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abstract: The joint distribution of selection coefficients and muta-
tion rates is a key determinant of the genetic architecture of molecular
adaptation. Three different distributions are of immediate interest:
(1) the “nominal” distribution of possible changes, prior to mutation
or selection; (2) the “de novo” distribution of realized mutations; and
(3) the “fixed” distribution of selectively established mutations. Here,
we formally characterize the relationships between these joint distri-
butions under the strong-selection/weak-mutation (SSWM) regime.
The de novo distribution is enriched relative to the nominal distri-
bution for the highest rate mutations, and the fixed distribution is
further enriched for the most highly beneficial mutations. Whereas
mutation rates and selection coefficients are often assumed to be un-
correlated, we show that even with no correlation in the nominal
distribution, the resulting de novo and fixed distributions can have
correlations with any combination of signs. Nonetheless, we suggest
that natural systems with a finite number of beneficial mutations will
frequently have the kind of nominal distribution that induces nega-
tive correlations in the fixed distribution. We apply our mathematical
framework, along with population simulations, to explore joint distri-
butions of selection coefficients and mutation rates from deep muta-
tional scanning and cancer informatics. Finally, we consider the evo-
lutionary implications of these joint distributions together with two
additional joint distributions relevant to parallelism and the rate of
adaptation.
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Introduction

Evolutionary change has long been understood as a process
combining variation and selection. Within this duality, a
range of views is possible. Darwin theorized that variation
merely supplies abundant materials, with no dispositional
influence: selection does all the important work of choos-
ing, so that the laws of variation “bear no relation” to the
outcomes built by selection (Darwin 1868, chap. 21). By
contrast, a century later, when sequence comparisons re-
vealed a process of change that reflects both mutation and
selective filtering, selection was depicted as the editor, not
the composer, of the genetic message (King and Jukes 1969).
The ability of mutation to shape patterns of molecular di-
vergence was initially treated as an aspect of neutrality, but
more recent work has shown that when adaptation in-
volves new mutations, differences in the rate that specific
variants are introduced into the population can have a
strong influence on the genetic basis of adaptation (Rokyta
et al. 2005; Couce et al. 2015; Bailey et al. 2017; Sackman
et al. 2017; Stoltzfus and McCandlish 2017; Storz et al.
2019; Gomez et al. 2020; Stoltzfus 2021; Cano et al. 2022,
2023; Schenk et al. 2022).

Because of the powerful and long-recognized influence
of selection on the changes involved in adaptation, the dis-
tribution of fitness effects (DFE) for mutationally possible
changes has long been regarded as a fundamental param-
eter in evolutionary genetics (Orr 2003; Sanjuan et al. 2004;
Kassen and Bataillon 2006; Eyre-Walker and Keightley
2007). Yet the role of mutation rates suggests the impor-
tance of, not merely a distribution of selection coefficients,
but a combined distribution of mutation rates and fitness
of Chicago. This work is licensed under a Creative Commons Attribution-
ommercial reuse of the work with attribution. For commercial use, contact
ess for The American Society of Naturalists. https://doi.org/10.1086/726014

mailto:journalpermissions@press.uchicago.edu
mailto:mccandlish@cshl.edu
mailto:arlin@umd.edu


Induced Correlations of m and s 535
effects—that is, the joint distribution of selection coeffi-
cients and mutation rates for a set of possible changes. This
need is implicit, for instance, in treatments of the genetic
architecture of adaptation that address genotypic redun-
dancy (Láruson et al. 2020), distinguishing the case where
several redundant mutations share the same selection coef-
ficient from the case of a single mutation produced at the
same total rate. While one might suppose that mutation
rates and selection coefficients are inherently uncorrelated
and thus the joint distribution is of little interest, here we
show that this is not the case at all: even if mutation rates
and selection coefficients are uncorrelated among possible
beneficial mutations, the process of adaptation can induce
correlations in the realized distribution of adaptive changes
due to the heterogeneity of mutation rates and the enrich-
ment by selection of mutations with large fitness effects.
Furthermore, substantial correlations between mutation rates
and selection coefficients among possible beneficial muta-
tions can emerge merely from having a finite mutational
target size, particularly when only a small number of ben-
eficial mutations are available.

Here, we analyze the joint distribution of mutation rates
and selection coefficients among beneficial mutations and
provide a formal treatment of the correlation between mu-
tation rates and selection coefficients induced by hetero-
geneity in mutation rates and the probability of fixation.
Figure 1 gives a schematic illustration of a case where there
are 40 possible beneficial mutations, with mutation rates
and selection coefficients that are uncorrelated (fig. 1, left).
Whereas this distribution over possible beneficial muta-
tions, which we call the “nominal” distribution, weights all
mutations equally, mutations with higher mutation rates
enter the population more frequently, producing a second
joint distribution for de novo mutations that is reweighted
linearly according to the mutation rate, thus shifting the
density to the right, toward mutations with higher rates
(fig. 1, center). We see in this case that the mutation rate
and selection coefficient are negatively correlated among
de novo mutations even though they were uncorrelated
among all possible beneficial mutations. Finally, the action
of natural selection favors mutations with higher selection
coefficients, transforming the de novo distribution into
the expected joint distribution of selection coefficients and
mutation rates among fixed mutations (fig. 1, right). In this
case we assume that the probability of fixations is given by 2s
(Haldane 1927), as would be the case in the strong-selection/
weak-mutation (SSWM) regime, so that this distribution is
derived from the de novo distribution by linearly reweight-
ing mutations according to their selection coefficient. We
see that besides shifting the distribution of fixed mutations
toward mutations with higher selection coefficients, this re-
weighting also produces an even stronger negative correla-
tion between selection coefficients and mutation rates among
fixed mutations, despite the fact that mutation rates and se-
lection coefficients were initially uncorrelated.

We proceed as follows with a more general treatment of
this problem. First, we define the distributions of interest
and explain the relations between them, which can be cap-
tured using the concept (from probability theory) of a size-
biased distribution (Arratia et al. 2019). We then describe
a simple model of mutagenesis and adaptation in which
the possible mutation rates and selection coefficients each
take on just two or three discrete values. Using this model,
which is easily visualized, we show that the correlation be-
tween mutation rates and selection coefficients can exhibit
any pattern of signs across the three distributions. We then
derive a more general theory of joint size biasing via muta-
tion and selection and use this model to explain why draw-
ing mutation rates and selection coefficients from indepen-
dent exponential distributions tends to result in a negative
correlation between selection coefficients and mutation rates
among fixed mutations.
Nominal De novo Fixed

µ
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Figure 1: Mutation and selection reweight the joint distribution of mutation rates and selection coefficients. Shown are three joint distributions of
mutation rate, m, and selection coefficient, s (both in arbitrary units). The Pearson correlation is given by r. The nominal distribution shows the set
of possible beneficial mutations. The production of variation by mutation yields a de novo distribution weighted by mutation rate, shifting the
density to the right. The fixed distribution reflects both this rightward shift and an upward shift due to selection. Such shifts can result in substantial
correlations in the de novo and fixed distributions even if there is no correlation in the nominal distribution.
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To illustrate how these ideas may be applied to actual
cases, we then consider experimental and clinical data, be-
ginning with high-throughput data on mutation and fit-
ness for dengue virus variants from Dolan et al. (2021).
For beneficial variants, we show that the resulting fixed dis-
tribution shows a negative correlation between mutation
rates and selection coefficients, with a magnitude that
depends on the mutation supply (Nm). We also consider
empirical data on the joint distribution of mutation rates
and selection coefficients based on a deep mutational scan-
ning study of the TP53 gene (encoding tumor protein p53),
which allows for the construction of a nominal distribution
of potential changes to TP53. We then use clinical preva-
lence data for tumor-associated mutations to represent the
fixed distribution (i.e., a distribution reflecting both muta-
tion and selection), revealing relatively modest effects on
the fixed distribution. A stronger effect is seen when tumor-
associated mutations are separated into those arising by
single-nucleotide or multinucleotide mutations: the multi-
nucleotide mutations that are observed clinically, in spite of
lower mutation rates, tend to have larger selection coefficients.

We conclude with a prescription for future work. For
mutation-limited evolution, the theory of mutation-fitness
associations describes how a potential distribution of pos-
sibilities is transformed into an actual one. The data neces-
sary to evaluate this theory empirically are increasingly
available, as technological advances continue to facilitate
the large-scale measurement of mutation rates and selec-
tion coefficients. Further work is needed to understand
what kinds of transformations are most likely to occur in
nature and what observed transformations can tell us about
underlying adaptive processes.
Analytical Results

Here, we consider the joint distribution of mutation rates
and selection coefficients for beneficial changes from three
different perspectives. First, we can ask about the joint dis-
tribution of selection coefficients and mutation rates when
we pick uniformly from some set of possible mutations.
For example, if we have a DNA sequence of length ℓ, then
there are 3ℓ alternative sequences that differ by a single
nucleotide, out of which some number n are beneficial.
Any one of these n beneficial changes occurs by mutation
at some definite rate and has some definite selective advan-
tage. Accordingly, we could ask about the expected selec-
tion coefficient E(s), for instance, or the correlation be-
tween mutation rate and selection coefficient, when we draw
from these n possibilities uniformly at random. We call this
the “nominal” distribution and denote the expected selec-
tion coefficient and mutation rate of a draw from this dis-
tribution as Enom(s) and Enom(m), respectively. The nominal
distribution corresponds to the results of a typical deep
mutational scanning study that measures the effects of all
single-nucleotide variants (or in other designs, all amino acid
variants) or when we scan a model of context-dependent
mutation rates across the genome and calculate the muta-
tion rate for each possible mutation. This is also the distri-
bution relevant for determining the overall mutation rate,
since the total beneficial mutation rate is the sum of the
mutation rates to each possible beneficial alternative.

Second, in addition to the joint distribution of selection
coefficients and mutation rates among mutational possibil-
ities, we can consider the distribution of spontaneously
occurring mutations. Here, instead of picking, for instance,
a random position and a random nucleotide, as in the no-
minal distribution, we ask about the distribution of the next
beneficial mutation to occur. This distribution differs from
the nominal distribution in that mutations with higher rates
are more likely to be the next mutation to occur. This is also
the distribution that we observe in mutation accumulation
experiments and the distribution relevant to determining
the average selection coefficient among new mutations.
We call this the distribution of “de novo” mutations and
write the expected selection coefficient and mutation rate
of a new mutation as Ede novo(s) and Ede novo(m), respectively.

