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Abstract

In metazoans, both transcription initiation and the escape of RNA polymerase (RNAP) from promoter-

proximal pausing are key rate-limiting steps in gene expression. These processes play out at physically

proximal sites on the DNA template and appear to influence one another through steric interactions,

leading to a complex dynamic equilibrium in RNAP occupancy of the ∼100 bp immediately down-

stream of the transcription start site. In this article, we examine the dynamics of these processes using a

combination of statistical modeling, simulation, and analysis of real nascent RNA sequencing data. We

develop a simple probabilistic model that jointly describes the kinetics of transcription initiation, pause-

escape, and elongation, and the generation of nascent RNA sequencing read counts under steady-state

conditions. We then extend this initial model to allow for variability across cells in promoter-proximal

pause site locations and steric hindrance of transcription initiation from paused RNAPs. In an extensive

series of simulations over a broad range of parameters, we show that this model enables accurate estima-

tion of initiation and pause-escape rates even in the presence of collisions between RNAPs and variable

elongation rates. Furthermore, we show by simulation and analysis of data for human cell lines that

pause-escape is often more strongly rate-limiting than conventional “pausing indices” would suggest,

that occupancy of the pause site is elevated at many genes, and that steric hindrance of initiation can lead

to a pronounced reduction in apparent initiation rates. Our modeling framework is generally applicable

for all types of nascent RNA sequencing data and can be applied to a variety of inference problems. Our

software for estimation and simulation is publicly available.



Introduction

Across all branches of life, homeostatic control of gene expression arises from a series of dynamic equilib-

ria among competing processes. For example, cellular RNA concentrations reflect an equilibrium between

RNA production and decay; RNA polymerase (RNAP) occupany reflects an equilibrium among transcrip-

tion initiation, elongation, and termination; and protein concentrations reflect an equilibrium between pro-

tein synthesis and degradation. When such concentrations change, say, across conditions, cell types, or

developmental stages, it is typically because the relative rates of competing processes are altered and a new

equilibrium is reached, rather than because any individual process is wholly enabled or disabled.

For decades, research on the regulation of eukaryotic gene expression focused on RNAP recruitment

and transcription initiation, which were thought to be the rate-limiting steps under most circumstances [1].

In recent years, however, it has become clear that many downstream steps in transcription can be regulated.

One striking observation, first noted at particular loci in Drosophila and mammals [2–6], is that RNAPs

are frequently held in a “paused” position about 30–60 bp downstream of the transcription start site, before

escaping into productive elongation [7–14]. Later studies showed that such promoter-proximal pausing

is widespread across metazoans [14]. Several lines of evidence indicate that the escape from promoter-

proximal pausing is frequently a regulated step in gene expression [15]. Regulation at the pause-escape

stage appears to be particularly advantageous when a rapid transcriptional response is required, as in heat

shock or other stimulus-controlled pathways [11, 15–17].

It has been noted that promoter-proximal pausing not only has a direct effect on the rate at which RNAPs

proceed into productive elongation, but may also have an indirect influence on the rate of productive ini-

tiation, owing to steric inference between paused and initiating RNAPs. The key observation is that the

physical space immediately downstream of the transcription start site (TSS) is limited: each RNAP has a

“footprint” of ∼33–35 bp [18,19] and the pause site is typically about ∼50 bp downstream of the TSS. Thus,

depending on precisely how much space is required between two adjacent RNAPs, there is typically room

for only one, or perhaps two or three, RNAPs in the pause region before new initiation events begin to be

blocked. Indeed, computer simulations of the movement of RNAPs along the DNA template have suggested

that such steric hindrance could substantially reduce initiation rates [19]. More recently, genome-wide stud-

ies of human [20,21] and Drosophila [22] cells found strong evidence that initiation rates were restricted by

pause-escape rates at many genes. Thus, it appears that rates of productive initiation are often governed by

a dynamic equilbrium between transcription initiation and pause-escape.

In recent years, two types of approaches have dominated in the study of transcriptional dynamics:

(1) high-resolution imaging approaches based on fluorescence in situ hybridization, photobleaching, or

electron micrography in single cells (e.g., [23–27]); and (2) genomic approaches based on nascent RNA

sequencing (NRS) or chromatin immunoprecipitation (ChIP) and sequencing across populations of cells

(e.g., [15, 20, 22]). The imaging approaches allow for more direct characterization of the dynamics of indi-

vidual RNAPs, but as yet, they cannot be carried out at scale; instead, they are typically applied to one or a

few loci. The genomic approaches are more indirect, requiring tagging and pull-down of sequences such as

newly synthesized RNA or RNAP-associated DNA. In addition, because they produce summaries for large

2



populations of cells, they typically require fairly complex statistical analyses for interpretation. Neverthe-

less, these methods have the crucial advantage of being applicable at genome-wide scale for modest cost, by

exploiting the many recent advances in genome-sequencing and related technologies.

For these reasons, we focus in this article on the study of transcriptional dynamics using genomic data.

We focus in particular on the use of data from NRS methods—such as GRO-seq [9], PRO-seq [28,29], NET-

seq [30, 31], and TT-seq [32]—which have matured dramatically in recent years, with major improvements

in resolution, background signal, ease-of-use, and cost. These methods can be thought of as producing

“snapshots” of the positions of engaged RNAPs across a population of cells either at steady-state or in a

time course after a stimulus is applied. We develop a general statistical modeling framework that allows in-

terpretation of these snapshots in a manner that reveals rates of transcriptional initiation, promoter-proximal

pause escape, and elongation, as well as interrelationships among these processes. Notably, we focus on

modeling transcriptional dynamics under equilibrium conditions, which, in comparison to studies of time

courses following transcriptional stimuli, allows us to examine larger sets of genes and avoid the potential

off-target effects of commonly used drugs such as triptolide. The focus on steady-state conditions also leads

to relatively simple and interpretable mathematical results. Importantly, our methods are applicable not only

to newly produced NRS data sets, but to the thousands of sequenced samples that are already publicly avail-

able in databases such as the Gene Expression Omnibus [33]. We apply these new methods to both simulated

and real NRS data, and refine our model to account for variable pause sites across cells and steric hindrance

of transcription initiation from paused RNAP. Altogether, we find strong evidence that promoter-proximal

pausing has major importance in the dynamics of transcription in human cells, that RNAP occupancy in

the pause region tends to be high at many genes, and that initiation rates are frequently limited by paused

RNAPs. We discuss various implications of these findings in detail.

Results

A simple probabilistic model for transcription initiation, promoter-proximal pausing, and

elongation

Our initial model consists of two layers: a continuous-time Markov model for the movement of individual

RNA polymerases (RNAPs) along a transcription unit (TU), and a conditionally independent generating

process for the read counts at each nucleotide site (Fig. 1A&B) [34]. Together, these components produce

a full generative model for NRS read counts along the TU, permitting inference of transcriptional rate

parameters from the raw data. The Markov model consists of a state Zi for each nucleotide position i ∈

{1, . . . , N} of the RNAP plus an additional state, Z0, that represents free RNAPs. It is parameterized

by a transcription-initiation rate α, a rate of promoter-proximal pause escape β, and a termination rate γ.

In addition, it includes an elongation rate ζi for each position i, which can either be assumed constant

across sites (with ζi = ζ as throughout this manuscript) or allowed to vary. For mathematical convenience

(see Methods), the parameters α, β, and γ are multiplied by the corresponding ζi parameters. In this

manuscript, we focus on inference of α and β and largely ignore γ, because the 3′ ends of TUs are difficult
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to characterize.

In this version of the model, promoter-proximal pausing is assumed to occur at a fixed position k along

the DNA template, where k can be pre-estimated from the data. This assumption will be relaxed in sub-

sequent sections. We further assume that the read counts at each position i are Poisson-distributed with

mean µi, where µi is a scaled version of the probability density of Zi (and, hence, the RNAP density at nu-

cleotide i) that reflects the initiation and elongation rates, as well as the sequencing depth. Finally, in order

to make use of a time-homogeneous Markov chain, we assume that RNAPs are sufficiently sparse along the

DNA template that collisions between them are rare—another assumption that will be relaxed later. Notably,

the model can be applied either in a nonequilibrium setting based on time-course data or to a single data set

at steady state. We focus in this manuscript on the steady-state case, which is more mathematically conve-

nient and interpretable, yet, as we show below, still reveals a great deal about the dynamics of transcription.

In order to ensure identifiability of initiation and pause-escape rates at steady state, we assume that initiating

RNAPs remain on the DNA template for its entire length, with negligible rates of premature termination

(see Discussion).

This simple version of the model results in convenient, closed-form maximum-likelihood estimators for

β and a parameter closely related to α. Because the initiation rate α is confounded at steady-state with

the elongation rate ζ and the sequencing depth λ, we instead work with a compound parameter χ = λα
ζ

representing the read-depth-scaled ratio of the initiation rate to the elongation rate. It turns out that the

MLE for χ is simply equal to the average read depth along the gene body and the MLE for β is given

by the ratio of the average read depth in the gene body to that in the pause peak (see Methods). The

estimates of both α and β can be considered relative to ζ, based on the multiplicative parameterization of

the model. Notably, similar average-read-depth estimators have been widely used in the analysis of nascent

RNA-sequencing data, typically with more heuristic justifications. For example, the inverse of the estimator

for β is commonly known as the “pausing index” [14, 35], and the estimator for χ is often used as a general

measure of transcription output [17]. In our case, these estimators emerge as MLEs under a generative

probabilistic model, making it possible to characterize the dynamics of transcription from raw NRS read

counts at steady state.

To examine the quality of these estimators, we developed a flexible computational simulator, called

SimPol (“Simulator of Polymerases”), that tracks the progress over time of individual RNAPs across DNA

templates in thousands of cells under user-defined initiation, pause-escape, and elongation rates (Fig. 1C).

