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Abstract 35 

Maintenance of astronaut health during spaceflight will require monitoring and potentially 36 
modulating their microbiomes, which play a role in some space-derived health disorders. 37 
However, documenting the response of microbiota to spaceflight has been difficult thus far due to 38 
mission constraints that lead to limited sampling. Here, we executed a six-month longitudinal 39 
study centered on a three-day flight to quantify the high-resolution microbiome response to 40 
spaceflight. Via paired metagenomics and metatranscriptomics alongside single immune profiling, 41 
we resolved a microbiome “architecture” of spaceflight characterized by time-dependent and 42 
taxonomically divergent microbiome alterations across 750 samples and ten body sites. We 43 
observed pan-phyletic viral activation and signs of persistent changes that, in the oral microbiome, 44 
yielded plaque-associated pathobionts with strong associations to immune cell gene expression. 45 
Further, we found enrichments of microbial genes associated with antibiotic production, toxin-46 
antitoxin systems, and stress response enriched universally across the body sites. We also used 47 
strain-level tracking to measure the potential propagation of microbial species from the crew 48 
members to each other and the environment, identifying microbes that were prone to seed the 49 
capsule surface and move between the crew. Finally, we identified associations between 50 
microbiome and host immune cell shifts, proposing both a microbiome axis of immune changes 51 
during flight as well as the sources of some of those changes. In summary, these datasets and 52 
methods reveal connections between crew immunology, the microbiome, and their likely drivers 53 
and lay the groundwork for future microbiome studies of spaceflight. 54 
 55 
 56 
 57 
  58 
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Introduction 59 

The sources and impacts of spaceflight-associated microbiome shifts on astronaut health is an 60 

open yet important area of study. Microbes play manifold roles in human health, from acting as 61 

pathogens to symbionts; therefore, understanding the complex interplay between the space 62 

environment and host-microbiome composition is critical. This is especially true with the recent 63 

proliferation of commercial spaceflight missions and increased space tourism; individuals with 64 

increasingly diverse, microbiome-relevant medical histories will be traveling into space and to the 65 

Moon (e.g., dearMoon)1. In this new age, astronauts can be immunocompromised, cancer 66 

survivors, elderly, or have other health profiles that put them at greater risk of infection or other 67 

inclement outcomes, especially relative to prior NASA, ESA, JAXA, and ROSCOSMOS missions. 68 

2 69 

  70 

Microbes are already associated with many spaceflight-specific health indications. In 71 

microgravity, many individuals experience gastrointestinal discomfort (i.e., constipation), which is 72 

heavily linked to gut microbiome composition3–7. The skin barrier is disrupted and often inflamed 73 

during and after flight, allowing potential invasion of pathobionts or otherwise inflammatory 74 

microorganisms8–12. Although the mechanisms are not entirely understood, the immune system 75 

experiences suppression during flight, leading to a "reactivation" of latent infections, such as 76 

herpes viruses. s13–17. As a result, identifying the sources and impacts of microbiome changes as 77 

a function of spaceflight will be essential for the development of microbiome-targeted, spaceflight-78 

relevant diagnostics and therapeutics. 79 

  80 

Microbial physiology, genetics, and community composition are also dramatically affected by the 81 

space environment, likely due to the stressors of microgravity and radiation18–20. These wide 82 

arrays of changes, taken together, radically alter the nature of microbial communities and, 83 

therefore, their cumulative impact on the host 21. We recently documented the “ISS effect,” in 84 



 

 4 

which organisms on the International Space Station (ISS) exhibit increasing resistance to 85 

antibiotics over time, despite not having been exposed to them in the first place 22. Many Biosafety 86 

Level 2 (BSL2) organisms, including Haemophilus influenzae, Klebsiella pneumonia, Salmonella 87 

enterica, Shigella sonnei, and Staphylococcus aureus, have been observed exhibiting ecological 88 

succession in the environment of the ISS, demonstrating the propensity of the space environment 89 

to select for specific community compositions and gene content.19,23,24. Finally, spaceflight alters 90 

biofilm formation capability in many bacteria; in some, like Pseudomonas aeruginosa, it increases 91 

the likelihood a superstructure will form, whereas in others, like Proteus mirabilis, it has the 92 

opposite effect 25,26. 93 

 94 

Indeed, early studies in aerospace medicine have indicated that the microbiome of humans and 95 

the built environment shift as a function of spaceflight 27. These efforts, which have predominantly 96 

focused on the gut, have found convergence in astronaut microbiome signatures and shifts in the 97 

phylum ratios 27. Studies of the oral cavity have identified decreases in Streptococcus and 98 

Actinobacteriota and increases in Fusobacteriota and Proteobacteria as a function of flight 28.  99 

 100 

However, there are many open questions regarding the microbiome architecture of spaceflight 101 

