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Abstract 

Expression Atlas ( www.ebi.ac.uk/gxa ) and its ne w est counterpart the Single Cell Expression Atlas ( www.ebi.ac.uk/ gxa/ sc ) are EMBL-EBI’s knowl- 
edgebases for gene and protein expression and localisation in bulk and at single cell level. These resources aim to allow users to investigate 
their expression in normal tissue (baseline) or in response to perturbations such as disease or changes to genotype (differential) across multiple 
species. Users are invited to search for genes or met adat a terms across species or biological conditions in a standardised consistent interface. 
Alongside these data, new features in Single Cell Expression Atlas allow users to query met adat a through our new cell type wheel search. At 
the e xperiment le v el data can be e xplored through tw o t ypes of dimensionalit y reduction plots, t-distributed Stochastic Neighbor Embedding 
(tSNE) and Unif orm Manif old Appro ximation and P rojection (UMAP), o v erlaid with either clustering or met adat a information to assist users’ 
underst anding . Dat a are also visualised as marker gene heatmaps identifying genes that help confer cluster identity. For some data, additional 
visualisations are a v ailable as interactive cell level anatomograms and cell type gene expression heatmaps. 
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Table 1. Top 10 species represented by experiment number in Single Cell 
Expression Atlas and Expression Atlas 

Species 

Single Cell 
Expression 

Atlas 
Expression 

Atlas Proteomics 

Homo sapiens 146 1600 64 
Mus musculus 122 1273 20 
Drosophila melanogaster 29 150 
Danio rerio 14 26 
Arabidopsis thaliana 13 625 
Gallus gallus 4 40 
Rattus norvegicus 3 186 9 
Zea mays 2 89 
Oryza sativa Japonica 
Group 

2 112 

Saccharomyces cerevisiae 1 49 

Species 

Single Cell 
Expression 

Atlas Expression Atlas 

Arabidopsis thaliana 13 625 
Zea mays 2 89 
Oryza sativa 3 112 
Glycine max 22 
Triticum aestivum 19 
Vitis vinifera 33 
Sorghum bicolor 11 
Solanum lycopersicum 2 20 
Hordeum vulgare 16 
Medicago truncatula 10 

Additional table representing the scarcity of single cell sequencing data in 
plants compared to the top 10 plant species represented in Expression Atlas. 
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Introduction 

Expression Atlas ( 1 ) ( https:// www.ebi.ac.uk/ gxa ) and the Sin-
gle Cell Expression Atlas ( https:// www.ebi.ac.uk/ gxa/ sc ) are
knowledgebases (added-value resource) for consistently anal-
ysed gene and protein expression data that are developed and
maintained by the Gene Expression team at the European
Molecular Biology Laboratory’s European Bioinformatics In-
stitute (EMBL-EBI). Data provided in the Expression Atlases
are aimed at allowing users to investigate the localisation and
abundance of gene and protein expression at the bulk and sin-
gle cell level. Presenting these data in a consistent interface
across resources allows users to investigate gene expression
data across technologies (bulk sequencing, microarray, well-
based and multiplexed single cell sequencing) to gain consen-
sus and insight from publicly available and controlled access
data in a single resource. 

Datasets are sourced from public archives, such as BioStud-
ies ( 2 ), PRIDE ( 3 ), NCBI’s Gene Expression Omnibus (GEO)
( 4 ), the European Nucleotide Archive (ENA) ( 5 ), dbGaP ( 6 )
and the European Genome-Phenome Archive (EGA) ( 7 ). With
the continuous advancements in single-cell technologies and
the increasing availability of data from a wider array of or-
ganisms, Single Cell Expression Atlas has increased its cover-
age of scRNA-seq datasets from various plant species and cell
atlas projects, such as the Fly Cell Atlas ( 8 ). 

In addition to transcriptomics data, Expression Atlas has
integrated protein expression information in the same web in-
terface alongside the gene expression data. Public mass spec-
trometry (MS)-based proteomics datasets coming mainly from
the PRIDE database are selected, manually curated and re-
analysed. For enabling data integration, protein expression re-
sults are reported in gene coordinates. 

