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Abstract

Maintenance of astronaut health during spaceflight will require monitoring and potentially
modulating their microbiomes, which play a role in some space-derived health disorders.
However, documenting the response of microbiota to spaceflight has been difficult thus far due to
mission constraints that lead to limited sampling. Here, we executed a six-month longitudinal
study centered on a three-day flight to quantify the high-resolution microbiome response to
spaceflight. Via paired metagenomics and metatranscriptomics alongside single immune profiling,
we resolved a microbiome “architecture” of spaceflight characterized by time-dependent and
taxonomically divergent microbiome alterations across 750 samples and ten body sites. We
observed pan-phyletic viral activation and signs of persistent changes that, in the oral microbiome,
yielded plaque-associated pathobionts with strong associations to immune cell gene expression.
Further, we found enrichments of microbial genes associated with antibiotic production, toxin-
antitoxin systems, and stress response enriched universally across the body sites. We also used
strain-level tracking to measure the potential propagation of microbial species from the crew
members to each other and the environment, identifying microbes that were prone to seed the
capsule surface and move between the crew. Finally, we identified associations between
microbiome and host immune cell shifts, proposing both a microbiome axis of immune changes
during flight as well as the sources of some of those changes. In summary, these datasets and
methods reveal connections between crew immunology, the microbiome, and their likely drivers
and lay the groundwork for future microbiome studies of spaceflight.
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Introduction
The sources and impacts of spaceflight-associated microbiome shifts on astronaut health is an

open yet important area of study. Microbes play manifold roles in human health, from acting as
pathogens to symbionts; therefore, understanding the complex interplay between the space
environment and host-microbiome composition is critical. This is especially true with the recent
proliferation of commercial spaceflight missions and increased space tourism; individuals with
increasingly diverse, microbiome-relevant medical histories will be traveling into space and to the
Moon (e.g., dearMoon)'. In this new age, astronauts can be immunocompromised, cancer
survivors, elderly, or have other health profiles that put them at greater risk of infection or other

inclement outcomes, especially relative to prior NASA, ESA, JAXA, and ROSCOSMOS missions.

2

Microbes are already associated with many spaceflight-specific health indications. In
microgravity, many individuals experience gastrointestinal discomfort (i.e., constipation), which is
heavily linked to gut microbiome composition®*~. The skin barrier is disrupted and often inflamed
during and after flight, allowing potential invasion of pathobionts or otherwise inflammatory
microorganisms®'2. Although the mechanisms are not entirely understood, the immune system
experiences suppression during flight, leading to a "reactivation" of latent infections, such as
herpes viruses. s'*'". As a result, identifying the sources and impacts of microbiome changes as
a function of spaceflight will be essential for the development of microbiome-targeted, spaceflight-

relevant diagnostics and therapeutics.

Microbial physiology, genetics, and community composition are also dramatically affected by the
space environment, likely due to the stressors of microgravity and radiation'®2°. These wide

arrays of changes, taken together, radically alter the nature of microbial communities and,

t21

therefore, their cumulative impact on the host “'. We recently documented the “ISS effect,” in
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which organisms on the International Space Station (ISS) exhibit increasing resistance to
antibiotics over time, despite not having been exposed to them in the first place ?2. Many Biosafety
Level 2 (BSL2) organisms, including Haemophilus influenzae, Klebsiella pneumonia, Salmonella
enterica, Shigella sonnei, and Staphylococcus aureus, have been observed exhibiting ecological
succession in the environment of the ISS, demonstrating the propensity of the space environment
to select for specific community compositions and gene content.'®?*?*, Finally, spaceflight alters
biofilm formation capability in many bacteria; in some, like Pseudomonas aeruginosa, it increases
the likelihood a superstructure will form, whereas in others, like Proteus mirabilis, it has the

opposite effect 252,

Indeed, early studies in aerospace medicine have indicated that the microbiome of humans and

t27

the built environment shift as a function of spaceflight “’. These efforts, which have predominantly

focused on the gut, have found convergence in astronaut microbiome signatures and shifts in the

27

phylum ratios <. Studies of the oral cavity have identified decreases in Streptococcus and

Actinobacteriota and increases in Fusobacteriota and Proteobacteria as a function of flight 8.

However, there are many open questions regarding the microbiome architecture of spaceflight
(see Glossary Supplementary Table 1), which we define as the totality of detectable, flight-
associated, compositional, and expression shifts in the set of all bacteria, viruses, and microbial
genes in the host and their surrounding environment. The proportion of organisms acquired from
other crew members versus the environment remains unclear, the transience of microbiome
changes post-flight remains opaque, and notably, the transcriptional activity of microbes as a
response to flight is completely unexplored. These questions predominantly remain because prior
studies have been hampered by 1) limited sample sizes, 2) a lack of longitudinal data, and 3) a
focus on single sequencing modalities (i.e., amplicon sequencing). Commercial spaceflight,

characterized by its high frequency and generally flexible parameters, offers a unique opportunity
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to address many of these limitations.

To further our understanding of microbiome community activity in spaceflight, we recently
executed a longitudinal, multi-omic sampling study of the SpaceX Inspiration4 mission: the first
all-civilian commercial flight to space. The Inspiration4 mission represented a unique opportunity
to develop standards, as well as initial observations for measuring microbiome shifts during short-
term spaceflight. Over a six-month window, the crew collected environmental (i.e., from the
Dragon capsule), skin, nasal, and oral swabs at eight timepoints leading up to, during, and
following a three-day mission in-orbit. We aimed to document, via metagenomics,
metatranscriptomics, and host single cell sequencing, the bacterial and viral abundance and
expression shifts and their relation to astronaut immune status. We focused on tracking
expression and abundance shifts before flight, during flight, and after return to Earth. Specifically,
we aimed to use metagenomics to gauge microbial abundance changes and metatranscriptomics
to measure variation in microbial gene or species-marker-gene expression. We propose that our
results yield a standardized approach for temporally monitoring microbial exposomic changes as
a function of spaceflight and in total, characterize the microbiome architecture ? of biomedically

relevant taxa that are potentially activated or repressed during short-term spaceflight.

Results

Quantifying the metagenomic architecture of short-term spaceflight

The crew collected a microbiome dataset spanning eight timepoints: three before flight, three after
flight, and two during flight. In total, we sequenced 385 metagenomic and 365 metatranscriptomic
swabs comprising ten body sites representing the oral, nasal, and skin microbiomes (Fig 1A), plus
eight stool samples (from two subjects before and after flight). Locations inside the Dragon

Capsule were swabbed twice in flight and once prior (a separate Capsule was utilized for crew
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training). All the data from this sequencing effort have been stored in a database and made
accessible in the NASA Open Science Data Repository.

(OSD-572, OSD-573)(Overbey et. al [under review].

To account for variation due to database and algorithmic bias, we used a diverse set of short-
read alignment and de novo assembly approaches to estimate the microbial community
taxonomic and functional composition of our dataset (Supplementary Figure 1, Supplementary
Tables 2-6, Methods). We observed that many of the swabs collected, especially those from the
skin sites, comprised low biomass microbial communities; there are many documented
challenges in analyzing these data®*3'. To filter environmental contamination and the kitome??
influencing our findings, we collected and sequenced negative controls of both (1) the water that
sterile swabs were dipped in prior to use as well as (2) the ambient air around the sites of sample
collection and processing for sequencing. These samples were used to remove potential
contaminants (Supplementary Table 8). Unless otherwise specified, data presented in the main
text are decontaminated and from Xtree aligned to the Genome-Taxonomy-Database (GTDB),
Xtree aligned to the non-redundant set of complete GenBank viral genomes, and gene catalog

relative abundances (see Methods for the rationale and benchmarking efforts).

To evaluate our taxonomic profiling approach, we first compared the top ten genus-level
classifications by body site before and after decontamination for each classifier in metagenomic
and metatranscriptomic data (Supplementary Figures 2-8). The dominant genera in each niche
exhibited minimal change before and after decontamination. We observed general concordance
among the various classification methods; for instance, the predominant skin genera consistently
identified included Staphylococcus, Cutibacterium, and Corynebacterium. i. The oral microbiome
included Streptococcus, Rothia, and Fusobacterium. Kraken2, which uses a database comprising

both eukaryotic and prokaryotic organisms, identified fungi in the skin microbiome, as expected.
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The swabs from the Dragon capsule predominantly contained a diverse array of environmental
microbes.

