i, j) ∈ E with interaction strength w̃ij (Equation 5) and weighted 
hop distance computed from edge weights according to Equation 8, the baseline curvature between any two 
nodes is computed according to Equation 9. The nodal measure µr used for the baseline curvature computation 
is expressed as

The edge perturbation procedure then proceeds as follows. The interaction strength w̃ij is perturbed toward 0 to 
simulate a disruption in communication, or cooperation, between the nodes. Our interest is to see the trend in 
curvature due to the simulated reduction in cooperation. To reduce the computational time, we therefore choose 
a coarse discretization of the interval [ǫ, w̃ij] (where ǫ is a negligible amount, 1× 10−6 ) into N = 6 uniformly 
spaced points: ĉ(ζ )ij = ǫ + (ζ − 1)h, ζ = 1, . . . , 6 , where h is the discretization step h = (w̃ij − ǫ)/(N − 1) . For 
each ζ = 1, . . . , 6 , the perturbed edge weight ŵij is computed as ŵij = 1/

√

ĉ
(ζ )
ij  and the weighted hop distance 

is recomputed. Accordingly, we consider the ”perturbed” probability measures µ̂r attached to node r ∈ V 
expressed as

where the edge attribute a is defined as

Finally, the perturbed Ollivier-Ricci curvature is then computed between any two nodes according to Equation 9.

Gene knockout simulations
To assess the network response to targeting a particular gene, curvature is re-computed after removing the cor-
responding node from the network. The baseline curvature between any two nodes is computed as previously 
described in “Edge perturbation simulations” section. The gene knockout procedure then proceeds as follows. For 
a fixed node i ∈ V , node i is removed from the graph to create a subgraph GS = (VS,ES) , where VS = V\{i} 
and ES = E \{(i, j) | j ∈ Ni} . The knocked-out Ollivier-Ricci curvature is then computed between any two nodes 
in the subgraph GS according to Equation (9), where the weighted hop distance and nodal measures are computed 
in the same manner as the baseline curvature.

Results
Sample clustering
Wasserstein distance-based unsupervised hierarchical clustering was applied to cluster 70 samples from four 
PS subtypes using the whole HPRD-derived graph GC , described in “Graph topology” section. The resulting 
clustering was highly consistent with the histological subtypes and is shown in Fig. 2 with the heatmap of the 
pairwise Wasserstein distances. Discarding the single embryonal RMS sample outlier which did not cluster with 
any subtype, we used the prior knowledge that there were four molecular subtypes as a constraint on the number 
of clusters. The remaining 69 samples were separated into four clusters with only one misclassified sample for the 
histological subtypes, yielding a classification accuracy of 0.99. Of note is the incorrectly clustered EWS sample 
(green). Misclassification of this sample did not occur due to misdiagnosis, as it exhibited the canonical EWSR1 
- FLI1 fusion. We suspect its low tumor purity (0.19) is the reason that this sample did not cluster with the other 
EWS samples. Considering that the methodology is agnostic to the histology and clinical classification, this 
serves as compelling evidence that the proposed approach will be helpful to understand subtype-specific biology.