Third, we can consider mutations that become fixed in
evolution, that is, those that actually contribute to adapta-
tion. This is equivalent to asking about the selection coef-
ficient and mutation rate of the next variant that is going to
fix in the population. We call this distribution the “fixed”
distribution and write the expected selection coefficient
and mutation rate of the next mutation to fix as Efixed(s)
and Efixed(m), respectively.

To understand the necessary relationships between
these distributions, it is helpful to introduce the concept
of a size-biased distribution (Arratia et al. 2019). In partic-
ular, given a nonnegative random variable X, we can define
the size-biased distribution as the random variable X *,
where P(X * p x) is proportional to xP(X p x) for any
nonnegative value x. Thus, the size-biased distribution is
a reweighted version of the original probability distribu-
tion. More specifically, it is the probability distribution ob-
tained when the new weights on each outcome are given by
the value of that outcome. This reweighting favors larger
outcomes and results in a systematic change to the mom-
ents of the distribution.

More precisely, the kth raw moment of the size-biased
distribution is determined by the (k 1 1)th moment of
the original distribution by E((X*)k) p E(Xk11)=E(X). Size
biasing is well known to result in certain counterintuitive
phenomena (Ross 2014, sec. 7.7). For example, if the num-
ber of children per family is given by the random variable
X, then the number of children in a random child’s family
is given by X *, so that the average number of siblings of a
random child is greater than would be expected based on
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the size of an average family. Another classical example is
that if the time interval between buses is distributed as X,
the expected time spent waiting for a bus, for a person
who arrives at the bus stop at a random time, is E(X*)=2
instead of the shorter time E(X)=2, because a person is
more likely to arrive in a longer interval between buses
than a smaller one.

The concept of size biasing is helpful in thinking about
the relationships between the nominal, de novo, and fixed
distributions because these distributions are related to each
other by size biasing according to either the mutation rate
or the selection coefficient. In particular, the de novo dis-
tribution is obtained by size biasing the nominal distribu-
tion with respect to the mutation rate. In symbols, we write
this as

Pde novo(m p mi and s p si) p
miPnom(m p mi and s p si)

Enom(m)
,

ð1Þ

where si and mi are the selection coefficient and mutation
rate for mutation i, respectively.

This size biasing means that the average mutation rate
of mutations observed in the de novo distribution will be
at least as large as the average mutation rate with respect
to the nominal distribution. In fact, using Var to denote
the variance, the increase in the expected mutation rate is
given by

Ede novo(m) 2 Enom(m) p
Varnom(m)

Enom(m)
≥ 0: ð2Þ

Importantly, when a nonzero correlation exists between
mutation and selection in the nominal distribution (a situ-
ation that, as argued below, often occurs by chance when
the number of possible beneficial mutations is small or
moderate), size biasing the nominal distribution with re-
spect to the mutation rate will also affect the mean selection
coefficient. In particular, using Cov for the covariance,

Ede novo(s) 2 Enom(s) p
Covnom(m, s)

Enom(m)
: ð3Þ

Equations (2) and (3) are an immediate consequence of
more general results on the effects of size biasing that are
derived in the appendix as equations (A2) and (A5), re-
spectively. Indeed, the form of these equations will likely
be familiar to many readers, as they are directly analogous
to Fisher’s fundamental theorem and Robertson’s second-
ary theorem, respectively (see Queller 2017). This is be-
cause the fitness distribution after selection is the size-
biased transformation of the fitness distribution before
selection, and the response to selection corresponds to
size biasing the distribution of another phenotype (a sec-
ond random variable) according to its fitness. Thus, these
classical results for changes due to selection in a single
generation can likewise be derived from equations (A2)
and (A5), respectively, and provide an easy mnemonic
for the results of size biasing more generally.

Whereas the de novo distribution is obtained from the
nominal distribution by size biasing with respect to muta-
tion rate, the fixed distribution is obtained from the de
novo distribution by reweighting with respect to the prob-
ability of fixation. Although in general the probability of
fixation p is a function of the entire de novo distribution
as well as other population-genetic parameters such as the
population size (e.g., see Gerrish and Lenski 1998; Neher
2013; McCandlish and Stoltzfus 2014), here we assume
conditions, explained as follows, under which this reweight-
ing can be treated as a case of size biasing proportional to s.
As the mutation supply Nm becomes small, new mutations
enter the population (i.e., originate) one at a time, and each
allele can be assigned an individual probability of fixation
ps. This is called the origin-fixation regime or, when con-
sidering beneficial alleles with s ≫ 1=N e, the SSWM re-
gime (Gillespie 1994; McCandlish and Stoltzfus 2014).
For a Wright-Fisher population, the probability of fixation
per Haldane (1927) is ps ≈ 2s when s is small relative to 1,
and a probability of fixation proportional to s holds for a
wide class of models beyond the Wright-Fisher model
(Patwa and Wahl 2008) so long as s is small relative to 1
and large relative to 1=N e. Thus, our mathematical ap-
proach based on size biasing proportional to s corresponds
precisely to this set of mutation-limited conditions where
the fixation of beneficial mutations is proportional to s,
so our mathematical results are valid for those conditions.
In a more complex scenario in nature or in the population
simulations below, the emergence of the fixed distribution
may reflect nonproportionality due to clonal interference and
saturation of the probability of fixation as it approaches 1
when s becomes large.

More formally, assuming that the probability of fixation
is a linear function of the selection coefficient, we have

Pfixed(m p mi and s p si)

p
siPde novo(m p mi and s p si)

Ede novo(s)

ð4Þ

p
misiPnom(m p mi and s p si)

Enom(ms)
; ð5Þ

where the second line shows that we can also derive the
fixed distribution from the de novo distribution by re-
weighting each class of mutations i according to the prod-
uct of its mutation rates and selection coefficients misi. Sim-
ilarly to the difference between the nominal and de novo
distributions, moving from the de novo distribution to
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the fixed distribution will typically change the expected se-
lection coefficient and expected mutation rate, with

Efixed(s) 2 Ede novo(s) p
Varde novo(s)

Ede novo(s)
≥ 0 ð6Þ

and

Efixed(m) 2 Ede novo(m) p
Covde novo(m, s)

Ede novo(m)
: ð7Þ

Equations (6) and (7) are again immediate consequences
of equations (A2) and (A5).

Correlation between Mutation Rates
and Selection Coefficients

So far we have discussed the fact that the mean mutation
rate and selection coefficient of mutations may differ de-
pending on whether we consider random genetic pertur-
bations (nominal distribution), random mutations intro-
duced into a population (the de novo distribution), or
random fixed mutations (the fixed distribution). However,
our main interest here is in asking about whether there is
a systematic relationship between mutation and selection
and how this relationship appears from each of these per-
spectives. We have already seen that such systematic rela-
tionships are important, as equations (3) and (7) show
how the covariance between mutation rates and selection
coefficients in the nominal and de novo distributions de-
termine how the means differ between these three joint
distributions. Similarly, measures of association can some-
times have intuitive biological meanings in their own right.
For example, the sign of the correlation between mutation
rates and selection coefficients in the nominal distribution
determines whether the relationship between mutation
rates and selection coefficients increases or decreases the
expected rate of adaptive substitutions. This is because
this correlation has the same sign as Covnom(m, s) p
Enom(ms) 2 Enom(m)Enom(s), which itself is simply the differ-
ence between a term proportional to the rate of adaptive
substitutions, Enom(ms), and a second term proportional
to what the rate of adaptive substitutions would be if mu-
tation rates and selection coefficients were independently
distributed, Enom(m)Enom(s). Later we will see that the corre-
lation between mutation rates and selection coefficients in
the fixed distribution has a similar interpretation in terms
of whether the relationship between mutation rates and se-
lection coefficients increases or decreases the probability
of parallel evolution.

Clearly, the simplest possible case is when mutation
and selection are completely independent. In particular, if
Pnom(m p mi and s p si) p Pnom(m p mi)Pnom(s p si) for
all i, then Pde novo(m p mi and s p si) p (miPnom(m p mi)=
Enom(m))Pnom(s p si). Thus, if mutation and selection are
independent with respect to the nominal distribution, then
they are also independent with respect to the de novo dis-
tribution. Moreover, the de novo distribution of selection
coefficients remains unchanged relative to the nominal dis-
tribution, and the de novo distribution of mutation rates is
simply the size-biased version of the nominal distribution
of mutation rates. Similarly, Pfixed(m p mi and s p si) p
(miPnom(m pmi)=Enom(m))(siPnom(s p si)=Enom(s)), so that
the fixed distribution corresponds to independent draws
from the sized-biased distribution of mutation rates and
the size-biased distribution of selection coefficients. Thus,
in the case of exact independence between mutation and
selection, this independence is maintained in all three dis-
tributions. Importantly, as we shall see, exact indepen-
dence is rarely realized when considering a specific finite
set of mutations, which typically leads to substantial depar-
tures from these simple expectations.

As another simple scenario, consider only two possible
mutation rates and two possible selection coefficients.
For convenience, we will work with relative mutation rates
and selection coefficients, so that we will write the lower
mutation rate as 1 and the larger mutation rate as B 1 1
and write the lower selection coefficient as 1 and the larger
selection coefficient as K 1 1. For this case it is also helpful
to be able to work with the individual probabilities for
the four possible combinations of mutation rate and selec-
tion coefficient. These probabilities are written as pnom

1,K , for
example, referring to the probability of observing the lower
mutation rate and the larger selection coefficient when
drawing from the nominal distribution; likewise, pfixed

B,K

refers to the probability of observing the greater selection
coefficient and greater mutation rate when drawing a ran-
dom fixed mutation. For example, we will write pde novo

B p
pde novo

B,1 1 pde novo
B,K for the marginal frequency of the higher mu-

tation rate in the de novo distribution and Varnom(p(s)) p
pnom

K (1 2 pnom
K ) as the variance in the frequency of the high

versus low selection coefficient under the nominal distribu-
tion. Finally, let Dnom p pnom

B,K pnom
1,1 2 pnom

B,1 pnom
1,K , which is a

measure of the association between the high and low levels
for the mutation rate and selection coefficient.