Short-term spaceflight alters skin, oral, and nasal microbiome community ecology and
transcriptional activity

The potential to observe dynamic ecological shifts was driven, in part, by a correlation analysis
that identified potential transient and sustained changes in bacterial community composition
(Supplementary Figure 10). As a result, we then queried if short-term spaceflight altered overall
bacterial and viral community composition and expression consistently across the astronauts. Via
a linear mixed effect (LME) modeling approach, we executed a Microbiome-Association-Study
(MAS), computing associations for each taxonomic rank and classifier between flight and the
abundance of 1) bacteria species, 2) viral genera and non-redundant proteins. We grouped False
Discovery Rate (FDR) significant (g-value < 0.05) features into four categories: transiently
increased in-flight, transiently decreased in-flight, persistently increased in/after flight, and
persistently decreased in/after flight (Supplementary Table 9). We additionally fit generalized
linear models (GLMs) alongside LMEs and identified the two approaches to be generally

concordant (Supplementary Figure 11).

In total, we observed a mostly transient restructuring of the oral, nasal, and skin microbiomes as
a function of flight (Fig 1B-C). Across all ten sites swabbed and regressed, over 821,337
associations were statistically significant and grouped into one of the four categories of interest.
These comprised 314,701 distinct microbial features: 792 were viral, 767 were bacterial, and the
remaining were genes) The majority (73.5%) of significant and categorized features were
transiently increased in abundance. 24.6% were transiently depleted during flight. 0.6% and 1.1%
of features appeared to continually increase or decrease (respectively) following the crew’s return
to Earth. The limited persistence of changes indicates that, while microbial communities may

restructure in space, the relative abundance of altered organisms, as well as their gene
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expression, generally reset upon returning to Earth.

Different body sites displayed distinct time trends that varied depending on molecular type (gene
expression vs. relative abundance) and domain of life. Time-dependent shifts were apparent in
all body sites; average increases in relative abundance and gene expression tended to be greater
than decreases (Fig 1C). Temporal trends were most striking for gene-level changes, which were
identified across each body site. The oral microbiome also displayed a noticeable restructuring of
both relative abundance and bacterial gene expression; 161 bacterial and viral taxonomies were
transiently increased, 173 were transiently decreased, 62 were persistently increased, and 12
were persistently decreased (Fig 2A). Alternatively, the skin microbiome demonstrated almost no
persistent changes and a higher proportion of relative abundance )but not necessarily gene
expression) shifts, with 933 transiently increased (metagenomic) taxa across all eight skin sites.
The number and direction of altered microbiome features were generally consistent across
classification methods (Supplementary Figure 12), and most taxonomic associations were unique
to individual body sites (Supplementary Fig 13).

Skin and oral bacterial alterations are predominantly compositional in the former and
metatranscriptomic in the latter

We next interrogated the specific taxonomic nature of bacterial shifts during spaceflight. Transient
changes tended to have a larger log2(fold changes) [L2FC] of relative abundance or
transcriptional activity than persistent ones, perhaps because even more lingering effects of flight
tended towards returning to baseline by later timepoints. We also noted that the organisms with
the strongest effects were different across biological modalities; in other words, an increase in
gene expression did not necessarily imply the existence of a similar increase in the abundance of

DNA ascribed to a given species. This discordance was apparent in the oral microbiome (Fig 2B),
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for example, where there was almost no overlap between the organisms that altered in terms of

relative abundance and those that altered in terms of gene expression.

Overall, the oral microbiome demonstrated flight-dependent variation in the metatranscriptomic
expression of bacteria associated with dental decay and biofilm formation (Fig 2B). Various
members of Fusobacteriota, a progenitor to gum and tooth disease previously reported as

t33. These included

spaceflight-associated, demonstrated an increase either in or after spacefligh
Fusobacterium hwasookii, Fusobacterium nucleatum (Supplementary Table 9), and Leptotrichia
hofstadii. Other oral biofilm species known to aggregate synergistically with Fusobacterium
species in the mouth were also enriched in and after flight; these included Streptococcus gordonii
A, multiple Campylobacter species, and Actinomyces oris species®. There was a persistent loss
in the expression of Streptococcus oralis spp. and Lachnoanaerobaculum gingivalis, and a
transient decrease in Veillonella spp. Alloscardovia omnicolens was the only organism with a
strong, persistent increase in metagenomic DNA content. We compared the MetaPhlAn4

associations to those identified in GTDB and found similar results, especially regarding the overall

enrichment of Fusobacterium sp., in flight.

Many of the strongest bacterial skin microbiome alterations (Fig 3) were predominantly
metagenomic, as opposed to metatranscriptomic. We hypothesized that this may indicate the
acquisition of new but non-transcriptionally active species from the surrounding environment. For
example, persistent increases were mostly in the metagenomic content of various gut microbes
(e.g., Bacteroides, Parabacteroides, Blautia, Enterocloster); this may result from altered hygiene

habits during flight.

As with the oral microbiome, there was little concordance between metagenomic and

metatranscriptomic changes. On the other hand, Corynebacterium species (common skin
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commensals) experienced metatranscriptomic, temporary depletion in-flight, and Acinetobacter
spp. demonstrated a persistent depletion. These “typical” skin microbes (e.g., Corynbacterium,
Staphylococcus, Variovorax, Acinetobacter) underwent changes in metatranscriptomic activity,
whereas organisms not universally found on the human skin (e.g., Mesorhizobium spp., Prevotella
spp.) tended to experience metagenomic shifts, again indicating the potential acquisition of niche-

atypical, non-transcriptionally active organisms from the environment.

Viral activation as a function of flight and host

The landscape of viral activation and depletion covered both prokaryotic- and eukaryotic-targeting
viral genera (Fig 4A). That said, the majority of detectable viral activity comprised phages in the
skin microbiome (i.e., DNA viruses targeting prokaryotic hosts), and it was in large part
concentrated in the gluteal crease. Most viral activity was transiently increased; in other words,
even more dramatically than in the bacterial data, relatively speaking, viral abundances reset to

baseline almost immediately after flight (Fig 4B).

Phylogenetically, viral activity appeared to be altered across diverse lineages (Supplementary
Table 9, Fig 4B). For example, Uroviricota, Cressdnaviricota, and Phixviricota shifted across the
oral, skin, and nasal microbiomes. However, phyla containing biomedically relevant, potential
human pathogens increased, including Kitrinoviricota, Artverviricota, Nucleocytoviricota, and
Duplornaviricota. A diverse set of genera — targeting both Eukaryotes and Prokaryotes —
responses to flight (Fig 4B). The only persistently increased genera were Rosariovirus, llarvirus,
and an unclassified Genomoviridae. Increased viral genera were mostly in the skin microbiome,
and they almost entirely targeted prokaryotes. The decreased genera targeted mostly eukaryotic
hosts and were detected via metatranscriptomics. These results indicate that viral activation is

not a human-specific effect and occurs across all domains of life.

10
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We compared these results at additional taxonomic ranks and with other taxonomic classifiers.
For example, to discern higher specificity of the viral changes, we additionally fit species-level
virus associations. While species-level viral taxonomic classification can be difficult due to high
read misalignments (Supplementary Figure 14), we wanted to determine whether we could
observe a higher-resolution picture of viral activation due to spaceflight, as this effect is known to
be space-associated (as opposed to bacterial skin to skin transmission, which could be a result
of sharing tight quarters and not a space-specific effect). The results we identified were in-line
with the genus level but provided more detail. For example, we found transient increases in
Streptococcus phages in the oral microbiome, potentially indicating a viral component to the
substantial Streptococcus-associated ecological restructuring (as indicated in Fig 2B). An
additional, more conservative approach for viral taxonomic classification (Phanta) further
identified shifts in Propionibacterium and Staphylococcus phages in the skin microbiota (as well

as an overall nasal microbiome increase in Pisuviricota, which contains many human pathogens).

Towards a core functional microbial landscape of spaceflight

We next took a gene-level, taxonomy-agnostic approach to analyze the microbiome architecture
of spaceflight. Both microbes and viruses rely on proteins for their functions; we theorized that
spaceflight might induce consistent protein-level reactions across the functional units of the
domains of life. We, therefore, aimed to characterize the consistency with which protein

abundances changed across time and body site across 3.6 million non-redundant genes.

First, we explored the broad functions of the genes that fell into either the transiently increased or
transiently decreased categories, once again observing body-site specific effects in-line with the
taxonomic results (Fig 4C). The increases in DNA content on the skin, as well as decreases in
nasal microbiome content, were immediately apparent (Fig 4C, third and first columns,

respectively). The oral microbiome and gluteal crease underwent large metatranscriptomic

11
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increases. The category with the most genes — that exhibited the greatest fluctuation in gene
number, both increasing and decreasing — was amino acid transport and metabolism. In the
exposed areas of the skin microbiome, like the forearm, the genes that were changed in this
category mostly came from metagenomic data. In less exposed body sites (i.e., oral, gluteal
crease), the activity in this category was primarily metatranscriptomic. This may indicate the
dramatic degree to which microbial nutrient needs change in-flight, likely from a combination of

features, ranging from environmental strain transfer, competition, and host dietary changes.