(see Glossary Supplementary Table 1), which we define as the totality of detectable, flight-102 

associated, compositional, and expression shifts in the set of all bacteria, viruses, and microbial 103 

genes in the host and their surrounding environment. The proportion of organisms acquired from 104 

other crew members versus the environment remains unclear, the transience of microbiome 105 

changes post-flight remains opaque, and notably, the transcriptional activity of microbes as a 106 

response to flight is completely unexplored. These questions predominantly remain because prior 107 

studies have been hampered by 1) limited sample sizes, 2) a lack of longitudinal data, and 3) a 108 

focus on single sequencing modalities (i.e., amplicon sequencing). Commercial spaceflight, 109 

characterized by its high frequency and generally flexible parameters, offers a unique opportunity 110 
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to address many of these limitations. 111 

 112 

To further our understanding of microbiome community activity in spaceflight, we recently 113 

executed a longitudinal, multi-omic sampling study of the SpaceX Inspiration4 mission: the first 114 

all-civilian commercial flight to space. The Inspiration4 mission represented a unique opportunity 115 

to develop standards, as well as initial observations for measuring microbiome shifts during short-116 

term spaceflight. Over a six-month window, the crew collected environmental (i.e., from the 117 

Dragon capsule), skin, nasal, and oral swabs at eight timepoints leading up to, during, and 118 

following a three-day mission in-orbit. We aimed to document, via metagenomics, 119 

metatranscriptomics, and host single cell sequencing, the bacterial and viral abundance and 120 

expression shifts and their relation to astronaut immune status. We focused on tracking 121 

expression and abundance shifts before flight, during flight, and after return to Earth. Specifically, 122 

we aimed to use metagenomics to gauge microbial abundance changes and metatranscriptomics 123 

to measure variation in microbial gene or species-marker-gene expression. We propose that our 124 

results yield a standardized approach for temporally monitoring microbial exposomic changes as 125 

a function of spaceflight and in total, characterize the microbiome architecture 29 of biomedically 126 

relevant taxa that are potentially activated or repressed during short-term spaceflight. 127 

Results 128 

Quantifying the metagenomic architecture of short-term spaceflight 129 

The crew collected a microbiome dataset spanning eight timepoints: three before flight, three after 130 

flight, and two during flight. In total, we sequenced 385 metagenomic and 365 metatranscriptomic 131 

swabs comprising ten body sites representing the oral, nasal, and skin microbiomes (Fig 1A), plus 132 

eight stool samples (from two subjects before and after flight). Locations inside the Dragon 133 

Capsule were swabbed twice in flight and once prior (a separate Capsule was utilized for crew 134 
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training). All the data from this sequencing effort have been stored in a database and made 135 

accessible in the NASA Open Science Data Repository. 136 

(OSD-572, OSD-573)(Overbey et. al [under review].  137 

 138 

To account for variation due to database and algorithmic bias, we used a diverse set of short-139 

read alignment and de novo assembly approaches to estimate the microbial community 140 

taxonomic and functional composition of our dataset (Supplementary Figure 1, Supplementary 141 

Tables 2-6, Methods). We observed that many of the swabs collected, especially those from the 142 

skin sites, comprised low biomass microbial communities; there are many documented 143 

challenges in analyzing these data30,31. To filter environmental contamination and the kitome32 144 

influencing our findings, we collected and sequenced negative controls of both (1) the water that 145 

sterile swabs were dipped in prior to use as well as (2) the ambient air around the sites of sample 146 

collection and processing for sequencing. These samples were used to remove potential 147 

contaminants (Supplementary Table 8). Unless otherwise specified, data presented in the main 148 

text are decontaminated and from Xtree aligned to the Genome-Taxonomy-Database (GTDB), 149 

Xtree aligned to the non-redundant set of complete GenBank viral genomes, and gene catalog 150 

relative abundances (see Methods for the rationale and benchmarking efforts).  151 

 152 

To evaluate our taxonomic profiling approach, we first compared the top ten genus-level 153 

classifications by body site before and after decontamination for each classifier in metagenomic 154 

and metatranscriptomic data (Supplementary Figures 2-8). The dominant genera in each niche 155 

exhibited minimal change before and after decontamination. We observed general concordance 156 

among the various classification methods; for instance, the predominant skin genera consistently 157 

identified included Staphylococcus, Cutibacterium, and Corynebacterium. i. The oral microbiome 158 

included Streptococcus, Rothia, and Fusobacterium. Kraken2, which uses a database comprising 159 

both eukaryotic and prokaryotic organisms, identified fungi in the skin microbiome, as expected. 160 
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The swabs from the Dragon capsule predominantly contained a diverse array of environmental 161 

microbes. 162 

Short-term spaceflight alters skin, oral, and nasal microbiome community ecology and 163 
transcriptional activity  164 

The potential to observe dynamic ecological shifts was driven, in part, by a correlation analysis 165 

that identified potential transient and sustained changes in bacterial community composition 166 

(Supplementary Figure 10). As a result, we then queried if short-term spaceflight altered overall 167 

bacterial and viral community composition and expression consistently across the astronauts. Via 168 

a linear mixed effect (LME) modeling approach, we executed a Microbiome-Association-Study 169 

(MAS), computing associations for each taxonomic rank and classifier between flight and the 170 

abundance of 1) bacteria species, 2) viral genera and non-redundant proteins. We grouped False 171 