Unlike our assumed model, the simulator tracks potential collisions between RNAPs and prohibits one

RNAP from passing another along the template. In addition, the simulator allows for variation across cells

in pause-site location and variation across both cells and nucleotide positions in local elongation rate (see

Methods for details). After running to equilibrium, the simulator generates synthetic read counts at each

nucleotide position by sampling the positions of RNAPs across cells, and then sampling read counts condi-

tional on local RNAP frequency (see Fig. 1D for an example gene with synthetic data).

Using SimPol, we generated synthetic data sets for a range of plausible initiation and pause-escape

rates, and read depths corresponding median expression levels from real data (see Methods). We performed

separate sets of simulations for cases where the pause site is fixed at a known value k and for cases where k
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is allowed to vary across cells according to a truncated Gaussian distribution. We assumed a mean value of

k equal to 50 bp and a standard deviation of 25 bp, approximately as we observe in real data (see Methods),

and required a minimum center-to-center distance between adjacent RNAPs of 50 bp (as in [20]). For each

simulated data set, we estimated χ and β from the synthetic data and compared the estimated and true rates.

In cases where the pause site was variable, we estimated β by using the average read depth across a 200 bp

pause peak region, similar to other studies that have used a pausing index (e.g., [17]). In addition, for β, we

evaluated the product βζ—which represents the absolute rate of pause-escape—assuming the mean value

of ζ = 2 kb/min that was used for simulation. For α, we calibrated our estimates relative to a baseline

case simulated with αζ = 1 and no pausing and again assumed ζ = 2 kb/min (see Methods). In this way,

we were able to account for both the sequencing read depth and the elongation rate, and express both the

initiation and pause-escape rates in absolute units of events per minute, for ease of interpretation.

We found that these initial estimates of α and β were accurate in some cases but significantly biased in

others (Fig. 2, Supplementary Fig. S1). In particular, estimates of the initiation rate α were close to the

truth when α was not too large and β was not too small; but either a moderately high α or a moderately low

β led to a notable downward bias in the α estimates (Fig. 2A). This bias ranged from ∼50% when α was

high or β was low but the other parameter was in the favorable regime, to more than an order of magnitude

when both parameters were unfavorable. As we explore below, these biases suggest an influence from steric

hindrance of new initiation events owing to RNAPs in the pause peak, which would be expected to lead to

under-estimation of α precisely when pause-escape rates are low and/or initiation rates are high. Importantly,

these biases can be pronounced for plausible values of α and β, suggesting that it can be misleading to treat

average read counts in the gene body as a measure of the initiation rate (see Discussion).

By contrast, in the case where the pause site was held fixed and assumed known during estimation,

estimates of β were accurate across a range of true α and β values (Fig. 2B; Supplementary Fig. S1),

indicating that the model describes the dynamics of pause-escape well. When the distance to the pause

site, k, was allowed to vary across cells, however, and the read-depth in the pause peak was estimated

by averaging across sites, the increased read density owing to pausing was dramatically under-estimated,

resulting in a strong upward bias in estimates of β (Fig. 2C; Supplementary Fig. S1). In this case, the

“spike” of read counts becomes a rounded “peak” of reduced height, which naturally biases the estimate

of β. As it turns out, this simple source of bias is deceptively difficult to eliminate. For example, if the

maximum, rather than the average, read-depth in the pause peak is used in the estimator for β, the bias is

somewhat reduced but remains pronounced (Fig. 2D). Instead, we develop an extension to the model to

remedy this problem in the next section.

Promoter-proximal pause sites vary across cells and pause-escape is rate-limiting

To address the bias in estimation of β in the presence of variable pause sites, we extended the model to allow

for a distribution of pause sites across cells (see Methods). In this version of the model, the read counts

at each site in the pause peak are assumed to arise from a mixture of cells in which an RNAP is and is not

paused at that position. If a Gaussian distribution of pause sites is assumed, the model can be fitted to the data
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relatively simply and efficiently by expectation maximization (EM). This procedure results in maximum-

likelihood estimates not only of χ and β but also of the mean and variance of the pause-site position across

cells. Thus, this version of the model no longer requires prior information about the pause-site k, but instead

allows its mean and variance to be estimated separately at each gene from the raw data.

We reanalyzed our simulated data using this version of the model and found that it was highly effec-

tive at correcting the bias in estimated values of β. In this case, the same model addresses the fixed and

variable pause-site scenarios equally well across a range of values of α and β (Fig. 3A; Supplementary

Fig. S2). Whereas the averaging approach described in the previous section resulted in over-estimates of β

by more than two orders of magnitude, that bias was completely eliminated when variability in the pause

site was modeled directly. Thus, typical average-based estimates of a “pausing index” (IP ) for real data

may substantially under-estimate the prominence of promoter-proximal pausing in RNAP dynamics (see

Discussion). The model addresses this problem. Only when α is quite small and β is quite large (bottom

of Supplementary Fig. S2), resulting in few excess reads in the pause peak, do the model-based estimates

sometimes exhibit a substantial downward bias. Notably, while the full model requires an iterative method

such as EM, it is possible to derive an approximate closed-form expression for β in terms of the pausing

index IP , which clarifies the physical meaning of IP (see Methods and Discussion).

To validate the ability of our model to capture differences in the pause-site distributions across cells,

we applied it to synthetic data sets with larger and smaller variances in pause-site locations. We found that

the model was able to recover the correct distributions fairly accurately, as long as the read counts in the

pause peak were not too sparse (Fig. 3B). Notably, the model is provided with no prior information about

the mean or variance in the pause-site location, but is only constrained to consider a range of possible values

(here from kmin = 1 to kmax = 200). When applied to real data, the model also appears to do a good job of

identifying plausible distributions across cells in the locations of pause sites (Fig. 3C).

Having observed good performance on synthetic data, we applied the model to published PRO-seq data

for K562 cells before and after heat shock [36], focusing at first on the untreated sample. For comparison,

we also fitted the previous version of the model (based on the average read depth in the pause peak) to the

same data set. We found, as expected, that the distribution of β estimates was substantially shifted, with

values about two orders of magnitude smaller under the new model (Fig. 3D). Based on our simulation

results, we expect these smaller estimates to much more accurately represent the true pause-escape rates.

For comparison with experimental results (e.g., [20,21,37]), we converted these estimated pause-escape

rates to half-lives for RNAP residence in the pause region, conditional on an assumed elongation rate of

ζ = 2 kb/min [16, 20, 21, 37]. For a direct comparison, we considered the time required for elongation up

to the pause site, as well as the waiting time for escape (see Methods). We estimated a median half-life

of 1.4 min. and a mean of 2.8 min. (Supplementary Fig. S3A). These estimates are fairly similar to ones

obtained experimentally by Gressel et al. for human Raji B cells [20] (median pause duration of 1.4 min,

corresponding to a median half-life of 1.0 min) and for K562 cells [21] (median pause duration of 1 min),

but somewhat smaller than those from some other recent experimental studies (e.g., [37]; see Discussion).

We additionally examined PRO-seq data from another study of K562 cells [17] and estimated a similar

distribution of half-lives, with a median of 1.2 min. and mean of 2.1 min. (Supplementary Fig. S3B).
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Notably, induction of heat shock and treatment with the drug celastrol both increased half-lives by 2–3-fold

(Supplementary Fig. S3C&D), consistent with the observations of increased pause indices in the original

reports [17, 36].

Interestingly, the pause peaks estimated for both of these data sets varied substantially across genes in

their breadth, as quantified by the estimated variance across cells in the pause-site position (σ̂2). Hypoth-

esizing that the underlying DNA sequences might contribute to the precision of pausing, we searched for

sequence motifs that distinguished the pause regions having the narrowest peaks (10% with smallest σ̂2)

from those having the broadest peaks (10% with largest σ̂2), focusing again on the untreated samples (see

Methods). In both the heat-shock [36] and celastrol [17] data sets, we found that the most strongly enriched

motif in the narrow peaks closely matched the binding motif for TATA-Box Binding Protein Associated

Factor 1 (TAF1), the largest subunit of general transcription factor IID (TFIID) and a key component of

the pre-initiation complex (PIC) [38, 39] (Supplementary Figs. S4 & S5, panels A & B). Consistent with

these motif enrichments, chromatin immunoprecipitation and sequencing (ChIP-seq) data for TAF1 in K562

cells from the ENCODE project [40] exhibits a substantially stronger signal at narrow peaks than at broad

peaks, particularly near the TSS (Supplementary Figs. S4C & S5C). Interestingly, it has recently been

shown that the PIC alone is sufficient to establish RNAP pausing, and that rapid TAF1 depletion induces

pause-release genome-wide [41]. We found other enriched motifs, but they mostly consisted of repetitive,

highly G+C-rich sequences, similar to observations in other recent studies [20, 42, 43]. We examined the

DNA sequences surrounding the nucleotide with the maximum PRO-seq read count in each pause peak, and

observed a clear enrichment for cytosines at this position (see also [20, 42–44]; Supplementary Figs. S4D

& S5D). However, this enrichment was evident in both the narrow and broad peaks.

We were also interested in possible effects of cellular stress on pause-site locations. Metaplots sum-

marizing the accumulated PRO-seq signal across large classes of genes have suggested that pause peaks

may tend to shift in location and become sharper following stress, particularly for downregulated genes

(e.g., [29,36]). To test whether our model supported such a change, we compared our estimates of the pause

site locations, before and after application of heat shock (Fig. 3E). Indeed, we observed a striking reduction

in both the mean and variance of k after heat shock. This shift may reflect differences in activity of protein

complexes required for pausing, including NELF, DSIF, P-TEFb, or the PIC (e.g., [41,45]). For comparison,

we examined PRO-seq data from the celastrol study, which reported a stress response that resembles heat

shock in some ways [17]. In this case, however, we did not observe a clear change in the mean and variance

of k (Supplementary Fig. S6).