The oral, nasal, and skin microbiomes demonstrated consistency in the functions that were
altered during flight, especially in the metagenomic data. We observed five different categories of
proteins of interest enriched among increased features: antibiotic and heavy metal resistance,
heme binding/export, lantibiotic-associated proteins, phage-associated proteins, and toxin-
antitoxin systems (Fig 4D, Supplementary Fig 15, Supplementary Table 9). Lantibiotic
biosynthesis (Fig 4D, third column) again displayed a discordance between sequencing types; it
was decreased in the metagenomic data but increased in metatranscriptomics. Heme-associated
function expression increased in the oral microbiome, however, the number of genes detected
metagenomically increased across all body sites. Phage proteins, toxin-antitoxin systems, and
antibiotic’heavy metal pathways increased noticeably across host niches. We specifically
observed an increase in the RelB toxin-antitoxin systems, most notably through
metatranscriptomics. This finding was particularly interesting, as we and others have identified it

as space-associated 2%,

Strain-level tracking of microbial transfer between the capsule and astronauts

We observed that, on average, bacterial beta diversity appeared to decrease after flight (Fig 5A).
When ranking sites by similarity to the capsule mid-flight (Fig 5A, from left to right), the beta

diversity correlated with the degree of environmental exposure for a given sampling site. For

12
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example, the oral microbiome remained highly dissimilar from the capsule and other sites,
whereas the forearm became much more similar to the walls of the Dragon capsule and other

crew members.

Further, our MAS indicated that, during flight, the composition of the astronaut’s microbiota
changed, most notably in the skin niche, though the sources of these alterations were unclear.
We hypothesized that these shifts in community composition and the overall increase in
microbiome similarity could be a result simply of individuals cohabitating in a tight space; however,
a change in gene expression in the oral microbiome (where strain exchange is possibly less
likely), could derive from other ecological or other exposure changes like diet or immune

alterations.

We aimed to determine if strain-tracking and individual microbiome dissimilarity could identify
microbial transit between individuals and the environment, providing a potential explanation for a
portion of our observed results. Specifically, we queried whether host microbiomes converged in
similarity during and after flight and whether microbial exchange occurred within individuals,
between individuals, or both within individuals and the capsule. We utilized recently-published
methods®®, using MetaPhlAn4 and StrainPhlAn, to determine if strain-level markers could discern

the directionality of microbial exchange across environments.

Overall (Fig 5B), we found that individuals appeared to acquire strains from the capsule by the
second mid-flight sampling point (day 3). During the L-92 timepoint, there was minimal transfer
between the training capsule and the astronauts. Transfer within an individual (i.e.,single person's
body) remained relatively consistent across time. The majority of strain sharing occurred between

the skin and the capsule swabs.

13



339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

Considering only the in-flight timepoints (Fig 5C), we again noticed that most strain sharing
occurred between sites on the same individual, with limited exchange between astronauts. Points
on the capsule with high crew contact were a source of new skin diversity (Fig 5D, the seat,
viewing dome, commode panel, control touch screen). Finally, the StrainPhlAn strains, like
Mesorhizobium_hungaricum|t__SGB11031 identified as present in multiple locations mid-flight
(Fig 5E) were similar, in part, to those GTDB species identified as increased metagenomically
(but not transcriptionally) across exposed skin sites (Fig 3). Notably, most of these shared strains

between individuals were present after flight, as opposed to before.

Spaceflight-associated microbiome shifts are correlated with immune cell gene

expression

Having mapped the architecture of microbiome changes surrounding spaceflight and identified
the source of some of those changes, we next searched for indications of a link between
microbiome ecology and the host immune system. To do so, we integrated the observations from
our MAS with host immune, single-cell data. Via averaging across single cell sequencing
information, we estimated the gene expression of nine host immune cell subpopulations. We
computed differentially expressed genes within cell types post-flight (Overbey et al. [in review],
Kim et al., Nature. In review. ID: 2023-02-01822 1)(Fig 6). We used lasso regression to identify
candidate relationships between flight-associated, increased microbial features and immune cell
subpopulation gene expression (Supplementary Table 10), with the hypothesis that sustained

changes to the microbiome would correlate to immune perturbations in the host.

We observed many putative relationships between host immune cell expression, body site, and
microbial features (Fig 6A). Bacterial species — in the oral microbiome, specifically — had many
metatranscriptomic associations across all cell types. In terms of relative abundance (i.e.,

metagenomics), oral microbes were associated with CD4 T cells, CD8 T cells, and CD16
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monocytes, which are known for innate immune response against pathogens®®. Skin bacteria
had very few associations with immune cells (compared to oral) in both metagenomics and
metatranscriptomics. The overall lack of bacterial metagenomic signal in the skin was interesting,
as it indicated that strains acquired during flight that displayed altered relative abundance but
limited transcriptional changes did not correlate to measurable host immune response. In other

words, there was limited evidence that strain-sharing drove an altered immune state in humans.

There was a limited link in our data between viruses and immune cell expression. This was
unsurprising, given that most of the altered viruses we were able to detect did not target human
cells. Natural killer cells, CD14 monocytes, dendritic cells, and CD16 monocytes had the most

viral associations. These associations were predominantly in the skin microbiome.

By cell type, we documented the most strongly associated genes with microbial features
(Supplementary Table 10). For bacteria, gene functions were annotated with, for example, long
non-coding RNAs (across all cell types), immunoglobulin genes (CD14 monocytes), and
interferon regulatory factors. We additionally uncovered associations with specific immune
modulatory genes such as CXCL10, XCL1, CXCL8 (immune cell migration), NLRC5, HLA genes,
CD1C (antigen presentation/co-stimulation), SLC2A9 (immune cell metabolism), IRF1, NR4A3,
STAT1 (transcription factors that specify immune cell states) that increased across multiple
immune cell types (B cells, CD4 T-cells, CD8 T- cells, CD14 monocytes, DCs, Natural Killer (NK)

cells).

Next, we examined a subset of microorganisms with expression and abundance changes that
correlated to host genes across multiple cell types (Fig 6B). A small group of metagenomically-
detected viruses were associated with many different immune genes; one genus (Genomoviridae)

targets fungi and was correlated to a relatively large number (13) genes in natural killer cells. The
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presence of this virus on the skin makes additional sense given that fungi are known skin

symbionts. The other associated viruses had unclassified hosts or targeted bacteria.

In the oral microbiome, pathobiont gene expression was associated with immune cell gene
expression. Streptococcus pneomoniae A had the largest number of genes associated with it;
30/32 genes were found in natural killer cells. Streptoccocus gordonii A, which was persistently
increased after flight was associated with many different immune cell subtypes (N = 32 genes),
including CD4 Y cells, CD13 monocytes, CD16 monocytes, and dendritic cells. The only oral
bacterial relative abundance increase during or after flight that was associated with many immune
cell subtypes was in Gemella morbillorum. The other oral microbes with the strongest oral
associations included other medically relevant organisms, as well as some typical commensals:
Pauljensenia hongkongensis, Campylobacter A concisus_R, Actinomyces massiliensis,
Haemophilus_A parahaemolyticus, Leptotrichia_A sp905371725, Porphyromonas catoniae, and

many Streptococcus spp.

The microbial genes (Fig 6C) associated with the most human genes were detected by both shifts
in relative abundance as well as expression. They spanned many different protein annotations,
yet there were some commonalities among those that were correlated to many immune cell
subpopulations. Most notably, these annotations — across both metagenomics and
metatranscriptomics — included transcription factors, cell surface proteins, and transporters.
Pertinent to our prior results (Fig 4), the top microbial gene in the nasal microbiome was a heme

uptake protein.

Discussion
In this study, which comprises the largest dataset of space-flight-associated microbiome data to

date, we systematically queried the microbiome architecture of short-term spaceflight. Prior
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efforts, like the NASA twins study, have had difficulty identifying microbiome shifts due to small
sample sizes and limited sequencing modalities?”’. Via comparing metagenomics and
metatranscriptomics, we identified microbiome changes that indicate how, even over short
periods of time, the effect of spaceflight can potentially impact astronaut microbiomes. We found
bacterial taxa, viral taxa, and genes that were enriched or depleted during and after flight. Despite
the mission only lasting three days, the oral, nasal, and skin microbiota of the host dramatically
restructured their composition and expression. These alterations varied longitudinally, with some

persisting and correlated to expression changes in host immune cells.