Discovery Rate (FDR) significant (q-value < 0.05) features into four categories: transiently 172 

increased in-flight, transiently decreased in-flight, persistently increased in/after flight, and 173 

persistently decreased in/after flight (Supplementary Table 9). We additionally fit generalized 174 

linear models (GLMs) alongside LMEs and identified the two approaches to be generally 175 

concordant (Supplementary Figure 11). 176 

 177 

In total, we observed a mostly transient restructuring of the oral, nasal, and skin microbiomes as 178 

a function of flight (Fig 1B-C). Across all ten sites swabbed and regressed, over 821,337 179 

associations were statistically significant and grouped into one of the four categories of interest. 180 

These comprised 314,701 distinct microbial features: 792 were viral, 767 were bacterial, and the 181 

remaining were genes) The majority (73.5%) of significant and categorized features were 182 

transiently increased in abundance. 24.6% were transiently depleted during flight. 0.6% and 1.1% 183 

of features appeared to continually increase or decrease (respectively) following the crew’s return 184 

to Earth. The limited persistence of changes indicates that, while microbial communities may 185 

restructure in space, the relative abundance of altered organisms, as well as their gene 186 
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expression, generally reset upon returning to Earth.  187 

 188 

Different body sites displayed distinct time trends that varied depending on molecular type (gene 189 

expression vs. relative abundance) and domain of life. Time-dependent shifts were apparent in 190 

all body sites; average increases in relative abundance and gene expression tended to be greater 191 

than decreases (Fig 1C). Temporal trends were most striking for gene-level changes, which were 192 

identified across each body site. The oral microbiome also displayed a noticeable restructuring of 193 

both relative abundance and bacterial gene expression; 161 bacterial and viral taxonomies were 194 

transiently increased, 173 were transiently decreased, 62 were persistently increased, and 12 195 

were persistently decreased (Fig 2A). Alternatively, the skin microbiome demonstrated almost no 196 

persistent changes and a higher proportion of relative abundance )but not necessarily gene 197 

expression) shifts, with 933 transiently increased (metagenomic) taxa across all eight skin sites. 198 

The number and direction of altered microbiome features were generally consistent across 199 

classification methods (Supplementary Figure 12), and most taxonomic associations were unique 200 

to individual body sites (Supplementary Fig 13).  201 

Skin and oral bacterial alterations are predominantly compositional in the former and 202 
metatranscriptomic in the latter 203 

 204 
We next interrogated the specific taxonomic nature of bacterial shifts during spaceflight. Transient 205 

changes tended to have a larger log2(fold changes) [L2FC] of relative abundance or 206 

transcriptional activity than persistent ones, perhaps because even more lingering effects of flight 207 

tended towards returning to baseline by later timepoints. We also noted that the organisms with 208 

the strongest effects were different across biological modalities; in other words, an increase in 209 

gene expression did not necessarily imply the existence of a similar increase in the abundance of 210 

DNA ascribed to a given species. This discordance was apparent in the oral microbiome (Fig 2B), 211 
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for example, where there was almost no overlap between the organisms that altered in terms of 212 

relative abundance and those that altered in terms of gene expression.  213 

 214 

Overall, the oral microbiome demonstrated flight-dependent variation in the metatranscriptomic 215 

expression of bacteria associated with dental decay and biofilm formation (Fig 2B). Various 216 

members of Fusobacteriota, a progenitor to gum and tooth disease previously reported as 217 

spaceflight-associated, demonstrated an increase either in or after spaceflight33. These included 218 

Fusobacterium hwasookii, Fusobacterium nucleatum (Supplementary Table 9), and Leptotrichia 219 

hofstadii. Other oral biofilm species known to aggregate synergistically with Fusobacterium 220 

species in the mouth were also enriched in and after flight; these included Streptococcus gordonii 221 

A, multiple Campylobacter species, and Actinomyces oris species34. There was a persistent loss 222 

in the expression of Streptococcus oralis spp. and Lachnoanaerobaculum gingivalis, and a 223 

transient decrease in Veillonella spp. Alloscardovia omnicolens was the only organism with a 224 

strong, persistent increase in metagenomic DNA content. We compared the MetaPhlAn4 225 

associations to those identified in GTDB and found similar results, especially regarding the overall 226 

enrichment of Fusobacterium sp., in flight.  227 

 228 

Many of the strongest bacterial skin microbiome alterations (Fig 3) were predominantly 229 

metagenomic, as opposed to metatranscriptomic. We hypothesized that this may indicate the 230 

acquisition of new but non-transcriptionally active species from the surrounding environment. For 231 

example, persistent increases were mostly in the metagenomic content of various gut microbes 232 

(e.g., Bacteroides, Parabacteroides, Blautia, Enterocloster); this may result from altered hygiene 233 

habits during flight.  234 

 235 

As with the oral microbiome, there was little concordance between metagenomic and 236 

metatranscriptomic changes. On the other hand, Corynebacterium species (common skin 237 



 

 10 

commensals) experienced metatranscriptomic, temporary depletion in-flight, and Acinetobacter 238 

spp. demonstrated a persistent depletion. These “typical” skin microbes (e.g., Corynbacterium, 239 

