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ABSTRACT

Diastole is the sequence of physiological events that occur in the heart during ventricular filling and principally depends on
myocardial relaxation and chamber stiffness. Abnormal diastolic function is related to many cardiovascular disease processes
and is predictive of health outcomes, but its genetic architecture is largely unknown. Here, we use machine learning cardiac
motion analysis to measure diastolic functional traits in 39,559 participants of UK Biobank and perform a genome-wide
association study. We identified 9 significant, independent loci near genes that are associated with maintaining sarcomeric
function under biomechanical stress and genes implicated in the development of cardiomyopathy. Age, sex and diabetes were
independent predictors of diastolic function and we found a causal relationship between ventricular stiffness and heart failure.
Our results provide novel insights into the genetic and environmental factors influencing diastolic function that are relevant for
identifying causal relationships and tractable targets in heart failure.

Main
Diastole is not a passive phase of the cardiac cycle, but is a complex sequence of inter-related physiological processes dependent
on myocardial relaxation, stiffness and recoil, that are modulated by loading conditions, heart rate, and contractile function1, 2.
Diastolic function therefore plays a central role in determining left ventricular filling and stroke volume with dysfunction
shown to be a predictor of major adverse cardiovascular events and all cause mortality3. Decline in diastolic function is also a
hallmark of cardiac ageing which occurs through multiple pro-fibrotic and energetic pathways4, 5. While several candidate
genes have been implicated in various systolic function phenotypes through genome wide association studies (GWAS)6, 7, the
genetic architecture of diastolic function and causal associations with disease are largely unknown. Efforts to better define the
molecular mechanisms of diastolic dysfunction could enable the development of innovative therapies for many cardiovascular
disease states8.

Pre-clinical models of diastolic dysfunction are associated with alterations in left ventricular stiffness on atomic force
microscopy that occur at the level of the cardiomyocyte sarcomere as well as due to extracellular matrix protein expansion9.
Such tissue level changes can be assessed at macroscopic scale in human populations through analysis of diastolic mechanics.
Here we use data from participants in UK Biobank with cardiac magnetic resonance imaging (CMR)10, and apply deep learning
computer vision techniques for precision motion analysis to derive image-based phenotypes of diastolic function11, 12. In a
GWAS of diastolic traits we identify associated loci that map to genes involved in actin assembly, cardiac myocyte survival,
and heart failure phenotypes. We also describe the relationship between diastolic function and cardiovascular risk factors, and
identify potential causal relationships with disease through Mendelian randomisation.
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Results
Study Overview
We analysed CMR data from 39,559 participants in UK Biobank using machine learning segmentation and motion tracking to
measure three validated parameters of diastolic function - radial and longitudinal peak early diastolic strain rate (PDSRrr and
PDSRll) (Figure 1), and maximum body surface area-indexed left atrial volume (LAVmaxi)13. A flow chart of the analysis
steps is depicted in Extended Data Fig 1. Baseline characteristics of the population are shown in Extended Data Table 1.
The population was partitioned into discovery and validation sets by pre-defined criteria. To assess the association between
these diastolic function traits and other clinical measurements, we further considered a broad selection of 30 imaging and
110 non-imaging phenotypes that included biophysical data and circulating biomarkers (Supplementary Data 1). Independent
GWASs were undertaken for each image-derived phenotype and heritability estimated. We used a phenome-wide association
study (PheWAS) to identify multiple phenotypes associated with a polygenic risk score (PRS) for diastolic function. Potentially
causal associations were examined using 2-sample Mendelian randomisation (MR). The results are reported in accordance with
GWAS reporting guidelines and a checklist is provided as Supplementary Information14.

Imaging and non-imaging phenotype associations
Strain rates declined with age and were lower in men (P < 10−16 for both associations) (Figure 2), but no univariable association
was observed between age and LAVmaxi (Extended Data Fig 2). Multiple linear regression analysis was used to develop a
model for predicting each diastolic trait from demographic, haemodynamic and cardiovascular risk factors (Figure 3a, Extended
Data Fig 3). In this multivariable analysis strain rate and left atrial volumes were negatively associated with age, sex and pulse
rate in the full model (P < 10−16 for all associations). Significant associations were also observed for body surface area (BSA)
and systolic blood pressure (SBP). Diabetes also added significantly to the associations with the diastolic function traits in the
model (PDSRll : P = 2.36 ×10−8; PDSRrr: P = 9.98 ×10−6; LAVmaxi: P = 1.04 ×10−3).

To investigate the association between a comprehensive set of image-derived measures of atrial, ventricular and aortic
function with a broader range of non-imaging phenotypes we used regression analysis with variable selection to fit a sparse
model of predictors (Extended Data Fig 4). For this analysis, we excluded 7,936 subjects with incomplete data. The final model
described the relationship between 12 imaging phenotypes, 5 non-imaging phenotypes and 2 serum biomarkers (Figure 3b) (see
Supplementary Material for further information). Sex was associated with several systolic and diastolic parameters, including
aortic function, as well as higher serum triglycerides in men. C-reactive protein (CRP), a circulating biomarker of inflammation,
showed a positive relationship with serum triglycerides, but we found no circulating biomarkers independently associated with
diastolic function. We found that reduced peak diastolic strain rates were associated with reduced LAVmaxi. Left atrial function
was related to indicators of right ventricular function emphasising their functional interdependence15.

Genetic architecture of diastolic function traits
Genome-wide association analyses of diastolic function traits: The SNP-based heritability (i.e. the proportion of variance
per trait explained by all considered SNPs) was 12% for PDSRll , 13% for PDSRrr, and 21% for LAVmaxi. The observed
genetic correlation between the diastolic function traits was 0.22 (SE 0.07) between PDSRll and LAVmaxi, 0.12 (SE 0.08)
between PDSRrr and LAVmaxi, and 0.85 (SE 0.04) between PDSRll and PDSRrr.