We benchmarked the Wasserstein-based hierarchical clustering performance against three state-of-the-art 
subtyping methods: First, PINSPlus (Perturbation clustering for data INtegration and disease Subtyping) uses 
perturbations to combat noise and find resilient clusters when determining the optimal  clustering32. We tested 
PINSPlus with both of its built-in clustering options: hierarchical clustering (hclust) and k-means (kmeans). 
Second, SNF (Similarity Network Fusion) was developed particularly to handle multi-omic data by fusing the 
different data  channels33. Since we only have single-omic data (namely, RNA-Seq), we applied the method without 
the fusing step. Third, SIMLR (Single-cell Interpretation via Multi-kernel LeaRning) constructs an integrated 
similarity matrix by combining multiple Gaussian kernels to capture multiple representations of the data for 
downstream  clustering34. Although originally presented for single-cell data analysis, the authors note that SIMLR 
is applicable to broader applications. Each benchmarked approach includes a heuristic for agnostically determin-
ing the optimal number of clusters. We tried each of the heuristics and found that they typically performed worse 
than a pre-set value of 4 or 5 when comparing the resulting clustering to the true subtypes, further justifying our 
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choice for this pre-selection. More specifically, we found that SIMLR required too much memory for the heuristic 
to run and PINSPlus, depending on the configuration, only identified 1 or 2 clusters and an outlier. SNF includes 
2 heuristics: (1) the eigen gap heuristic which only identified 2 clusters and (2) the rotation gap heuristic, which 
did a bit better and identified 5 clusters, but they did not match the true subtypes as well as the Wasserstein-based 
clustering. We, therefore, applied each validation method to the RNA-Seq expression profiles with the number 
of clusters pre-set to 4 and 5 (5 was used to allow for 1 cluster corresponding to the outlier), analogous to how 
we performed the Wasserstein-based clustering. The resulting clustering for each approach is shown in Fig. 3.

Functional analysis
Critical curvature filter: results
In the EWS network, preferential community formation by filtering edges with negative critical curvature (at 
the determined critical mixing scale) captured the characteristic EWSR1-FLI1 fusion and the novel FLI1-ETV6 
interaction. Finding this persistent EWSR1-FLI1-ETV6 relationship was purely a mathematical discovery with 
great biological significance. This was distinctly different from the connectivity between these genes found in 
the OST and DSRCT networks, highlighted in Fig. 4. Removal of edges with negative critical curvature resulted 
in 1,481 (55.53%) remaining edges in the EWS network, 1,483 (55.61%) edges in the OST network, and 1,479 
(55.46%) edges in the DSRCT network. By incrementally filtering edges by critical curvature value, we found 
that EWSR1, FLI1 and ETV6 form a single connected component that persists until only 587 (22.01%) edges 
in the EWS network remain before ETV6 breaks away. The EWSR1-FLI1 association persists further until 296 
(11.10%) edges remain and a majority of the network has been decomposed.

Figure 2.  Hierarchical unsupervised OMT-Wasserstein based clustering of samples in four PS subtypes using 
network properties on the whole HPRD-derived graph GC . The heat map depicts the symmetric pairwise 
Wasserstein distance between samples. The true subtype classifications are indicated by color bars affixed to the 
rows and columns.
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To validate this finding implicating ETV6 in EWS is not biased to metastatic and relapse patients, a dataset 
of an independent cohort consisting of 22 EWS tumors from event-free patients in the GEO database (Series 
GSE63157) was downloaded and analyzed. Individual GEO accession numbers can be found in the supple-
mentary material (Table S1). The expression profiling for this dataset was performed by Affymetrix microarray. 
Although differences in the profiling platform and natural heterogeneity across tumors can be expected to 
influence the weighted network and analysis, strong biological signals should persist. The critical curvature 
filter analysis replicated the FLI1-ETV6 associated interaction. EWSR1 is not directly associated with FLI1, but 
remains connected via ETV6, where the shorted path connecting EWSR1 to FLI1 is: EWSR1 → BTK → CBL → 
CRKL → ETV6 → FLI1. When the first version of this paper was written, to the best of our knowledge, there was 
no mention implicating ETV6 in EWS in the literature. However, a recent study independently identified ETV6 
as having a role in  EWS35, further validating this finding.

Multi-scale functional clustering: results
Hierarchical-acc clustering was performed on the EWS network ( GF ). The resulting dendrogram encapsulated 
preferential gene clustering according to their geometric cooperation. As one would expect in EWS, EWSR1, FLI1 

Figure 3.  Performance of Wasserstein-based subtype clustering and benchmarked approaches. The heat map 
depicts the clustering partitions. Each column represents a sample and each row represents a particular subtype 
clustering configuration. Shades of blue indicate the clustering partition and have no associated numerical value. 
The true subtype classifications are indicated by the color bar above the heat map. The top row of the heat map 
shows the Wasserstein-based hierarchical clustering for comparison. The remaining rows are labelled by the 
clustering method and any pre-set parameters (e.g., internal clustering and n indicates the number of clusters). 
As can be seen, the Wasserstein-based clustering yields the best correspondence with the true subtypes.