High occupancy at promoter-proximal pause sites hinders transcription initiation

To test the hypothesis that the observed under-estimation of α is driven by steric hindrance of initiation

(Fig. 2A), we collected two types of auxiliary data from our simulation experiments. First, we tracked the

fraction of cells in which the “landing pad” for a potential new initiation event was already occupied by an

RNAP (“landing-pad occupancy”), which is a close proxy in our simulations for the fraction of potential

initiation events that were not allowed to occur owing to steric hindrance. We found that this fraction was
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frequently quite high (often 50% or more, and in some cases ≥90%), and tended to be highest when the

bias in estimated α was most pronounced (Supplementary Fig. S7A). Second, we measured the rate at

which initiation events successfully occurred (not being blocked) and compared it with our estimates of α,

finding much better agreement between this “effective” (sometimes called “productive” [20, 21]) initiation

rate and our estimates (Supplementary Fig. S7B). Finally, we found that our estimation accuracy for α (as

measured by the ratio of the estimated to true values) had a close negative correlation with the landing-pad

occupancy (Supplementary Fig. S7C). Together, these findings indicate that—at least in simulation—new

initiation events are frequently blocked by RNAPs occupying the region just downstream of the TSS, and

that this phenomenon explains much, if not all, of the bias in estimation of α.

To address this problem, we extended our probabilistic model to explicitly allow for steric hindrance

of initiation at steady state. Briefly, we introduced a distinction between an effective initiation rate ω and

a potential initiation rate α, letting ω = (1 − ϕ)α, where ϕ is the landing-pad occupancy. The model

assumes that a fraction ϕ of new initiation events are blocked by RNAPs occupying the landing pad, and

the remaining fraction 1− ϕ are allowed to proceed (see Methods for complete details). It allows for more

than one RNAP per pause region, because the landing pad will likely be blocked in some cases by RNAPs

stacking up behind the pause site. Based on our observations above, we reinterpreted our previous estimator

for α instead as an estimator for the effective rate ω (and hence, redefined χ = λω
ζ ). This new model allows

us to compute ϕ in terms of α, β, k, and an assumed minimum spacing between RNAPs, denoted sp. An

extended EM algorithm allows joint estimation of ϕ, α, and β from the data, with a Beta prior distribution

to ensure that ϕ remains in the allowable range, ϕ ∈ (0, 1) (Methods). In effect, this strategy allows us to

correct the assumed model for steric hindrance, yielding estimates not only of the effective initiation rate ω

and pause-escape rate β, as in the previous case, but also of the landing-pad occupancy ϕ and, hence, the

potential initiation rate α.

When we applied this new model to our simulated data, we found that it generally appeared to work

as intended. The estimates of ϕ were broadly consistent with an empirical measure of the landing-pad

occupancy across a range of values of α and β (Fig. 4A), Not surprisingly, given the indirect information

about ϕ in the data, the variance in these estimates was substantial; nevertheless, their mean values were

close to the truth even for large ϕ, although the Beta prior did sometimes produce a slight downward bias

in this case. The estimates of the pause-escape rate β remained quite good overall even in the presence of

substantial amounts of steric hindrance (Supplementary Fig. S8).

The most difficult parameter to recover was the potential initiation rate α, about which the data are

only weakly informative via the effective initiation rate ω and the landing-pad occupancy ϕ. Nevertheless,

α was estimated well when α ≤ β and ϕ ≤ 0.5 (Supplementary Fig. S9). When α ≫ β and ϕ → 1,

however, the denominator of the estimator α = ω
1−φ becomes unstable, and in the most extreme cases (e.g.,

αζ = 10, βζ = 0.1), it is no longer possible to estimate α accurately. In these cases, the effective initiation

rate is still estimated well, but it is not possible to extrapolate from it to the potential rate, because only a

tiny fraction of potential initiation events are allowed to occur.

Our initial experiments assumed a value of sp = 50 bp for the minimum center-to-center spacing be-

tween adjacent RNAPs (following [20]), but the true value of sp is not known with any certainty; therefore,
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we examined the robustness of our model to other plausible values of this parameter. In general, smaller

values of sp will increase the chances that a single paused RNAP will not block the landing pad, but will

also allow more RNAPs to stack up behind the pause site. In contrast, when sp grows larger and approaches

k, the distance to the pause-site, at most one RNAP can occupy the pause region at a time, and that RNAP

will necessarily block the landing pad (see Methods for details). We used SimPol to generate data sets for

two alternative choices of sp: a more generous value of sp = 70 bp and the minimum possible value of

sp = 33 bp [19]. The case of sp = 33 bp is probably unrealistic given the physical space required for the

other components of the PIC (e.g., [41,46]) but is nevertheless useful as a bound. In our simulations, where

k has a mean of 50 and standard deviation of 25, ≥ 2 paused RNAPs are possible at 82%, 54%, and 23%

of cells for sp = 33, sp = 50, and sp = 70 bp, respectively; and ≥ 3 paused RNAPs are possible at 28%,

2.4%, and 0.02%, respectively.

The estimates of ϕ did not differ dramatically as sp was varied, but this sensitivity analysis did reveal

two types of bias (Supplementary Fig. S10). First, when sp was small and α ≈ β, ϕ tended to be somewhat

overestimated. This overestimation in ϕ appears to be a consequence of a slight underestimation of β in the

presence of multiple RNAPs per pause region (Supplementary Fig. S11), which are ignored by our variable

pause-site model. Second, we observed a downward bias when αζ and βζ both took the maximum value

of 10, apparently because RNAPs in transition between paused positions, which are ignored by the model,

make a nonnegligible contribution to landing-pad occupancy in this highly saturated case. This effect is

most evident when sp ≥ 50. Overall, however, the ϕ and β estimates were reasonably accurate across all

parameter values, indicating that the model is fairly robust to assumptions about RNAP spacing.

Using this model we re-analyzed the untreated K562 sample from Vihervaara et al. [36], focusing on

6,182 robustly expressed genes (the top 80% by χ̂). When fitting the model to real data, however, a problem

of scale arises: the effective initiation rate ω can only be estimated up to a scale factor, which is determined

by the (unknown) ratio of the read depth to the elongation rate, λ/ζ. At the same time, the pause-release rate

β—whose estimator is a ratio of two summary statistics (equations 7 and 11)—has a fixed scale; thus, the

estimator for the landing-pad occupancy, ϕ̂ ≈ ω/β (equations 20 and 25), depends on the choice of scale

for ω.

To address this problem, we calibrated the scale of ω using published estimates of the initiation rate.

Because there is considerable uncertainty about this quantity in the literature, we selected two different

calibration points, one on the low end of the reported range for eukaryotes, at 0.2 events per minute [47,48],

and another on the high end, at ∼1.0 events/min (median of estimates reported by [21]). We used a set

of “housekeeping” genes [49] for calibration, reasoning that these genes would minimize sensitivity to

differences among species, cell types, and conditions. We scaled our estimates of ω in the control samples

such that the median value of ωζ within housekeeping genes in our set was either equal to 0.2 (the low

(L) calibration) or equal to the median value in matched housekeeping genes from ref. [21], which was 1.5

events/min (the high (H) calibration; see Methods for details).

In the case of the L calibration, we found that the distribution of ϕ estimates across genes spanned a

fairly broad range, with a median of 0.16 and a mean of 0.25 (Fig. 4B), suggesting that, on average, about

a quarter of landing pads are occupied at steady state, but considerable fractions of genes have substantially
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lower or higher occupancies. About 5% of genes were predicted to have their landing-pads fully occupied

(ϕ ≥ 0.95; Fig. 4C). The scaled estimates of the effective initiation rate ωζ were roughly exponentially

distributed, with a median of 0.17 events per minute per cell (Fig. 4D). By combining our estimates of ϕ

and ωζ, we were additionally able to obtain per-gene estimates of the potential initiation rate αζ. These

estimates were modestly inflated, with a median of 0.22 and ∼3% of values ≥2.0 events per minute (Fig.

4D). Thus, steric hindrance appears to result in a reduction in the effective initiation rate in these cells, but

the effect is fairly subtle in this condition.

When we assumed the H calibration, the ϕ distribution shifted accordingly to the right. Indeed, in this

case 76.3% of genes were predicted to have fully occupied landing pads (ϕ ≥ 0.95; Fig. 4C), and as a

result, the majority of αζ values became poorly defined, suggesting that this initiation-rate calibration is

perhaps too aggressive. Nevertheless, by considering a broad range of potential initiation-rate calibrations,

we estimated that the landing-pad occupancy is generally fairly substantial, with the median value of ϕ

ranging from 16% to full occupancy. Thus, our model predicts that steric hindrance has a substantial impact

on initiation rates at steady state, even in the untreated condition.

For comparison, we repeated the analysis with the treated sample, following heat shock (HS). Consis-

tent with observations of increased pausing after HS [21, 36], we found a dramatic shift toward larger ϕ

estimates in this sample (Fig. 4B). With the L calibration, the fraction of genes with fully occupied land-

ing pads (ϕ ≥ 0.95) increased from 5.4% to 21.5% (Fig. 4C). Accordingly, steric hindrance was predicted

to have a substantially stronger impact on the effective initiation rate after HS, decreasing from a median

of 0.25 events/min to 0.13 events/min (Fig. 4E). We also analyzed untreated and treated samples from the

K562/celastrol study [17] using 5,964 genes with initiation rates calibrated using similar L and H strategies

(Methods). The results were qualitatively similar to those from the heat-shock analysis, but the absolute

ϕ estimates were somewhat lower, shifting from a median of 0.13 in the untreated case to 0.30 after treat-

ment (L calibration; Supplementary Fig. S12A). Application of celastrol resulted in a striking increase in

fully occupied landing-pads, from 2.7% to 14.8% of genes under the L calibration, but as in the heat shock

analysis, the H calibration indicated nearly complete landing-pad occupancy before treatment and a limited

shift after treatment (Supplementary Fig. S12B). Prediction of αζ indicated a modest reduction in initia-

tion rates from steric hindrance before treatment (Supplementary Fig. S12C) and a more pronounced one

after treatment (Supplementary Fig. S12D). Overall, we found that steric hindrance has a clear impact on

productive initiation, and that impact is particularly striking during responses to cellular stress.