With the increase in datasets within Single Cell Expres-
sion Atlas and the addition of new species, the user interface
has been improved to accommodate for metadata searches in
addition to gene searches. Moreover, the results of metadata
searches (including cell type search) can be viewed in a sum-
marised way, highlighting the coverage of data that matches
these keywords and cell types across different species. Top-
scoring genes can be easily viewed across studies and species,
providing a powerful way for easy interpretation by the sci-
entific research community. 

All data and analysis pipelines are designed to incorporate
FAIR data principles ( 9 ) (Findable, Accessible, Interoperable,
Reusable) to allow for their reuse and uptake by the scientific
community. Data ingestion focuses on structuring metadata
and mapping to ontology terms (controlled vocabularies) with
input from species specific and subject matter experts (SMEs)
where appropriate. This work aims to richly describe the en-
tities represented in the resource and allow comparison of the
same uniquely identified entity (such as cell type) across mul-
tiple datasets. Additionally, we apply these principles to our
analysis workflows so that users can freely access and reuse
the tools and processes developed by the team in their own
work with a greater understanding of how data is derived.
Lastly, as part of the EMBL-EBI’s access policy all data visu-
alisations and processed data are also made available under a
CC0 licence. 

Main updates 

Datasets and species update 

From their inception, we aim to consistently improve the qual-
ity and quantity of datasets in both Expression Atlas and Sin-
gle Cell Expression Atlas. The latest release of Expression At- 
las in July 2023 focuses on increasing the quality of data pre- 
sented to users. The resource contains 4424 datasets compris- 
ing 15 840 assays. The inclusion of data from a new species 
Drosophila pseudoobscura brings the total of represented or- 
ganisms in the knowledgebase to 66. Of these, we also con- 
tinue to increase the representation of proteomics data (93 

datasets) and the inclusion of baseline expression data com- 
prising 340 experiments across 47 different organisms. 

Single Cell Expression Atlas has also focused on increasing 
the coverage of species and the inclusion of new data into the 
resource. As of its latest release in March 2023 the knowl- 
edgebase contains 355 datasets across 21 species. These data 
are derived from over 17 million cells, of which 10.5 mil- 
lion passed our quality checks and are displayed for users to 

explore, through dimensionality reduction plots (t-SNE and 

UMAP) as well as gene expression heatmaps and marker gene 
identification. We also include a new species in this release,
Xenopus tropicalis, increasing the representation of single cell 
data from multiple species. 

The top 10 species represented by experiments in Expres- 
sion Atlas and Single Cell Expression Atlas are summarised in 

(Table 1 ). 

Proteomics data 

In the last two years, we have continued to increase the content 
of proteomics datasets in Expression Atlas, in collaboration 

with the PRIDE team at EMBL-EBI. Expression Atlas now 

includes protein expression results, which have been further 
refined, coming from 93 proteomics datasets. The datasets, all 
of them generated using label-free techniques, can be split in 

two main groups according to the type of proteomics data 
acquisition: 

https://www.ebi.ac.uk/gxa
https://www.ebi.ac.uk/gxa/sc
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(i) Datasets generated using Data Dependent Acquisition
(DDA) approaches. In this case, MaxQuant ( 10 ) was
used as the analysis software, followed by an in-house
post-processing pipeline. The integration of three groups
of baseline tissue-based datasets was finalised, coming
from human (32 organs represented) ( 11 ), mouse (13 or-
gans) and rat (8 organs) ( 12 ) samples. To complement
these, a study including 15 datasets coming from farm
pig ( Sus scrofa ) (14 organs) has just been finalised and is
now being integrated (not yet finalised at the moment of
writing). In addition to baseline tissue data, 12 datasets
coming from colorectal cancer samples have been reanal-
ysed and integrated (datasets in Expression Atlas tagged
as ‘ColCancer2023’), enabling the detection of biomark-
ers at the protein level. This is a continuation of our pre-
vious efforts in cell lines and tumour tissue ( 13 ). 

(ii) Datasets generated using Data Independent Acquisi-
tion (DIA) approaches. We performed a pilot project
to study the feasibility of performing a systematic re-
analysis of DIA datasets and included cell-line, human
cancer-related and plasma samples ( 14 ). At the time, a
spectral library based approach using the ‘Pan Human
library’ was used; these datasets are tagged as ‘DIAPi-
lot2021’. At present we are benchmarking a library-free
methodology using DIA-NN ( 15 ), and applying it to ad-
ditional datasets generated from human baseline tissues
as a starting point. These datasets will get integrated into
Expression Atlas in the near future, once the analyses are
finalised. 