The sources of astronaut immune changes during flight are not well understood; however, we
suggest a potential microbial axis as a contributing factor to this documented effect. We
hypothesize our results may indicate how microbiome ecology associates could feasibly affect
host immune function. First, we observed evidence of microbiome restructuring along the lines of
potential interspecies interaction, stress response, and microbial energy source utilization shifts
(Fig 5B-C, Supplementary Table 9). Pan-phyletic viral activation — and repression — were
additionally noticeable (Fig 4). The oral microbiome — and other niches — underwent a
metatranscriptomic “switch” (Fig 1C) between enriched and depleted expression signals in-flight.
Changes appeared to derive from both bacteriophage activity and, for instance, downregulation
and upregulation of different microbial species (like, Streptococcus [Fig 1C, Fig 2B]). Additionally,
upon returning to Earth, astronauts experienced some persistent reorganization of community
structure and function across their bodies. We identified that microbiome changes deriving from
relative abundance changes (i.e., exchange of strains on the skin) are unlikely to be correlated to
host immune response. Instead, microbiome alterations (i.e., gene expression shifts) deriving

from sources other than cohabitation were more likely to be associated with host immune state

(Fig 6).
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Naturally, a microbial shift can affect the host immune system — or vice versa — without the initial
cause being “space-specific” (i.e., due to microgravity of radiation). Strain sharing, for example,
could be — and likely is — a function of humans sharing close quarters. Other changes, like
periodontal pathogens, could stem from oral cleaning differing in space than on Earth. However,
we hypothesize that at least some immune-associated microbiome alterations likely are due to
exposure to the space environment and the immune alterations that occur as a function of flight.
For example, astronauts have been documented as experiencing immune and viral activation';
typically, this effect is not attributed solely to cohabitation. Further, we see a clear difference
between microbial cell acquisition in metagenomic data and the niche-native taxa that drove
activity in the metatranscriptomic data. We claim it is unlikely strain sharing due to close quarters
— or even variable sanitation in-flight — explains the entirety of the link between host immune

response and the microbiome.

A large component of our findings centers on the discordance between microbial gene expression
and microbial abundance; the former seems to have a larger relationship to space-associated
and host immune shifts than the latter. Transcriptional changes dominated the oral microbiome,
whereas exposed skin was dominated by metagenomic changes. This indicates a greater
acquisition of foreign and transcriptionally inactive microbes between crew members and/or the
environment. Most microbial exchange was between different sites within the same person or
from within the built environment to individuals, as opposed to from person-to-person (Fig 5).
However, both skin and oral changes did demonstrate strong correlations to changes in multiple
immune cell types, indicating how microbiome shifts stemming from distinct underlying causes

can mutually influence host health.

Future missions may also show the same core set of functional elements that were ostensibly

species-independent and enriched in-flight. Some of the other conserved, increased functions
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across body sites have been reported in prior studies. For example, the RelB/E toxin-antitoxin
systems enriched in Acinetobacter pittii on the 1SS?%. In the metatranscriptomic data, RelB-
associated systems increased during flight. The increase of these and other defensive and
antibiotic production metabolisms is of particular note, as it may form the basis of an “ISS effect”

— where increases in bacterial antibiotic resistance occur, despite no exposure to antibiotics?.

A major limitation of our work is its descriptive nature, which arises from the overall study design.
Despite having more samples than other astronaut microbiome studies, this effort still hosts a
relatively small crew size (n = 4), and we cannot determine from these data alone if an outside
effect on the immune system is altering their abundance or expression or if viral ecology may be
driving these and similar changes. Given the nascence of the multi-omic space biomedicine (and
the difficulty of sample collection), we were limited in this study to simply observing shifts in
microbes and, from strain tracking and multi-omic data integration, inferring hypotheses regarding
the overall nature of the mid-flight microbe-immune axis. Some of our identified associations may

be individual or flight-specific.

As such, there are several opportunities to expand upon this work in future studies and missions.
Analytically, our lasso-based approach for immune-microbe-interaction modeling immune
changes does not inherently allow for statistical inference or account for inter-individual variation.
Further, some of our samples had very low biomass, requiring PCR-amplification (18 cycles) for
RNA-sequencing data, which can increase duplicate rates of sequences. For this reason, we
attempted to take a conservative and systematic modeling approach to our effort. Specifically, 1)
we implemented multiple algorithms and compared their concordance, 2) set coverage thresholds
for bacterial and viral taxa to filter probable false positives, 3) used multiple, state-of-the-art
taxonomic classifiers and compared our findings among all of them, and 4) implemented and

compared both generalized linear models and mixed effect models, bearing in mind that the latter
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can face interpretability challenges with smaller sample sizes. We additionally used 76 negative
controls to attempt to avert false positive signals, which can stem from contamination and the
kitome. However, this approach is far from perfect and likely removes present organisms.
Depending on their aim, future studies should alter collection methods to increase the amount of
biomass collected sampling (e.g., using one swab for multiple skin sites) or examine relatively

unbiased methods of amplification®.

Additional experiments and missions can further test a microbiome-derived theory of spaceflight-
associated immune changes. In addition to stress-testing our findings and increasing sample
sizes, future spaceflight studies should consider several enhancements. For instance, they should
compare sequestered ground controls to discern differences between space-driven and
proximity-driven immune shifts. Additionally, future efforts should design experiments that enable
a deeper view into the causality of microbe immune associations rather than just noting their
existence. Exploring some of these hypotheses through animal or organoid models could be

valuable.

In total, spaceflight microbiome studies are hyperbolic extensions of unique kinds of human
exposome research. They capture a group of effectively immunocompromised individuals who
share a self-contained environment that does not undergo microbial exchange with the outside
world. Since these studies are rare, the range of immune system dynamics is just beginning to be
explored. Overall, we describe here data and methods to map the axes of host-microbe-
environment interaction such that these observations and hypotheses can be tested in future
studies. Indeed, the increased access to space guarantees more opportunities to study
astronauts, their microbiomes, and their spacecraft while also motivating a strong health and

medical impetus to plan for future missions.
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Figures and Tables

Figure 1: Overview of dataset and summary of alpha diversity. A) Collection and analytic
approach. Body swabs were collected from ten different sites, comprising three microbial
ecosystems (oral, nasal, skin) around the body at eight different timepoints surrounding launch.
These are referred to as L-92, L-44, L-3, FD1, FD2, R+1, R+45, R+82, where “L-" refers to pre-
launch, “FD” corresponds to flight day (i.e., mid-flight), “R” refers to recovery (i.e., post-flight).
Following collection and paired metagenomic/metatranscriptomic sequencing, samples were
processed to extract taxonomic (bacterial viral) and functional features to determine their changes
relative to flight with a Microbiome Association Study (MAS). B) The total number of features
(species or genes) found to be statistically associated with either pre- or post-flight timepoints
across sequencing methods. Features are grouped by the categories laid out in the Methods
regarding the nature of their changes relative to flight. C) The time trajectories of transiently
increased/decreased significant findings across sequencing type, feature type, and body site
(after filtering to remove low priority [i.e., weakly significant]) associations. Blank plots had either
no significant findings or none that met the filtering criteria. D) Same as D, except viewing
associations that were categorized as potentially persistent after flight.

Figure 2: Site-specific changes and the oral microbiome architecture of spaceflight. A)
Significant features by specific swabbing sites. B) The strongest associations between bacteria
and flight for the oral microbiome. X-axes are average L2FC of all pre-flight or post-flight
timepoints compared to the average mid-flight abundances for a given taxon.Columns correspond
to different association categories that are described visually by the example line plots on top of
each one. Dotted, gray, horizontal lines demarcate an L2FC of zero. Plotted taxa were selected
by ranking significant features in each category by L2FC and showing up to 10 at once.

Figure 3: Strong changes to the skin microbiome during spaceflight. The strongest
associations between bacteria and flight for the skin microbiome. X-axes are average L2FC of all
pre or post flight timepoints compared to the average mid-flight abundances for a given taxon.
Columns correspond to different association categories that are described visually by the example
line plots on top of each one. Dotted, gray, horizontal lines demarcate an L2FC of zero. Plotted
taxa were selected by ranking significant features in each category by L2FC and showing up to
10 at once.

Figure 4: The viral and functional response of the microbiome to spaceflight A-B) Host and
molecular type of viruses associated with flight, by category. B) The strongest associations
between viruses and flight for the skin and oral microbiomes. X-axes are average L2FC of all pre-
flight or post-flight timepoints compared to the average mid-flight abundances for a given taxon.
Columns correspond to different association categories that are described visually by the example
line plots on top of each one. Dotted, gray, horizontal lines demarcate an L2FC of zero. Plotted
taxa were selected by ranking significant features in each category by L2FC and showing up to
10 at once. Viral genera are labeled “E” for targeting a eukaryotic host and “P” for targeting a
prokaryote. If no definite host is known, no label was assigned. C) COG categories of all genes
associated with flight. D) Groups of specific protein products that were associated with flight. The
legend in the black box is relevant for all figures where those colors appear.