With this basic setup in hand, we can now consider the
Pearson’s correlation r between mutation rate and selec-
tion coefficient for our three distributions. In particular,
we have

rnom p
Dnomffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varnom(p(m))Varnom(p(s))
p , ð8Þ

rde novo p
B

Enom(m)2

Dnomffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varde novo(p(m))Varde novo(p(s))

p , ð9Þ

rfixed p
BK

Enom(ms)2

Dnomffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varfixed(p(m))Varfixed(p(s))

p : ð10Þ
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Note that B, K, m, and s are all positive and variances are
nonnegative (and must be positive for the correlation to
be defined), so that the sign of each expression depends
only on Dnom. Thus, we see that in the case where there
are only two selective and two mutational classes, the sign
of the correlation between mutation rates and selection co-
efficients is the same between all three distributions. This is
illustrated in the first two rows of figure 2. In the first row,
while the mean selection coefficient and mean mutation
rate change across the three distributions, all three distri-
butions remain uncorrelated. In the second row, the three
distributions are all negatively correlated with the strength
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Figure 2: Correlations of mutation rates and selection coefficients under some simple models. Here, mutation rates and selection coefficients each
take on just two or three values. The first three columns show the nominal, de novo, and fixed distributions, with long lines giving the regressions of
selection coefficient on mutation rate (solid) and mutation rate on selection coefficient (dotted). These lines intersect at the bivariate mean. The
shorter lines are principal component axes with lengths corresponding to51 SD. The fourth column shows how the Pearson’s correlation changes
from nominal (N) to de novo (D) to fixed (F).
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of the negative correlation increasing from nominal to de
novo to fixed. Note that the negative correlation also results
in a slightly nonmonotonic pattern of change in the mean
selection coefficient and mean mutation rate.

While the sign of the correlation of mutation rates and
selection coefficients remains constant across all three dis-
tributions in the two-class case, if we extend the possibili-
ties to three classes each of mutation rate and selection
coefficient, the behavior of the correlation between muta-
tion rates and selection coefficients becomes far less con-
strained. For example, the third row of figure 2 shows that
mutation and selection can be uncorrelated in the nominal
and de novo distributions but correlated among fixed mu-
tations, unlike the case in row 1, which also has exactly four
symmetric and equally sized m, s categories.

More generally, we provide examples in figure S1 showing
that, given just three distinct values for mutation rate and se-
lection coefficient, any pattern of positive and negative signs
is possible for the induced covariances. In addition, al-
lowing mutation rates and selection coefficients to have
different ranges of relative rates means that the signs of
the correlations for the de novo and fixed distributions
may depend on these specific ranges (fig. S2).

What explains this counterintuitive behavior? The key
observation here is that the lower moments of a size-biased
distribution depend on the higher moments of the original
distribution. Thus, for example, the sign of the correlation
between mutation rate and selection coefficient for the de
novo distribution depends on one of the third mixed mom-
ents of m and s in the nominal distribution and specifically
has the same sign as Enom(m2s)Enom(m) 2 Enom(m2)Enom(ms)
(this follows from eq. [A7], which gives the general formula
for the variances and covariances of mutation rates and se-
lection coefficients for all three joint distributions). Simi-
larly, the fixed distribution depends on moments up to
the fourth mixed moments of m and s, and its correla-
tion coefficient has the same sign as Enom(m2s2)Enom(ms) 2
Enom(m2s)Enom(ms2). Thus, many of the apparently parad-
oxical results given above reflect this dependence on the
higher mixed moments of the nominal distribution.
Effects of a Finite Mutational Target Size

Our results above show that if the distributions of muta-
tion rates and selection coefficients are independent for
the nominal distribution, then they are independent for
all three distributions. However, in reality, the distributions
are unlikely to be exactly independent, if only because the
number of possible beneficial mutations in a given case is
finite and may be quite small, for example, exactly nine
beneficial options reported by Rokyta et al. (2005) or
11 beneficial variants that occurred at sufficient rates to
measure both s and m in Maclean et al. (2010). To illustrate
the effects of having only a finite number of beneficial mu-
tations, we consider the case where the underlying distri-
butions of mutation rates and selection coefficients (which
the realized possible beneficial mutations are sampled from)
are independent and exponentially distributed, and we con-
trast our expectations for an infinite-sites model to the case
where there are only a finite number of possible beneficial
mutations.

The infinite-sites case can be treated completely analyt-
ically. In particular, note that the size-biased version of an
exponential distribution is a gamma distribution with the
same rate and with a shape parameter of 2. Since a gamma
distribution with an integer shape parameter K is the sum
of K independent exponential distributions, we see that size
biasing the exponential is equivalent to taking the sum of
two independent exponential random variables. Thus, for
an infinite-sites model with independent exponentially dis-
tributed mutation rates and selection coefficients, the mean
mutation rate in the de novo distribution is twice that of
the mean mutation rate in the nominal distribution, and
the mean mutation rate and mean selection coefficient are
both doubled in the fixed distribution relative to the nom-
inal. More broadly, mutation rates and selection coeffi-
cients are independent random variables for all three of
the nominal, de novo, and fixed distributions, where the
de novo distribution has gamma-distributed mutation rates
with a shape parameter of 2 and exponential selection co-
efficients and the fixed distribution is gamma distributed
for both mutation rates and selection coefficients.

However, these simple results no longer hold if we relax
the infinite-sites assumption and consider a nominal dis-
tribution based on a finite sample from independent expo-
nential distributions, as shown in figure 3. For instance, fig-
ure 3A shows a case in which the nominal distribution
consists of 20 beneficial mutations, which are simulated
as 20 pairs of m and s values drawn independently from
identical exponential distributions. From the nominal to
the de novo to the fixed, the correlation shifts from mildly
positive to somewhat more positive to substantially nega-
tive. To develop better intuitions for the typical size of the
correlations that arise due to size biasing a random sam-
ple and the variability in the signs of these correlations, in
figure 3B we have repeated this process 1,000 times for finite
nominal distributions with 10, 100, or 1,000 possible bene-
ficial mutations.

While for increasingly large mutational targets the mag-
nitude of the correlation between selection coefficients and
mutation rates decreases (as we would expect, since the sam-
ple correlation coefficient is a consistent estimator of the un-
derlying correlation), we see that the Pearson’s correlations
often differ substantially from zero with 1,000 beneficial
mutations and may become large with 10 or 100 beneficial
mutations. Moreover, we observe a tendency for the fixed
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distribution to have a more negative correlation coeffi-
cient than the nominal distribution—that is, the point
(rnom, rfixed) tends to fall below the y p x diagonal shown
in figure 3B (the fractions above and below this diagonal
in each plot are given in the upper right corners, above
and below the y p x diagonal, respectively). Thus, for ex-
ample, for a small mutational target size of 10 beneficial
mutations, we observe a more negative correlation for the
fixed distribution relative to the nominal distribution 74%
of the time, and this value falls slightly to 69% for a moder-
ately sized mutational target of 100 beneficial mutations.

While the induced correlations shown in figure 3 most
frequently result in a more negative correlation in the fixed
than the nominal, we also see a minority of samples show-
ing strong positive correlations, where the magnitude of
these positive correlations is larger than the typical magni-
tude of a negative correlation (fig. 3B). Intuitively, both
patterns arise because the correlation coefficient is strongly
influenced by whether the set of beneficial mutations in-
cludes an outlier with both a large mutation rate and large
selection coefficient. In most samples there is no such
mutation (i.e., no density in the upper right of fig. 3A),
and this tends to produce a negative correlation in the fixed
distribution. However, in the minority of samples when
such a mutation is included by chance, this outlier muta-
tion is strongly upweighted in the fixed distribution, so
that the correlation is dominated by the comparison be-
tween this outlier and the bulk of the other beneficial mu-
tations, resulting in a positive correlation (for an example,
see fig. S3A).

More generally, this relationship between the shape of the
nominal and the sign of an induced correlation in the fixed
distribution provides intuitions for what to expect in natural
systems, at least when there is no prior biological reason to
suspect the nominal to show a systematic association of s
and m for beneficial mutations. Because natural distributions
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for both mutation rates and beneficial selection coefficients
are typically L shaped or positively skewed (i.e., few muta-
tional hot spots and few strongly beneficial mutations sepa-
rate from the bulk of beneficial mutations near s p 0), the
nominal distribution is unlikely to include a mutation with
both an unusually large selection coefficient and an unusu-
ally high mutation rate. For such reasons, one may expect
negative correlations in the fixed distribution to be more
common, with occasional exceptions when the nominal
happens to include a rare beneficial mutation favored both
by a high mutation rate and a large fitness benefit.

Nonparametric Measures of Association

The results above express the relationship between muta-
tion rates and selection coefficients based on the Pearson’s
correlation, which is a summary of the strength of the
linear relationship between mutation rates and selection
coefficients. While the Pearson’s correlation is a natural
measure of association in this context because of the im-
portance of the covariance in determining, for instance,
the change in the mean selection coefficient between the
nominal and de novo distributions, it is also reasonable
to consider other forms of association between mutation
rates and selection coefficients.

One such alternative approach is to ask whether there is
a systematic relationship between the rank ordering of mu-
tation rates and selection coefficients. That is, if one draws
two mutations with different mutation rates and selection
coefficients, what is the probability that the mutation with
the lower mutation rate also has the lower selection coeffi-
cient? Taking this probability of concordance between mu-
tation rates and selection coefficients and subtracting the
corresponding probability of discordance results in a non-
parametric measure of correlation known as Goodman-
Kruskal’s g (Goodman and Kruskal 1954), which takes
values between 11 and 21 and can thus be directly com-
pared with our results for the Pearson’s correlation. Spe-
cifically, if we take two random draws from the nominal
distribution with selection coefficients s(1) and s(2) and muta-
tion rates m(1) and m(2) and define Pnom(concordance) p
Pnom(s(1) ! s(2) and m(1) ! m(2))1Pnom(s(2) ! s(1) and m(2) ! m(1))
and Pnom(discordance) p Pnom(s(1) ! s(2) and m(1) 1 m(2)) 1
Pnom(s(2) ! s(1) and m(2) 1 m(1)), then g can be calculated as

gnom p
Pnom(concordance) 2 Pnom(discordance)

Pnom s(1) ( s(2) and m(1) ( m(2)ð Þ , ð11Þ

where we define gde novo and gfixed similarly and the denom-
inator arises because we are conditioning on the two mu-
tation rates and selection coefficients being distinct.