Within the discovery set, we identified 5 independent loci (LAVmaxi, 1; PDSRrr, 3; PDSRrr, 1) reaching genome-wide
significance (P = 5 · 10−8; Supplementary Fig 3), which were also significant in the validation dataset also (P < 0.05/5).
Considering the full dataset, the number of significant independent loci increased to 9 with 2 additional loci associating with
PDSRrr, 1 additional with LAVmaxi, and 1 additional with PDSRll (Figure 4).
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Figure 1. Analysis of cardiac motion. Motion analysis of cardiac magnetic resonance imaging performed on left ventricular short axis cines.
A) An example from one individual where deep learning segmentation and image registration were used to determine the radial components of
myocardial deformation. Data from the basal, mid-ventricular, and apical levels are shown at four representative phases from the 50 acquired.
B) Radial strain and strain rate (first derivative of strain) for all UK Biobank subjects (median and interquartile ranges, n=39,559 individuals).

Variant annotation: Summary information for the 9 loci identified using the full dataset is presented in Table 1 (further
information can be found in Supplementary Material, Supplementary Fig 5 and Supplementary Table 1). The closest gene to
each locus is depicted, with further variant to gene mapping presented as the “likely gene” given by evidence of a functional
effect on a gene (details in Supplementary Material), additional heart-related phenotype associations, or a previously reported
mechanism linking the gene to diastolic function. Through this approach we were able to highlight several structural genes
associated with diastolic function that also have a known role in myocardial contractility (e.g. TTN, PLN, GJA1), and in the
functional maintenance and stress-response of the cytoskeleton (eg FHOD3, BAG3)16. Moreover, we were also able to identify
a novel link between the NPR3 locus and left atrial volume. The signal co-localizes with a previously discovered association
with blood pressure traits (systolic, diastolic and mean arterial blood pressure). The C-allele of the lead SNP (rs1173727) at this
locus increases NPR3 expression, and is associated with increased blood pressure and LAVmaxi, and a nominally significant
increase in risk of heart failure (Supplementary Material). The NPR3 gene encodes the C-type natriuretic peptide receptor,
which has a high tractability score (Table 1), making it an attractive therapeutic target.
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Figure 2. Population strain data. Scatterplots of a) longitudinal (n = 38,923) and b) radial peak diastolic strain rates (PDSRll and PDSRrr
respectively) with age (n = 38,700); with density contours, linear model fit and marginal density plots. Violin plots of c) longitudinal
(n = 38,923) and d) radial (n = 38,700) peak diastolic strain rates with sex; ****P < 0.0001, with boxplots showing the median, hinges
showing the inter quartile range (IQR), and whiskers 1.5 x IQR.

NPR3 accounts for almost 95% of the natriuretic peptide receptor (NP) population17. It binds all 3 members of the
natriuretic peptide pathways, natriuretic peptides A, B and C (ANP, BNP and CNP) and has been ascribed both a clearance
role for these peptides, regulating their circulating levels, and a signalling role for CNP18. To further elucidate the biological
relationship between the lead NPR3 SNP and heart failure, we first sought to study in more detail individuals with predicted
loss-of-function variants in NPR3 or its ligands but, within the group with whole-exome sequencing data, the numbers of such
individuals were limited (NPR3 n=5, nNPPA n=2, nNPPB n=2, nNPPC n=0).

We next examined the relationship between common variants in NPR3 and genes encoding other proteins in the natriuretic
peptide pathway with traits linked to the lead SNP, rs1173727. Full results of this systematic assessment are shown in
Supplementary Fig 6, and an abridged version is provided in Extended Data Fig 6. We identified additional genetic variants in
NPR3 with robust effects on other traits influenced by the LAVmaxi associated variant rs1173727. Hierarchical clustering of
the variant-trait effects showed that the observed effects for the NPR3 variant overlap with both the NPPA & NPPB genes and
the effects of genetic variation in NPPC or NPR2. In brief, we were unable to distinguish between the two proposed roles for
NPR3 in the context of this study.
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Figure 3. Regression analysis. a) Multiple linear regression analysis of left ventricular longitudinal (PDSRll) and radial (PDSRrr) peak
diastolic strain rates and indexed left atrial maximum volume (LAVmaxi) with age, sex body surface area (BSA) systolic blood pressure (SBP),
pulse rate and diabetes as predictors. All associations were significant after false discovery rate correction. b) Circular plot visualisation of the
associations between the imaging (red - PDSRll , PDSRrr, global systolic radial strain (Err), global systolic longitudinal strain (Ell), ascending
aortic (AAo) distensibility, descending aortic (DAo) distensibility, indexed left ventricular stroke volume (LVSVi), left ventricular cardiac
index (LVCI), LAVmaxi, indexed right ventricular stroke volume (RVSVi), and right atrial ejection fraction (RAEF)) and the non-imaging
phenotypes (green for environmental; blue for biochemical). The strength of the connection between each pair is presented as a ribbon, whose
size is proportional to their regression coefficient. All associations with a regression coefficient <0.3 are shown in faint colours (apart from
the associations between PDSRll , PDSRrr and LAVmaxi and all other phenotypes). Standardised beta coefficients are shown with units in
standard deviations for each variable.

Potential causes and consequences of diastolic function
Creation of polygenic risk scores (PRS and PheWAS): PRSs for each diastolic function trait consisted of 20 SNPs for
PDSRrr, 15 SNPs for PDSRll , and 8 for LAVmaxi. The PRS explained 1.5 % of the variability of PDSRrr, 1.1 % of PDSRll and
0.2 % of LAVmaxi. There was good agreement between the distribution of the PRS in the UK Biobank participants with and
without CMR indicating no systematic bias in genetic architecture (Supplementary Fig 8). The Pearson correlation coefficient
for the PRS for PDSRll and PDSRrr was 0.35 whereas the correlation coefficient between LAVmaxi and PDSRll or PDSRrr,
respectively, was much lower (< 0.01). PheWAS was undertaken and we considered traits that have been previously associated
with cardiac phenotypes in the literature, but in addition included an unbiased selection of phenotypes for exploration. In
total, we considered 71 quantitative phenotypes and 63 (binary) disease endpoints (Supplementary Data 1). Out of these, 31
phenotypes were significantly associated (Padj<0.05) with at least one of the diastolic function PRSs after leave-one-out cross
validation (Figure 5). Some of the identified PheWAS associations are consistent with the phenotype correlation analysis (e.g.
pulse rate and blood pressure). We also confirmed associations between diastolic function and previously reported biomarkers of
heart failure (e.g. SHBG20 and IGF-121). Furthermore, we identified an association of PDSRrr to heart failure, cardiomyopathy
and dilated cardiomyopathy, implicating diastolic function in cardiovascular endpoints.