Discussion

The widespread occurrence of promoter-proximal pausing has been one of the major surprises of the past

∼15 years in the study of gene regulation. Most studies of this phenomenon have focused on its molecular

mechanisms and its direct impact on rates of productive elongation [15]. In addition, however, there have

been indications that such pausing, when sufficiently pronounced, also imposes indirect limits on rates

of transcription initiation [19–22]. In this article, we have shown through analysis of simulated and real
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data that many aspects of this complex interplay between initiation and pause-escape can be described by

relatively simple probabilistic models. Our models not only describe raw read counts as a function of

variable rates of initiation and pause-release, enabling estimation of these rates from NRS data, but they

also allow for variable pause sites across cells, for reductions in initiation rates via steric hindrance, and

for the effects of multiple RNAPs stacking up behind the pause site. We have shown by simulation that

both variable pause sites and steric hindrance can have major impacts on the estimated rate parameters. Our

analysis of real data indicates not only that pause sites tend to be highly variable, but that their degree of

variability is correlated with particular sequence motifs as well as with stress responses. Similarly, steric

hindrance of transcription initiation appears to occur at many genes and is intensified in stress responses.

Both of these phenomena appear to play major roles in shaping the patterns of aligned reads from NRS data,

particularly near the 5′ ends of transcription units.

Our analysis shows, perhaps surprisingly, that even at steady-state it is possible to estimate absolute ini-

tiation and pause-escape rates in numbers of events per cell per unit time—provided the average elongation

rate at each gene can be estimated or reasonably assumed. Once estimated, these rates can be used, in turn,

to obtain various downstream quantities of interest, such as pausing half-lives (Supplementary Fig. S3),

landing-pad occupanies (Fig. 4B&C, Supplementary Fig. S12A&B), or, through combination with other

data sources, half-lives of RNA molecules or related quantities [50]. Of course, elongation rates vary across

genes and are nontrivial to estimate, but most studies have suggested that they tend to vary by factors of ∼2–

3, not by orders of magnitude, with average rates fairly close to 2 kb/min in mammalian cells [16,20,21,37].

Therefore, the method appears to be adequate for estimating “ballpark” rates from widely available NRS

data even when gene-specific, cell-type-matched elongation rates are not available.

Indeed, our estimates of the half-lives of paused RNAPs—with mean values of 2–3 min. in untreated

K562 cells and ∼6 min. after heat shock or celastrol treatment (Supplementary Fig. S3)—agreed reason-

ably well with previous experimental estimates. For example, Jonkers et al. measured a mean half-life of

6.9 min. at ∼3,200 genes in mouse ES cells [37]; Shao et al. found most half-lives were between 5 and 20

min. at 2,300 genes in Drosophila Kc167 cells [22]; and Gressel et al. estimated a median pause duration

of 1.4 min. (corresponding to a half-life of 1.0 min.) for 2,135 genes in human Raji B cells [20] (The same

group subsequently estimated a similar rate for 6,355 protein-coding genes in K562 cells [21]). In addi-

tion, Henriques et al. reported half-lives of promoter Pol II complexes from Drosophila S2 cells of ∼2–15

min at selected loci [51]. However, differences in species, cell types, treatments, and sets of genes make

these estimates difficult to compare precisely. Notably, the largest estimates [22, 37] were obtained after

treatment with triptolide, which could potentially lead to some inflation in the estimates [26]. Despite these

differences, our method seems to be in general agreement overall with previous findings that paused Pol II

is typically stable for minutes, and sometimes for tens of minutes, although we detect fewer extremely long

half-lives than some previous studies. It is likely that our estimator for β reaches saturation when pause

peaks become unusually elevated, leading to reduced sensitivity for the extreme tail of the distribution of

pausing half-lives. At the same time, our estimator may be more sensitive to short half-lives than some

experimental methods.

Despite such limitations, the use of steady-state rather than time-course data also has some important
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advantages. This approach allows us to analyze all expressed genes, not just a subset at which expression can

be induced. In addition, it requires no chemical treatment to block initiation or pause escape, and therefore

avoids potential off-target effects. At the same time, it is worth noting that our framework can be extended

to the nonequilibrium setting and the use of time-course data [34]. In that setting, it could be used to infer

elongation rates together with the other quantities. This version of the model, however, is considerably more

complicated mathematically, more difficult to fit to data, and harder to interpret. Additional work will be

required before it can be applied to real data.

Our estimator for the pause-escape rate β is closely related to the quantity known as the “pausing index”

(IP ), which is frequently used to measure the prominence of promoter-proximal pausing [14,35]. In the case

where the pause site is constant across cells, we have shown that IP is precisely the inverse of the maximum

likelihood estimator for the rate parameter β. When the pause site varies across cells, however, it becomes

less straightforward to interpret IP in physical terms, and a naive interpretation may lead to a strongly

biased characterization of the pause-escape rate (e.g., Fig. 3D). The details of how IP is calculated—e.g.,

by averaging the read counts in the pause region or using their maximum value (Fig. 2C&D)—also become

important in this case. We have shown that our model has a natural extension to variable pause sites, which

permits estimation of both the rate parameter β and the distribution of pause sites per gene by expectation

maximization. In this setting, β no longer has a simple relationship to IP . Interestingly, however, it is

possible to find an approximate closed-form relationship in the case where IP is calculated by averaging,

namely, 1

β̂
≈ L (IP − 1), where L = kmax − kmin + 1 is the length of the pause region (see Methods,

equation 17). We anticipate that this relationship may help to standardize definitions of IP and clarify its

physical meaning.

Our model also has implications for how to interpret the average read depth in the gene body (χ̂ in

our notation), which is a natural measure of the transcriptional output at each gene. The model makes

clear—as other investigators have previously argued [20, 21]—that χ̂ is a measure of the rate of “effective”

or “productive” transcription initiation at steady state, rather than of the “potential” rate. That is, in our

notation, χ is proportional to ω rather than α. Moreover, in the presence of steric hindrance, ω ≈ ϕβ

(equation 19; see also equation 25), which means that ω (and hence χ) is effectively limited by the pause-

escape rate β. Notably, this equation provides a simple and interpretable characterization of the “pause-

initiation limit” described by Gressel et al. [20, 21]. It says that the effective initiation rate ω can never

be greater than the pause-escape rate β, with equality when the landing-pad is fully occupied (ϕ = 1).

The physical meaning of the “potential” initiation rate α is somewhat less clear but, at least when ϕ is

not too close to one, our model does allow extrapolation to a larger rate at which initiation events would

hypothetically occur in the absence of steric hindrance. These values can be contrasted with the effective

initiation rate in assessing the importance of steric hindrance.

We should emphasize that our model does depend on some crucial simplifying assumptions. In particu-

lar, our continuous-time Markov model for the movement of RNAPs along the assumes that any RNAP that

successfully initiates will eventually make its way along the entire DNA template. The model excludes the

possibility of premature termination, largely because modeling this process—unless its position-dependent

rate could somehow be pre-estimated—would make the other rates nonidentifiable. Numerous investiga-
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tors have argued that pausing dominates in the dynamics of RNAP occupancy, particularly near the pro-

moter, because, among other reasons, promoter-associated RNAP complexes are quite stable and predom-

inantly localize to the pause region [22, 37, 51] (reviewed in [15]). Nevertheless, others have argued, e.g.,

based on imaging or footprinting techniques, that premature termination may play a much more prominent

role [26,52]. If premature termination does occurs at high rates in the pause region, it could potentially lead

to under-estimates of β in our framework (because the model will erroneously attribute 5′ peaks completely

to pausing), whereas if it occurs at high rates farther along in the gene body, it could lead to under-estimates

of both β and χ (and therefore ω and α). At the same time, if premature initiation predominantly occurs

very quickly and close to the TSS, transiently engaged RNAPs may be largely missed by NGS assays and

therefore invisible to our framework, allowing our estimates of β, χ, and ω (but not α) to remain accurate.

Unfortunately, our steady-state analysis sheds no additional light on this controversy and these questions

remain open.

A second process we ignore here is “bursting” of transcription initiation. There is now substantial

evidence that rates of transcription initiation do exhibit considerable temporal variation in actively tran-

scribed genes, with apparent oscillations between active and inactive states [23–25, 27, 53, 54]. This pattern

is strictly inconsistent with our assumption of a time-homogeneous Markov process. It is worth bearing in

mind, however, that our model effectively averages over the processes that are occuring in a large population

of cells. Unless those cells are synchronized in their bursting behavior, it would seem that averaging over

“on” and “off” states in a bursting model, as our Markov model will effectively do, may be adequate for our

purposes—although it is true that bursting could contribute to additional overdispersion in our read-count

data.

Third, while we are able to model interactions among up to three RNAPs in the pause region, we ignore

interactions in the gene body. Our simulations suggest that, at typical rates of initiation and pause-escape,

collisions between RNAPs in the gene body should be fairly rare and have a limited impact on RNAP

dynamics. However, they may become important under some conditions, when rates of transcription are

unusually high. Our strategy of focusing on collisions among RNAPs in the pause region only and ignoring

them in the gene body is what allows us to avoid working with the more general but difficult-to-analyze

“totally asymmetric simple exclusion process” (TASEP) [55, 56] (see also [57]). Essentially, we simplify

the modeling problem by exploiting the fact that, at least when promoter-proximal pausing is prominent,

most relevant collisions occur in the restricted region immediately downstream of the TSS.