It is useful to compare the results for Goodman-Kruskal’s
g to the results we developed above for the Pearson’s cor-
relation. In terms of results for simple theoretical distribu-
tions, it is easy to show that gnom p gde novo p gfixed p 0 if
mutation rates and selection coefficients are independently
distributed for any of the three distributions. Moreover, for
the simple case with only two distinct mutation rates and
selection coefficients it is also easy to show that gnom p
gde novo p gfixed, so that not only are the signs of the three
correlations the same (as was the case for Pearson’s r) but
the three coefficients are in fact identical (see eqq. [A20],
[A22]). While these simple results suggest the intuition that
the association between mutation rates and selection coeffi-
cients should be similar across all three distributions, this
intuition is again strongly misleading. In more complex
examples, Goodman-Kruskal’s g (like the Pearson’s corre-
lation) can take any sign pattern across the three distribu-
tions, as shown in figure S4. Similarly, in figure S5 we show
that (1) finite mutational target size can also induce sub-
stantial changes in the magnitude and sign of g across the
three distributions, even when the mutation rates and selec-
tion coefficients are independent in the underlying distribu-
tion that this finite mutational target is drawn from, and
(2) in the case where the underlying marginal distributions
for mutation rates and selection coefficients are exponen-
tial, this finite sample effect tends to result in gfixed ! gnom,
similar to what we observed for Pearson’s r.
Empirical Examples

As noted above, in principle mutation rates and selection
coefficients may show a wide variety of strengths and pat-
terns of association across the nominal, de novo, and fixed
distributions. Therefore, it is of interest to consider the
patterns of association observed in natural joint distribu-
tions. Here, we consider a joint nominal distribution of se-
lection coefficients and mutation rates reported for dengue
virus (Dolan et al. 2021) as well as data pertaining to the
nominal and fixed distributions for mutations to TP53 in
human cancers (Giacomelli et al. 2018).
A Nominal Distribution for the Dengue Virus Genome

Dolan et al. (2021) carried out serial passages of dengue
virus on human host cells and then used a high-accuracy
deep-sequencing method to estimate the fitnesses of all
possible 32,166 single-nucleotide variants across the entire
dengue virus genome. The same study provides estimates
for the mutation rates of 12 types of nucleotide substitu-
tions, uncovering the presence of a strong mutation bias
toward C → T transitions (note that, because the dengue
virus genome is single stranded, a general nucleotide sub-
stitution model has 12 rates instead of the usual six). We
identified 237 single point mutations that had 95% confi-
dence intervals (CIs) for relative fitness that exceed 1 (using
the high-confidence dataset of Dolan et al. 2021).
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A substantial fraction of these mutations were strongly
beneficial, with the largest estimated selection coefficient
being 24. While such large s values are unusual in studies
of population genetics and carry considerable uncertainty,
very large selection coefficients are expected in this context
given that (1) direct measurement of total population fit-
ness showed an increase of one to two orders of magnitude
(see fig. 1 of Dolan et al. 2021) and (2) these dramatic in-
creases were not due to a succession of fixed mutations
with incremental effects but to partial increases in the fre-
quency of multiple large-effect mutations. Many-fold in-
creases in fitness are biologically plausible when infectivity
on host cells in culture is low and can increase greatly, as is
the case for some of these mutations (Dolan et al. 2021).
However, because these large selection coefficients violate
our assumption that the probability of fixation is propor-
tional to s, in what follows we will consider both a direct
application of our previous theory—which is like assuming
that the reported s values can be rescaled to smaller abso-
lute values—and simulations that capture the saturation of
the probability of fixation (for large s) as well as clonal in-
terference between multiple adaptive lineages. More gener-
ally, our goal here is not to attempt to replicate the actual
population biology of dengue virus, which is complex; we
are merely taking advantage of an empirical, genome-wide
nominal distribution that has been measured in dengue vi-
rus for a single environment, and considering the conse-
quences of this distribution in light of our analytical theory
and in the context of relatively simple population-genetic
simulations.
Importantly, while the distribution of beneficial selec-
tion coefficients ranges over several orders of magnitude,
so do the observed mutation rates (fig. 4A), and there are
strong outliers in terms of both selective and mutational
advantage. In particular, the estimated rates of C → T
transitions is 22 times larger than the next highest muta-
tion rate. Overall, there appears to be a weak negative asso-
ciation between mutation rates and selection coefficients in
the nominal distribution, with a Goodman-Kruskal’s g of
20.16 (P ! 1026) and a statistically nonsignificant Pear-
son’s r of 20.06 (indicating that we cannot reject the hy-
pothesis that the underlying distribution of mutation rates
and selection coefficients is uncorrelated).

However, this negative association is amplified in the de
novo distribution, largely because of the very high rate of
occurrence of the C → T transitions (the three beneficial
C → T transitions make up ∼40% of all de novo muta-
tions), and this results in a Pearson’s correlation coefficient
of r p 20:22 (P ! 1026) and a Goodman-Kruskal’s g of
20.24 (P ! 1026). Thus, a slight negative association of
mutation rates and selection coefficients among distinct
advantageous mutations is transformed into a substantial
negative association among de novo mutations. The nega-
tive association also results in a substantial decrease in the
mean selection coefficient from 1.14 in the nominal distri-
bution to 0.73 in the de novo distribution.

Finally, we can consider the predicted joint distribu-
tion of mutation rates and selection coefficients for fixed
mutations. Applying our analytical theory to the de
novo distribution results in r p 20:28 (P ! 1026) and
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Goodman-Kruskal’s g p 20:47 (P ! 1026), indicating a
moderate negative association that reflects both the fixa-
tion of mildly beneficial changes favored by mutation
(e.g., ∼23% of the total fixed mutations are the three ben-
eficial C → T transitions) and an enrichment for low-rate
mutations with large selection coefficients (e.g., the aver-
age mutation rate is 72% larger among de novo mutations
than it is among fixed mutations).

Whereas figure 4C shows a fixed distribution based on
linear size biasing (i.e., multiplying by s), in reality we
might expect departures from this simple theory because
the survival probability for a new mutation saturates near
its maximum of 1 for large s, and because of competition
between multiple beneficial mutations (i.e., clonal inter-
ference; Gerrish and Lenski 1998). To address these addi-
tional factors, we also conducted population simulations
using SLiM (ver. 3.4; Messer 2013) to estimate the fixed
distribution. For each run of the simulation, we recorded
the identity of all adaptive mutations on the first sequence
to reach fixation, repeating this process until we obtain
1,500 beneficial substitutions. To consider a wide range of
population-genetic conditions, we let the population size
vary over four orders of magnitude. This produced a wide
degree of variation in the expected number of beneficial
mutations per generation, which we write as Nmtot (popula-
tion size times the total beneficial mutation rate).

The results of these simulations are shown in figure 5.
The resulting joint distribution for the mutation rates and
selection coefficients of fixed mutations depends on muta-
tion supply (Nmtot), as shown by the examples in figure 5A
and 5B, which represent the lowest and highest values for
mutation supply, respectively. For low values of mutation
supply, the fixed distribution (fig. 5A) is similar to the dis-
tribution based on linear enrichment by s (fig. 4C) but with
less of an enrichment for large selection coefficients. How-
ever, for large values of mutation supply (fig. 5B) we see a
considerable decrease in the number of fixations of high-
rate C → T transitions and instead see an enrichment for
large selection coefficients. This results in an overall decrease
in the magnitude of the negative correlation between mu-
tation rates and selection coefficients among fixed muta-
tions (fig. 5C) but a relatively constant value for Goodman-
Kruskal’s g (fig. S6). Intuitively, this difference between g

and r arises because the mutations whose contributions to
the fixed distribution change the most as a function of mu-
tation supply are the high-m, low-s outliers and the low-m,
high-s outliers, and these outliers have much more leverage
on r than g because the latter is nonparametric and thus
reflects only the ranks and not the distance of these outliers
to the bulk of the other mutations.
Nominal and Fixed Distributions for TP53
Mutations in Human Cancer

In the previous section, we used empirical data to infer the
nominal distribution of possible mutations, which we used
to derive predictions for the fixed distribution using simple
population-genetic models and computer simulations. How-
ever, one important limitation of that dataset is the lack of
information about the actual set of mutations that reached
fixation in nature, which is why we turned to evolutionary
simulations.

In the case of somatic mutations in cancer, useful data
are available relating both to the nominal distribution and
to the distribution of variants after mutation and somatic ex-
pansion (i.e., cancerous growth). One example of a protein
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for which such data are available is p53, encoded by the
TP53 gene—the most frequently mutated gene in many
forms of human cancer, sometimes called “the guardian of
the genome” for its role in conferring genetic stability and
preventing both genome mutation and cancer formation
(Hainaut and Pfeifer 2016). Using deep mutational scan-
ning, Giacomelli et al. (2018) generated all 7,880 possible
nonsynonymous amino acid changes to the p53 protein
and measured the growth rate that each variant conferred
on human lung carcinoma cells in the presence and absence
of endogenous p53. As with the previous dataset, we focus
only on those amino acid changes that confer a selective ad-
vantage (combined enrichment score Rall 1 0; see “Meth-
ods”). In the context of studying cancer, a selective advan-
tage refers to a somatic growth rate greater than that
conferred by the wild-type sequence, and thus a large frac-
tion (31%) of changes are advantageous (i.e., beneficial for
tumor growth) due to loss of the protective function of p53.
As explained in “Methods,” selection coefficients from dif-
ferent p53 deep mutational scanning studies (Giacomelli
et al. 2018; Kotler et al. 2018; Staller et al. 2022) correlate
well (Carbonnier et al. 2020), but the absolute scale of
the selective advantage is uncertain. We therefore consider
three different scales: the unusually high s values based on
Giacomelli et al. (2018), the same values divided by 10, and
the same values divided by 100. Note that changing the scale
of s does not affect calculated correlations based on size
biasing but may strongly influence the relative chances of
fixation in population-genetic simulations.