Mendelian randomization: We used Mendelian Randomization (MR) to identify causal bi-directional relationships between
diastolic function and cardiovascular outcomes (heart failure, diabetes, pulse rate, and diastolic blood pressure) which we
chose based on clinical plausibility and the findings of the phenotype correlation analysis. As we hypothesize LAVmaxi to be
downstream of PDSRrr and PDSRll , reflecting that atrial volume is consequent on ventricular filling22, we focussed on PDSRrr
and PDSRll while results for LAV maxi are reported for completeness in Supplementary Table 9 and in Supplementary Fig 10.

We identified a potential causal, bi-directional association between pulse rate and both PDSRrr and PDSRll (Figure 6,
Supplementary Table 7, Supplementary Table 8 ), supporting findings from pre-clinical models suggesting that selective heart
rate reduction can affect diastolic function24. We also identified a likely causal relationship between lower PDSRrr (stiffer
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(a) LAVmaxi

(b) PDSRll

(c) PDSRrr

Figure 4. Manhattan plots of the GWAS results for the three diastolic function traits (full dataset). This figure shows the -log10(P-
value) on the y-axis across all autosomal chromosomal positions (x-axis) from BOLT-LMM. The dotted line indicates genome-wide
significance (P = 5 ·10−8,N = 34245). Significant loci are labeled by their likely causal gene, see Table 1.
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Table 1. Summary information on the lead variants identified from each GWAS analysis and the significant genes from the Loss of Function
analysis. For each significant locus across the 3 diastolic phenotypes, variant information, GWAS summary statistics, variant to gene
annotation, and potential therapeutic tractability of the likely causal gene is provided. The evidence column is split by: MS - missense
variant; eQTL - colocalisation between the GWAS signal and an eQTL for the gene in a plausible tissue type (see Supplementary Material);
M - plausible mechanistic link between the gene and the measured heart phenotypes i.e. the gene function suggests a link to diastolic
function; Overall - the confidence of variant to gene mapping given all the available evidence. Therapeutic tractability is split into 4
categories: tractability score - the Ensembl tractability score; SM druggability - a categorical assessment of small molecule tractability
(low, medium, high); Ab tractability - a categorical assessment of antibody tractability (low, medium, high); Other modalities - enzyme,
protein, oligonucleotide, etc.19. Loci highlighted in grey are those that reached genome-wide significance in the discovery, validation, and
full datasets, loci in white reach suggestive significance in the discovery dataset and genome-wide significance in the full dataset. Further
information is provided in the Supplementary Material.

Genome-Wide Association Results

Lead Variant GWAS Annotation Evidence Therapeutic Tractability
rsIDFull Chr Ref Alt MAF Phenotype EstimateFull SE Full PFull Disc Repl Full Locus Genes Closest Gene Likely Causal Gene MS eQTL M Overall Tractability

Score
SM Druggability Ab Tractabil-

ity
Other Modali-
ties

rs2234962 10 T C 0.21 PDSRrr 0.1118 0.0175 2.3e-10 Y Y Y MCMBP, BAG3 BAG3 BAG3 Y Y Y High None None H None
rs2644262 18 T C 0.28 PDSRrr/PDSRll 0.1087 0.0164 1.7e-11 Yrr Y Y FHOD3, TPGS2 FHOD3 FHOD3 N Y Y High 2.5 None None None
rs11970286 6 C T 0.45 PDSRll 0.0278 0.0043 1.9e-10 Y Y Y PLN, CEP85L, SLC35F1 PLN PLN N Y Y High None None M-L None
rs1580396 12 C A 0.46 PDSRrr/PDSRll 0.0807 0.0146 4.1e-8 Yrr Y Y AC023158.2, AC023158.1,

ALG10
AC023158.2 AC023158.1 N Y N Low None None None None

rs59985551 2 C T 0.23 LAVmaxi 0.0117 0.0020 5.3e-9 Y Y Y Multiple EFEMP1 EFEMP1 N Y N Low None None H-M None
rs1173727 5 T C 0.40 LAVmaxi 0.0096 0.0017 1.7e-8 N N Y NPR3, LINC02120 LINC02120 NPR3 N Y Y High 4.5 > 0.7 M-L None
rs12206253 6 C T 0.11 PDSRrr -0.1413 0.0244 8.4e-9 N N Y HSF2, GJA1, SERINC1 GJA1 GJA1 N Y Y Medium None None H None
rs10261575 7 T C 0.18 PDSRll 0.0336 0.0056 1.2e-9 N N Y NDUFA4, PHF14 PHF14 PHF14 N Y Y Medium None None None None
rs11170519 12 C T 0.43 PDSRrr 0.0872 0.0146 3.9e-9 N N Y Multiple SP1 SP1 N Y N Low None None None None

Predicted Loss of Function Results

Chr Carriers Phenotype EstimateFull SE Full PFull Causal Gene MS M Overall Tractability
Score

SM Druggability Ab Tractabil-
ity

Other Modali-
ties

2 187 PDSRrr -0.71 0.14 1.4e-7 TTN Y Y High 1 Druggable/PDB * H* None
6 29 PDSRrr -1.56 0.34 5.6e-6 LMBRD1 Y ? High None None M-L None

* Titin is not considered druggable by experts - druggability score here based on availability of ligands in PBD [Smol] and reported extracellular/secreted
protein forms in GO.

ventricle) and increased risk of heart failure Supplementary Fig 9, which was further corroborated using GWAS summary
results25 from the HERMES consortium (Supplementary Table 10), which is a GWAS meta-analysis from 47309 heart failure
cases and 930014 controls. The magnitude of the effect observed in the MR analysis is consistent with the observational
epidemiological estimate, derived from correlating PDSRrr with incident heart failure (Extended Data Fig 5). We found no
causal relationship between longitudinal PDSRll and heart failure, and neither was one observed in our epidemiological analysis
(Extended Data Fig 5). Diastolic dysfunction is frequently present in diabetic patients26, but although we observed a difference
in PDSRrr between diabetics and non-diabetics (Figure 3), we could not confirm a causal relationship between diabetes as an
exposure with either PDSRll or PDSRrr as outcomes (Supplementary Table 7, Supplementary Table 8).