Figure 5: Microbial propagation through the Dragon Capsule and the crew. A) Beta
diversities for bacterial metagenomics. Heatmap color corresponds to average beta diversity, with
black being the midpoint (0.5), blue being totally dissimilar (1.0) and gray being highly similar
(0.0). Columns are hierarchically clustered considering all rows. The interpretation for a single cell
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is, for the crew member annotated on the right-hand side, that body site’s dissimilarity to all other
cells in that column (so the Capsule and all other crew samples from the same site). B) The
number of strain-sharing events across time, where an event is defined as the detection of the
same strain between two different swabbing locations. C) Strain sharing events between the crew
and the capsule during the mid-flight timepoints. D) Capsule locations where strain sharing was
identified in the training capsule and during flight. E) Organisms with at least two strain sharing
events detected within a given timepoint.

Figure 6: The landscape of potential immune-microbiome associations related to flight. A)
The total number of microbial features, by type, associated with different immune cell subtypes
for those that were long-term increased after flight (left panel) and decreased (right panel). B) The
flight-associated (increased in abundance or expression) bacteria and viruses that were
associated with the greatest number of host genes. Viral genera are labeled “E” for targeting a
eukaryotic host and “P” for targeting a prokaryote. If no definite host is known, no label was
assigned. C) The flight-associated microbial genes that were associated with the greatest number
of host genes. We sorted for genes within each body site and selected the top 15 with the greatest
number of human gene associations. The legend in the black box is relevant for all figures where
those colors appear.

Supplementary Figures and Tables

Supplementary Figure 1: Data processing workflow. After quality-controlling reads, we executed
two different, parallel, workflows to identify the microbial taxa and genes that comprised each
sample. We used seven different algorithmic approaches (Xtree, MetaPhlAn4/StrainPhlAn4,
Phanta, Kraken2 with multiple parameter settings) and four different databases to classify short
reads into different taxonomic categories (bottom left). We also did a de novo assembly analysis
to identify the abundance of non-redundant genes/functions as well as Metagenome-Assembled
bacterial and viral genomes. We executed all regression analyses for every resultant abundance
matrix across the taxonomic ranks ranging from species to phylum.

Supplementary Figure 2: Read alignment statistics. A) Counts and percentages of reads
aligning to the human reference genome. B) Aligned reads by taxonomic classification method.

Supplementary Figure 3: Top 10 bacterial genera identified by site by GTDB in metagenomic
sequencing. A) Raw alignment data. B) Decontaminated reads.

Supplementary Figure 4: Top 10 bacterial genera identified by site by GTDB in
metatranscriptomic sequencing. A) Raw alignment data. B) Decontaminated reads.

Supplementary Figure 5: Top 10 viral genera identified by site by GenBank alignment in
metagenomic sequencing. A) Raw alignment data. B) Decontaminated reads.

Supplementary Figure 6: Top 10 viral genera identified by site by GenBank alignment in
metatranscriptomic sequencing. A) Raw alignment data. B) Decontaminated reads.

Supplementary Figure 7: Top 10 genera identified by site by Kraken2 in metagenomic
sequencing. A) Raw alignment data. B) Decontaminated reads.

Supplementary Figure 8: Top 10 genera identified by site by Kraken2 in metatranscriptomic
sequencing. A) Raw alignment data. B) Decontaminated reads.
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Supplementary Figure 9: Top 25 bacterial genera identified by site by GTDB in (A) metagenomic
sequencing and (B) metatranscriptomic sequencing in the ground control and mid-flight capsule
swabs.

Supplementary Figure 10: Correlation analysis of bacterial and viral families across time and
body sites. Heatmaps show the Pearson correlation between microbial abundance across time
across all body sites. The abundances from the two in-flight timepoints were merged to generate
the middle heatmap. Columns and rows were hierarchically clustered based on the mid-flight
heatmap, and any organisms with zero standard deviation Pearson correlations in the mid-flight
heatmap were omitted. Organisms with zero standard deviation Pearson correlations in the other
heatmaps were set to Pearson = 0. Gray boxes in panel A indicate examples of bacterial families
that had variable recovery to baseline correlation across time. The grey box in panel B indicates
a potentially persistent shift in bacterial family-level ecology.

Supplementary Figure 11: Similarity between FDR-significant associations fit with mixed versus
generalized linear models (sans a random effect).

Supplementary Figure 12: Regression results across short-read taxonomic classification
methods.

Supplementary Figure 13: Degree of overlap in the identity of significant bacterial and viral
features as a function of body site and sequencing type.

Supplementary Figure 14: Benchmarking a viral classifier across taxonomic ranks. Synthetic
viral communities were generated from 100 genomes at random levels of abundance (from the
GenBank database used in the rest of this study). A) The number of recovered genomes out of
100, for 10 mock communities for the genus and species levels. B) The number of true positive
(identified and present in the sample), false positive (identified but not present in the sample), and
false negative (i.e., not recovered) genomes for the genus and species levels for all 10 mock
communities. C) The correlation between observed and expected read counts for each taxon as
a function of being a true positive, false positive, or false negative.

Supplementary Figure 15: The strongest associations between genes and flight for the oral
microbiome. X-axes are average L2FC of all pre or post flight timepoints compared to the average
mid-flight abundances for a given taxon. Columns correspond to different association categories
that are described visually by the example line plots on top of each one. Dotted, gray, horizontal
lines demarcate an L2FC of zero. Plotted taxa were selected by ranking significant features in
each category by L2FC and showing up to 10 at once.

Supplementary Figure 16: The strongest associations between genes and flight for the nasal
microbiome. X-axes are average L2FC of all pre or post flight timepoints compared to the average
mid-flight abundances for a given taxon. Columns correspond to different association categories
that are described visually by the example line plots on top of each one. Dotted, gray, horizontal
lines demarcate an L2FC of zero. Plotted taxa were selected by ranking significant features in
each category by L2FC and showing up to 10 at once.

Supplementary Figure 17: The strongest associations between genes and flight for the skin
microbiome. X-axes are average L2FC of all pre or post flight timepoints compared to the average
mid-flight abundances for a given taxon. Columns correspond to different association categories
that are described visually by the example line plots on top of each one. Dotted, gray, horizontal
lines demarcate an L2FC of zero. Plotted taxa were selected by ranking significant features in
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each category by L2FC and showing up to 10 at once.

Supplementary Table 1: Glossary and background. Definitions of terms used in this manuscript.
Tab 2 contains a description of the negative controls used in this study for decontamination.

Supplementary Table 2: Decontaminated bacterial abundances (GTDB) across ranks.
Supplementary Table 3: Decontaminated bacterial abundances (MetaPhlAn4) across ranks.

Supplementary Table 4: Decontaminated viral abundances (genbank) across classifiers and
ranks.

Supplementary Table 5: Decontaminated viral abundances (phanta) abundances across ranks.

Supplementary Table 6: Decontaminated kraken2 abundances across ranks and
confidence/masking strategies. Tab names indicate both rank, if reads were masked, and/or if a
confidence threshold of 0.2 was used prior to alignment.

Supplementary Table 7: Decontaminated bacterial and viral MAG abundances.
Supplementary Table 8: Taxa filtered out following decontamination.

Supplementary Table 9: Regression output, by rank, parsed for significant findings. This table
contains parsed mixed modeling output for every short read alignment method. Each feature has
been categorized based on pre/post flight beta coefficients) into categories. For example, a
feature with a FDR-significant and negative pre- and post-flight levels (relative to mid-flight), is
"transiently" decreased, as its abundance is less than the mid-flight abundance both before and
afterwards. Each row, therefore, contains output from a single regression and reports the adjusted
p-values and beta coefficients for the PRE-FLIGHT and POST-FLIGHT levels of Time variable
(See Methods).

Supplementary Table 10: Microbiome immune associations. The output from the lasso
regressions between all increased/decreased microbial features and immune cell types.

Methods

Informed consent and IRB approval

All subjects were consented at an informed consent briefing (ICB) at SpaceX (Hawthorne, CA),
and samples were collected and processed under the approval of the Institutional Review Board
(IRB) at Weill Cornell Medicine, under Protocol 21-05023569. All crew members have
consented for data and sample sharing.

Sample collection, extraction, and sequencing

We sequenced analyzed samples from human skin, oral, and nasal environmental swabs before,
during, and after a 3-day mission to space. This dataset comprised paired metagenomic and
metatranscriptomic sequencing for each swab. A total of 750 samples were analyzed in this study
by the four crew members of the Inspiration4 mission. They were taken from ten body sites (Fig
1A) across eight collection points (3 pre-launch, 2 mid-flight and 3 post-flight) between June of
2021 and December of 2021. They additionally collected twenty samples from multiple Dragon
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Capsules from ten different locations. A full description of the sample collection and sequencing
methods are available in Overbey et al. (Collection of Biospecimens from the Inspiration4 Mission
Establishes the Standard Omics Measures for Astronauts (SOMA) Initiative [in review, Nature
Methods]) and Overbey et al. (The Space Omics and Medical Atlas (SOMA): A comprehensive
data resource and biobank for astronauts [in review, Nature Communications]).