To empirically characterize the relative mutation rates
of each possible amino acid change, we used data from the
Pancancer Analysis of Whole Genomes database (Wein-
stein et al. 2013). We estimated the relative mutation rates
using a trinucleotide context model, so that the rates of
each nucleotide change are specified given the identity of
the bases that immediately flank the mutated base (“Meth-
ods”; fig. S7). We then calculated the estimated relative
mutation rate for each amino acid change as the sum of
the rates for each of its associated single-nucleotide changes.
Note that these are relative rates: the absolute scale is not
known (see “Methods”).

Here, we combine these empirically estimated muta-
tion rates and selection coefficients to construct a no-
minal distribution that contains mutation rates and selec-
tion coefficients for all 1,489 possible beneficial amino acid
changes (fig. 6A). The shape of the nominal distribution for
TP53 is different than the one for dengue virus (fig. 5A),
particularly with regard to the presence of beneficial muta-
tions that have both high selection coefficients and high
mutation rates, which were absent in the dengue virus data-
set. While the correlation between mutation rates and selec-
tion coefficients in the nominal distribution is similar to
that for dengue virus, being close to zero and slightly neg-
ative (Pearson’s correlation coefficient r p 20:04 with
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P p 0:03; g p 20:09 with P ! 1026), the transforma-
tions to the de novo distribution (fig. 6B) and the fixed dis-
tribution based on linear size biasing (fig. 6C) are quite dif-
ferent. In particular, the de novo distribution is almost
uncorrelated, while the fixed distribution becomes slightly
positively correlated (r p 0:10 with P ! 1026; Goodman-
Kruskal’s g p 0:04 with P ! 1026). These results are con-
sistent with the intuition that the presence of mutations
with large mutation rates and also large selection coeffi-
cients will tend to promote a positive correlation between
m and s among fixed mutations.

The analog of the fixed distribution for TP53 variants
after mutation and selection is the distribution of muta-
tions in clinical samples from cancer patients. Here, we
use frequency data from the GENIE database of the Amer-
ican Association for Cancer Research (AACR Project GE-
NIE Consortium 2017), allowing for the assignment of ob-
served frequencies to each possible beneficial amino acid
change identified in the nominal distribution (“Methods”).
The distribution of fixed mutations shown in figure 7A
reveals an even stronger induced positive correlation than
expected from the linear enrichment used above (r p 0:22
with P ! 1026; g p 0:08 with P ! 1026) as well as an in-
creased mean selection coefficient among fixed mutations
of �s p 3:55. Because one explanation for this increased
enrichment for large selection coefficients is competition
between beneficial mutations due to clonal interference
(Gerrish and Lenski 1998), we again conducted population
simulations with a variable mutation supply Nmtot (see
“Methods”). We find a much closer fit with the observed
data at an intermediate mutation supply (fig. 7B). How-
ever, the correlation between mutation rates and selection
coefficients is still only approximately 0.1 for both r and g,
considerably lower than the value of 0.22 seen in the ob-
served TP53 data. In general, if the estimated mutation
rates and selection coefficients were fully accurate, the
observed frequencies in the fixed distribution should be
continuous functions of the mutation rate and selection
coefficient (plus Poisson-distributed noise in the numbers
of clinical observations), which is in contrast to the hete-
rogeneity we observe in figure 7A. Thus, while the pat-
tern of observed mutations supports the relevance of our
mutation rate and selection coefficient estimates to clin-
ical data, it also suggests the presence of additional unac-
counted factors, such as mutational heterogeneity not cap-
tured in the trinucleotide model or discrepancies between
the laboratory estimates of selection coefficients and the
selection coefficients that are relevant during somatic
evolution.

Finally, we wished to probe the effect of mutation rate
further by considering multinucleotide mutations as an
additional class of mutations with rates much lower than
the single-nucleotide mutations treated above. While multi-
nucleotide mutations are often ignored in models, they
are known to occur widely in nature, at a combined rate
roughly two or three orders of magnitude lower than the
combined rate of single-nucleotide mutations (Smith et al.
2003; Schrider et al. 2011). Thus, one may imagine that
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multinucleotide variants frequent in clinical studies must
have had strong selective effects to compensate for their low
mutation rates, particularly in a clonal interference regime
with more frequently arising single-nucleotide mutations.

The study of TP53 by Giacomelli et al. (2018) men-
tioned above, like most deep mutational scanning studies,
covers all amino acid changes, not just the 150 (out of 380)
types of replacements possible via single-nucleotide muta-
tions; thus, it provides a nominal distribution of selection
coefficients for both the single- and the multinucleotide
variants. In addition, the data on cancer prevalence pro-
vides the fixed distribution for multinucleotide variants.
We do not have a detailed empirical distribution of muta-
tion rates for multinucleotide mutations. However, in the
absence of a detailed rate model, we can simply compare
two mutational categories and apply rank-order statistics
to the fitness distributions. If two values are drawn from
the same distribution, the chance that the first one is greater
is 50%; likewise, the null expectation that a randomly chosen
multinucleotide variant is fitter than a random single-
nucleotide variant is 50%, and the Mann-Whitney U-test
tells us how significant is any deviation from this value.

The results of this comparison are shown in figure 8.
The nominal distribution for beneficial changes consists of
3,204 multi- and 1,489 single-nucleotide variants (a ratio
of 2.15, slightly lower than the ratio of 2.42 in the entire
DFE). The multinucleotide variants have a slight advan-
tage, namely, a multinucleotide variant has a ∼61% chance
of being fitter than a single-nucleotide variant (Mann-
Whitney U-test, U=(n1#n2)p 0:61, P ! 1026, 95% CI p
0:59 to 0:62). This difference is magnified considerably in
the fixed distribution (i.e., clinical prevalence). In the fixed
distribution, multinucleotide variants are quite rare, re-
flecting their low mutation rates, but a random multinu-
cleotide variant is fitter than a random single-nucleotide
variant ∼88% of the time (Mann-Whitney U-test, U=
(n1#n2) p 0:88, P ! 1026, 95% CI p 0:82 to 0:94), signif-
icantly greater than in the nominal (95% bootstrap CIs for
the normalized Mann-Whitney test statistic U=(n1#n2)
based on 103 bootstrap samples do not overlap). The mean
selection coefficient �s for multiples and singles changes
from 2.14 (95% CI p 2:08 to 2:19) and 1.48 (95% CI p
1:42 to 1:54) in the nominal to 4.15 (95% CI p 3:77 to 4:56)
and 2.33 (95% CI p 2:24 to 2:43), respectively, in the fixed
distribution. We additionally test the robustness of our re-
sults by once again employing Goodman-Kruskal’s g to
characterize the association between mutation rates and se-
lection coefficients. This statistic shows a similar trend to
the Mann-Whitney U-test: for the nominal distribution of
beneficial changes g p 20:21 (P ! 1026), whereas for
the fixed distribution of beneficial changes g p 20:76
(P ! 1026). Thus, among TP53 mutations sampled from
human tumors, there is a strong tendency for the multinu-
cleotide mutations to have greater fitness, as measured in
the Giacomelli et al. (2018) laboratory experiments.
Discussion

The existing literature suggests a complex relationship be-
tween mutation and selection in determining the distribu-
tion of beneficial variants that contribute to adaptation
(Cano et al. 2023). For instance, the most common out-
comes of adaptation are often the ones that are highly mu-
tationally likely rather than the most beneficial; for ex-
ample, Giacomelli et al. (2018) report that 30% of TP53
tumor-associated mutations occur at five sites subject to
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Figure 8: Fixed multinucleotide mutations have stronger fitness effects. Amino acid changes are aggregated into two categories, depending on
whether they take place by a single-nucleotide or multinucleotide mutation. A, Nominal distribution of beneficial amino acid changes, showing a
slight advantage of multinucleotide changes, with mean s of 2.1 versus 1.5 for single-nucleotide changes. B, Observed distribution of fixed beneficial
amino acid changes, showing a much stronger advantage of multinucleotide changes, with mean s of 4.2 versus 2.3 for single-nucleotide changes.
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heightened CpG mutations, and Cannataro et al. (2018)
suggest that the most prevalent driver mutations are often
not the ones with the highest growth rates but high rates of
mutation. Likewise, Leighow et al. (2020) report that the
most clinically common imatinib-resistant variants among
leukemia patients are not the ones that provide the greatest
resistance but the ones that arise at higher rates of muta-
tion. Some results hint further that the less mutationally
likely outcomes tend to have higher fitness benefits and
vice versa; for example, figure 2 of Cannataro et al. (2018)
appears to show a negative correlation between selection
intensity and mutation rates (as does the comparable fig. 3
of Cannataro et al. 2019). In figure 2A of Watson et al.
(2020), the joint distribution of mutation rates and selec-
tion coefficients estimated for the 20 most common clonal
hematopoiesis mutations clearly shows a negative correla-
tion. Stoltzfus and Norris (2016) report that among studies
that measure fitness of nucleotide changes in laboratory
adaptation experiments, transversions (which happen at
a lower rate) seem to have slightly larger fitness benefits
than transitions.

Such results raise the question of what kinds of associa-
tions between mutation rates and selection coefficients are
expected to emerge, whether they will be strong enough to
observe, and whether they might tell us something impor-
tant about the nature of the relevant adaptive process.
Here, we have developed an initial theory to address such
questions, focusing on a regime of mutation-limited adap-
tation in which the distribution of fixed beneficial muta-
tions is related to the distribution of possible beneficial mu-
tations via a linear enrichment for mutations with high
mutation rates and a linear enrichment for mutations with
large selection coefficients.