Discussion
Diastole is a complex series of molecular, biophysical and electro-mechanical processes that initiate contractile deactivation and
promote efficient ventricular filling. Impairment of these coordinated mechanisms may lead to diastolic dysfunction which is
associated with the presence of multiple cardiovascular risk factors leading to reduced quality of life and higher mortality27, 28.
Here, we used deep learning cardiac motion analysis to perform the first reported GWAS of diastolic function traits with the
aim of determining tractable causative mechanisms. We found that diastolic function was a heritable trait with associations
in loci related to myofilament mechanics, protein synthesis during mechanical stress and regulation of cardiac contractility.
Furthermore, we find a role for endothelium-derived signalling in diastolic function that is a potential therapeutic target29.
Lastly, through Mendelian randomisation we observe a causal relationship between genetically-determined diastolic function
and heart failure outcomes.

A decline in diastolic function is a feature of the ageing heart and we found that age was a strong independent predictor
of diastolic function, with a greater decrease present in males. Outcome studies have suggested that this is a prognostically-
benign feature of healthy ageing that is not related to adverse effects of cardiac senescence4, 30, 31. Changes in titin protein
phosphorylation, myocardial redox state and impairment of nitric oxide signalling have been proposed as potential mechanisms32,
and clinical studies indicate that age-related myocardial fibrosis, cardiomyocyte hypertrophy, and reduced microvascular density,
may be a consequence rather than an initiating cause of diastolic dysfunction33.

We found that diabetes was associated with impaired diastolic function and this relationship was independent of age, BSA,
and systolic blood pressure. Increased myocardial stiffness is recognised as one of the earliest, and potentially reversible,
manifestations of myocardial dysfunction in diabetes34. Several underlying mechanisms related to insulin resistance have been
proposed that include altered cardiac energetics and accumulation of advanced glycation end products that promote ventricular
stiffness35. However, our findings did not conclusively point to a causal relationship between diabetes and diastolic function
using Mendelian randomisation. We observed a unidirectional causal relationship of PDSRrr on heart failure risk, as well as
associations with cardiovascular endpoints and circulating biomarkers of heart failure through PheWAS. Longitudinal cohort
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Figure 5. Significant associations of the PRSs for diastolic function traits with UK Biobank phenotypes. A) Quantitative traits that
significantly associated with the PRSs of diastolic function. B) Binary traits that significantly associated with the PRSs of diastolic function.
Numerical results, including P-values and 95 % confidence intervals are shown in Supplementary Table 4, Supplementary Table 5, and
Supplementary Table 6. One unit change in the PRS represents a change of 1 standard deviation in the respective diastolic function trait. All
dependent variables (traits) were standardized representing the change in dependent variable standard deviations for a 1-standard-deviation
change in the respective measurement. Associations not significant after multiple testing correction (conducted per PRS) are displayed as grey
bars. SBP: systolic blood pressure, MAP: mean arterial pressure, DBP: diastolic blood pressure, Log: natural logarithm, NS: non-significant.
N = 449263.

studies have suggested that persistence or progression of diastolic dysfunction is a risk factor for subsequent heart failure36, and
our findings suggest that ventricular stiffness is a substrate for the evolution of mixed aetiology heart failure. In contrast, our
findings show that variation in left atrial volume (LAV maxi) is likely a consequence of myocardial diastolic function which is
not itself causally related to heart failure risk.

Our study provides insights into the biological basis of diastolic function with potential implications for therapy development.
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Figure 6. Summary of results from MR analyses of traits describing diastolic strain and multiple cardiac outcomes and phenotypes.
The style of this figure is adapted from van Oort et al.23.“No result”, no outlier was detected with MR-PRESSO and therefore the MR-PRESSO
estimate was identical to the IVW estimate. Detailed results are provided in Supplementary Table 7 and Supplementary Table 8

We identified common variants within genes implicated in cardiomyopathies (e.g. BAG3, FHOD3, PLN), suggesting sarcomere
homeostasis during mechanical stress may affect diastolic function in both health and disease37. A further example is the
identification of the gene of a key regulator of cardiac diastolic function, phospholamban (PLN), which modulates sarcoplasmic
reticulum calcium-ATPase activity38. We also identified a potential therapeutic target through the association of DNA variants
at the locus of NPR3 influencing diastolic function and risk of heart failure. Previous studies have highlighted its role in
blood pressure control39. NPR3 has been described as a clearance receptor for ANP, BNP and CNP, while more recently as
a functional signalling receptor for CNP has become apparent29. A recent mechanistic study in animal models29 identified
a role for this receptor in mediating the cardioprotective effects of cardiomyocyte and fibroblast-released CNP. While we
cannot exclude a signalling function for NPR3, the direction of effect in our genetic analysis is such that reduced NPR3 gene
expression is associated with reduced LAVmaxi, blood pressure and heart failure risk. This is consistent with its role as a
clearance receptor, where reduced expression would enhance exposure to the beneficial effects of ANP and BNP and outweigh
loss of CNP activity. Inhibition of natriuretic peptide degradation via inhibition of neutral endopeptidase is already an approved
licensed treatment for heart failure, validating the pathway as a therapeutic target. Our observations support pharmacological
inhibition of NPR3 as an additional approach to managing this condition.

This analysis has some limitations. UK Biobank is a large-cross sectional study that is subject to selection bias and
latent population stratification40, however risk factor associations appear to be broadly generalisable41. The population is
predominantly European and further work is required to explore diastolic traits and outcomes in people of diverse ancestries.
Echocardiography has been the cornerstone of assessing diastolic function by characterising features of ventricular relaxation,
stiffness and recoil2. However, feature-tracking CMR has excellent agreement with speckle-tracking echocardiography42 and
invasive measures of diastolic function43.