It is now widely accepted that promoter-proximal pausing is rate-limiting at many genes and this step

is frequently regulated [15]. Our model helps to make clear, however, that steric hindrance can modulate

this important regulatory step in critical ways. On one hand, the model confirms that, in the presence

of rate-limiting pause-escape (small β), promoting initiation (increasing α) will have little or no impact on

transcriptional output, because the pause-initiation limit will quickly be reached. In this setting, a more rapid

and effective transcriptional response will come from releasing RNAPs from the paused state (increasing

β). At the same time, the model also reveals that the dynamic equilibrium between initiation and pause-

escape will tend to limit the duration of the transcriptional response to pause-release. The reason is that the

geometry of the pause region allows only a few RNAPs to be kept “in the chamber,” ready to be released
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into productive elongation. As soon as these ∼1–3 RNAPs are released in each cell, initiation will again

become rate-limiting. Thus, the effects of changes to initiation and pause-release cannot be fully separated;

rather, the two processes interact with one another in a kind of dance, each limiting the other under certain

circumstances. For this reason, each process is the natural target for regulation of gene expression in a

different regime—for example, initiation when a sustained transcriptional response is required, and pause-

escape when a rapid and/or synchronous but transient response is needed. Rates of initiation and pause-

escape are perhaps best thought of as two “knobs” for control of a single interrelated dynamical system near

the TSS of each gene.

Methods

Continuous-time Markov Model

The probabilistic model (Fig. 1A&B) consists of a continuous-time Markov model that describes the stochas-

tic movement of individual RNAPs along the DNA template, and a conditional generating process by which

read counts arise independently at each site in proportion to RNAP occupancy (defined below). The Markov

model consists of N + 1 states corresponding to the N possible nucleotide positions of the active site of an

RNAP as it moves along an N -nucleotide DNA template, plus an additional state (labeled 0) that abstractly

represents “free” RNAPs, not currently engaged in transcription and available for new initiation events.

Each state i in the Markov model corresponds to a binary random variable Zi, indicating whether the RNAP

is (Zi = 1) or is not (Zi = 0) at position i at a particular time t (Fig. 1B). In our setting, the use of this

time-homogeneous model depends on two key assumptions: (1) that collisions between RNAPs are rare,

allowing the movement of each RNAP to be considered independently of the others; and (2) that premature

termination of transcription is sufficiently rare that each RNAP can be assumed to traverse the entire DNA

template if it is given enough time (see Discussion for limitations).

The model distinguishes between two segments of each transcription unit: (1) the first k nucleotides,

known as the pause peak, where RNAP tends to accumulate owing to promoter-proximal pausing (typically

k ≈ 50) [9]; and (2) the subsequent N − k nucleotides, where RNAP tends to be relatively unimpeded,

which is typically referred to as the gene body. Movement of the RNAP is defined by four rate parameters:

an initiation rate α (from state 0 to state 1), a pause-escape rate β (from state k to state k+1), a termination

rate γ (from state N to state 0), and a constant per-nucleotide elongation rate ζ (for all other allowable

transitions). Because the states must be visited in a sequence, the infinitesimal generator matrix for the

Markov chain Q = {qij} has a simple form, with positive terms only on the diagonal qi,j such that j = i+1,

negative terms on the main diagonal, and zeroes elsewhere. For mathematical convenience, we assume that

the initiation, pause-escape, and termination steps are coupled with single-nucleotide elongation steps and

occur at rates ζα, ζβ, and ζγ, respectively. As a result, as long as ζ is the same across nucleotides, it can be
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considered a scaling factor that applies equally to all steps in the process. Specifically,

qij =



















































αζ i = 0, j = 1

βζ i = k, j = k + 1

γζ i = N, j = 0

ζ all other i, j such that j = i+ 1

0 all other i, j such that i ̸= j

−
∑

i′:i′ ̸=j qi′j i = j

(1)

where element qij indicates the instantaneous rate at which an RNAP transitions from state i to state j, and

by convention, the values along the main diagonal are set such that the rows sum to zero.

Stationary Distribution

This continuous-time Markov model allows for calculation of the probability of transitioning from any

state i to any other state j over a period of time t ≥ 0 (see [34]), but in this article we are interested in

steady-state conditions and therefore focus on the limiting distribution for ending states as t → ∞. This

stationary distribution, denoted π, is invariant to ζ and can be found easily by solving the equation πQ = 0.

Because state 0 is simply an abstraction to allow for the recirculation of RNAP, we omit it and describe the

stationary distribution conditional on RNAP occupancy along the DNA template. This conditional stationary

distribution can be expressed as π = (π1, . . . , πN ) such that,

πi =
1

Z
·















1

β i = k

1

γ i = N

1 i ∈ {1, . . . , N − 1}, i ̸= k,

(2)

with normalization constant Z = N − 2 + 1

β + 1

γ .

This distribution has an intuitive interpretation. First, it is natural that, conditional on RNAP occupancy,

the steady-state distribution is invariant to both α (which defines the rate at which occupancy is initiated but

has no effect thereafter) and ζ (which defines the “flow” along the DNA template but does not favor one

nucleotide position over another). In addition, as a result of local slowdowns in elongation, πi is elevated

relative to the gene body by factors of 1

β and 1

γ at the pause peak and termination peak, respectively. Notice

that both peaks take the form of “spikes” at single nucleotide positions under this model; in later sections

we will generalize the model to allow for a broader pause peak.

When comparing different transcription units, we have to allow for differences in TU-specific initiation

and elongation rates. In particular, in addition to obeying equation 2, the relative RNAP densities at TU

j will be proportional to
αj

ζj
, where αj and ζj are the TU’s initiation and elongation rates, respectively.

Furthermore, as detailed below, estimation of these rates is confounded by the sequencing depth, λ. Because

these parameters are not identifiable at steady state, we represent them by the compound parameter χj =
λαj

ζj
.
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In addition, the termination peak tends to be difficult to characterize with real nascent RNA sequencing

data, owing to transcriptional run-on, poorly characterized 3′ ends of genes, and other factors. Therefore,

from this point on, we omit the parameter γ and assume N is defined such that ambiguities at the 3′ ends of

TUs are excluded.

With these assumptions, when comparing the RNAP densities at various sites i along various TUs j, we

expect them to be proportional to,

µi,j =







χj

β i = k

χj i ∈ {1, . . . , N}, i ̸= k.
(3)

Generative Model for Sequence Data

To allow for the fact that the RNAP positions are only indirectly observed through the sequencing pro-

cess, we add a second layer to the model that describes the probabilistic process by which sequencing read

counts are generated conditional on an underlying density of RNAP at each nucleotide, as defined by the

continuous-time Markov model. In this way, we obtain a full generative model for the observed sequence

data that is defined by the model parameters, enabling inference of all parameters from the data.

Because we have freedom in how to set the read-depth scaling parameter λ (see below), we simply take

µij (as defined in equation 3) to be the expected read depth at position i of TU j. We then assume that the

read count Xi,j is Poisson-distributed with this mean. It is possible to use other generating distributions to

allow for overdispersion of the read counts [34], but the Poisson assumption seems to be adequate in our

case and it is particularly convenient for parameter inference.

With these assumptions, let the data for a single TU be denoted X = (X1, . . . , XN ), where Xi represents

the number of sequencing reads having their 3′ end aligned to position i. (We omit the j index in this case

to simplify the notation.) Assuming conditionally independent Poisson distributions at each site, the steady-

state log likelihood function for a single TU is given by,

ℓ(X; χ, β) = logP (X |χ, β) = log

{[

N
∏

i=1

Pois
(

Xi

∣

∣χ
)

]

×
Pois (Xk |χ/β)

Pois (Xk |χ)

}

= log

{[

N
∏

i=1

χXie−χ

Xi!

]

× β−Xke
−χ

(

1

β
−1

)

}

= s logχ−Xk log β − χ

(

N +
1

β
− 1

)

− logZ, (4)

where s =
∑N

i=1
Xi is a statistic equal to the sum of all read counts and Z =

∏N
i=1

Xi! is a normalization

term that does not depend on the model parameters and can be ignored during optimization.
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Inference at Steady-State

Under this likelihood function (equation 4), the maximum-likelihood estimators for χ and β have simple

closed-form solutions:

χ̂ =
s−Xk

N − 1
(5)

β̂ =
s−Xk

Xk(N − 1)
. (6)

Notice that the estimator for χ is simply the average read depth, excluding the pause peak, and the estimator

for β is the ratio of that same average read depth to the read depth in the pause peak. These are estimators that

have been widely used in the analysis of nascent RNA sequencing data, with more heuristic justifications.

In practice, it tends to be better to avoid the complex signal in the pause region in estimating χ and

instead estimate it from a downstream portion of the gene body. We define s′ =
∑j+M−1

i=j Xi, where M is

the length of the interval considered, and estimate χ and β as,

χ̂ =
s′

M

β̂ =
s′

XkM
. (7)

For the remainder of the paper, we assume the use of these simpler, more robust estimators for χ and β.