Of interest is whether the process of adaptation induces
associations between mutation rates and selection coeffi-
cients among fixed mutations and whether these associa-
tions tend to be positive or negative. We find that, in the-
ory, a variety of effects are possible. This makes the issue
much more empirical, dependent on the shapes of joint
distributions found in nature. Using available data from
dengue virus, we find that a simple population-genetic
model of adaptation leads to a negative correlation be-
tween mutation rate and selection coefficient among fixed
mutations, one that becomes stronger when mutation sup-
ply is low. The data available on TP53 mutations allow us
to compare an observed fixed distribution (based on clin-
ical prevalence) to a nominal distribution based on deep
mutational scanning, as well as to compare this observed
fixed distribution to distributions obtained via population-
genetic simulations. For single-nucleotide changes, we
find a positive association of mutation rate and selection
intensity in clinical prevalence data. Simulations from the
nominal distribution also yield a mostly positive association.
However, when we compare single- to multinucleotide var-
iants, we observe a weak negative association in the nominal
distribution and a much stronger negative association in
the fixed distribution. That is, in clinical data based on
the prevalence of mutations among patients, the multi-
nucleotide changes, which emerge by mutation at a far
lower rate, appear to have considerably greater growth
advantages than single-nucleotide changes.

These two empirical nominal distributions (for dengue
virus and TP53) exhibit qualitative and quantitative differ-
ences that explain the opposition in sign of the induced
correlation between mutation rates and selection coeffi-
cients in the distribution of fixed mutations. In both distri-
butions, C → T transitions occur at the highest rate, but
mutation bias in the dengue dataset is much greater. In
the nominal distribution of dengue virus mutants, the mu-
tationally favored C → T transitions generally provide
only modest selective advantages, generating an L shape
reflecting the lack of options with both high mutation rate
and high selection coefficient. Based on our analytical
results, this shape of the nominal distribution will tend
to induce a negative correlation in the fixed distribution.
In contrast, in the case of TP53, due to both the lower mu-
tation bias in the nominal distribution and to clonal inter-
ference, selection coefficients have a considerably stronger
influence on the fixed distribution than mutation rates.
Thus, the theoretical framework developed here, together
with simulations, provides some useful guidance for un-
derstanding how associations between mutation rates and
selection coefficients are influenced by the nominal distri-
bution, its associated mutation biases, and population-
genetic conditions.

These empirical arguments must be interpreted cau-
tiously. Clearly, researchers conducting deep mutational
scanning studies have struggled to improve measurements
of fitness (and other functional effects) so that they are less
noisy and less likely to be confounded with mutability (e.g.,
Acevedo et al. 2014). Likewise, mutation accumulation
studies are designed to remove effects of selection so as
to accurately measure mutational spectra (Katju and Berg-
thorsson 2019). However, our analysis here, focusing spe-
cifically on correlations, subjects these data to a much
higher level of scrutiny of the joint distribution than was
imagined for the original uses of the data. With clinical
data on cancer, for instance, there is no clear quantitative
standard of ascertainment that specifies what qualifies as
rapidly growing cancerous tissue. Ultimately, our under-
standing of what types of associations are induced in na-
ture may require new methods designed specifically to
characterize these joint distributions of mutation rates and
selection coefficients without bias.

With these caveats in mind, the results reported here
suggest the following: (1) the dual dependency of adaptation
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can induce strong associations between mutation rates
and selection coefficients among fixed mutations; (2) the
sign of the association between mutation rates and selection
coefficients can change across the three joint distribu-
tions, based on higher moments of the nominal distribu-
tion; (3) weak higher-order associations (in the nominal)
due to finite sampling may be amplified into substantial
associations among fixed mutations; and (4) in practice,
according to the limited evidence currently available, all
of these theoretical points may be highly relevant to inter-
preting natural cases.

This work also highlights the importance of distinguish-
ing different distributions of mutational effects. Mutation
accumulation studies typically sample from a de novo dis-
tribution in which mutations with higher rates are ob-
served more frequently. By contrast, mutation scanning
studies typically are designed to draw from a nominal dis-
tribution without bias, using engineered variants. The term
“DFE” is used in the empirical literature to refer to all
three kinds of distributions of mutational effects, includ-
ing nominal distributions from deep mutational scanning
studies, de novo distributions from mutation accumula-
tion, and occasionally fixed distributions. Studies of theo-
retical population genetics for asexuals most often use the
de novo distribution; for example, in the notation of Good
et al. (2012), r(s) is the de novo distribution of selection
coefficients, and rf(s) is the fixed.

A further source of complexity is that the nominal—
which determines what is included in the other two
distributions—does not have a single definition, as a mat-
ter of principle. Mutation samples from the possible, and
selection samples from the actual. But there is no a priori
definition of what is possible; therefore, the nominal distri-
bution has no a priori definition. For example, Sanjuan et al.
(2004) measure beneficial variants among single-nucleotide
mutations by engineering a specific list of changes; Wu et al.
(2014) sample from this distribution in a somewhat biased
way using error-prone polymerase chain reaction. Other
deep mutational scanning studies (e.g., Thyagarajan and
Bloom 2014) randomize triplet codons in order to consider
all single-amino-acid variants rather than all single-
nucleotide variants. Several studies have explored combina-
tions of point mutations (e.g., Diss and Lehner 2018). Recently,
Macdonald et al. (2023) reported a new deep mutational
scanning method that covers small insertions and dele-
tions, in addition to nucleotide substitutions. These more
expansive ways of defining the nominal cover a greater
range of potentially important types of mutations (i.e., be-
yond nucleotide substitutions), but they do not exhaust
the universe of mutations, which is astronomically large
and dominated by complex events that occur at low rates
(as explained in app. B of Stoltzfus 2021). In practice, the
nominal distribution of beneficial mutations will often be
defined by the observed de novo mutations that appear at a
rate large enough and with a fitness effect large enough to
be readily observable.

As noted above, the data used in this study were not
designed to be used in this way and are not ideal. What
kinds of systems and protocols would produce more ap-
propriate data? Foremost, progress on this topic absolutely
requires studies that measure s, m, and the frequency
evolved fe in a clearly defined system. Second, models of av-
erage rates for categories of mutations are a poor substitute
for actual rates for each individual mutational change. For
instance, Maclean et al. (2010) measured mutation rates
for just 11 nucleotide substitution mutations in the same
gene, finding a 30-fold range of rates. Hodgkinson and
Eyre-Walker (2011) estimated that a triplet context model
captures only one-third of the variance in individual rates
of nucleotide substitution mutations. Third, the problem of
estimation error requires explicit attention, particularly the
possibility that when m and s are estimated together using
a population-genetic approach (e.g., as in Watson et al.
2020), the errors may be correlated. An ideal system to col-
lect such measurements would allow some flexibility to
adjust various factors, such as population size N (e.g., via
droplet technology, as in Ruelens and de Visser 2021), the
strength of selection (e.g., via concentration of antibiotic),
and the size of the mutational target (e.g., aggregating re-
sults over a narrow or broad set of antibiotics).

Finally, let us consider three general directions for fur-
ther theoretical work. First, while our focus here has been
on the relationships of the nominal, de novo, and fixed dis-
tributions, two other joint distributions, shown in figure 9,
can also be derived by further size biasing and warrant
additional attention (see the mathematical appendix for
details). Specifically, weighting the fixed distribution again
by selection coefficients gives a distribution that corre-
sponds to the contribution of each possible beneficial mu-
tation to the expected rate of adaptation (i.e., the expected
rate of fitness increase). Size biasing this distribution again
with respect to mutation rates then produces a distribution
that gives the contribution of each mutation to the overall
probability of parallel adaptation, defined as the probabil-
ity that the same mutation would be fixed twice in two
independent bouts of adaptation (Chevin et al. 2010; Le-
normand et al. 2016). Moreover, as shown in the appendix,
each of the normalizing constants for the five distributions
also has an evolutionary interpretation.

The graphical representation of these joint distributions
shown in figure 9 may be helpful for understanding some
generic aspects of adaptation. For example, moving up the
diagonal in figure 9, the fixed distribution is derived by
doubly size biasing the nominal and the contribution to
parallel adaptation is derived by doubly size biasing the
fixed distribution, so that the relationship between the
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contribution to parallelism and the fixed distribution is the
same as the relationship between the fixed distribution
and the nominal distribution. Thus, just as the sign of
the correlation between mutation rates and selection
coefficients in the nominal determines whether the rate
of evolution (the normalizing constant for the fixed distri-
bution) is more or less than it would be if mutation rates
and selection coefficients were uncorrelated in the nomi-
nal, the correlation in the fixed distribution determines
whether the probability of parallelism (the normalizing con-
stant for the contribution to parallelism) is increased or
decreased relative to the case in which mutation rates
and selection coefficients are uncorrelated among fixed
mutations. As a consequence, if the fixed distribution
shows a negative correlation (as we suggest is likely), this
would tend to decrease the probability of parallelism.

A second general direction for further theoretical work
is to explore the emergence of associations between muta-
tion rates and selection coefficients under a broader range
of conditions. Our treatment here is restricted to evolution
via fixation of beneficial mutations in the SSWM regime
where the probability of fixation is proportional to s, so that
our treatment can be conducted by size biasing according
to m and by s. More generally, however, evolution is not
necessarily mutation limited and includes deleterious, neu-
tral, and beneficial changes, so that the chances of a given
change are not guaranteed to be proportional to either s or
m. Under strict origin-fixation conditions (i.e., in the limit
as Nm → 0) and considering all classes of fitness effects—
deleterious, neutral, and beneficial—the effect of mutation
is proportional to m and the effect of selection is given by
the probability of fixation, which is a function of s and N
(Kimura 1962). As mutation supply increases, clonal inter-
ference comes into play and, where studied, this amplifies
the effect of selection and diminishes the influence of mu-
tation bias (e.g., Bailey et al. 2017; Gomez et al. 2020; Cano
et al. 2022). Under the extreme condition that all possible
variants are readily available in a large population, selec-
tion picks the winner and the chance of fixation is zero
for all but the most fit variant (Bailey et al. 2017). Effects
similar to what we observe here could occur under a variety
of conditions, wherever effects of mutation and selection
are both strong.