Figure 4.  Critical curvature filtering of pediatric sarcoma networks. Functional community structures at the 
critical scale were realized by pruning bridges with negative critical curvature. The EWS network recovered the 
known functional EWSR1-FLI1-ETV6 association.
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and ETV6 clustered together, as highlighted in Fig. 5. Importantly, this cluster was recovered in a purely agnostic 
fashion that is unique to the EWS network that would not have been found by standard approaches such as dif-
ferential gene expression analysis or correlation analysis.

There are two main questions that need to be addressed when validating the methodology and this finding: (1) 
is the EWSR1-FLI1-ETV6 association a EWS-specific finding or does the methodology always find this result? and 
(2) can the methodology identify known associations in other subtypes? To answer both questions, we applied 
the multi-scale Hierarchical-acc clustering to the DSRCT network. To assess the methodology’s performance, 
we looked at which genes were found to cluster near EWSR1. The resulting annotated dendrograms for EWS and 
DSRCT are shown in Figs. S3 and  S4, respectively. As expected, we found FLI1 and ETV6 cluster near EWSR1 in 
the EWS network, and WT1 clusters near EWSR1 in the DSRCT network, with no particular converse association. 
We note that WT1 does not cluster as closely to EWSR1 in DSRCT as FLI1 does in EWS. This may be due to the 
different type of interaction that WT1 has with EWSR1 compared to FLI1, where EWSR1-FLI1 associate in the 
wild type and fused form, whereas EWSR1 does not interact with WT1 in the absence of the fusion. Neverthe-
less, EWSR1, FLI1, ETV6, and WT1 show distinct and preferential functional cooperation in EWS and DSRCT. 
This suggests the methodology is indeed capable of finding subtype-specific biologically relevant associations, 
as desired, and further supports the EWS-specific role of ETV6.

As a side note, KEL and SERP2 are leaf nodes attached to EWSR1 in the original EWS graph, so it is not sur-
prising that they are found in the same cluster. However, even this dependency is found to be less functionally 
relevant than the EWSR1-FLI-ETV6 association, as demonstrated by the hierarchical ordering. Since the EWSR1-
FLI1 fusion has proven difficult to directly  target36, we investigated how they are affected by other interactions 
in the network, described in the next section.

Edge perturbation simulations: results
Perturbation simulations were performed on each edge in the EWS network and curvature was computed for 
gene pairs EWSR1-FLI1, FLI1-ETV6 and EWSR1-ETV6 as described in “Edge perturbation simulations” section 
to assess the functional effect of targeted disruption in direct and indirect cooperation on the system.

The net change in curvature � between two nodes r, s ∈ V in response to perturbing edge (i, j) ∈ E measures 
the net change in robustness, which is quantified as the difference in curvature after (i.e., with perturbed edge 
weight ŵij = ǫ ) and before (i.e., baseline) effectively removing communication along the perturbed edge. The 
sign of � allows us to distinguish between strengthening and weakening effects, characterized respectively by an 
increase or decrease in curvature with respect to the baseline. Edges that disconnect the network when removed 
were eliminated from consideration because the distance between nodes linked by that edge approaches infinity 
as the edge is perturbed, essentially breaking the communication altogether. We then ranked the effects perturb-
ing the remaining edges had on the EWSR1-FLI1, FLI1-ETV6 and EWSR1-ETV6 interactions. Perturbed edges 
with absolute value of effect greater than 1× 10−5 (i.e., |�| > 1× 10−5 ) on the EWSR1-FLI1, FLI1-ETV6 and 
EWSR1-ETV6 interactions are listed respectively in Tables  1,  2 and  3 along with the net effect � . This cutoff 
was selected due to the large drop-off of negligible effects observed smaller than 1× 10−5 . An overview of the 
net effects of each perturbed edge listed in these tables is shown in Fig. S5.