Allowing for Variation in the Pause Site

In real samples, the pause site tends to vary across cells, leading to a broad pause peak in nascent RNA

sequencing data. We address this complication by allowing the location of the pause peak, k, to vary

between a kmin and a kmax according to an appropriate distribution, and then assuming each read count Xk

within this range reflects a mixture of cells that do and do not have their pause site at position k. Assume

that, for k ∈ {kmin, . . . , kmax}, fk represents the fraction of cells with pause site k, and that the read count

Xk derives from a mixture of one Poisson distribution with rate χ/β · fk and a second Poisson distribution

with rate χ · (1− fk). If we denote by Yk the (unknown) portion of the read count that derives from the first

process, then the log likelihood function can be expressed as (cf. equation 4),

ℓ(X; χ, β) =

kmin−1
∑

i=1

log [Pois (Xi |χ)] +

kmax
∑

k=kmin

log





Xk
∑

Yk=0

Pois (Yk |χ/β · fk) Pois (Xk − Yk |χ · (1− fk))





+

N
∑

i=kmax+1

log [Pois (Xi |χ)] . (8)

This log likelihood function does not have a closed-form solution but it is straightforward to maximize

by expectation maximization. The complete-data log likelihood function, with known values of Yk, can be
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expressed in terms of compact sufficient statistics (analogous to equation 4) as,

ℓc(X,Y ; χ, β) = s logχ− t log β − χ

(

N +
1

β
− 1

)

+

kmax
∑

k=kmin

Yk log fk + (Xk − Yk) log(1− fk)− logZ, (9)

where s =
∑

iXi and t =
∑

k Yk. The expected value of this function, averaging over the latent variables

Yk—the quantity to maximimize in EM—is simply,

⟨ℓc(X,Y ; χ, β)⟩ = s logχ− ⟨t⟩ log β − χ

(

N +
1

β
− 1

)

+

kmax
∑

k=kmin

⟨Yk⟩ log fk + (Xk − ⟨Yk⟩) log(1− fk)− logZ, (10)

where ⟨Yk⟩ and ⟨t⟩ =
∑

k⟨Yk⟩ denote the posterior expected values of Yk and t, respectively. For simplicity,

assume that χ is pre-estimated for a portion of the gene body downstream of kmax using equation 7. If in

addition the values of fk are fixed, then β can be simply estimated as,

β̂ =
χ̂

⟨t⟩
, (11)

The values ⟨Yk⟩ can be computed by observing that, because Xk is the sum of two Poisson-distributed

variables, Yk |Xk is binomially distributed with probability,

pk =
fkχ/β

fkχ/β + (1− fk)χ
=







1

1−β+β/fk
fk ̸= 0

0 fk = 0
(12)

Therefore, ⟨Yk⟩ = Xk · pk, and

⟨t⟩ =
∑

k

Xk · pk =
∑

k

Xk

1− β + β/fk
I(fk ̸= 0). (13)

Thus, an EM algorithm can be implemented by iteratively applying equations 11 and 13, in turn, until

convergence.

Furthermore, to estimate the distribution of pause sites from the data at each TU, we assume the fk

values have a truncated Gaussian distribution with mean µ and variance σ2,

fk =
1

Z
×







1

σe
− 1

2
( k−µ

σ )
2

k ∈ {kmin, . . . , kmax}

0 otherwise,
(14)

where the explicit normalization constant Z is needed because the distribution is applied to a bounded

interval and is defined at integer values only.

In this case, the EM updates for µ and σ2 are simply,

µ̂ =
⟨u⟩ − ⟨z⟩

⟨t⟩ − ⟨w⟩
, σ̂2 =

⟨v⟩ − ⟨r⟩

⟨t⟩ − ⟨w⟩
− µ̂2, (15)
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where,

⟨t⟩ =
∑

k

⟨Yk⟩, ⟨w⟩ =
∑

k

fk
1− fk

(Xk − ⟨Yk⟩),

⟨u⟩ =
∑

k

⟨Yk⟩k, ⟨z⟩ =
∑

k

fk
1− fk

(Xk − ⟨Yk⟩)k,

⟨v⟩ =
∑

k

⟨Yk⟩k
2, ⟨r⟩ =

∑

k

fk
1− fk

(Xk − ⟨Yk⟩)k
2.

Notice that all of these quantities are easily computed from the ⟨Yk⟩ values together with fk and Xk.

Approximate Relationship between β and the Pausing Index IP

The model above requires iterative estimation, but an approximate closed-form expression for β in terms of

the pausing index IP can be obtained by noting that the excess reads in the pause region, t, can be estimated

reasonably well by multiplying the difference between the average read depths in the pause region and gene

body by the length of the pause region, L = kmax − kmin + 1:

t ≈ L (χ̂P − χ̂) = Lχ̂ (IP − 1) , (16)

where χ̂P is the average read depth in the pause region and IP = χ̂P

χ̂ is the pausing index as computed by

averaging across the pause region. Therefore,

β̂ =
χ̂

t
≈

1

L (IP − 1)
. (17)

Thus, an interpretable pause-escape rate parameter can be estimated approximately from the pausing index

IP . This equation provides a physical interpretation for IP and also explains why our naive initial estimation

strategy tended to over-estimate β by a factor of approximately L. This strategy, however, does not allow

estimation of the mean or variance of the pause site at each gene.

Allowing for Steric Hindrance of Initiation

To accommodate steric hindrance of initiation at steady state, we introduce a distinction between a potential

rate of initiation in the absence of occlusion of the initiation site, α, and the effective rate of initiation after

a portion of initiation events are blocked by an existing RNAP molecule, which we denote ω. We assume

ω = (1 − ϕ)α, where ϕ is the probability of that the “landing pad” required for a new initiation event is

already occupied by an RNAP. Thus, ω ≤ α. Notice that any estimation of initiation rates based on the

density of RNAPs in the gene-body will be representative of ω, not α; a correction may be required to

estimate α accurately.

We first assume that the “footprint” of an engaged polymerase, ℓ, is sufficiently large that at most one

RNAP can be present in this region at a time. (We relax this assumption below.) We further assume that
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elongation up to position k occurs much faster than the initiation rate αζ or the pause-escape rate βζ, so that

the dynamics of elongation through the pause peak can be ignored. In this case, occupancy of the landing

pad can be described using a simple two-state continuous-time Markov model (Fig. 5A). Here, either the

landing pad is unoccupied (state 0) and is therefore available for new initiation events, which occur at rate

αζ; or the landing pad is already occupied by an RNAP (state 1) and no new initiation events can occur

until that RNAP escapes from the pause site, which occurs at rate βζ. Thus, at steady state, the landing-pad

occupancy ϕ is simply given by the stationary distribution of the occupied state,

ϕ =
αζ

αζ + βζ
=

α

α+ β
, (18)

and the effective initiation rate, allowing for steric hindrance, is given by,

ω = α(1− ϕ) =
αβ

α+ β
. (19)

Notice that these equations also imply that ω = ϕβ, meaning that, at steady state, the effective initiation rate

ω must always be less than or equal to the pause-escape rate β, with ω approaching β as the landing-pad

occupancy ϕ approaches unity. Therefore, if one estimates an effective initiation rate ω̂ and a pause-escape

rate β̂ from the data, as described above, then one can obtain estimates of ϕ and α as follows,

ϕ̂ =
ω̂

β̂
, α̂ =

ω̂

1− ϕ̂
=

ω̂β̂

β̂ − ω̂
. (20)

Notice that the estimator for ϕ will be proportional to the read-counts in the pause peak (see, e.g., equation 7).

Steric Hindrance with Multiple RNAPs

As it turns out, the assumption of ≤1 RNAPs per pause region is often too restrictive, and the presence of

more than one RNAP in this region can have a substantial impact on the landing-pad occupancy ϕ. In this

section, we generalize the model for steric hindrance to allow for any number r of RNAPs in the pause

region, focusing in particular on the case of r ≤ 3, which we expect to cover essentially all plausible

scenarios in human cells.

Let sp be the minimum center-to-center spacing, in nucleotides, between adjacent RNAPs on the DNA

template. As noted in the main text, structural data suggests sp is at least 33 bp but more plausibly sp ≈

50 bp [18,19,41,46]; we also consider the case of sp = 70 bp for comparison. We further assume that a new

initiation event can successfully occur if, and only if, the previous RNAP has advanced to a position i > sp

(in other words, the “landing pad” for new initiation events has size ℓ = sp). Consequently, the maximum

possible number of RNAPs in the pause region is r = 1 if the pause site k ≤ sp, r = 2 if sp < k ≤ 2sp,

r = 3 if 2sp < k ≤ 3sp, and so on (see Fig. 5B). In general, r = ⌈ k
sp
⌉.

In addition, we assume a probability mass function fk for the pause site k across cells, with cumulative

distribution function F (k) =
∑k

i=0
fk. Let q1 be the density associated with r = 1; that is, q1 = F (k = sp).

Similarly, q2 is the density associated with r = 2, q2 = F (k = 2sp) − F (k = sp); and q3 = F (k =

3sp)− F (k = 2sp). In general, qr = F (k = rsp)− F (k = (r − 1)sp) (Fig. 5B).
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Now, in each cell, k has a single value and therefore one of a series of mutually exclusive cases must

apply. Let us denote by Case r (for r ∈ {1, 2, 3, . . . }) that the maximum possible number of RNAPs is r.

Thus, in Case 1, r = 1 and k ≤ sp; in Case 2, r = 2 and sp < k ≤ 2sp; and so on. Given fk, we know

that Case r occurs with probability qr. Therefore, we can calculate ϕ as a mixture of case-specific landing-

pad probabilities, ϕ =
∑∞

r=1
qrϕr, where ϕr is the probability that the landing pad (first sp nucleotides) is

occupied in case r. In practice, we approximate this quantity as ϕ ≈
∑R

r=1
q′rϕr where R is the maximum

plausible value of r (here, R = 3) and,

q′r =







qr r ∈ {1, 2, . . . , R− 1}

1−
∑R−1

r=1
qr r = R,

(21)

where the last term, q′R, is “rounded up” to account for the remaining tail of the distribution.

The case of r = 1 has already been described in the previous section. It can be captured by a two-state

model, where the landing-pad is either unoccupied (state 0) or occupied by a single RNAP (state 1; Fig. 5A).