A final set of issues concerns what determines the asso-
ciation of mutation and fitness in the nominal, both in the
proximate sense of the biological factors accounting for
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any association and in the ultimate sense of the evolution-
ary dynamics that shape any mutation-fitness associations
via these biological factors. Clearly, this set of issues is more
subtle and complex than is suggested by the textbook doc-
trine of random mutation (for analysis, see Merlin 2010;
Razeto-Barry and Vecchi 2016; Stoltzfus 2021), which is
often stated as a central tenet of the neo-Darwinian theory
of evolution (Lenski and Mittler 1993), although it only
appears rarely as an explicit assumption in formal models
(e.g., Chevin et al. 2010). First, it will be clear from our
comments about sources of empirical data that actual mea-
surements of the joint distribution of s and m simply did
not exist in any systematic form until very recently, so that
there has been no empirical justification for any detailed
quantitative claim about their relationship. Rather than be-
ing justified by systematic observations (or by biological
principles), the randomness doctrine is perhaps best un-
derstood as a heuristic or guiding assumption for a neo-
Darwinian research program (e.g., as argued in Stoltzfus
2021). Yet if we choose to embrace the doctrine in this con-
text, there are further issues. One issue is an ambiguity
about whether randomness refers to the nominal, the de
novo, or perhaps the underlying distribution from which
the realized nominal distribution is drawn. Finally, the the-
ory presented here raises the question of what, precisely, is
the heuristic benefit of a randomness assumption. If there
is no correlation in the nominal, this ensures that mutation
biases do not increase the rate of evolution but does not
prevent an effect on the rate of adaptation, for reasons ex-
plained above. Likewise, if the lack of correlation refers to
the de novo, this ensures that the average mutation rate among
fixed mutations is equal to the average rate among de novo
mutations but does not prevent mutational biases from in-
creasing either the rate of adaptation or the rate of evolution.

Meanwhile, diverse ideas about the evolution of mutation-
fitness associations have been proposed, from relatively
narrow and modest claims of adaptive amelioration lower-
ing the mutation rate in functionally important regions
(Martincoreña and Luscombe 2013; Monroe et al. 2022),
to the emergence of specialized mutation systems (e.g.,
cassette-shuffling systems) in the context of immune evasion
or host-phage arms races (Foley 2015; Stoltzfus 2021, chap. 5),
to ideas about “directed” or “smart” mutation systems
(Roth et al. 2006). New thinking continues to emerge on
these and related topics; for example, Oman et al. (2022)
explore the issue of what happens to the mutation rate
and pattern as a genome evolves under context-dependent
mutation. In adaptive walks, simply reversing mutation bi-
ases partway through the walk appears to improve adapta-
tion by shifting the de novo distribution in favor of previ-
ously low-rate beneficial mutations that have not yet had
the chance to fix (Sane et al. 2023). For polygenic quantita-
tive traits, continued evolution under correlated selection
can lead to a shift in how the traits are encoded so that mu-
tational variability aligns more closely with trait correla-
tions favored by selection (Jones et al. 2014). Thus, a chal-
lenge for future theoretical work is to consider these ideas
together in a common framework.
Methods

Empirical Distributions for Dengue Virus and TP53

We use data containing estimates of selection coefficients
and mutation rates for all possible single point mutations
in the dengue virus genome, provided in extended table
data 1 in Dolan et al. (2021). The mutation rates provided
in this table apply to the 12 types of context-independent
single-nucleotide changes that are possible in a single-
stranded RNA genome such as the dengue virus genome.
In terms of the fitness measurements, we filtered the data
to retain only beneficial variants for which the lower limit
of the fitness CI exceeds 1.0, using data for passage 7, rep-
licate A, on human host cells. The final list contains 237 ben-
eficial mutations.

With regard to TP53, Giacomelli et al. (2018) provide
enrichment scores for the wild type and all 7,880 possible
nonsynonymous variants. To fully assess the potential for
cancer-causing mutations, they combined results of mul-
tiple selection assays based on the effects of a second wild-
type or null p53 allele (in otherwise isogenic human lung
carcinoma cell) and the p53-activating agents nutlin3 and
etoposide. This resulted in three assays designed to enrich
for dominant-negative (wild-type with nutlin3), loss-of-
function (null with nutlin3), or wild-type-like (null with
etoposide) alleles. Following Giacomelli et al. (2018),
we combined the estimated enrichments for the three
assays using the formula Rall p R(wt nutlin3) 1 R(null nutlin3) 2
R(null etoposide) and calculated selection coefficients s for all
possible nonsynonymous variants (including single- and
multinucleotide variants) in terms of this combined en-
richment score relative to the wild-type TP53 combined
enrichment score: s p log2(Rall=Rwt

all).
We note that multiple studies have reported measures

of cancer-causing potential for TP53 mutants based on
deep mutational scanning (Giacomelli et al. 2018; Kotler
et al. 2018; Staller et al. 2022). The results tend to be highly
correlated (Carbonnier et al. 2020) but differ widely in
scale. In the data from Giacomelli et al. (2018), most selec-
tion coefficients exceed 1 and the largest is 7, whereas other
studies report a more modest range. This issue of scaling
will not affect the shape of any correlation with mutation
rates. However, in population-genetic simulations, the scale
of selection coefficients matters for the chance of fixation
and for the duration of fixation events, which influences
clonal interference. Therefore, because the reported scale
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of selection coefficients may be artificially high, we use the
reported selection coefficients as well as selection coeffi-
cients reduced 10-fold or 100-fold.

To estimate the mutation spectrum for TP53, we used
a model based on data from the Pancancer Analysis of
Whole Genomes database (Weinstein et al. 2013). Speci-
fically, we queried a total of 28,717,344 whole-genome
single point somatic mutations to construct a trinucleotide
context model (i.e., based on the identity of the nucleotides
upstream and downstream of the focal nucleotide). For
each possible mutation in each possible trinucleotide con-
text, we divided the observed frequency of that mutation
within our dataset of somatic mutations by the genomic
frequency of that trinucleotide context. The resulting vec-
tor with the rates for the 96 different mutation types is then
normalized to yield fractional mutation rates that sum to 1
(fig. S7). When a possible beneficial amino acid change can
occur by multiple types of nucleotide mutations, we sum
their rates.

For the clinically observed distribution of TP53 variants,
we extracted the observed frequency of 639 different so-
matic mutations in TP53 in human tumors from the GE-
NIE database of the American Association for Cancer Re-
search Consortium (AACR Project GENIE Consortium
2017). Note that this source aggregates data from different
types of cancers, a heterogeneity that we ignore here.

We then integrated the observed frequencies for cancer
mutations with the previously calculated selection coeffi-
cients and mutation rates. Note that we use different
sources for (1) the selection coefficients (deep mutational
scanning), (2) the mutation spectrum (Pancancer Analysis
of Whole Genomes), and (3) the observed frequencies that
we use to represent the fixed distribution (GENIE).
Evolutionary Simulations

We used SLiM (ver. 3.4) for the evolutionary simulations
(Messer 2013). We ran each simulation until a single se-
quence went to fixation (frequency 1 0:95), recording
any beneficial mutations in the fixed sequence. We repeated
this process 1,000 times per value of mutation supply Nmtot

(mtot constant, N varies). Each of the simulations per repli-
cate used the same initial haploid Wright-Fisher popula-
tion, comprising N copies of the wild-type sequence of
the dengue virus genome or the TP53 coding region (with
N ranging from 12 to 1:2#105 and from 100 to 106, respec-
tively). For dengue virus, mtot is chosen to give the empiri-
cally estimated genome-wide beneficial mutation rate for the
wild-type genome mtot p 8:1#1026. In the case of TP53,
we use the empirical mutational signature model of relative
rates for each mutation type, assuming mtot p 1:0#1026.
All sequences in the initial population were assigned a fit-
ness of 1. In each generation t, N sequences were chosen
from the population at generation t 2 1 with replacement
and with a probability proportional to their fitness. The
fitness effects assigned to each of the possible adaptive
changes were taken from their respective datasets (single
point mutations for dengue virus and amino acid changes
for TP53). Mutations continue to occur in derived alleles,
so that secondary mutations are possible (with additive ef-
fects on fitness), although the sequence fixed in a replicate
only very rarely has more than one mutation.
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APPENDIX

Mathematical Derivations

We begin by establishing some useful general results con-
cerning size biasing. Let X be a random variable taking
nonnegative values and Y be another random variable
such that X and Y can occur in n distinct pairs (x1, y1), ::: ,
(xn, yn). Furthermore, let X* and Y* be obtained from the

https://doi.org/10.5281/zenodo.7764132
https://github.com/alejvcano/paradox
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joint distribution of X and Y by size biasing according to X
so that the probability of (xi, yi) under the size-biased dis-
tribution is given by xiP(xi, yi)=E(X). Then,

E(X*) 2 E(X) p
E(X2)
E(X)

2 E(X) ðA1Þ

p
Var(X)

E(X)
: ðA2Þ

Similarly,

E(Y*) 2 E(Y) p
X

i

yixiP(xi, yi)
E(X)

2 E(Y) ðA3Þ

p
E(XY) 2 E(X)E(Y)

E(X)
ðA4Þ

p
Cov(X, Y)

E(X)
: ðA5Þ

Equations (2) and (3) follow from these immediately by
noting that the de novo distribution is obtained from the
nominal distribution by size biasing according to m, and
equations (6) and (7) follow by noting that the fixed distri-
bution is obtained from the de novo distribution by size bi-
asing with respect to s.