In conclusion, we found that diastolic function is a heritable trait that is causally upstream of heart failure. Associated
common variants are related to genes that maintain functional homeostasis under biomechanical stress. We also identify a gene
encoding an atrial natriuretic peptide receptor as a novel therapeutic target for modulating aspects of diastolic function.
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Methods
All analyses in this study can be found here https://github.com/ImperialCollegeLondon/diastolic_genetics/, and were conducted
with R version > 3.6.0.

Participants: For UK Biobank, approximately 500,000 community-dwelling participants aged 40–69 years were recruited
across the United Kingdom between 2006 and 201044. All subjects provided written informed consent for participation in the
study, which was also approved by the National Research Ethics Service (11/NW/0382). Our study was conducted under terms
of access approval number 28807 and 40616. A range of available data were included in this study comprising genotyping
arrays and whole exome sequencing, cardiac imaging, health-related diagnoses, and biological samples.

There are 488,252 genotyped participants of which 200,640 have whole exome sequencing. We partitioned 39,559
participants with both CMR imaging and genotyping array data into two tranches by date of release from UK Biobank providing
a discovery dataset of 26,893 participants and a validation dataset of 12,666 participants.

Imaging protocol: A standardised CMR protocol was followed to assess cardiac structure and function using two-dimensional
retrospectively-gated cine imaging on a 1.5T magnet (Siemens Healthineers, Erlangen, Germany). A contiguous stack of images
in the left ventricular short-axis plane from base to apex was acquired, with long axis cine imaging in the two and four chamber
views. Each cine sequence had 50 cardiac phases with an acquired temporal resolution of 31 ms10. Transverse cine imaging
was also performed in the ascending and descending thoracic aorta. Images were curated on open-source databases45, 46. All
imaging phenotypes used for the analysis underwent quality control assessment11. Participants also underwent a resting 12 lead
electrocardiogram which was automatically analysed using proprietary software (CardioSoft, GE Healthcare).

Cardiac image analysis: Segmentation of the short-axis and long-axis cine images in UK Biobank was made using fully
convolutional networks, a type of deep learning neural network, which predict a pixel-wise image segmentation by applying
a number of convolutional filters onto each input image for feature extraction and classification12. The accuracy of image
segmentation on the UK Biobank dataset is equivalent to expert human readers47. End-diastolic volume, end-systolic volume,
stroke volume, and ejection fraction were determined for both ventricles. Left ventricular myocardial mass was calculated from
the myocardial volume assuming a density of 1.05 g.ml –1. Left atrial volume was calculated from the segmented images using
the biplane area–length formula V = 8

3π
· A2Ch·A4Ch

L , where A2Ch and A4Ch indicate the atrial area on the two and four-chamber
cines respectively, and L indicates the longitudinal diameter averaged across two views. Measurements were indexed to body
surface area (BSA) according to the Du Bois formula: 0.20247∗ (Weight0.425)∗ (Height0.725), with weight in kg and height in
m. The heart was divided into 16 standardised anatomical segments, excluding the true apex, according to American Heart
Association nomenclature48.

The aorta was segmented on the cine images using a spatio-termporal neural network49. The maximum and minimum
cross-sectional areas were derived from the segmentation and distensibility calculated using estimates of central blood pressure
obtained using peripheral pulse-wave analysis (Vicorder, Wuerzburg, Germany)11.

Motion tracking was performed on the cine images using non-rigid image registration between successive frames (in GitHub
repository ukbb_cardiac)50, 51. To reduce the accumulation of registration errors motion tracking was performed in both forward
and backward directions from the end-diastolic frame and an average displacement field calculated11. This motion field was
then used to warp the segmentation contours from end-diastole onto successive adjacent frames. Circumferential (Ecc) and
radial (Err) strains were calculated on the short axis cines by the change in length of respective line segments (Figure 1A) as
Edir =

∆Ldir
Ldir

, where dir represents the direction, Ldir the length of a line segment along this direction and ∆Ldir its change over
time. Motion tracking was also performed on the long-axis four-chamber cines to derive longitudinal (E ll) strain. Peak strain
for each segment and global peak strain were then calculated (Figure 1B). Strain was measured from slices acquired at basal,
mid-ventricular, and apical levels. For comparison between each component absolute strain values are reported52, 53. Strain rate
was estimated as the first derivative of strain and peak early diastolic strain rate in radial (PDSRrr) and longitudinal (PDSRll)
directions was detected using an algorithm to identify local maxima (in GitHub repository peak_detection) (Figure 1C).

Non-imaging phenotypes: In total we consider 110 non-imaging cardiovascular-related phenotypes in UK Biobank par-
ticipants for the phenotype regression analysis and the genetic analysis. These phenotypes contain information acquired by
touch screen questionnaire, interview, biophysical measurement, hospital episode statistics, primary care data and biochem-
ical analysis of venous blood. Details of how each phenotype was acquired are available on the UK Biobank Showcase
(http://biobank.ctsu.ox.ac.uk/crystal/). It should be noted that the biochemical markers used here were acquired at the initial
assessment visit that preceded imaging assessment. Also, note that not all phenotypes were used in both the phenotype and the
genetic analysis (e.g., due to lack of available data at the imaging visit). We refer to the Supplementary Material both for details
on the definition of the considered phenotypes and for information on the inclusion of specific phenotypes for each analysis.
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Statistical significance testing and multiplicity control We consider in all phenotype analysis a P-value < 0.05 as signifi-
cant. Where not stated otherwise, we control the false discovery rate with the Benjamini-Hochberg adjustment54. Significance
thresholds and decision criteria for GWAS significant loci and causality assessment (Mendelian Randomization) are described
in the respective sections and/or in the Supplementary Material.

Phenotype Association Analysis: Continuous variables are expressed as mean ± standard deviation (SD). Differences
in continuous variables between groups were performed using Student’s t-test. Univariable and multiple linear regression
analysis was used to explore the phenotype relationship between each diastolic parameter and cardiovascular risk factors.
To identify relationships between diastolic function and a broader range of imaging and non-imaging phenotypes, including
circulating biomarkers, we used the least absolute shrinkage and selection operator (LASSO)55 with stability selection, to
optimise the model coefficients. We then ran regression diagnostics on the model with the selected variables, to exclude a
possible collinearity inappropriately influencing our model (see Supplementary Material for details on the phenotype analysis
and LASSO analysis procedure).