Additionally, line-plots of the pairwise curvatures of EWSR1-FLI1, ETV6-FLI1, and EWSR1-ETV6 as func-
tions of the decreasing perturbed edge weights are plotted for perturbed edges ranked in the top two largest 
positive and negative effects on each of the interactions (Fig. S6). The curvature for three additional perturbed 

Figure 5.  Hierarchical-acc clustering of the EWS network, highlighting the EWSR1-FLI1-ETV6 association.
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edge-weights near 0 are shown to highlight trends as the edge is virtually cut. The figure references correspond-
ing to the perturbed edges are provided in Tables 1, 2 and 3.

Gene knockout simulations: results
To assess the functional effect of targeted gene disruption on the system, gene knockout simulations were per-
formed on each gene in the EWS network (excluding EWSR1, FLI1 and ETV6) and curvature was computed for 
gene pairs EWSR1-FLI1, FLI1-ETV6 and EWSR1-ETV6 as described in “Gene knockout simulations” section. In 
a similar manner to the edge perturbation simulations, the net change in curvature � between two nodes before 
and after removing a node from the network measures the net change in robustness resulting from the simulated 
gene knockout. We ranked the effect knocking out each gene had on the EWSR1-FLI1, FLI1-ETV6 and EWSR1-
ETV6 interactions. Not surprisingly, simulated knockout of genes outside of a 2-hop radius of EWSR1, FLI1 and 
ETV6 had negligible effects on their interactions by virtue of the way the nodal measures are constructed. Also 
not surprisingly, simulated knockout of all genes neighboring (i.e., within a 1-hop radius) EWSR1, FLI1 and ETV6 
had non-negligible effects on their interactions. However, a non-immediately obvious result was that simulated 
knockout of only some of the genes in a 2-hop radius of EWSR1, FLI1 and ETV6 affected their interactions. These 
genes may serve as potential candidates for therapeutic intervention.

An overview of the potential candidate gene targets whose simulated knockout affected the EWSR1-FLI1, 
FLI1-ETV6 and EWSR1-ETV6 interactions is shown in Fig. S7 and a sub-network of EWSR1, FLI1 and ETV6 

Table 1.  Perturbed edges with the largest net effect ( � ) on EWSR1-FLI1. Abbreviations: � : net effect or net 
difference in curvature (curvature with perturbed edge weight ǫ - baseline curvature).