The crew were each provided sterile Isohelix Buccal Mini Swabs (Isohelix, #cat MS-03) and 1.0mL
dual-barcoded screw-top tubes (Thermo Scientific, cat# 3741-WP1D-BR/1.0mL) prefilled with
400uL of DNA/RNA Shield storage preservative (Zymo Research, cat# R1100). Following sample
collection, swabs were immediately transferred to the barcoded screw-top tubes and kept at room
temperature for less than 4 days before being stored at 4C until processing.

DNA, RNA and proteins were isolated from each sample using the QIAGEN AllPrep
DNA/RNA/Protein Kit (QIAGEN, cat# 47054) according to the manufacturer's protocol, yet
omitting steps one and two. In order to lyse biological material from each sample, 350uL of each
sample was transferred to a QIAGEN PowerBead Tubes with 0.1mm glass beads and secured to
a Vortex-Genie 2 using an adapter (cat# 1300-V1-24) before being homogenized for 10 minutes.
350uL of the subsequent lysate was then transferred to a spin-column before proceeding with the
protocol. Concentration of the isolated DNA, RNA and protein for each sample were measured
by fluorometric quantitation using the Qubit 4 Fluorometer (Thermo Fisher Scientific, cat#
Q33238) and a corresponding assay kit. The Qubit 1Xds DNA HS Assay Kit was used for DNA
concentration (cat# Q33231) and the RNA HS Assay Kit (cat# Q32855) was used for RNA
concentration.

For shotgun metagenomic sequencing, library preparation for lllumina NGS platforms was
performed using the lllumina DNA FLEX Library prep kit (cat# 20018705) with IDT for lllumina
DNA/RNA US Indexes (cat# 20060059). Following library preparation, quality control was
assessed using a BioAnalyzer 2100 (Agilent, cat# G2939BA) and the High Sensitivity DNA assay.
All libraries were pooled and sequenced on a S4 flow cell of the lllumina NovaSeq 6000
Sequencing System with 2 x 150 bp paired-end reads.

For metatranscriptomic sequencing, library preparation and sequencing were performed at
Discovery Life Sciences (Huntsville, Alabama). The extracted RNA went through an initial
purification and cleanup with DNase digestion using the Zymo Research RNA Clean &
Concentrator Magbead Kit (cat# R1082) per the manufacturer's recommended protocol on the
Beckman Coulter Biomek i5 liquid handler (cat# B87583). Following cleanup, rRNA reduction for
RNA-seq library reactions were performed using New England Bioscience (NEB) NEBnext rRNA
Depletion Kit (Human/Mouse/Rat) (cat# E6310X) and libraries were prepared using the NEB
NEBnext Ultra Il Directional RNA Library Prep Kit (cat# E7760X) with GSL 8.8 IDT Plate Set B
indexes. Following library preparation, quality control was assessed using the Roche KAPA
Library Quantification Kit (cat# KK4824). All libraries were pooled and sequenced on a S4 flow
cell of the lllumina NovaSeq 6000 Sequencing System with 2 x 150 bp paired-end reads.

For fecal collection, all subjects are provided with DNA Genotek OMNIgene-GUT (OM-200) kits
for gut microbiome DNA collection. Each subject was instructed to empty their bladder and collect
a fecal sample free of urine and toilet water. From the fecal specimen, each subject used a sterile
single-use spatula, provided by the OMNIgene-GUT kit, to collect the feces and deposit it into the
OMIgene-GUT tube. Once deposited and sealed, the user was instructed to shake the sealed
tube for 30 seconds in order to homogenize the sample and release the storage buffer. All
samples from each timepoint were stored at room temperature for less than 3 days before storing
at -80°C long-term. Fecal samples collected using the OMNIgene-GUT kit are stable at room
temperature (15°C to 25°C) for up to 60 days.

25



767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

784

785
786
787
788
789
790
791
792
793
794

795

796
797
798
799
800
801
802
803
804
805
806
807
808

809

810
811
812
813

DNA was isolated from each sample using the QIAGEN PowerFecal Pro DNA Kit (cat# 51804).
OMNIgene-GUT tubes thawed on ice (4°C) and vortexed for 10 seconds before transferring
400uL of homogenized feces into the QIAGEN PowerBead Pro Tube with 0.1mm glass beads
and secured to a Vortex-Genie 2 using an adapter (cat# 1300-V1-24) before being homogenized
at maximum speed for 10 minutes. The remainder of the protocol was completed as instructed by
the manufacturer. The concentration of the isolated DNA was measured by fluorometric
quantitation using the Qubit 4 Fluorometer (Thermo Fisher Scientific, cat# Q33238), and the Qubit
1Xds DNA Broad Range Assay Kit was used for DNA concentration (cat# Q33265).

For shotgun metagenomic sequencing, library preparation for lllumina NGS platforms was
performed using the lllumina DNA FLEX Library prep kit (cat# 20018705) with IDT for lllumina
DNA/RNA US Indexes (cat# 20060059). Following library preparation, quality control was
assessed using a BioAnalyzer 2100 (Agilent, cat# G2939BA) and the High Sensitivity DNA assay.
All libraries were pooled and sequenced on the lllumina NextSeq 2000 Sequencing System with
2 x 150 bp paired-end reads.

Sample quality control

All metagenomic and metatranscriptomic samples underwent the same quality control pipeline
prior to downstream analysis. Software used was run with the default settings unless otherwise
specified. The majority of our quality control pipeline makes use of bbtools (V38.92), starting with
clumpify [parameters: optical=f, dupesubs=2,dedupe=t] to group reads, bbduk [parameters:
qout=33 trd=t hdist=1 k=27 ktrim="r" mink=8 overwrite=true trimg=10 qtrim="rl' threads=10
minlength=51 maxns=-1 minbasefrequency=0.05 ecco=f] to remove adapter contamination, and
tadpole [parameters: mode=correct, ecc=t, ecco=t] to remove sequencing error.*' Unmatching
reads were removed using bbtool’s repair function. Alignment to the human genome with Bowtie2
(paranzzeters: --very-sensitive-local) was done to remove potentially human-contaminating
reads.

Metagenomic assembly, bacterial and viral binning, and bin abundance quantification

We assembled all samples with MetaSPAdes V3.14.3 (--assembler-only).** Assembly quality was
gauged using MetaQUAST V5.0.2.** We binned contigs into bacterial Metagenome-Assembled-
Genomes on a sample-by-sample basis using MetaBAT2 [parameters: —minContig 1500].*° Depth
files were generated with MetaBAT2's built-in “jgi_summarize_bam_contig_depths” function.
Alignments used in the binning process were created with Bowtie2 V2.2.3 [parameters: —very-
sensitive-local] and formatted them into index bamfiles with samtools V1.0.

Genome bin quality was checked using the “lineage” workflow of CheckM V1.2.%5. Medium and
high-quality bins were dereplicated using deRep V3.2.2 [parameters: -p 15 -comp 50 -pa 0.9 -sa
0.95 -nc 0.30 -cm larger]. The resulting database of non-redundant bins was formatted as an xtree
database [parameters: xtree BUILD k 29 comp 2], and sample-by-sample alignments and relative
abundances were completed with the same approach as before. Bins were assigned taxonomic
annotations with GTDB-tK.*’

Identification and taxonomic annotation of assembled viral contigs

To identify putative viral contigs, we used CheckV V0.8.1.*® For downstream viral abundance
quantification, we filtered for contigs annotated as medium quality, high quality, or complete. This
contig database was dereplicated using BLAST and clustered at the 99% identity threshold as
described above using, the established and published approaches
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(https://github.com/snayfach/MGV/tree/master/ani_cluster)*®. The non-redundant viral contigs

were formatted as an xtree database [parameters: xtree BUILD k 29 comp 0], and sample-by-
sample alignments and relative abundances were computed with the same approach as before,
the only difference between the coverage cutoff used to filter out viral genomes, which was
lowered to 1% total and 0.05% unique due to the fact that those in question came directly from
the samples analyzed.

We also aimed to assign taxonomy to putative viral contigs based on domain overlap with the
GenBank reference database. We used a Hidden Markov Model (HMM) based approach
(https://github.com/b-tierney/vironomy) to detect shared, single copy genetic features between
query and reference genomes (from the pFam and TIGRFAM databases)**®'. Potential phyla
were identified by screening the top five most similar reference genomes to those in the given
query dataset.