Staphylococcus, Variovorax, Acinetobacter) underwent changes in metatranscriptomic activity, 240 

whereas organisms not universally found on the human skin (e.g., Mesorhizobium spp., Prevotella 241 

spp.) tended to experience metagenomic shifts, again indicating the potential acquisition of niche-242 

atypical, non-transcriptionally active organisms from the environment.  243 

Viral activation as a function of flight and host 244 

The landscape of viral activation and depletion covered both prokaryotic- and eukaryotic-targeting 245 

viral genera (Fig 4A). That said, the majority of detectable viral activity comprised phages in the 246 

skin microbiome (i.e., DNA viruses targeting prokaryotic hosts), and it was in large part 247 

concentrated in the gluteal crease. Most viral activity was transiently increased; in other words, 248 

even more dramatically than in the bacterial data, relatively speaking, viral abundances reset to 249 

baseline almost immediately after flight (Fig 4B).  250 

 251 

Phylogenetically, viral activity appeared to be altered across diverse lineages (Supplementary 252 

Table 9, Fig 4B). For example, Uroviricota, Cressdnaviricota, and Phixviricota shifted across the 253 

oral, skin, and nasal microbiomes. However, phyla containing biomedically relevant, potential 254 

human pathogens increased, including Kitrinoviricota, Artverviricota, Nucleocytoviricota, and 255 

Duplornaviricota. A diverse set of genera – targeting both Eukaryotes and Prokaryotes – 256 

responses to flight (Fig 4B). The only persistently increased genera were Rosariovirus, Ilarvirus, 257 

and an unclassified Genomoviridae. Increased viral genera were mostly in the skin microbiome, 258 

and they almost entirely targeted prokaryotes. The decreased genera targeted mostly eukaryotic 259 

hosts and were detected via metatranscriptomics. These results indicate that viral activation is 260 

not a human-specific effect and occurs across all domains of life.  261 

 262 
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We compared these results at additional taxonomic ranks and with other taxonomic classifiers. 263 

For example, to discern higher specificity of the viral changes, we additionally fit species-level 264 

virus associations. While species-level viral taxonomic classification can be difficult due to high 265 

read misalignments (Supplementary Figure 14), we wanted to determine whether we could 266 

observe a higher-resolution picture of viral activation due to spaceflight, as this effect is known to 267 

be space-associated (as opposed to bacterial skin to skin transmission, which could be a result 268 

of sharing tight quarters and not a space-specific effect). The results we identified were in-line 269 

with the genus level but provided more detail. For example, we found transient increases in 270 

Streptococcus phages in the oral microbiome, potentially indicating a viral component to the 271 

substantial Streptococcus-associated ecological restructuring (as indicated in Fig 2B). An 272 

additional, more conservative approach for viral taxonomic classification (Phanta) further 273 

identified shifts in Propionibacterium and Staphylococcus phages in the skin microbiota (as well 274 

as an overall nasal microbiome increase in Pisuviricota, which contains many human pathogens).  275 

Towards a core functional microbial landscape of spaceflight  276 

We next took a gene-level, taxonomy-agnostic approach to analyze the microbiome architecture 277 

of spaceflight. Both microbes and viruses rely on proteins for their functions; we theorized that 278 

spaceflight might induce consistent protein-level reactions across the functional units of the 279 

domains of life. We, therefore, aimed to characterize the consistency with which protein 280 

abundances changed across time and body site across 3.6 million non-redundant genes.  281 

 282 

First, we explored the broad functions of the genes that fell into either the transiently increased or 283 

transiently decreased categories, once again observing body-site specific effects in-line with the 284 

taxonomic results (Fig 4C). The increases in DNA content on the skin, as well as decreases in 285 

nasal microbiome content, were immediately apparent (Fig 4C, third and first columns, 286 

respectively). The oral microbiome and gluteal crease underwent large metatranscriptomic 287 
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increases. The category with the most genes – that exhibited the greatest fluctuation in gene 288 

number, both increasing and decreasing – was amino acid transport and metabolism. In the 289 

exposed areas of the skin microbiome, like the forearm, the genes that were changed in this 290 

category mostly came from metagenomic data. In less exposed body sites (i.e., oral, gluteal 291 

crease), the activity in this category was primarily metatranscriptomic. This may indicate the 292 

dramatic degree to which microbial nutrient needs change in-flight, likely from a combination of 293 

features, ranging from environmental strain transfer, competition, and host dietary changes. 294 

 295 

The oral, nasal, and skin microbiomes demonstrated consistency in the functions that were 296 

altered during flight, especially in the metagenomic data. We observed five different categories of 297 

proteins of interest enriched among increased features: antibiotic and heavy metal resistance, 298 

heme binding/export, lantibiotic-associated proteins, phage-associated proteins, and toxin-299 

antitoxin systems (Fig 4D, Supplementary Fig 15, Supplementary Table 9). Lantibiotic 300 

biosynthesis (Fig 4D, third column) again displayed a discordance between sequencing types; it 301 

was decreased in the metagenomic data but increased in metatranscriptomics. Heme-associated 302 

function expression increased in the oral microbiome, however, the number of genes detected 303 

metagenomically increased across all body sites. Phage proteins, toxin-antitoxin systems, and 304 

antibiotic/heavy metal pathways increased noticeably across host niches. We specifically 305 

observed an increase in the RelB toxin-antitoxin systems, most notably through 306 

metatranscriptomics. This finding was particularly interesting, as we and others have identified it 307 

as space-associated 22,35. 308 

Strain-level tracking of microbial transfer between the capsule and astronauts 309 