Effect Perturbed edge � Figure

 Positive

ERG-FLI1 0.13028 S6a

EWSR1-ERCC5 0.02809 S6b

EWSR1-PCBP1 0.02442 S6c

 Negative

JUN-ERG −0.09351 S6d

AR-POU5F1 −0.04674

 S6e

JUN-AR −0.02469

SMAD4-EWSR1 −0.02456

EWSR1-TAF1 −0.02209

BTK-EWSR1 −0.02155

EWSR1-POU5F1 −0.02109

EWSR1-FLI1 −0.01803

EWSR1-HMGA1 −0.01766

JUN-HMGA1 −0.01726

ETV6-FLI1 −0.01086

 S6f

JUN-TAF1 −0.01042

BARD1-EWSR1 −0.00893

AKT1-MTCP1 −0.00746

CRKL-ETV6 −0.00574

ETV6-GAB2 −0.00570

 S6g

EWSR1-MTCP1 −0.00452

AKT1-GAB2 −0.00447

JUN-SMAD4 −0.00392

CRKL-WAS −0.00201

BTK-WAS −0.00201

ERG-SETDB1 −0.00168

BARD1-SETDB1 −0.00168

CREBBP-EWSR1 −0.00144

HSP90AA1-NDRG1 −0.00121

MAPK1-HSP90AA1 −0.00115

MAPK1-GAB2 −0.00115

EWSR1-NDRG1 −0.00032

CREBBP-STAT1 −0.00024

JUN-STAT1 −0.00024

JUN-NCOA3 −0.00001

NCOA3-DDX5 −0.00001

DDX5-NDRG1 −0.00001
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with genes within a 2-hop radius is shown in Fig. 6. The ranked effects of genes with absolute value of knockout 
effect greater than 1× 10−5 (i.e., |�| > 1× 10−5 ) on the EWSR1-FLI1, FLI1-ETV6 and EWSR1-ETV6 interac-
tions are listed in Tables 4, 5, and 6, respectively, along with the knockout effect �.

Predicted candidate therapeutic target prioritization
Determining the most viable of the predicted candidate therapeutic targets is crucial for guiding cost and time-
efficient experimentation. To identify the most therapeutically relevant targets, we used the DepMap portal 
(https:// depmap. org/ portal/) to prioritize predicted genes with verified actionable structures. Out of the 34 
predicted candidate targets appearing in Tables 1, 2, 3, 4, 5, 6, 21 are known to have a druggable structure (AKT1, 
AR, BARD1, BRCA1, BTK, CREBBP, ERCC5, ESR1, HERPUD1, HSP90AA1, JUN, MAPK1, NCOA1, POU5F1, 
RB1, SETDB1, SMAD4, SOS1, STAT1, SYK, TAF1), and are therefore referred to as the priority-candidates. Of 
the priority candidates, 6 were found with enriched dependency in Ewing Sarcoma cell lines (AKT1, BARD1, 
HSP90AA1, NCOA1, SETDB1, SMAD4). Furthermore, several of the priority-candidates are annotated in 
OncoKB as targetable with an FDA approved drug (AKT1, BRCA1, BTK, ESR1).

Lastly, we performed gene set enrichment analysis (using all gene sets available in  MSigDB37) on the 34 
predicted candidate targets to gain insight on what the primary cellular functions and pathways the predicted 
targets are involved in. Two out of the top five enriched gene sets (Table S2) involve RNA Polymerase II activ-
ity. This complements the already established interaction between the EWSR1-FLI1 fusion and EWSR1 alone 
with RNA Polymerase  II38. Finding that the candidate gene targets, whose simulated perturbation affected the 
EWSR1-FLI1-ETV6 association, are involved in known EWSR1-FLI1 fusion interactions, suggests their ability 
to disrupt EWSR1-FLI1 fusion behavior and gives further credence to the proposed methodology.

Discussion
In this work, we utilized a network version of the geometric concept of curvature to model information variability, 
robustness, and dysregulation of cancer gene networks. PSs represent a phenotypically diverse group of malig-
nant solid  tumors39. A subset of PS is characterized by oncogenic driver fusion genes such as EWS-FLI1 in EWS, 
EWS-WT1 in DSRCT, and PAX3/7-FOXO1 in fusion-positive  rhabdomyosarcoma40. Given the heterogeneous 
nature of PS and often overlapping microscopic structural features (histology) across different PS subtypes, the 
presence and detection of driver fusion genes in PS has aided in the diagnostic classification of these tumors. 
Here, we demonstrated that analysis of the curvature using RNA-Seq gene expression profiles as a function of 
scale is able to define robust networks that distinguish subtypes of PS. These approaches may therefore serve as 
a genomic-based classifier aiding the diagnosis of PS subtypes.

Given the lack of other driver mutations that typify the mutational landscape of PS, or pediatric tumors in 
general, direct targeting of fusion oncogenes has seemed a logical strategy for treating fusion-positive  PS36. How-
ever, development of drugs that can selectively target and inhibit the activity of fusion oncogenes has remained 
 elusive36. Therefore, development of strategies that identify targets that indirectly disrupt the key functional 
interactions nucleated by “undruggable” fusion oncoproteins, or enable the identification of driver mutations 
amidst a low tumor mutational landscape characteristic of pediatric  cancers41, addresses a critical unmet need 
in pediatric oncology.