Gene catalog construction and functional annotation

We generated gene catalogs using an approach piloted in prior studies.®**. Bakta V1.5.1 was
used to call putative Open-Reading-Frames (ORFs).>® The annotations reported in this study
(e.g., Fig 5) derive directly from Bakta. We clustered predicted and translated ORFs (at 90%
requisite overlap and 90% identity) into homology-based sequence clusters using MMseqs2
V13.4511 %¢ [parameters: —easy-cluster —min-seg-id 0.9 -c¢ 0.9]. The resulting “non-redundant”
gene catalog and its annotations was used in the functional analysis. We computed the
abundance of the representative, consensus sequences selected by MMseqgs2 by alignment of
quality-controlled reads with Diamond V2.0.14.5” We computed the total number of hits and
computed gene relative abundance by dividing the number of aligned reads to a given gene by
its length and then the total number of aligned reads across all genes in a sample.

Benchmarking short read viral taxonomic classification against the GenBank database

To identify viral taxonomic abundance via short read alignment, we mapped reads to a database
of all complete, dereplicated (by BLAST at 99% sequence identity) GenBank viral genomes. We
used the Xtree aligner for this method (see below), however given the difficulty of assigning
taxonomic ranks to viral species based on alignment alone, we first benchmarked this process.
We used Art(Huang et al. 2012) to generate synthetic viral communities at random abundances
from 100 random viruses from the GenBank database. We then aligned (with Xtree) back to these
genomes, filtered for 1% total coverage and/or 0.5% unique coverage, and compared expected
read mapping vs. observed read mapping. We additionally computed True/False positive rates
based on the proportion of taxa identified that were present in the mock community (True positive)
versus those that were not (False positive) versus those that were present but not identified (False
negative). Overall, we identified optimal classification at the genus-level, with >98% true positive
rate (i.e., 98/100 taxa identified) and low false positive/negative rates (e.g., <10 taxa not present
in the sample identified) (Supplementary Figure 14A-B). Species-level classification had higher
false negative rates (generally arising from multi-mapping reads to highly similar species) and a
60-70% true positive rate. Genus level classification also yielded a nearly perfect correlation
(>0.99, on average) between expected and observed read mappings (Supplementary Figure
14C). As a result, while we report analyses for every taxonomic rank in the supplement, in the
main text we describe only genus-level viral analysis.

Short-read taxonomic classification via alignment

In total, we used and compared seven different short read mapping methods
(MetaPhlAn4/StrainPhlAn, Xtree, Kraken2/Bracken run with four different settings, Phanta), which
together utilize five different databases that span bacterial, viral, and fungal life. Additionally, we
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identified and computed the relative abundance of non-redundant genes as well as bacterial and
viral Metagenome-Assembled-Genomes (Supplementary Table 7). Subsequent downstream
regression analyses were run on each resultant abundance table at each taxonomic rank.

Unless otherwise stated, for the figures involving taxonomic data used in the main text of the
manuscript, we used the XTree (htips://github.com/GabeAl/UTree) [parameters: —redistribute].
XTree is a recent update to Utree®®, containing an optimized alignment approach and increased
ease of use. In brief, it is a k-mer based aligner (akin to Kraken2 *° but faster and designed for
larger databases) that uses capitalist read redistribution® in order to pick the highest-likelihood
mapping between a read and a given reference based on the overall support of all reads in a
sample for said reference. It reports the total coverage of a given query genome, as well as total
unique coverage, which refers to coverage of regions found in only one genome of an entire
genome database.

For bacterial alignments, we generated an Xtree k-mer database [parameters: BUILD k 29 comp
0] from the Genome Taxonomy Database representative species dataset (Release 207) and
aligned both metagenomic and metatranscriptomic samples. We filtered bacterial and genomes
for those that had at least 5% coverage and/or 2.5% unique coverage. Relative abundance was
calculated by dividing the total reads assigned to a given genome by the total number of reads
assigned to all genomes in a given sample. We additionally ran MetaPhlAn4°' (default settings)
as an alternative approach to bacterial taxonomic classification.

For viral GenBank alignments, we generated an Xtree database [parameters: BUILD k 17 comp
0] from all complete GenBank viral genomes. We first de-replicated these sequences with BLAST
99% identity threshold via published approaches
(https://github.com/snayfach/MGV/tree/master/ani_cluster).**%? We filtered for genomes with
either 1%/0.5% total/unique coverage. Relative abundance was calculated identically as with the
bacterial samples. We additionally ran Phanta (default settings) as an alternative to this approach
for viral classification®?.

As another set of methods for measuring taxonomic sample composition, we used Kraken2 and
bracken, both with the default settings, to call taxa and quantify their abundances,
respectively.>®®* We used the default kraken2 reference databases, which includes all NCBI listed
taxa (bacteria, fungal, and viral genomes) in RefSeq, as of September 2022. We ran Kraken2
with four different settings: default (confidence = 0) and unmasked reads, confidence = 0 and
masked reads, confidence = 0.2 and unmasked reads, and confidence = 0.2 and masked reads.
In the cases where we masked reads prior to alignment (to filter repeats and determine if fungal
and other eukaryotic alignments were likely false positives), we used bbmask running the default
settings.

Finally, we computed beta diversity (Bray-Curtis) metrics for taxonomic abundances using the
vegan package in R.%°

Sample decontamination with negative controls

Following taxonomic classification and identification of de novo assembled microbial genes, we
removed potential contaminants from samples by comparison to our negative controls (detailed
in Supplementary Table 8). We ran the same classification approaches for each negative control
sample as described in the above paragraphs in this section. This yielded, for every taxonomy
classification approach and accompanying database, a dataframe of negative controls alongside
a companion dataframe of experimental data. On each of these dataframe pairs, we then used
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the isContaminant function (parameters: method="prevalence", threshold = 0.5) of the decontam
package®® to mutually high prevalence taxa between the negative controls and experimental
samples. The guidance for implementation of the decontam package, including the parameter
used, was derived from the following R vignette:
https://benjjneb.github.io/decontam/vignettes/decontam_intro.html. Note that we used both
metagenomic and metatranscriptomic negative control samples to decontaminate all data,
regardless of if that data was itself metagenomic or metatranscriptomic. This decision was made
to increase the overall conservatism of our approach..

Metagenomic-Association-Study on bacteria, viruses, and genes

Four mixed-model specifications were used for identifying microbial feature relationships with
flight. Time is a variable encoded with three levels corresponding to the time of sampling relative
to flight: PRE-FLIGHT, MID-FLIGHT, and POST-FLIGHT. The reference group was the MID-
FLIGHT timepoint, indicating that any regression coefficients had to be interpreted relative to flight
(i.e., a negative coefficient on the pre-launch timepoint implies that a feature was increased in-
flight). We fit these models for all genes, viruses, and bacteria identified in our dataset by
assembly, XTree (GTDB/GenBank), MetaPhlAn4, Kraken2 (all four algorithmic specifications),
Phanta, and gene catalog construction. Each variable encoding a body site is binary encoding if
a sample did or did not come from a particular region.

To search for features that were changed across the entire body, we fit overall associations, oral
associations, skin associations, and nasal associations.:

1.
In(microbial _feature_abundance+minval) ~ o+ Time+(1|Crew.ID)+

€;
Whereas, for associations with oral changes, we used:

2.

In(microbial _f eature_abundance + minval) ~ Bo + B1Time * Oral +
(1|Crew.ID) +¢;

Whereas, for associations with nasal changes, we used:

3.

In(microbial _feature_abundance + minval) ~ By + S1Time x Nasal +
(1|Crew.ID) + ¢;

For identifying associations with skin swabs, we fit the following model:

4.

In(microbial_feature_abundance + minval) ~ By + B1Time x Armpit +
BoTime x ToeWeb + B3Time x NapeO f Neck + BsTime * Postauricular +
BsTime x Forehead + PgTime x BellyButton + p7Time x Gluteal Crease +
BsTime x T Zone + (1|Crew.ID) + ¢;

Note that in this final equation (4), the reference groups are samples deriving from the nasal and
oral microbiomes; this means that highlighted taxa will be those associated with time and skin
sites as compared to the oral and nasal sites. We additionally fit these same model specifications
without the random effect and compared the results in Supplementary Figure 11.
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We used the Ime4®” package to compute associations between microbial features (i.e., taxa or
genes) abundance and time as a function of spaceflight and bodysite. For all data types, we aimed
to remove potential contamination prior to running any associations. We estimated p-values on
all models with the LmerTest packages using the default settings.®”®® We adjusted for false
positives by Benjaini-Hochberg adjustment and used a g-value cutoff point of 0.05 to gauge
significance.