Genotyping and sample QC: Genotyping of UK Biobank participants has been described elsewhere in detail56. Briefly,
UK Biobank genotyping for 488,252 subjects was performed on the UK BiLEVE or UK Biobank Axiom arrays. Imputation
was based on the HaplotypeReference Consortium panel and the UK10K+1000 Genomes panel56. In this study, UK Biobank
Imputation V3 (in GRCh37 coordinates) were used. Whole exome sequencing (WES) was performed on data released in
2020 collected from 200,640 UK Biobank participants57. The sequencing methods and variant calling procedures have been
described in detail58. In the present study, genotypes in their released PLINK-format files are utilized, and samples were
restricted to the European population. Quality control of the genetic data was performed as recommended by UK Biobank (see
Supplementary Material for details on the procedure and number of excluded samples).

GWAS analysis: For the genetic analysis, there were 34,242 participants of European ancestry (see Supplementary Material
for criteria) providing a discovery dataset of 23,321 participants and a validation set of 10,924 participants. GWAS analyses for
the three diastolic function traits and additional quantitative traits of interest (as described for the causality assessment) were
performed with BOLT-LMM (version 2.3.2) which accounts for ancestral heterogeneity, unknown population structure, and
sample relatedness59, 60. GWAS analyses were adjusted for imaging traits for the first ten genetic principal components, sex,
age at time of MRI, the genotyping array and the MRI assessment center and for non-imaging quantitative traits for the first ten
principal components, sex, age at measurement of the trait and the genotyping array. GWAS analyses for clinical endpoints
of interest (binary endpoints) were conducted with PLINK261 and adjusted for the first ten principal components, sex, age at
baseline and the genotyping array. Post-GWAS filtering removed any SNPs with a Hardy-Weinberg equilibrium p-value < 0.05
and MAF < 0.005.

Assessment of shared genetic architecture: For the assessment of shared genetic architecture between diastolic function
traits, LD score regression (LDSC (LD SCore) v1.0.1, PMID 25642630) was used to obtain a genetic correlation score between
each pair of traits.

Variant annotations: Lead variants for each locus were assigned causal genes, where possible, using a combination of variant
annotations and additional functional genomic data sources (colocalisation). Each lead variant was systematically tested for
any evidence of functional consequence using VEP. In addition, QTL evidence was extensively searched using Open Targets
Genetics62. Where eQTL data was available for the locus, the full summary statistics were downloaded to assess colocalisation
(see Suppplementary Material).

Variant Effect Predictor (VEP)63 and Loss-of-Function Transcript Effect Estimator (LOFTEE)64 plugin were applied on
all genomic variants of WES data. In the present study, we considered the genomic variants predicted by LOFTEE with
high-confidence label "HC", non-dubious (no "LoF flag" such as variants that located in poorly conserved exons, or splice
variants that affect NAGNAG sites or non-canonical splice regions), and minor allele frequency < 0.05, as a Loss-of-function
(LoF) mutation.

LoF association analysis: A Loss-of-Function (LoF) carrier indicator was created for each WES sample and each of the
human protein-coding genes based on the collapsed information of LoF annotations. A subject was considered as an LoF carrier
of the gene if there was at least one LoF mutation (based on methods in the variant annotation section), and a non-carrier if
there was none. We then conducted the association test between LoF carrier indicator and the three diastolic function imaging
phenotypes. Linear regression was performed with the adjustment of sex, age at time of MRI, and the top ten genetic principal
components. The association results were further filtered as those with at least two carriers and the endpoint available. The
association was considered significant after multiple testing correction at α = 0.05 (FDR, calculated for three diastolic function
traits). We identified 18,660 participants with both whole exome sequencing data and CMR imaging data.
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Polygenic risk scores (PRS): Candidate variants for PRS for the three diastolic function traits (LAVmaxi, PDSRll , PDSRrr)
were obtained based on the respective GWAS (full imaging cohort) results by performing clumping (PLINK1.9,65) using an LD
threshold of R2 = 0.1 (in a window of 1000kb) and considering all SNPs with P < 10−6. Candidate variants were included in
multivariate linear modelling evaluated on the European subset of the full imaging cohort with the first ten genetic principal
components, age at MRI, sex, genotyping array and the MRI center as additional covariates and the respective diastolic function
trait as dependent variables. The diastolic function traits were scaled to standard deviation (sd) 1 prior to the model estimation -
therefore, a unit change in the PRS score represents a change of 1 sd unit in the respective diastolic function trait. PRS estimates
per individual were then calculated by multiplying the observed genotype with the estimated beta from the multivariate linear
model for each SNP and summing these values up. Missing genotypes were imputed using a mean imputation. The variance
explained for the PRS is measured by R2, estimated in a linear regression with the PRS as only variable and the respective
diastolic function trait as endpoint.

Next, we conducted a PheWAS using the obtained PRS (see above and Supplementary Material for a full definition of
included phenotypes in the PheWAS). Evaluation of the PRS were performed in the European non-imaging cohort, i.e. an
independent set of subjects compared to the PRS construction set. Only results are shown that are significant after multiple
testing correction at α = 0.05 (FDR, calculated per diastolic function trait) and, as a sensitivity analysis, for which all leave-
one-SNP out cross validations analysis lead to a significant result at α = 0.05 after multiple testing correction (FDR) for the
number of considered phenotypes. The latter condition is supposed to exclude spurious results which are only driven by one
single variant. Leave-one-SNP out cross-validation is performed by excluding one SNP from the list of candidate variants,
then re-estimating the PRS and performing the PheWAS as described above. For the leave-one-SNP out cross-validation, FDR
adjustment is performed per combination of diastolic trait and phenotype, considering the number of included SNPs.

Mendelian randomization: For exploring the causes and consequences of diastolic function parameters, we used a bi-
directional Mendelian randomization (MR) approach, i.e. two MR analysis are performed: first, an MR analysis using the
first chosen trait as exposure is conduced and secondly a MR analysis using the selected second trait is run. By considering
both results, evidence can be gathered for a one-directional causal relationship, a bi-directional causal relationship or no causal
relationship at all66. We performed this analysis taking into account one diastolic and one non-diastolic function trait and for
that, we selected non-diastolic function traits of interest by taking into account the results from the observational correlation
analysis and clinical expertise. This approach lead to the consideration of 5 traits (Heart failure, Diabetes - considering Type I
and Type II separately-, pulse rate, diastolic blood pressure) as potential causes or consequences of changes in diastolic function
parameters.