We observed that, on average, bacterial beta diversity appeared to decrease after flight (Fig 5A). 310 

When ranking sites by similarity to the capsule mid-flight (Fig 5A, from left to right), the beta 311 

diversity correlated with the degree of environmental exposure for a given sampling site. For 312 
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example, the oral microbiome remained highly dissimilar from the capsule and other sites, 313 

whereas the forearm became much more similar to the walls of the Dragon capsule and other 314 

crew members.  315 

 316 

Further, our MAS indicated that, during flight, the composition of the astronaut’s microbiota 317 

changed, most notably in the skin niche, though the sources of these alterations were unclear. 318 

We hypothesized that these shifts in community composition and the overall increase in 319 

microbiome similarity could be a result simply of individuals cohabitating in a tight space; however, 320 

a change in gene expression in the oral microbiome (where strain exchange is possibly less 321 

likely), could derive from other ecological or other exposure changes like diet or immune 322 

alterations. 323 

 324 

We aimed to determine if strain-tracking and individual microbiome dissimilarity could identify 325 

microbial transit between individuals and the environment, providing a potential explanation for a 326 

portion of our observed results. Specifically, we queried whether host microbiomes converged in 327 

similarity during and after flight and whether microbial exchange occurred within individuals, 328 

between individuals, or both within individuals and the capsule. We utilized recently-published 329 

methods36, using MetaPhlAn4 and StrainPhlAn, to determine if strain-level markers could discern 330 

the directionality of microbial exchange across environments.  331 

 332 

Overall (Fig 5B), we found that individuals appeared to acquire strains from the capsule by the 333 

second mid-flight sampling point (day 3). During the L-92 timepoint, there was minimal transfer 334 

between the training capsule and the astronauts. Transfer within an individual (i.e.,single person's 335 

body) remained relatively consistent across time. The majority of strain sharing occurred between 336 

the skin and the capsule swabs. 337 

 338 
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Considering only the in-flight timepoints (Fig 5C), we again noticed that most strain sharing 339 

occurred between sites on the same individual, with limited exchange between astronauts. Points 340 

on the capsule with high crew contact were a source of new skin diversity (Fig 5D, the seat, 341 

viewing dome, commode panel, control touch screen). Finally, the StrainPhlAn strains, like 342 

Mesorhizobium_hungaricum|t__SGB11031 identified as present in multiple locations mid-flight 343 

(Fig 5E) were similar, in part, to those GTDB species identified as increased metagenomically 344 

(but not transcriptionally) across exposed skin sites (Fig 3). Notably, most of these shared strains 345 

between individuals were present after flight, as opposed to before.  346 

Spaceflight-associated microbiome shifts are correlated with immune cell gene 347 

expression  348 

Having mapped the architecture of microbiome changes surrounding spaceflight and identified 349 

the source of some of those changes, we next searched for indications of a link between 350 

microbiome ecology and the host immune system. To do so, we integrated the observations from 351 

our MAS with host immune, single-cell data. Via averaging across single cell sequencing 352 

information, we estimated the gene expression of nine host immune cell subpopulations. We 353 

computed differentially expressed genes within cell types post-flight (Overbey et al. [in review], 354 

Kim et al., Nature. In review. ID: 2023-02-01822 ])(Fig 6). We used lasso regression to identify 355 

candidate relationships between flight-associated, increased microbial features and immune cell 356 

subpopulation gene expression (Supplementary Table 10), with the hypothesis that sustained 357 

changes to the microbiome would correlate to immune perturbations in the host.  358 

 359 

We observed many putative relationships between host immune cell expression, body site, and 360 

microbial features (Fig 6A). Bacterial species – in the oral microbiome, specifically – had many 361 

metatranscriptomic associations across all cell types. In terms of relative abundance (i.e., 362 

metagenomics), oral microbes were associated with CD4 T cells, CD8 T cells, and CD16 363 
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monocytes, which are known for innate immune response against pathogens37,38. Skin bacteria 364 

had very few associations with immune cells (compared to oral) in both metagenomics and 365 

metatranscriptomics. The overall lack of bacterial metagenomic signal in the skin was interesting, 366 

as it indicated that strains acquired during flight that displayed altered relative abundance but 367 

limited transcriptional changes did not correlate to measurable host immune response. In other 368 

words, there was limited evidence that strain-sharing drove an altered immune state in humans. 369 

 370 

There was a limited link in our data between viruses and immune cell expression. This was 371 

unsurprising, given that most of the altered viruses we were able to detect did not target human 372 

cells. Natural killer cells, CD14 monocytes, dendritic cells, and CD16 monocytes had the most 373 

viral associations. These associations were predominantly in the skin microbiome. 374 

 375 

By cell type, we documented the most strongly associated genes with microbial features 376 