Identifying and plotting time-dependent trends in microbial features

We grouped microbial features associated with flight into six different categories. These were
determined due to the fact that our model contained a categorical variable encoding a sample’s
timing relative to flight: whether it was taken before, during, or afterwards. Since the modeling
reference group was “MID-FLIGHT,” meaning that the interpretation of any coefficients would be
directionally oriented relative to mid-flight microbial feature abundances. As a result, we were able
to categorize features based on the jointly considered direction of association and significance for
the “PRE-FLIGHT” and “POST-FLIGHT” levels of this variable. The below listed categories are
all included in the association summaries provided in Supplementary Table 3.

1) Transient increase in-flight — negative coefficient on the PRE-FLIGHT variable level,
negative coefficient on the POST-FLIGHT variable, statistically significant for both

2) Transient increase in-flight (low priority) — negative coefficient on the PRE-FLIGHT
variable level, negative coefficient on the POST-FLIGHT variable, statistically significant
for at least one of the two

3) Transient decrease in-flight — positive coefficient on the PRE-FLIGHT variable level,
positive coefficient on the POST-FLIGHT variable level, statistically significant for both

4) Transient decrease in-flight (low priority) — positive coefficient on the PRE-FLIGHT
variable level, positive coefficient on the POST-FLIGHT variable level, statistically
significant for at least one of the two

5) Potential persistent increase — negative coefficient on the PRE-FLIGHT variable level,
positive coefficient on the POST-FLIGHT variable level, statistically significant for at least
one of the two

6) Potential persistent decrease — positive coefficient on the PRE-FLIGHT variable level,
negative coefficient on the POST-FLIGHT variable level, statistically significant for at least
one of the two

We used these groups to surmise the time trends reported in Figures 1, 2, 3, 4, and
Supplementary Figures 15-17. It would be intractable to visualize every association of interest, so
we prioritized within each category based on the absolute value of beta-coefficients and adjusted
p-values. In Figure 1C, we removed the “low priority” categories (two and four above) and only
looked at the top 100 most increased and decreased significant genes, by group, relative to flight.
We did so to make fitting splines feasible (especially in the case of genes, which had so many
associations), and filter out additional noise due to low association-size findings.

We took a similar approach for the barplots in Figures 2, 3, 4, and Supplementary Figures 15-17.
We again filtered out the low priority associations and selected, for each body site represented in
the figure (e.g., oral, skin, nasal) the top N with the greatest difference in absolute value of average
L2FC relative to the mid-flight timepoints. In other words, we selected for microbial features with
dramatic overall L2FCs. We maximized N based on the available space in the Figure in question.
We note that the complete, categorized association results are available in Supplementary Table
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12 and in the online data resource, and in creating the figures we did not identify a deviation
between the strongest findings there and those presented visually in the text.

Detecting strain sharing between the crew and environment before, during, and after flight

We modeled our strain-sharing analysis based on Valles-Collomer et al., 2021. Briefly, we used
the —s flag in MetaPhlAn4 to generate sam files that could be fed into StrainPhlAn. We used the
sample2markers.py script to generate consensus markers and extracted markers for each
identified strain using extract_markers.py. We ran StrainPhlAn with the settings recommended
by Valles-Collome et al. (--markers_in_n_samples 1, —samples_with_n_markers 10 —
mutation_rates —phylophlan_mode accurate). We then used the tree distance files generated by
StrainPhlAn to identify strain-sharing cutoffs based on the prevalence of different strains
(detailed tutorial: https://github.com/biobakery/MetaPhlAn/wiki/Strain-Sharing-Inference).

Association with host immune gene subtypes

The single cell sequencing approach and averaging of host genes to identify expression levels is
documented in Overbey et al [in review] and Kim at al [in review]. The resultant averaged
expression levels across cell types were associated with microbial feature abundance/expression
using lasso regression. We used the same log transformation approach as in the mixed effects
modeling for the microbial features, and we centered and rescaled the immune expression data.
In total, we computed one regression per immune cell type (N = 8) per relevant microbial feature,
with the independent variables being all human genes (N = 30,601). We selected features based
on their grouping described above, picking only those that were increased transiently or
persistently increased after flight. Due to the volume of gene-catalog associations, we only
analyzed persistently increased genes. We report outcomes with non-zero coefficients in the text..

Figure generation and additional data processing notes

The GNU parallel package was used for multiprocessing on the Linux command line.®® We
additionally used a series of separate R packages for analysis and visualization.®” 3% Figures
were compiled in Adobe lllustrator.

Code availability

All code used to generate Figures and analyses from this project is available at
https://github.com/eliah-o/inspiration4-omics.
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Figure 1

Overview of dataset and summary of alpha diversity. A) Collection and analytic approach. Body swabs
were collected from ten different sites, comprising three microbial ecosystems (oral, nasal, skin) around
the body at eight different timepoints surrounding launch. These are referred to as L-92, L-44, L-3, FD1,



FD2, R+1, R+45, R+82, where “L-" refers to pre525 launch, “FD” corresponds to flight day (i.e., mid-flight),
“R” refers to recovery (i.e., post-flight). Following collection and paired metagenomic/metatranscriptomic
sequencing, samples were processed to extract taxonomic (bacterial viral) and functional features to
determine their changes relative to flight with a Microbiome Association Study (MAS). B) The total
number of features (species or genes) found to be statistically associated with either pre- or post-flight
timepoints across sequencing methods. Features are grouped by the categories laid out in the Methods
regarding the nature of their changes relative to flight. C) The time trajectories of transiently
increased/decreased significant findings across sequencing type, feature type, and body site (after
filtering to remove low priority [i.e., weakly significant]) associations. Blank plots had either no significant
findings or none that met the filtering criteria. D) Same as D, except viewing associations that were
categorized as potentially persistent after flight.
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Figure 2

Site-specific changes and the oral microbiome architecture of spaceflight. A) Significant features by
specific swabbing sites. B) The strongest associations between bacteria and flight for the oral
microbiome. X-axes are average L2FC of all pre-flight or post-flight timepoints compared to the average
mid-flight abundances for a given taxon.Columns correspond to different association categories that are
described visually by the example line plots on top of each one. Dotted, gray, horizontal lines demarcate



an L2FC of zero. Plotted taxa were selected by ranking significant features in each category by L2FC and
showing up to 10 at once.
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Figure 3

Strong changes to the skin microbiome during spaceflight. The strongest associations between bacteria
and flight for the skin microbiome. X-axes are average L2FC of all pre or post flight timepoints compared



to the average mid-flight abundances for a given taxon. Columns correspond to different association
categories that are described visually by the example line plots on top of each one. Dotted, gray,
horizontal lines demarcate an L2FC of zero. Plotted taxa were selected by ranking significant features in
each category by L2FC and showing up to 10 at once.
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Figure 4



The viral and functional response of the microbiome to spaceflight A-B) Host and molecular type of
viruses associated with flight, by category. B) The strongest associations between viruses and flight for
the skin and oral microbiomes. X-axes are average L2FC of all pre556 flight or post-flight timepoints
compared to the average mid-flight abundances for a given taxon. Columns correspond to different
association categories that are described visually by the example line plots on top of each one. Dotted,
gray, horizontal lines demarcate an L2FC of zero. Plotted taxa were selected by ranking significant
features in each category by L2FC and showing up to 10 at once. Viral genera are labeled “E” for targeting
a eukaryotic host and “P” for targeting a prokaryote. If no definite host is known, no label was assigned.
C) COG categories of all genes associated with flight. D) Groups of specific protein products that were
associated with flight. The legend in the black box is relevant for all figures where those colors appear.
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Figure 5

Microbial propagation through the Dragon Capsule and the crew. A) Beta diversities for bacterial
metagenomics. Heatmap color corresponds to average beta diversity, with black being the midpoint (0.5),
blue being totally dissimilar (1.0) and gray being highly similar (0.0). Columns are hierarchically clustered
considering all rows. The interpretation for a single cell is, for the crew member annotated on the right-
hand side, that body site's 569 dissimilarity to all other cells in that column (so the Capsule and all other



crew samples from the same site). B) The number of strain-sharing events across time, where an event is
defined as the detection of the same strain between two different swabbing locations. C) Strain sharing
events between the crew and the capsule during the mid-flight timepoints. D) Capsule locations where
strain sharing was identified in the training capsule and during flight. E) Organisms with at least two
strain sharing events detected within a given timepoint.
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The landscape of potential immune-microbiome associations related to flight. A) The total number of
microbial features, by type, associated with different immune cell subtypes for those that were long-term
increased after flight (left panel) and decreased (right panel). B) The flight-associated (increased in
abundance or expression) bacteria and viruses that were associated with the greatest number of host
genes. Viral genera are labeled “E” for targeting a eukaryotic host and “P” for targeting a prokaryote. If no
definite host is known, no label was assigned. C) The flight-associated microbial genes that were
associated with the greatest number of host genes. We sorted for genes within each body site and
selected the top 15 with the greatest number of human gene associations. The legend in the black box is
relevant for all figures where those colors appear.
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