Therefore,

ϕ1 =
α

α+ β
. (22)

It turns out that the cases of larger values of r follow naturally through the addition of more states. For

example, when r = 2, the landing pad is either unoccupied (state 0), occupied by one RNAP (state 1), or

occupied by two RNAPs (state 2). Assuming no two events can occur simultaneously, state 2 can be reached

only when a new initiation event occurs while state 1 is occupied (at rate αζ), and a pause-release event in

state 2 causes a return to state 1 (at rate βζ). The result is a chain of states as shown in Fig. 5C. In addition,

under the assumption that elongation through the pause peak is instantaneous, the landing pad is occupied

if, and only if, state 2 is occupied. Thus, ϕ2 is given by the stationary frequency of state 2 in this model,

which can be shown to be,

ϕ2 =
α2

α2 + β2 + αβ
. (23)

Similarly, the case of r = 3 can be addressed by extending the chain further with a state 3, and setting

ϕ3 equal to the stationary frequency of that state (Fig. 5D),

ϕ3 =
α3

α3 + β3 + α2β + αβ2
. (24)

Therefore, assuming R = 3, we can estimate ϕ as,

ϕ = q1ϕ1 + q2ϕ2 + (1− q1 − q2)ϕ3

=
q1α

α+ β
+

q2α
2

α2 + β2 + αβ
+

(1− q1 − q2)α
3

α3 + β3 + α2β + αβ2
, (25)

allowing for the possibilities of one, two, or three RNAPs in the pause region of each cell. As sp grows

larger and/or fk shifts toward the TSS, the fraction q1 approaches 1, and equation 25 approaches equation

18.
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As it turns out, substitution of ω/(1 − ϕ) in place of α in this more general expression for ϕ leads to

a complex polynomial that cannot be easily solved for ω. Instead, we solve this equation numerically to

obtain ϕ and α from ω and β (analogous to equation 20).

Fitting the Steric-Hindrance Model to Data

The multi-RNAP steric hindrance model can be combined with the model for variable pause sites across

cells and fitted to the data by a relatively straightforward extension of the EM algorithm described above.

As in that case, we assume that the unscaled initiation rate, χ, is pre-estimated from data in the gene body. In

addition, however, this case requires pre-estimation of the scale-factor λ and the elongation rate ζ, so that a

scaled estimate of the effective initiation rate, ω = χζ
λ , can be obtained from each estimate of χ. In practice,

we obtain these scale factors by calibrating with respect to other studies (see “Calibrating the initiation rate,”

below).

In addition, we must address the problem that the landing-pad occupancy ϕ is constrained to fall between

0 and 1, but the relationships above do not enforce such a constraint. For example, in the single-RNAP case,

where ϕ = ω
β (equation 20), ϕ will be undefined whenever ω > β. A similar (but more complicated)

relationship holds in the multi-RNAP case.

To address this problem, we take a Bayesian approach and assume a (weakly) informative prior distri-

bution for ϕ. This strategy not only restricts ϕ to the allowable range but has the benefit of regularizing the

model when information in the data about ϕ is weak. With the assumption of a Beta(ϕ | a, b) prior for ϕ,

with shape parameters a and b (we assume a = b = 2 throughout), the likelihood (cf. equation 8) becomes,

L(X; χ, β) =

∫

[

kmin−1
∏

i=1

Pois (Xi |χ)

]

×





kmax
∏

k=kmin

Xk
∑

Yk=0

Pois (Yk |χ/β · fk) Pois (Xk − Yk |χ · (1− fk))





×





N
∏

i=kmax+1

Pois (Xi |χ)



× Beta (ϕ | a, b) dϕ, (26)

and the expected complete-data log likelihood (cf. equation 10) becomes,

⟨ℓc(X,Y ; χ, β, ϕ)⟩ = s logχ− ⟨t⟩ log β − χ

(

N +
1

β
− 1

)

+





kmax
∑

k=kmin

⟨Yk⟩ log fk + (Xk − ⟨Yk⟩) log(1− fk)





+ (a− 1) log ϕ+ (b− 1) log(1− ϕ)− logZ. (27)

From a comparison of equations 10 and 27, it is evident that the calculation of the summary statistics

⟨t⟩, ⟨u⟩, ⟨v⟩, ⟨w⟩, ⟨z⟩, and ⟨r⟩ and the updates for µ and σ2 will all remain unchanged (equations 12–15).
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However, this simplified presentation obscures that the parameters ϕ and β are implicitly linked by a func-

tion, ϕ = g(β;χ), which is indirectly defined by equation 25 as well as by the relationship ω = (1 − ϕ)α.

Thus, the update for β in this case is no longer that shown in equation 11 but now must also consider the

terms that depend on ϕ. As it turns out, in the full multi-RNAP model, rewriting equation 27 in terms of β

only (i.e., by substitution for ϕ) leads to rather unwieldy polynomial expressions. Nevertheless, the M-step

in the EM algorithm can be performed numerically without much trouble. In particular, on each iteration of

the algorithm, we calculate all expected sufficient statistics as before (E-step), but then, for the M-step, we

estimate β by numerically maximizing the portion of equation 27 that depends on β and ϕ, that is,

β̂ = argmax
β

[

−⟨t⟩ log β −
χ

β
+ (a− 1) log ϕ+ (b− 1) log(1− ϕ)

]

(28)

subject to the constraints of equation 25 and the relationship ω = (1 − ϕ)α. Thus, the previous EM

algorithm can be adapted to the multi-RNAP steric hindrance case by simply replacing the M-step for β

with this numerical optimization. No other changes are required.

SimPol Simulator

SimPol (“Simulator of Polymerases”) tracks the independent movement of RNAPs along the DNA templates

of a large number of cells. It accepts several key user-specified parameters, including the initiation rate,

pause-escape rate, a constant or variable elongation rate, the mean and variance of pause sites across cells,

as well as the center-to-center spacing constraint between RNAPs (sp), the number of cells being simulated,

the gene length, and the total time of transcription. The simulator simply allows each RNAP to move

forward or not, in time slices of 10−4 minutes, according to the specified position-specific rate parameters.

It assumes that at most one movement of each RNAP can occur per time slice. The simulator monitors

for collisions between adjacent RNAPs, prohibiting one RNAP to advance if it is at the boundary of the

allowable distance from the next. After running for the specified time, SimPol outputs a file in bigWig

format that records all RNAP position. SimPol is written in the statistical programming language R [58],

and depends on the optparse [59], Matrix [60], and rtracklayer [61] packages.

Generation of Synthetic NRS Data

Using SimPol, we simulated genes 2,000 bp in length with initiation (αζ) and pause-escape (βζ) rates that

spanned two orders of magnitude, ranging from 0.1 to 10 events per min. per cell. Elongation rates at each

nucleotide position were randomly sampled from a truncated normal distribution, with mean = 2,000 bp/min,

sd = 1,000 bp/min, min = 1,500 bp/min and max = 2,500 bp/min. When a fixed pause site was assumed,

it occurred at position k = 50 bp; variable pause sites assumed a truncated normal distribution for k, with

mean = 50 bp, sd = 25 bp, min = 17 bp and max = 200 bp. Our main simulations assumed a center-to-center

spacing sp = 50 bp, but alternative simulations assumed sp = 33 bp and sp = 70 bp. For each parameter

combination, we simulated 20,000 cells for the equivalent of 40 min. (400,000 time slices), which appeared

to be sufficient to reach equilibrium in all cases (see also Supplementary Table S1 for a summary).
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Based on the output of each SimPol run, we randomly sampled 5,000 of the 20,000 cells. This sampling

step was performed 50 times for each run. To save in computation, the same source collection of 20,000

cells was used for each replicate, after verifying that it made little difference to rerun the full simulation to

equilibrium each time. For each of these replicates, we then sampled a read count at each position i from a

Poisson distribution with mean µi such that,

µi = λc ·
Ri

Cs
, (29)

where Ri is the number of sampled cells having an RNAP whose active site (center) is at position i and

Cs = 5, 000 is the total number of sampled cells. The scale parameter λc was calibrated such that a typical

choice of initiation (αζ = 1 events/min) and pause-escape (βζ = 1 events/min) rate parameters resulted

in an average read depth of 0.049 reads/bp in the gene body, as we observed in the real data from ref. [17]

(median value).

For simplicity, we performed this step separately at each nucleotide only in the pause region (the first

200 nucleotides). Because the RNAP densities throughout the gene bodies are fairly homogeneous, and the

corresponding read counts are averaged anyway, we sampled the total read count for each gene body in one

final step by scaling the Poisson distribution appropriately. This strategy also allowed us to extrapolate from

our 2,000-bp simulated genes to genes of more realistic length. Specifically, the total read count for the gene

body was sampled from a Poisson distribution with mean µGB such that,

µGB = λc ·
RGB

Cs
·
ltarg

lsim

, (30)

where RGB is the total number of RNAPs across the simulated gene body, Cs = 5, 000 is the total

number of cells sampled, ltarg = 19, 800 bp is the target gene-body length, and lsim = 1, 800 bp is the

simulated length. Notice that the scale parameter λc was held fixed throughout so that average read-depths

would increase or decrease appropriately as the rate parameters were altered.

Analysis of Real Data

We obtained published K562 PRO-seq libraries from the heat shock [36] and celastrol studies [17] and pro-

cessed them using the PROseq2.0 pipeline (https://github.com/Danko-Lab/proseq2.0) in single-end mode

[62]. The 3′ ends of reads—which approximately represent the active sites of isolated RNAPs—were

recorded in bigWig files and used for analysis. Mapping was performed with human genome assembly

GRCh38.p13 and gene annotation were downloaded from Ensembl (release 99) in GTF [63]. Annotations

of protein-coding genes from the autosomes and sex chromosomes were used, excluding overlapping genes

on the same strand. To improve TSS positioning, we augmented the gene annotations with CoPRO-cap

(Coordinated Precision Run-On and sequencing with 5′ Capped RNA) data for K562 cells from ref. [44]

(see [21,64] for similar uses of GRO-cap data). In particular, we used the position with highest CoPRO-cap
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signal within a 250 bp radius around each annotated TSS as a refined TSS and discarded genes for which

no CoPRO-cap signal was found. We then considered the 200 bp starting at this refined TSS as the “pause

region,” and the region from 1,250 bp to up to 90 kbp downstream (but not past the annotated end of the

gene) of this TSS as the “gene body.” We excluded any gene with fewer than 20 reads mapped to either the

pause peak or the gene body. For the remaining genes, the read counts at each of 200 positions in the pause

region, and the total read counts in the gene body, were summarized in a table and used for all downstream

analyses.