(Supplementary Table 10). For bacteria, gene functions were annotated with, for example, long 377 

non-coding RNAs (across all cell types), immunoglobulin genes (CD14 monocytes), and 378 

interferon regulatory factors. We additionally uncovered associations with specific immune 379 

modulatory genes such as CXCL10, XCL1, CXCL8 (immune cell migration), NLRC5, HLA genes, 380 

CD1C (antigen presentation/co-stimulation), SLC2A9 (immune cell metabolism), IRF1, NR4A3, 381 

STAT1 (transcription factors that specify immune cell states) that increased across multiple 382 

immune cell types (B cells, CD4 T-cells, CD8 T- cells, CD14 monocytes, DCs, Natural Killer (NK) 383 

cells).  384 

 385 

Next, we examined a subset of microorganisms with expression and abundance changes that 386 

correlated to host genes across multiple cell types (Fig 6B). A small group of metagenomically-387 

detected viruses were associated with many different immune genes; one genus (Genomoviridae) 388 

targets fungi and was correlated to a relatively large number (13) genes in natural killer cells. The 389 
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presence of this virus on the skin makes additional sense given that fungi are known skin 390 

symbionts. The other associated viruses had unclassified hosts or targeted bacteria. 391 

 392 

In the oral microbiome, pathobiont gene expression was associated with immune cell gene 393 

expression. Streptococcus pneomoniae A had the largest number of genes associated with it; 394 

30/32 genes were found in natural killer cells. Streptoccocus gordonii A, which was persistently 395 

increased after flight was associated with many different immune cell subtypes (N = 32 genes), 396 

including CD4 Y cells, CD13 monocytes, CD16 monocytes, and dendritic cells. The only oral 397 

bacterial relative abundance increase during or after flight that was associated with many immune 398 

cell subtypes was in Gemella morbillorum. The other oral microbes with the strongest oral 399 

associations included other medically relevant organisms, as well as some typical commensals: 400 

Pauljensenia hongkongensis, Campylobacter_A concisus_R, Actinomyces massiliensis, 401 

Haemophilus_A parahaemolyticus, Leptotrichia_A sp905371725, Porphyromonas catoniae, and 402 

many Streptococcus spp.  403 

 404 

The microbial genes (Fig 6C) associated with the most human genes were detected by both shifts 405 

in relative abundance as well as expression. They spanned many different protein annotations, 406 

yet there were some commonalities among those that were correlated to many immune cell 407 

subpopulations. Most notably, these annotations – across both metagenomics and 408 

metatranscriptomics – included transcription factors, cell surface proteins, and transporters. 409 

Pertinent to our prior results (Fig 4), the top microbial gene in the nasal microbiome was a heme 410 

uptake protein. 411 

  412 

Discussion 413 

In this study, which comprises the largest dataset of space-flight-associated microbiome data to 414 

date, we systematically queried the microbiome architecture of short-term spaceflight. Prior 415 
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efforts, like the NASA twins study, have had difficulty identifying microbiome shifts due to small 416 

sample sizes and limited sequencing modalities27. Via comparing metagenomics and 417 

metatranscriptomics, we identified microbiome changes that indicate how, even over short 418 

periods of time, the effect of spaceflight can potentially impact astronaut microbiomes. We found 419 

bacterial taxa, viral taxa, and genes that were enriched or depleted during and after flight. Despite 420 

the mission only lasting three days, the oral, nasal, and skin microbiota of the host dramatically 421 

restructured their composition and expression. These alterations varied longitudinally, with some 422 

persisting and correlated to expression changes in host immune cells.  423 

 424 

The sources of astronaut immune changes during flight are not well understood; however, we 425 

suggest a potential microbial axis as a contributing factor to this documented effect. We 426 

hypothesize our results may indicate how microbiome ecology associates could feasibly affect 427 

host immune function. First, we observed evidence of microbiome restructuring along the lines of 428 

potential interspecies interaction, stress response, and microbial energy source utilization shifts 429 

(Fig 5B-C, Supplementary Table 9). Pan-phyletic viral activation – and repression – were 430 

additionally noticeable (Fig 4). The oral microbiome – and other niches – underwent a 431 

metatranscriptomic “switch” (Fig 1C) between enriched and depleted expression signals in-flight. 432 

Changes appeared to derive from both bacteriophage activity and, for instance, downregulation 433 

and upregulation of different microbial species (like, Streptococcus [Fig 1C, Fig 2B]). Additionally, 434 

upon returning to Earth, astronauts experienced some persistent reorganization of community 435 

structure and function across their bodies. We identified that microbiome changes deriving from 436 

relative abundance changes (i.e., exchange of strains on the skin) are unlikely to be correlated to 437 

host immune response. Instead, microbiome alterations (i.e., gene expression shifts) deriving 438 

from sources other than cohabitation were more likely to be associated with host immune state 439 

(Fig 6).  440 

 441 
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Naturally, a microbial shift can affect the host immune system – or vice versa – without the initial 442 

cause being “space-specific” (i.e., due to microgravity of radiation). Strain sharing, for example, 443 

could be – and likely is – a function of humans sharing close quarters. Other changes, like 444 

periodontal pathogens, could stem from oral cleaning differing in space than on Earth. However, 445 

we hypothesize that at least some immune-associated microbiome alterations likely are due to 446 

exposure to the space environment and the immune alterations that occur as a function of flight. 447 