Data integration between transcriptomics and proteomics
atasets is enabled because protein expression data is reported
n a gene-centric manner. 

tandardisation of analysis workflow 

n the last two years we have shifted most of our analysis
ipelines to modern workflow managers (Snakemake ( 16 ),
extflow ( 17 ), Galaxy ( 18 )), which could be portable and

asily cloud deployed, with automatic dependency resolution.
igration to a more modern, community maintained, explicit
orkflow environment enables a faster turn-over in terms of
ariations to the analysis workflows, execution on multiple
nvironments, granular tool updates and in general make the
orkflow more maintainable and continue our adherence to

ncorporating FAIR ( 9 ) principles into our pipelines. Because
f the workflow modernisation achieved, the transition of our
ipelines between different environments is straightforward,
ot only facilitating deployment in HPC and cloud environ-
ents, but also smoother release cycles and the continuation
f the service in the future. 

mprovement of bioinformatics pipelines 

n terms of bioinformatics tools update, we have adapted
he Single Cell Expression Atlas droplet quantification work-
ow, which runs under Nextflow ( 17 ) for single-nucleus RNA
equencing experiments (snRNA-seq), which presented low
lignment rates. We performed an internal benchmark and
nalysed the impact of different references and tools (alevin
 19 ), alevin-fry ( 20 ), kallisto|bustools ( 21 ) and STARsolo
 22 )) on the mapping rates. In addition to increasing the
lignment rate for snRNA-seq experiments, in corroboration
ith the original publication ( 20 ) we observed that alevin-fry
was faster and required less memory. Therefore, we decided
to switch from alevin to alevin-fry with unspliced (intron-
containing) transcripts references for quantification of droplet
based experiments. 

User interface 

Data curation 

At the heart of all data that gets ingested into Expression Atlas
and Single Cell Expression Atlas is the incorporation of FAIR
principles and data curation. From the onset, data are identi-
fied by the curation team for their rich biological and technical
metadata and file integrity. These are then curated so that all
metadata available for the experiment at the sample and file
level are identified, and incorporated into the dataset. Where
possible, all metadata are mapped to the corresponding ontol-
ogy (controlled hierarchical vocabulary) term and species spe-
cific ontology where applicable (e.g. Drosophila melanogaster
metadata are mapped to the ‘Drosophila gross anatomy on-
tology’ (FBbt) maintained by the FlyBase ( 23 ) team). 

In addition, we strive to contact authors for cell type specific
information which is inferred directly from the cells’ expres-
sion profile. These are represented to users in the original for-
mat as provided by the data owner, termed authors cell type.
A second mapping where terms are mapped by the curation
team to the closest relevant ontology term is also provided
and represented to users as ‘authors cell type – ontology la-
bels’. These are overlaid as metadata onto the dimensionality
reduction plots on the results page for every experiment where
available. These data visualisations are also made freely avail-
able to users for download as high quality images for reuse
and integration into their work. 

The benefit of this ontology mapping is clear as it allows
users to consolidate and investigate all data where cell types
are identified across diverse species, tissues and datasets to
look for common or cell type specific genes which may infer
functionality. This functionality is also integral to the meta-
data search wheel visualisation described in this paper (see
below). 

Metadata search and cell type wheel 
The latest feature for Single Cell Expression Atlas is the addi-
tion of a ‘metadata search’ option that allows users to inves-
tigate data annotated with a biological entity, such as an or-
ganism part, cell type or disease. The addition of this feature
to Single Cell Expression Atlas mirrors the existing function-
ality in Expression Atlas and allows users to understand data
in greater detail and assist in gaining insight into the data. The
metadata search allows users to search for a biological entity
from the search bar on the Single Cell Expression Atlas land-
ing page. From there, a powerful ontology-mediated search
expansion is applied so that a user’s search encompasses all
synonyms, spellings and ‘child terms’ (associated more spe-
cific terms for a search e.g. a search for cancer would include
child terms such as lung cancer, glioblastoma etc.). 