We established a workflow for the MR analysis which briefly described in this section. Full details are provided in the
Supplementary Material. Genetic instrumental variables were selected from the UK Biobank GWAS results generated -as
described above- via clumping with PLINK1.9 as described for the PRS approach. The candidate SNP set prior to clumping
was restricted to the intersection between the SNP sets of the pair of GWAS results (hypothesised causal trait GWAS and
hypothesised consequence trait GWAS).

All MR analysis are based on the point estimates and standard deviations obtained from the respective GWAS. We follow a
similar approach to van Oort et al.23 by using inverse-variance weighted method (IVW) as the main analysis and applying
several other MR methods for ensuring robustness of the obtained results as sensitivity analyses. We used weighted median-
based methods67, MR-PRESSO68 and MR-Egger69. Consistent effect estimates across the different methods improves our
confidence in a truly causal effect. We consider an association as "potential causal" if the main analysis indicates a causal
relationship (P < 0.01), at least two of the sensitivity analyses indicate at least a suggestive causal relationship (P < 0.05) and
none of the sensitivity analyses indicate associations with inconsistent effect directionality, i.e. none of the methods showed
a suggestive association with conflicting directionality (P < 0.05). No explicit multiplicity adjustment is performed for MR
experiments. For "potential causal" associations, we next conducted a supplementary sensitivity analysis using published
GWAS results as described in the Supplementary Material - if published GWAS data was available.

All analysis, which involved diastolic and non-diastolic function traits, were conducted in a two-sample approach, i.e.,
the diastolic function trait GWAS was calculated in the full imaging cohort and the non-diastolic function trait GWAS was
calculated in the non-imaging cohort.

For comparison of the effect estimates from the MR-analysis to the observed correlation of diastolic function measurement
and disease status, we restricted the analysis population to subjects which were disease-free at the CMR visit. We then fitted a
logistic regression model by coding subjects who experienced a first event of the selected disease during follow-up time as 1 and
event-free subjects during follow-up as 0. As covariates, we included age at CMR visit, gender, diabetes status, diastolic blood
pressure and BMI. Note that this analysis was only performed for relationships judged as potential causal and that involves a
disease endpoint (and not a quantitative measurement like pulse rate).
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NPR3 Pathway Analysis: In order to increase our understanding of the association of NPR3 with LAVmaxi and to further
characterize the role of natriuretic peptides, we looked for additional genetic associations within genes of the natriuretic peptide
pathway (so in addition to NPR3 - NPR1, NPR2, NPPA, NPPB, and NPPC). We conducted GWAS using BOLT-LMM for all
imaging traits listed in Extended Data Table 1 as described above, as well as any non-imaging traits associated with rs1173727
(the lead variant for NPR3) across the 4 loci (NPPA and NPPB share the same locus). The GWAS summary statistics were
filtered to a 1MB window around each gene (for NPPA/B, the gene used for centering was NPPA). Across these summary
statistics, we performed clumping with a p-value threshold of 10−5 and R2 < 0.1.

For the identified tag SNPs and associated variants in LD from the clumping analysis, we then tested which of these variants
we could confidently link to the natriuretic gene in the locus. If any variant was classified as missense, we selected that variant
directly. For eQTL variants, we used colocalisation analysis to link these SNPS to the natriuretic genes in each locus. Relevant
eQTL and pQTL data was used (eQTL summary statistics were taken from eQTL Catalog70 and pQTL data from Sun et al.71)
and SNPs with only a clear association with the gene of interest and traits of interest were kept (i.e. p < 1−4 for association with
gene or protein expression, P < 10−5 for association with the trait, and H12 > 0.5 was used as a threshold for the co-localization
analysis).

Hierarchical clustering was then performed on the − log(P)×β values with the β s aligned to have a negative sign on the
diastolic blood pressure. Extended Data Fig 6 shows all SNPs and traits with a genome-wide significant association. The SNPs
and traits with suggestive associations (P < 10−5) are shown in the Supplementary Material (Supplementary Fig 6).
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Extended Data Figure 1. A summary of the main steps in our analysis of the genetic and environmental determinants of diastolic heart
function.
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Extended Data Figure 2. a) Scatterplots of left atrial maximum volume indexed to body surface area (LAVmaxi) against age with density
contours, linear model fit and marginal density plots. b) Violin plots of LAVmaxi by sex with boxplots showing median, interquartile range
(IQR) and 1.5 x IQR (n=38,046)
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Extended Data Figure 3. a) Bubble plot showing beta coefficients and b) negative logarithm of the P-values for multiple linear regression
analysis between imaging and non-imaging phenotypes. The false discovery rate threshold is shown as a dashed line. c) A plot showing the
coefficients for predictors in the LASSO regression model (training set, n=21,403; test set, n=10,217).
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a b

Extended Data Figure 4. a) Plot showing the covariates selected after stability selection as predictors of PDSRll . b) Plot showing the odds
ratio of each of the three diastolic function parameters (PDSRll , PDSRrr, and LAVmaxi) with all covariates using LASSO regression and
10-fold cross validation. Red bars indicate variables selected after stability selection.

21/23

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.07.21257302doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.07.21257302
http://creativecommons.org/licenses/by/4.0/


Comparison of estimates across different approaches
UKBB (MR, IVW) HERMES (MR, IVW) UKBB (Observational data)

PDSR[rr]

PDSR[ll]

LAVmax[i]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
Risk change for heart failure (log(OR)) per 1 unit increase in trait

Extended Data Figure 5. Comparison of association estimates for level of diastolic function traits, PDSRrr, PDSRll and LAVmaxi, vs. heart
failure risk across different approaches (MR approach on UKBB, MR approach using HERMES for the heart failure risk estimates, incident
heart failure based on observational data; see Methods for set of considered covariates). Displayed are 95% confidence intervals.