For example, astronauts have been documented as experiencing immune and viral activation15; 448 

typically, this effect is not attributed solely to cohabitation. Further, we see a clear difference 449 

between microbial cell acquisition in metagenomic data and the niche-native taxa that drove 450 

activity in the metatranscriptomic data. We claim it is unlikely strain sharing due to close quarters 451 

– or even variable sanitation in-flight – explains the entirety of the link between host immune 452 

response and the microbiome. 453 

 454 

A large component of our findings centers on the discordance between microbial gene expression 455 

and microbial abundance; the former seems to have a larger relationship to space-associated 456 

and host immune shifts than the latter. Transcriptional changes dominated the oral microbiome, 457 

whereas exposed skin was dominated by metagenomic changes. This indicates a greater 458 

acquisition of foreign and transcriptionally inactive microbes between crew members and/or the 459 

environment. Most microbial exchange was between different sites within the same person or 460 

from within the built environment to individuals, as opposed to from person-to-person (Fig 5). 461 

However, both skin and oral changes did demonstrate strong correlations to changes in multiple 462 

immune cell types, indicating how microbiome shifts stemming from distinct underlying causes 463 

can mutually influence host health.  464 

 465 

Future missions may also show the same core set of functional elements that were ostensibly 466 

species-independent and enriched in-flight. Some of the other conserved, increased functions 467 
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across body sites have been reported in prior studies. For example, the RelB/E toxin-antitoxin 468 

systems enriched in Acinetobacter pittii on the ISS22. In the metatranscriptomic data, RelB-469 

associated systems increased during flight. The increase of these and other defensive and 470 

antibiotic production metabolisms is of particular note, as it may form the basis of an “ISS effect” 471 

– where increases in bacterial antibiotic resistance occur, despite no exposure to antibiotics22.  472 

 473 

A major limitation of our work is its descriptive nature, which arises from the overall study design. 474 

Despite having more samples than other astronaut microbiome studies, this effort still hosts a 475 

relatively small crew size (n = 4), and we cannot determine from these data alone if an outside 476 

effect on the immune system is altering their abundance or expression or if viral ecology may be 477 

driving these and similar changes. Given the nascence of the multi-omic space biomedicine (and 478 

the difficulty of sample collection), we were limited in this study to simply observing shifts in 479 

microbes and, from strain tracking and multi-omic data integration, inferring hypotheses regarding 480 

the overall nature of the mid-flight microbe-immune axis. Some of our identified associations may 481 

be individual or flight-specific. 482 

 483 

As such, there are several opportunities to expand upon this work in future studies and missions. 484 

Analytically, our lasso-based approach for immune-microbe-interaction modeling immune 485 

changes does not inherently allow for statistical inference or account for inter-individual variation. 486 

Further, some of our samples had very low biomass, requiring PCR-amplification (18 cycles) for 487 

RNA-sequencing data, which can increase duplicate rates of sequences. For this reason, we 488 

attempted to take a conservative and systematic modeling approach to our effort. Specifically, 1) 489 

we implemented multiple algorithms and compared their concordance, 2) set coverage thresholds 490 

for bacterial and viral taxa to filter probable false positives, 3) used multiple, state-of-the-art 491 

taxonomic classifiers and compared our findings among all of them, and 4) implemented and 492 

compared both generalized linear models and mixed effect models, bearing in mind that the latter 493 
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can face interpretability challenges with smaller sample sizes. We additionally used 76 negative 494 

controls to attempt to avert false positive signals, which can stem from contamination and the 495 

kitome. However, this approach is far from perfect and likely removes present organisms. 496 

Depending on their aim, future studies should alter collection methods to increase the amount of 497 

biomass collected sampling (e.g., using one swab for multiple skin sites) or examine relatively 498 

unbiased methods of amplification40. 499 

 500 

Additional experiments and missions can further test a microbiome-derived theory of spaceflight-501 

associated immune changes. In addition to stress-testing our findings and increasing sample 502 

sizes, future spaceflight studies should consider several enhancements. For instance, they should 503 

compare sequestered ground controls to discern differences between space-driven and 504 

proximity-driven immune shifts. Additionally, future efforts should design experiments that enable 505 

a deeper view into the causality of microbe immune associations rather than just noting their 506 

existence. Exploring some of these hypotheses through animal or organoid models could be 507 

valuable. 508 

 509 

In total, spaceflight microbiome studies are hyperbolic extensions of unique kinds of human 510 

exposome research. They capture a group of effectively immunocompromised individuals who 511 

share a self-contained environment that does not undergo microbial exchange with the outside 512 

world. Since these studies are rare, the range of immune system dynamics is just beginning to be 513 

explored. Overall, we describe here data and methods to map the axes of host-microbe-514 

environment interaction such that these observations and hypotheses can be tested in future 515 

studies. Indeed, the increased access to space guarantees more opportunities to study 516 

astronauts, their microbiomes, and their spacecraft while also motivating a strong health and 517 

medical impetus to plan for future missions. 518 
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Figures and Tables 519 