The work presented provides a novel approach for mining genomic sequencing data to aid diagnostic clas-
sification of PS and identify potential therapeutic targets not readily accessible by merely cataloguing a tumor’s 
set of mutations. This study has three main limitations. The first limitation is validation, a common challenge 
for computational approaches. Systematic selective targeting of genes involved in critical interactions (e.g., 

Table 2.  Perturbed edges with the largest net effect ( � ) on FLI1-ETV6. Abbreviations: � : net effect or net 
difference in curvature (curvature with perturbed edge weight ǫ - baseline curvature).

Effect Perturbed edge � Figure

 Positive

ERG-FLI1 0.72147 S6a

ETV6-FLI1 0.70863 S6f

CRKL-ETV6 0.12042

ETV6-GAB2 0.08775 S6g

 Negative

JUN-ERG −0.16018 S6d

STAT1-SYK −0.03720 S6h

JUN-STAT1 −0.03720

SYK-GAB2 −0.03720

SOS1-CRKL −0.02990

SOS1-ESR1 −0.02990

JUN-ESR1 −0.02990

EWSR1-FLI1 −0.00415

BTK-EWSR1 −0.00164

CRKL-WAS −0.00119

BTK-WAS −0.00119

https://depmap.org/portal/
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EWSR1-FLI1-ETV6 interaction) and the functional consequences of inhibiting critical interactions in in vivo 
tumor models of PS will provide future validation of this approach and inform future applications of curvature 
analysis in pediatric oncology. The second limitation is that this study is based on RNA-Seq data, due to data 
availability, so we cannot measure the expression level of the fused EWS/FLI1 gene or established protein-level 
 activity38. We should note that fusion oncogenes function differently than the wild type genes that comprise the 
fusion, exhibiting different transcriptional  programs42. The third limitation is that this study uses the HPRD to 
construct the network topology of the wild type constituents of the fusion oncogenes. While curvature analysis 
quantifies changes in geometry of the biological networks with a fixed topology, future work is needed to account 
for possible topological changes.

Notwithstanding these limitations, the methodology demonstrated promising capability to detect and inform 
on subtype-specific relevant functional associations among genes. Moreover, the nature of the limitations restricts 
the analysis to genes and HPRD documented interactions. Therefore, other known interactions with EWSR1 and 
the EWSR1-FLI1 fusion, e.g., RNA Polymerase II, are not explicitly represented in the data or methodology. Yet, 
gene set enrichment analysis identifies RNA Polymerase II activity in EWS, suggesting that the network-level 
behavior can inform on implicit biological behavior using incomplete and non-specialized interactions.

The dynamic network curvature analytical framework formulated in the present work is well-suited for analyz-
ing data sets with a small number of samples, as is common in clinical studies. Due to its parameter-free nature, 
the proposed methodology is not susceptible to over-fitting, which contributes to its appeal. Additionally, the 
framework is clearly applicable to any number of network problems of interest in cancer research. In particular, 

Table 3.  Perturbed edges with the largest net effect ( � ) on EWSR1-ETV6. Abbreviations: � : net effect or net 
difference in curvature (curvature with perturbed edge weight ǫ - baseline curvature).