In fact, by repeatedly size biasing with respect to m and s
we can develop a whole series of biologically relevant joint
distributions of selection coefficients and mutation rates,
where we size bias l times with respect to m and m times
with respect to s. We begin by noting that often in evolu-
tion we are interested in quantities of the form k(l, m) pP

im
l
ism

i p n Enom(ml
ism

i ). For example, k(0, 0) is the number
of beneficial mutations and k(1, 0) is the total beneficial
mutation rate. Assuming that the probability of fixation
is a linear function of s (as explained in the main text),
we also have that k(1, 1) is proportional to the rate of adap-
tive substitutions and k(1, 2) is proportional to the ex-
pected rate of fitness increase. Under this same approxima-
tion, we see that the probability of adaption via beneficial
mutation i is given by misi=k(1, 1), so that the probability
that two independent bouts of adaptation both proceed
via fixation of i is given by (misi=k(1, 1))2 and the total prob-
ability of parallel evolution (Chevin et al. 2010; Lenormand
et al. 2016) is given by

P
im

2
i s2

i =k(1, 1)2 p k(2, 2)=k(1, 1)2.
Thus, we see that k(2, 2) is proportional to the probability
of parallel evolution. Overall, size biasing l times with re-
spect to m and m times with respect to s results in a prob-
ability distribution where mutation i occurs with probabil-
ity ml

ism
i =k(l, m), and this probability gives the proportional

contribution of mutation i to k(l, m). For example, muta-
tion i fixes at a rate proportional to misi and increases fitness
by si when it fixes, so that mis2

i =k(1, 2) gives the relative con-
tribution of mutation i to the total rate of adaptation.
Finally, we are interested in the sign of the correlation
between m and s in the distribution obtained by size biasing
l times with respect to m and m times with respect to s. The
correlation has the same sign as the covariance between m

and s in this distribution, where the covariance is given by
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Noting that the denominator Enom(mlsm)2 is always posi-
tive, we see that Covde novo(m, s) has the same sign as
Enom(m2s)Enom(m) 2 Enom(m2)Enom(ms) and Covfixed(m, s) has
the same sign as Enom(m2s2)Enom(ms) 2 Enom(m2s)Enom(ms2),
as stated in the main text.

The Special Case of Two Selection Coefficients
and Two Mutation Rates

In what follows, we analyze the special case where there
are only two possible selection coefficients and two possi-
ble mutation rates. Here, we alter the notation slightly as
follows. Because the associations between mutation rates
and selection coefficients depend on relative values, muta-
tion rates are expressed as either 1 for the baseline or B,
where B 1 1 for the elevated value, while selection co-
efficients are expressed as either 1 for the baseline value
or K, where K 1 1 for the elevated value. Moreover, rather
than indexing each mutation separately, we instead express
the distributions in terms of the relative proportion of po-
tential mutations with each unique pairwise combination
of mutation rate and selection coefficient, so that, for ex-
ample, pnom

ij represents the probability that a mutation,
sampled uniformly at random from a list of potential mu-
tations, will have mutation rate i and selection coefficient j.
We also write, for example, pnom

B for the fraction of muta-
tions in the nominal distribution with the larger mutation
rate and pnom

K for the fraction of mutations in the nominal
distribution with the larger selection coefficient.

Using this notation, we can write Covnom(m, s) as

Covnom(m, s) p (pnom
11 1 pnom

B1 B 1 pnom
1K K 1 pnom

BK BK)

2 (pnom
11 1 pnom

B1 B 1 pnom
1K 1 pnom

BK B)

# (pnom
11 1 pnom

B1 1 pnom
1K K 1 pnom

BK K):

ðA8Þ

The above expression can be simplified by solving for
one of the relative proportions in terms of the remaining

ðA6Þ

ðA7Þ
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three: pnom
11 p 1 2 pnom

1K 2 pnom
B1 2 pnom

BK . Substituting this
value for pnom

11 into the above expression, the covariance
between mutation rate and selection coefficient is given by

Covnom(m, s) p (1 2 pnom
1K 2 pnom

B1 2 pnom
BK 1 pnom

B1 B

1 pnom
1K K 1 pnom

BK BK)

2 (1 2 pnom
1K 2 pnom

B1 2 pnom
BK 1 pnom

B1 B

1 pnom
1K 1 pnom

BK B)

# (1 2 pnom
1K 2 pnom

B1 2 pnom
BK 1 pnom

B1

1 pnom
1K K 1 pnom

BK K)

p pnom
BK (BK 2 1) 1 pnom

B1 (B 2 1)

1 pnom
1K (K 2 1) 1 1

2 (1 1 (pnom
BK 1 pnom

B1 )(B 2 1))

# (1 1 (pnom
BK 1 pnom

1K )(K 2 1))

p (pnom
BK pnom

11 2 pnom
B1 pnom

1K )(B 2 1)(K 2 1),

ðA9Þ
where the last line follows by expanding the product, applying
the identity  (pnom

BK )2 p pnom
BK (12pnom

11 2pnom
B1 2 pnom

1K ), and then
simplifying. The corresponding correlation coefficient is then
given by dividing by the product of the standard deviations:

rnom(m, s)

p
(pnom

11 pnom
BK 2 pnom

B1 pnom
1K )(B 2 1)(K 2 1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(B 2 1)2(K 2 1)2pnom
B (1 2 pnom

B )pnom
K (1 2 pnom

K )
p

p
pnom

11 pnom
BK 2 pnom

B1 pnom
1Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pnom
B (1 2 pnom

B )pnom
K (1 2 pnom

K )
p :

ðA10Þ
Finally, if we let Dnom p pnom

BK pnom
11 2 pnom

B1 pnom
1K and note that

p(1 2 p) is the variance of a Bernoulli random variable
with parameter p, then we obtain equation (8):

rnom p
Dnomffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varnom(p(m))Varnom(p(s))
p : ðA11Þ

By making similar substitutions as those used for deriving
the covariance among nominal mutations, we derive the fol-
lowing simplified expression for covariance of mutation rate
and selection coefficient among de novo mutations when mu-
tation rates and selection coefficients each take only two values:

Covde novo(m; s) p

(pnom
11 1 pnom

B1 B2 1 pnom
1K K 1 pnom

BK B2K)
#(pnom

11 1 pnom
B1 B 1 pnom

1K 1 pnom
BK B)

2 (pnom
11 1 pnom

B1 B2 1 pnom
1K 1 pnom

BK B2)
#(pnom

11 1 pnom
B1 B 1 pnom

1K K 1 pnom
BK BK)

0
BB@

1
CCA

(pnom
11 1 pnom

B1 B 1 pnom
1K 1 pnom

BK B)2

p
B(pnom

11 pnom
BK 2 pnom

B1 pnom
1K )(B 2 1)(K 2 1)

(pnom
11 1 pnom

B1 B 1 pnom
1K 1 pnom

BK B)2 :

ðA12ÞðA12Þ
The correlation coefficient can be derived in similar fashion:

rde novo(m, s) p
Covde novo(m, s)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varde novo(m)Varde novo(s)
p

p

�
B

(pnom
11 1 pnom

B1 B 1 pnom
1K 1 pnom

BK B)2

�

#
pnom

11 pnom
BK 2 pnom

B1 pnom
1Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pde novo
B (12pde novo

B )pde novo
K (12pde novo

K )
p :

ðA13Þ
Finally, if we let Dnom p pnom

BK pnom
11 2 pnom

B1 pnom
1K as before, then

we obtain the following, simplified formula for the correla-
tion coefficient among de novo mutations, corresponding
to equation (9):

rde novo p
B

Enom(m)2

Dnomffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varde novo(p(m))Varde novo(p(s))

p :

ðA14Þ
Making similar substitutions as those used for deriving

each respective covariance for nominal and de novo muta-
tions, we derive the following simplified covariance expres-
sion among fixed mutations:

Covfixed(m; s) p

(pnom
11 1 pnom

B1 B2 1 pnom
1K K2 1 pnom

BK B2K2)
#(pnom

11 1 pnom
B1 B 1 pnom

1K K 1 pnom
BK BK)

2 (pnom
11 1 pnom

B1 B2 1 pnom
1K K 1 pnom

BK B2K)
#(pnom

11 1 pnom
B1 B 1 pnom

1K K2 1 pnom
BK BK2)

0
BB@

1
CCA

(pnom
11 1 pnom

B1 B 1 pnom
1K K 1 pnom

BK BK)2

p
BK(pnom

11 pnom
BK 2 pnom

B1 pnom
1K )(B 2 1)(K 2 1)

(pnom
11 1 pnom

B1 B 1 pnom
1K K 1 pnom

BK BK)2 :

ðA15Þ
The correlation coefficient can be derived in similar fash-
ion as before:

rfixed(m, s) p
Covfixed(m, s)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varfixed(m)Varfixed(s)
p

p

�
BK

(pnom
11 1 pnom

B1 B 1 pnom
1K K 1 pnom

BK BK)2

�

#
pnom

11 pnom
BK 2 pnom

B1 pnom
1Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pfixed
B (1 2 pfixed

B )pfixed
K (1 2 pfixed

K )
p :

ðA16Þ
Finally, if we let Dnom p pnom

BK pnom
11 2 pnom

B1 pnom
1K as before,

then we obtain the following simplified formula for the
correlation coefficient among fixed mutations, correspond-
ing to equation (10):

rfixed p
BK

Enom(ms)2

Dnomffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varfixed(p(m))Varfixed(p(s))

p : ðA17Þ

ðA15Þ
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Although the above results are based on using the
Pearson’s correlation as a measure of association, it is also
interesting to ask about nonparametric measures of asso-
ciation, such as Goodman-Kruskal’s g (Goodman and
Kruskal 1954). For the special case with two distinct muta-
tion rates and two distinct selection coefficients considered
here, the probability of concordance for the nominal distri-
bution is given by Pnom(concordance) p 2pnom

11 pnom
BK , and the

probability of discordance is given by Pnom(discordance) p
2pnom

1K pnom
B1 . Thus, we have

gnom p
pnom

11 pnom
BK 2 pnom

1K pnom
B1

pnom
11 pnom

BK 1 pnom
1K pnom

B1

, ðA18Þ

where we note that the denominator is positive and the nu-
merator is simply Dnom, so rnom and gnom will have the same
sign. Moving to the de novo distribution and noting that
the normalizing factors for the four probabilities all cancel
out, we have

gde novo p
pnom

11 (Bpnom
BK ) 2 pnom

1K (Bpnom
B1 )

pnom
11 (Bpnom

BK ) 1 pnom
1K (Bpnom

B1 )
ðA19Þ

p gnom, ðA20Þ
where the second equality holds because each product in
the expression contains exactly one factor of B, so all of
these factors of B cancel out. Similarly, we have

gfixed p
pnom

11 (BKpnom
BK ) 2 (Kpnom

1K )(Bpnom
B1 )

pnom
11 (BKpnom

BK ) 1 (Kpnom
1K )(Bpnom

B1 )
ðA21Þ

p gnom, ðA22Þ
since each product contains exactly one factor of each of B
and K. Thus, for this special case we have gnom p gde novop
gfixed, as stated in the main text.
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