Once a search is submitted to the web browser, the results
are presented in a ‘cell type wheel’. This presents the search
to the user as a series of ‘layers’ in a wheel. The innermost
entity being the search term, and corresponding rings increas-
ing in specificity, from species, to tissue to finally the cell type
associated with that entity in the outermost ring. Selecting
each ring refactors the results to expand the next associated
outer ring and display to the user in more detail the entities
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associated with that ring. Users can manipulate the search dis-
play by clicking on the ‘rings’ along the top of the page to go
back through the specific layers and their previous search his-
tory within the metadata results for their search. 

Upon selecting an entity (cell type) in the outermost ring
where possible, a cell type heatmap showing the top 5 genes
associated with that cell type is displayed alongside the
cell type wheel. This allows users to see all datasets where
their particular entity (e.g. Paneth cell in pancreas in human
datasets) have been investigated. Users can then understand
broad consensus and differences in the top genes expressed
for that entity (Figure 1 ). Again, these data visualisations can
also be freely downloaded by users as high quality images for
integration into their work. 

Anatomograms expansion and inclusion of new species 
As described in the previous Expression Atlas update paper
( 1 ), anatomograms are interactive single cell visualisations of
cell types ‘in situ’ for healthy adult human tissue. These are
developed through cross team collaborations between web de-
velopers, bioinformaticians, artists and data curators as well
as SME’s in the scientific research community for that organ
and species. The aim of these visualisations is to allow users
to gain an ‘in situ’ understanding of organ structure and cell
types alongside a ‘cell type heatmap’ that shows the top 5
marker genes specific to that cell type. An example of the use
of anatomograms is shown in Figure 2 , with a study on pan-
creatic cells. 

In order to develop an anatomogram, in collaboration with
research experts the curation and artists create an overview of
the organ structure, including sub-organism and cell type con-
figurations. These are represented as a structural series of im-
ages from top level macrostructures through a series of ‘zoom
in’ images to microstructures and cell level architecture. Im-
ages are developed as shape layers on top of the base level im-
age, representing the hierarchical nature of these tissues where
cells are layered onto sub-tissue structures within the organ.
This hierarchical nature is also recreated in the corresponding
organ and cell type ontologies. Where required, additional cell
type and sub-tissue structures and relationships missing from
the relevant ontologies are identified, defined and added to the
relevant ontology through community collaborations. In this
way the tissue is represented both visually and hierarchically.
All structures are then mapped to the corresponding image
and ontology term prior to implementation by the web devel-
opment team. 

To link an image shape (e.g. cell type) to the corresponding
data we again leverage the power of metadata curation. Cu-
rated datasets where possible are mapped to ontology terms,
including as described earlier, inferred cell type information.
These mappings correspond to the ontology shape mapping
defined in the anatomogram. This linkage allows us to create
a link between the shape and the corresponding expression
profile for that entity and the cell type heatmap. 

We continue to develop anatomograms and as part of these
efforts, we have developed these visualisations for the organs
related to the anatomy of the gut. Therefore in collaboration
with the Human Gut Cell Atlas ( 24 ), we have developed a
series of anatomograms representing the whole healthy adult
human digestive tract, as well as a series representing the com-
posite elements, including the colon, large and small intestines,
mesenteric lymph nodes and anus. 
Discussion 

Community curation 

Since their inception, both Expression Atlas and the Single 
Cell Expression Atlas have been committed to incorporating 
public datasets and where possible, controlled access, large 
scale and selected consortia data for use by the scientific com- 
munity. This involves working with species and project com- 
munities to identify and incorporate data of value to their 
members. Additionally, we work with these community ex- 
perts to ensure that the data incorporated aligns with their 
standards, ontologies and any additional requirements. 

Through collaborating with these communities (Plant Cell 
Atlas, Fly Cell Atlas, Human Cell Atlas, European Diagnos- 
tic Transcriptomic Library (EDTL) and more) we are one of 
the few resources to contain multiple datasets across multiple 
species. This is particularly relevant for the plant community 
where single cell data is difficult to obtain, (Table 1 ). 

Another element where community engagement is essential 
is the incorporation of inferred cell types. These are cell types 
conferred by investigation of their transcriptional profile as 
opposed to their biological characteristics, which have been 

the main source of cell classification. By reaching out to data 
owners we aim to include this information as often as possi- 
ble for their dataset. Inferred cell type information are incor- 
porated into the data visualisation both as metadata overlay 
on the dimensionality reduction plots and as mentioned previ- 
ously for selected datasets in the anatomograms and cell type 
heatmap (see the relevant sections). Ontology mapping where 
possible is done in collaboration with a community expert and 

the corresponding ontology is updated where required to clas- 
sify these new cell types. 