Calculation of half-lives

RNAP half-lives were calculated from estimates of the pause-escape rate β and average values of the pause-

site position k by the following equation,

T1/2 = log 2 ·
k̄ − 1 + 1/β̂

ζ
, (31)

where k̄ = 50 bp, ζ = 2, 000 bp/min, and β̂ is the estimated pause-escape rate. Here, the quantity (k̄ − 1 +

1/β̂)/ζ represents the expected time required for an RNAP to pass through the pause region and the pause

site, and the factor log 2 converts the mean of an exponential distribution to a half-life.

Discriminative motif finding

DNA sequences 200 bp downstream of the TSS were extracted, and STREME [65] was used to identify the

motifs enriched in the 10% genes with narrowest pause peaks (smallest σ̂2) compared with the 10% of genes

with broadest peaks (largest σ̂2). Tomtom [66] was then used to annotate the results with known motifs from

HOCOMOCO v11 [67].

To validate the sequence motif enrichment of TAF1, ChIP-seq signals for TAF1 in K562 cells down-

stream of the TSS were extracted separately for genes exhibiting narrow and broad peaks. These signals

were plotted using the R package Genomation [68]. Sequence logos for regions around the position with

maximum PRO-seq read counts in the pause peak were plotted using the R package ggseqlogo [69].

Calibrating the initiation rate

As described in the text, we made use of a “low” (L) calibration of 0.2 initiation events per minute [47, 70–

72], and a “high” (H) calibration based on ref. [21], who reported a median of 1.0 initiation events per minute

for mRNAs in K562 cells. These calibrations were performed separately for each of our four analyzed data

sets: the untreated and treated samples from the heat-shock [36] and celastrol [17] studies. We performed all

calibrations using “housekeeping” (HK) genes from ref. [49], to minimize sensitivity to differences between

assays and other properties. We first identified a subset of genes that fell in the intersection of the HK set,
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the genes from ref. [21], and each of our sets. This subset numbered between 1,079 and 1,082 genes for our

four data sets. In each case, for the L calibration, we simply scaled our ω values so that the median value

of ωζ within this set was equal to 0.2 events/min in the control samples. For the H calibration, we scaled

our ω values so that the median value of ωζ within this set matched the median value reported by Gressel

et al. [21] for the same subset of genes, which were 1.52 and 1.53 events/min in the control samples. The

ωζ in treated samples were then scaled based on the ratio of spike-in reads [17] or total mappable reads [36]

between the control and treated samples. Finally, to focus on genes exhibiting robust expression in both the

treated and untreated samples, we identified a subset of genes that fell in the top 80% by χ̂ in both samples.

This filter resulted in a total of 6,182 genes for the heat-shock data set and 5,964 genes for the celastrol

dataset.

Data Availability

PRO-seq fastq files of the heat shock [36] and celastrol [17] datasets were downloaded from GEO with

accession numbers GSE89230 and GSE96869. BigWig files of CoPRO-cap were downloaded with acces-

sion number GSE116472 [44]. The bigWig file for TAF1 Chip-seq was downloaded from ENCODE with

accession number ENCFF101GBL [73]. All data are for human K562 cells, and replicates were combined

for analysis.

Code Availability

Simulator “SimPol” and the unified model are freely available at https://github.com/CshlSiepelLab/SimPol

and https://github.com/CshlSiepelLab/unimod.
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Figure 1: A. Conceptual illustration of model, focusing on the kinetic model for RNAP movement on the

DNA template. Gray arrow indicates that a second layer of the model describes generation of nascent RNA

sequencing (NRS) read counts based on the distribution of RNAP positions across cells. B. Graphical model

representation with unobserved continuous-time Markov chain (Zi) and observed read counts (Xi). Read

counts at each site Xi are conditionally independent and Poisson-distributed given mean µi, which reflects

both the density P (Zi) and the sequencing depth λ. C. Design of SimPol (“Simulator of Polymerases”).

Based on user-defined initiation, pause-escape, and elongation rates, SimPol tracks the movement in silico

of RNAPs across N -bp DNA templates in C cells, then samples synthetic read counts based on RNAP

positions. SimPol identifies collisions and prohibits RNAPs from passing one another. It also models

variable pause sites and elongation rates. D. Example of synthetic nascent RNA sequencing data from

SimPol, shown in IGV [74] alongside matched real PRO-seq data from ref. [36] for the DNAJ1 gene on

chromosome 9 of the human genome.
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Figure 2: Accuracy of estimated values of the transcription initiation rate α and pause-escape rate β under

the initial version of the model. Estimates are expressed as products with the elongation rate ζ (αζ and βζ).

A. Simulated true vs. estimated values of αζ, for αζ ∈ {0.1, 1, 10} (left to right) and βζ ∈ {0.1, 1, 10}

(see key). Dashed lines indicate the ground truth. B–D. Estimated values of βζ for simulated true values of

βζ = 1 and αζ ∈ {0.1, 1, 10} (see key), when the pause-site k is fixed (B) or variable across cells (C & D)

in simulation. In panel C, β is estimated using the average read-depth in the pause peak, and in panel D it is

estimated using the maximum read-depth. Dashed lines indicate the ground truth. Results for other values

of βζ are shown in Supplementary Fig. S1. All boxplots summarize 50 replicates of the simulation; box

boundaries indicate 1st and 3rd quartiles, and horizontal line indicates median. A value of ζ = 2 kb/min is

assumed; αζ and βζ can be assumed to have units of events per minute. Pause sites occur at a mean position

of k = 50 bp. In the variable case, we assume a Gaussian distribution with a standard deviation of 25 bp.
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Figure 3: A. Accuracy of estimated values of the pause-escape rate β under the version of the model that

allows for a distribution of pause-sites k across cells. Shown are estimated values of βζ for simulated true

values of βζ = 1 and αζ ∈ {0.1, 1, 10} (see key), when the pause-site k is fixed (left) or variable across

cells (right) in simulation. Dashed lines indicate the ground truth. Results for other values of βζ are shown

in Supplementary Fig. S2. All boxplots summarize 50 replicates of the simulation; box boundaries indicate

1st and 3rd quartiles, and horizontal line indicates median. Simulated pause sites occurred at a mean position

of k = 50 bp. In the variable case, we assumed a Gaussian distribution with a standard deviation of 25 bp.

B. Examples of pause peaks in simulated data, showing assumed distribution of pause sites (blue dashed

line) and distribution inferred by expectation maximization (red solid line). C. Similar examples from real

data from ref. [36]. D. Estimates of βζ under the original averaging approach (horizontal axis) vs. estimates

of βζ under the model that allows for variable k across cells (vertical axis). E. Contour plot showing the

distribution of estimated means (horizontal axis) and standard deviations (vertical axis) of the pause peak

position k, under the “no heat shock” (NHS) and “heat shock” (HS) conditions. Data from ref. [36]. In

panels A and D, a value of ζ = 2 kb/min is assumed; thus, αζ and βζ can be assumed to have units of events

per minute.
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Figure 4: A. Accuracy of estimated landing-pad occupancy ϕ under the version of the model that allows

for steric hindrance in initiation and multiple RNAPs per pause region. Scatter plots show the fraction of

simulated cells for which the first 50 bp (the “landing-pad”) are occupied by an RNAP at steady state (“Em-

pirical ϕ”) vs. the fraction predicted to be occupied under the model (“Estimated ϕ”) based on the simulated

NRS data, assuming a minimum spacing of sp = 50 bp. Results are shown for simulated true values of

αζ ∈ {0.1, 1, 10} (left to right) and βζ ∈ {0.1, 1, 10} (see key), with 50 simulations per parameter combi-

nation. Dashed line indicates y = x, and colored crosses represent the means of the corresponding points. A

value of ζ = 2 kb/min is assumed, so that αζ and βζ are in events per minute. B. Distribution of estimated

ϕ for 6,182 robustly expressed genes in K562 cells before (NHS) and after (HS) heat shock under the low

(L) calibration [36] (see Methods for details). C. Percentages of genes having fully occupied landing-pads

(ϕ > 0.95) before (NHS) and after (HS) heat shock, under the low (L) and high (H) calibrations. D &

E. Distributions of scaled estimates of the “effective” (ωζ) and “potential” (αζ) rates of transcription ini-

tiation, in events per minute per cell, for the same genes. Panel D represents the NHS case and panel E

represents the HS case. The x-axes are truncated to highlight the bulk of the distributions. Gray arrows

indicate effects of steric hindrance.
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Figure 5: A. Two-state continuous-time Markov model for steric hindrance of transcriptional initiation,

assuming at most one RNAP at a time in the pause region. The pause region must be either unoccupied

(state 0) or already occupied by another RNAP (state 1). Transitions from state 0 to state 1 occur at the

(unimpeded) initiation rate, αζ, and transitions from state 1 to state 0 occur at the pause-escape rate, βζ.

The stationary frequency of state 1 defines the landing-pad occupancy ϕ and is given by α
α+β . B. Illustration

showing a hypothetical distribution of pause sites k and its implications for the number of RNAPs that can

simultaneously occupy the pause region. When k ≤ sp, where sp is the minimum center-to-center spacing

between adjacent RNAPs, only one RNAP is possible (Case 1 in the text); when sp < k ≤ 2sp, up to

two are possible (Case 2); and when 2sp < k ≤ 3sp, up to three are possible (Case 3). Notice that the

portion of the density corresponding to each Case r is given by qr. C. Generalization of Markov model to

accommodate up to two RNAPs in the pause region (Case 2). D. Further generalization to accommodate up

to three RNAPs (Case 3). The equation for ϕ can be generalized to account for these cases (see text).
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