Extended Data Figure 6. Heatmap of associations with SNPs in genes of the natriuretic peptide pathway. All cardiac imaging traits and
traits with a genome-wide significant association with rs1173727 (NPR3) were included. SNPs were included if they have a genome-wide
significant association with one of these traits except height (height is an extremely polygenic trait with many genome-wide association
signals). Values indicate -log10(P-value) of the association test, directionality is aligned to the beta values of the systolic blood pressure
(sbp_adj) associations, and to the height associations if there is no significant blood pressure association.
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Extended Data Table

Extended Data Table 1. Baseline characteristics of the UK Biobank participants in the study.

 

Baseline characteristics and cardiac information from CMR. Values are presented as mean ± SD or n (%). 

*LV: left ventricle, LA: left atrial, RV: right ventricle, RA: right atrial, AAo: Ascending aortic, DAo: Descending aortic. 

 Mean ± SD    Mean ± SD  

Baseline characteristics or n (%) 
 

Cardiac Characteristics from CMR or n (%) 

Age (years) 63.6 ± 7.6  LV wall thickness (mm) 5.7 ± 0.8 

Sex, men, n (%) 18,988 (48%)  LV end-diastole volume indexed (𝒎𝑳/𝒎𝟐) 79 ± 13.8 

Race, Nonwhite, n (%) 1,130 (2.8%)  LV end-systole volume indexed (𝒎𝑳/𝒎𝟐) 32.1 ± 8.4 

Body mass index (𝒌𝒈/𝒎𝟐) 26.5 ± 4.4   LV stroke volume indexed (𝒎𝑳/𝒎𝟐) 46.9 ± 8.4 

Body surface area (𝒎𝟐) 1.9 ± 0.2  LV ejection fraction (%) 59.6 ± 6.1 

Systolic Blood pressure (mmHg) 138.2 ± 18.3  LV cardiac output (𝒎𝒍) 5.4 ± 1.2 

Diastolic blood pressure (mmHg) 78.6 ± 9.9  LV cardiac index (𝒎𝒍/𝒎𝟐) 2.5 ± 0.5 

Pulse rate (bpm) 70 ± 12  LV mass indexed (mL/𝒎𝟐) 45.7 ± 8.5 

Pulse wave arterial stiffness index (SI) 9.6 ± 2.9  
LA maximum volume indexed (𝒎𝒍/𝒎𝟐) 39 ± 11.2 

Diabetes mellitus, n (%) 2,432 (6.2%) LA minimum volume indexed (𝒎𝒍/𝒎𝟐) 15.7 ± 7.5 

Heart failure, n (%) 260 (0.66%) LA stroke volume indexed (𝒎𝒍/𝒎𝟐) 23.3 ± 5.8 

Smoking status  LA emptying fraction (%) 61.2 ± 9.5 

Current, n (%) 1,374 (3.5%) RV end-diastole volume indexed (𝒎𝒍/𝒎𝟐) 83.6 ± 15.2 

Previous, n (%) 13,330 (34.1%) RV end-systole volume indexed (𝒎𝒍/𝒎𝟐) 35.9 ± 9.3 

Never, n (%) 24,443 (62.4%) RV stroke volume indexed (𝒎𝒍/𝒎𝟐) 47.7 ± 8.9 

Daily alcohol intake 6,597 (16.7%) RV ejection fraction (%) 57.3 ± 6.1 

Duration of physical activity in minutes per day  RA maximum volume indexed (𝒎𝒍/𝒎𝟐) 46.4 ± 13.5 

Moderate 53.9 ± 66.2 RA minimum volume indexed (𝒎𝒍/𝒎𝟐) 24.7 ± 9.2 

Vigorous 40.3 ± 40.4 
Right atrial stroke volume indexed (𝒎𝒍/𝒎𝟐) 21.6 ± 6.8 

Number of treatment/medications taken 1.9 ± 2.1 RA emptying fraction (%) 47.2 ± 9.5 

Blood pressure medication 2,042 (5.2%) AAo distensibility indexed (𝟏𝟎−𝟑 ∙  𝒎𝒎𝑯𝒈−𝟏) 0.97 ± 0.63 

Cholesterol medication 6,015 (15.2%) 
AAo maximum area (𝒎𝒎𝟐) 852.3 ± 188.4 

Assessment centre  AAo minimum area (𝒎𝒎𝟐) 775.1 ± 183.9 

Cheadle 25,176 (63.6%) DAo distensibility indexed (𝟏𝟎−𝟑 ∙  𝒎𝒎𝑯𝒈−𝟏) 1.29 ± 0.8 

Reading 4,361 (11%)  DAo maximum area (𝒎𝒎𝟐) 476.7 ± 96.8 

Newcastle 10,022 (25.3%)  DAo minimum area (𝒎𝒎𝟐) 418.1 ± 91.6 

Laboratory Biochemical Markers 

 

Strains and Strain rates 
 

HbA1c (𝐥𝐨𝐠(𝒎𝒎𝒐𝒍/𝒎𝒐𝒍)) 3.5 ± 0.13  
Peak diastolic longitudinal strain rates 

(𝑷𝑫𝑺𝑹𝒍𝒍, 𝒔−𝟏) 
1.64 ± 0.6 

C-reactive protein (𝐥𝐨𝐠(𝒎𝒈/𝑳)) 0.13 ± 1.02  

LDL (𝒎𝒎𝒐𝒍/𝑳) 3.6 ± 0.8 
Peak diastolic radial strain rates 

(𝑷𝑫𝑺𝑹𝒓𝒓, 𝒔−𝟏) 
5.71 ± 1.9 

Glucose (𝒎𝒎𝒐𝒍/𝑳) 5.0 ± 0.93 Global circumferential strain (𝑬𝒄𝒄, %) 22.3 ± 3.4 

Triglycerides (log(𝒎𝒎𝒐𝒍/𝑳))  0.36 ± 0.51 Global longitudinal strain (𝑬𝒍𝒍, %) 18.5 ± 2.8 
 

eGFR cystatin (𝒎𝑳 ∙ 𝒎𝒊𝒏−𝟏 ∙ 𝟏. 𝟕𝟑 𝒎−𝟐) 92 ± 12.2 Global radial strain (𝑬𝒓𝒓, %) 45.1 ± 8.4 
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