The addition of inferred cell type identity to these data has 
been instrumental in future work, such as the cell type decon- 
volution of existing bulk data (see the deconvolution section 

below) as well as any future pipelines aiming to programmat- 
ically identify cells from existing expression profiles. 

Future work in the team aims to make the process of com- 
munity engagement as easy as possible with the aim of encour- 
aging users to submit data directly to the Atlases as a potential 
endpoint. This would help resources continue to ingest data in 

line with the increase in publications which far outstrips the 
ability of manual curation teams to do so. With this in mind 

we aim to make the process of converting datasets from ex- 
isting International Nucleotide Sequence Database Collabo- 
ration, INSDC, (The International Nucleotide Sequence Col- 
laboration, https:// www.insdc.org/ ) resources, ENA ( 25 ), Se- 
quence Read Archive, SRA ( 26 ) and DNA Data Bank of Japan,
DDBJ, ( 27 ) formats into MAGE-TAB ( 28 ) an automated pro- 
cess, requiring only the corresponding dataset accession. This 
is possible due to the shared data model across these resources 
and the alignment of this to the MAGE-TAB model. These 
MAGE-TAB would then be annotated by the community with 

ontology terms where possible and submitted for curation re- 
view. For single cell transcriptomic data for Single Cell Ex- 
pression Atlas we would also encourage users to submit the 
corresponding inferred cell type data in a standardised format 
for inclusion to their dataset. 

We have already started on this process, partly through the 
improvement of existing scripts which query the ENA API 
(Application Programming Interface) to convert both GEO 

and ENA data into MAGE-TAB format programmatically 
rather than manually, significantly reducing manual effort. We 

https://www.insdc.org/
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Figure 1. Cell type wheel visualisation of pancreatic D (delta) cell metadata search in Single Cell Expression Atlas alongside heatmap showing the top 5 
genes across datasets for this cell type in Homo sapiens datasets. 
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ave also worked extensively with community partners and
raining events in data and knowledge management, MAGE-
AB structure and the inclusion of ontology terms to train
nd pass on our knowledge and tools to these communities.
ur aim is to allow these communities to have these tools at

heir disposal and promote their reuse to their communities
o that data comes directly from them rather than identified
y the curation team through publication searches which are
ot extensive. 

ingle cell expression atlas and community 

esources 

lyBase 
s part of our commitment to working with communities, we
lso make data available to feed back into community repos-
tories. For the FlyBase collaboration, data from Single Cell
xpression Atlas are incorporated into this repository. The
oint of this is to fulfil three main aims: (i) to help FlyBase
sers to discover what data and datasets are available; (ii) pro-
ide information about relevant datasets and (iii) get a quick
verview of expression data from these datasets. To assist with
his, Single Cell Expression Atlas provides firstly, additional
etadata about samples from the manual curation of datasets.

econdly, Single Cell Expression Atlas provides data matrices,
ontaining gene expression per cell alongside the inferred cell
ype identity. With these data, FlyBase extracts i. the extent
f expression ie. the proportion of cells of a given cell type
n that dataset in which a gene is detected and ii. The average
xpression (normalised to CPM) in cells of that type which do
xpress that gene. 

For a particular dataset record in FlyBase, users are pro-
ided with links to the corresponding datasets in Single Cell
xpression Atlas. In the specific case of the Fly Cell Atlas
ataset ( 8 ), users can also explore the data for a given gene
sing either the cell type ribbon, where tiles are coloured by
the extent of expression of that gene in a range of cell types
from the dataset or a graphical display of high throughput ex-
pression data as a bargraph corresponding to both the propor-
tion of cell types which express the gene alongside the average
expression of that gene in those cell types (Figure 3 ) ( 23 ). 

An additional expansion to this project is the development
of anatomograms for healthy adult tissue from Drosophila
melanogaster as part of the community Fly Cell Atlas project
and the FlyBase curation team. Initial development includes
anatomograms for reproductive organs, the ovary and testis as
well as a representation of the whole adult fly and composite
organs. 