Effect Perturbed edge � Figure

 Positive

EWSR1-ERCC5 0.02297 S6b

EWSR1-PCBP1 0.02144

 S6c
CRKL-WAS 0.00859

BTK-WAS 0.00859

EWSR1-POU5F1 0.00383

 Negative

ERG-FLI1 −0.07069 S6a

ETV6-GAB2 −0.05692

 S6gBTK-EWSR1 −0.05339

SMAD4-EWSR1 −0.03921

JUN-ERG −0.03168

 S6dAKT1-GAB2 −0.02363

JUN-HMGA1 −0.02218

AR-POU5F1 −0.02191

 S6e

MAPK1-GAB2 −0.02154

RB1-TAF1 −0.01824

EWSR1-TAF1 −0.01785

EWSR1-HMGA1 −0.01492

AKT1-AR −0.01082

RB1-MAPK1 −0.01038

AKT1-MTCP1 −0.01030

CRKL-ETV6 −0.01001

EWSR1-MTCP1 −0.00938

MAPK1-SMAD4 −0.00874

BARD1-EWSR1 −0.00448

ETV6-FLI1 −0.00414

 S6f

EWSR1-FLI1 −0.00394

BRCA1-BARD1 −0.00275

HSP90AA1-NDRG1 −0.00230

EWSR1-NDRG1 −0.00223

MAPK1-HSP90AA1 −0.00139

CREBBP-EWSR1 −0.00125

BRCA1-AKT1 −0.00121

ERG-SETDB1 −0.00021

BARD1-SETDB1 −0.00021

CREBBP-NCOA1 −0.00010

MAPK1-NCOA1 −0.00010
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Table 4.  Knocked-out genes with the largest net effect ( � ) on EWSR1-FLI1. Abbreviations: � : net effect or net 
difference in curvature (curvature after gene knockout - baseline curvature).

Effect Knocked-out gene �

 Positive

ERG 0.13028

ERCC5 0.02809

PCBP1 0.02442

YY1AP1 0.02418

SERP2 0.01771

KEL 0.01584

HERPUD1 0.01077

 Negative

JUN -0.09351

AR −0.04674

SMAD4 −0.02456

TAF1 −0.02209

BTK −0.02155

POU5F1 −0.02109

HMGA1 −0.01766

BARD1 −0.00893

AKT1 −0.00746

CRKL −0.00574

GAB2 −0.00570

MTCP1 −0.00452

WAS −0.00201

SETDB1 −0.00168

CREBBP −0.00144

HSP90AA1 −0.00121

MAPK1 −0.00115

NDRG1 −0.00032

STAT1 −0.00024

NCOA3 −0.00001

DDX5 −0.00001

Table 5.  Knocked-out genes with the largest net effect ( � ) on FLI1-ETV6. Abbreviations: � : net effect or net 
difference in curvature (curvature after gene knockout - baseline curvature).

Effect Knocked-out gene �

 Positive

ERG 0.72148

CRKL 0.12042

GAB2 0.08775

 Negative

JUN −0.16018

STAT1 −0.03720

SYK −0.03720

SOS1 −0.02990

ESR1 −0.02990

BTK −0.00164

WAS −0.00119
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Table 6.  Knocked-out genes with the largest net effect ( � ) on EWSR1-ETV6. Abbreviations: � : net effect or 
net difference in curvature (curvature after gene knockout - baseline curvature).

Effect Knocked-out gene �

 Positive

ERCC5 0.02297

PCBP1 0.02144

YY1AP1 0.02133

SERP2 0.01769

KEL 0.01616

HERPUD1 0.01153

WAS 0.00859

POU5F1 0.00383

 Negative

ERG −0.07069

GAB2 −0.05692

BTK −0.05339

SMAD4 −0.03921

JUN −0.03168

AKT1 −0.02363

AR −0.02191

MAPK1 −0.02154

RB1 −0.01824

TAF1 −0.01785

HMGA1 −0.01492

CRKL −0.01001

MTCP1 −0.00938

BARD1 −0.00448

BRCA1 −0.00275

HSP90AA1 −0.00230

NDRG1 −0.00223

CREBBP −0.00125

SETDB1 −0.00021

NCOA1 −0.00010
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we plan to explore the network changes leading from ductal carcinoma in situ (DCIS) breast cancer to invasive 
ductal carcinoma (IDC) in future work.

Data availability
The RNA-Seq data generated in this study have been deposited into the Sequence Read Archive (SRA) database 
under the following accession numbers: SAMN38494083 - SAMN38494152, associated with BioProject ID: 
PRJNA1046425.

Code availability
The code written in Python may be found at https:// github. com/ MSK- MOI/ dynos arc.
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