Gramene 
Another long standing collaboration between Expression At-
lases and the plant community is our collaboration with the
Gramene project ( 29 ). Expression data derived from plant
data ingested into the Atlases is dynamically represented and
updated via an embedded Atlas widget within Gramene’s
search browser with future plans to include Single Cell Ex-
pression data at the cellular level. We also work closely with
the Gramene team to identify and ingest key datasets of in-
terest to the plant community for both bulk and single cell
expression. 

Cell-type deconvolution 

Deconvolution of RNA-seq experiments in Atlas have
been implemented based on the recommendations of
Vathrakokoili-Pournara et al. ( 30 ) using a set of organ-
ism part-specific references from the Single Cell Expression
Atlas. Three selected deconvolution tools implemented in
R (DWLS ( 31 ), FARDEEP ( 32 ), EpiDISH ( 33 )) are run for
bulk RNA-seq experiments from human, mouse and fruit
fly. The estimated deconvolution results are reported if the
mean Pearson correlation between the output cell proportion
matrices is equal or higher than 0.6 to ensure robustness of



6 Nucleic Acids Research , 2023 

A

B

Figure 2. ( A ) The Single Cell Expression Atlas organ anatomogram for pancreas (e.g. 
https:// www.ebi.ac.uk/ gxa/ sc/ experiments/ E- GEOD- 83139/ results/ anatomogram ), displaying marker genes for the different pancreatic cell types. 
Ho v ering o v er sections of the heatmap giv es details about the gene’s e xpression. As the user clicks on an activ e section of the pancreas anatomogram, 
the heatmap to the right changes to display only cell types that exist under that specific part of the organ. ( B ) As the user dives into more and more 
detailed views, it will end up at a cellular view. 
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the predictions. In the future, the results provided by this
analysis will deliver Atlas users with additional information
about estimated cellular heterogeneity of bulk samples. The
user will then be linked back to the cell type wheel of the re-
spective organism part and cell type in Single Cell Expression
Atlas. 
Proteomics 
In the case of label-free quantitative proteomics datasets, the 
main focus in the proteomics field is shifting to DIA ap- 
proaches, thanks to advances in instrumentation and compu- 
tational analysis. One of the effects in DIA datasets is the re- 
duction of missing values. DDA MS2-labelled approaches as 

https://www.ebi.ac.uk/gxa/sc/experiments/E-GEOD-83139/results/anatomogram
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Figure 3. FlyBase results for Dmel / w showing the cell type ribbon, where tiles are coloured by the extent of expression of Dmel / w in a range of cell 
types from the dataset alongside a graphical display of high throughput expression data as a bar graph corresponding to both the proportion of cell types 
which express Dmel / w alongside the average expression of that gene in those cell types. 
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MT (Tandem Mass Tagging) remain also popular, although
hey are preferred for differential studies. However, methodol-
gy has been recently developed to represent these datasets as
aseline data ( 34 ). In addition to bulk tissue data, single cell
roteomics datasets are being generated at an increasing pace
 35 ) although the instrumentation required makes this possi-
le only for a small number of groups still. Although many of
hese datasets are still generated for method development pur-
oses mainly, we anticipate a higher number of biologically
elevant ones. We will attempt to use the ‘Single Cell Expres-
ion Atlas’ for providing access to these datasets. 

ata availability 

xpression Atlas and Single Cell Expression Atlas are avail-
ble for users at https:// www.ebi.ac.uk/ gxa/ and at https:
/ www.ebi.ac.uk/ gxa/ sc/ , respectively. The Expression Atlas
eb application is open source and available in the GitHub

epositories https:// github.com/ ebi- gene- expression- group/
tlas- web- single- cell DOI: 10.5281 / zenodo.10021406, https:
/ github.com/ ebi- gene- expression- group/atlas- web- bulk 

OI: 10.5281 / zenodo.10021638 and https://github.
om/ Papatheodorou-Group/ CATD _ snakemake DOI:
0.5281 / zenodo.10021678 among others. The Nextflow
ipeline to perform benchmark of different tools and refer-
nces for snRNA-seq datasets is available at https://github.
om/ebi- gene- expression- group/snRNA- mapping- rate DOI
0.5281 / zenodo.10021661. 
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