 520 
Figure 1: Overview of dataset and summary of alpha diversity. A) Collection and analytic 521 
approach. Body swabs were collected from ten different sites, comprising three microbial 522 
ecosystems (oral, nasal, skin) around the body at eight different timepoints surrounding launch. 523 
These are referred to as L-92, L-44, L-3, FD1, FD2, R+1, R+45, R+82, where “L-” refers to pre-524 
launch, “FD” corresponds to flight day (i.e., mid-flight), “R” refers to recovery (i.e., post-flight). 525 
Following collection and paired metagenomic/metatranscriptomic sequencing, samples were 526 
processed to extract taxonomic (bacterial viral) and functional features to determine their changes 527 
relative to flight with a Microbiome Association Study (MAS). B) The total number of features 528 
(species or genes) found to be statistically associated with either pre- or post-flight timepoints 529 
across sequencing methods. Features are grouped by the categories laid out in the Methods 530 
regarding the nature of their changes relative to flight. C) The time trajectories of transiently 531 
increased/decreased significant findings across sequencing type, feature type, and body site 532 
(after filtering to remove low priority [i.e., weakly significant]) associations. Blank plots had either 533 
no significant findings or none that met the filtering criteria. D) Same as D, except viewing 534 
associations that were categorized as potentially persistent after flight. 535 
 536 
Figure 2: Site-specific changes and the oral microbiome architecture of spaceflight. A) 537 
Significant features by specific swabbing sites. B) The strongest associations between bacteria 538 
and flight for the oral microbiome. X-axes are average L2FC of all pre-flight or post-flight 539 
timepoints compared to the average mid-flight abundances for a given taxon.Columns correspond 540 
to different association categories that are described visually by the example line plots on top of 541 
each one. Dotted, gray, horizontal lines demarcate an L2FC of zero. Plotted taxa were selected 542 
by ranking significant features in each category by L2FC and showing up to 10 at once.  543 
 544 
Figure 3: Strong changes to the skin microbiome during spaceflight. The strongest 545 
associations between bacteria and flight for the skin microbiome. X-axes are average L2FC of all 546 
pre or post flight timepoints compared to the average mid-flight abundances for a given taxon. 547 
Columns correspond to different association categories that are described visually by the example 548 
line plots on top of each one. Dotted, gray, horizontal lines demarcate an L2FC of zero. Plotted 549 
taxa were selected by ranking significant features in each category by L2FC and showing up to 550 
10 at once.  551 
 552 
Figure 4: The viral and functional response of the microbiome to spaceflight A-B) Host and 553 
molecular type of viruses associated with flight, by category. B) The strongest associations 554 
between viruses and flight for the skin and oral microbiomes. X-axes are average L2FC of all pre-555 
flight or post-flight timepoints compared to the average mid-flight abundances for a given taxon. 556 
Columns correspond to different association categories that are described visually by the example 557 
line plots on top of each one. Dotted, gray, horizontal lines demarcate an L2FC of zero. Plotted 558 
taxa were selected by ranking significant features in each category by L2FC and showing up to 559 
10 at once. Viral genera are labeled “E” for targeting a eukaryotic host and “P” for targeting a 560 
prokaryote. If no definite host is known, no label was assigned. C) COG categories of all genes 561 
associated with flight. D) Groups of specific protein products that were associated with flight. The 562 
legend in the black box is relevant for all figures where those colors appear. 563 
 564 
Figure 5: Microbial propagation through the Dragon Capsule and the crew. A) Beta 565 
diversities for bacterial metagenomics. Heatmap color corresponds to average beta diversity, with 566 
black being the midpoint (0.5), blue being totally dissimilar (1.0) and gray being highly similar 567 
(0.0). Columns are hierarchically clustered considering all rows. The interpretation for a single cell 568 



 

 22 

is, for the crew member annotated on the right-hand side, that body site’s dissimilarity to all other 569 
cells in that column (so the Capsule and all other crew samples from the same site). B) The 570 
number of strain-sharing events across time, where an event is defined as the detection of the 571 
same strain between two different swabbing locations. C) Strain sharing events between the crew 572 
and the capsule during the mid-flight timepoints. D) Capsule locations where strain sharing was 573 
identified in the training capsule and during flight. E) Organisms with at least two strain sharing 574 
events detected within a given timepoint. 575 
 576 
Figure 6: The landscape of potential immune-microbiome associations related to flight. A) 577 
The total number of microbial features, by type, associated with different immune cell subtypes 578 
for those that were long-term increased after flight (left panel) and decreased (right panel). B) The 579 
flight-associated (increased in abundance or expression) bacteria and viruses that were 580 
associated with the greatest number of host genes. Viral genera are labeled “E” for targeting a 581 
eukaryotic host and “P” for targeting a prokaryote. If no definite host is known, no label was 582 
assigned. C) The flight-associated microbial genes that were associated with the greatest number 583 
of host genes. We sorted for genes within each body site and selected the top 15 with the greatest 584 
number of human gene associations. The legend in the black box is relevant for all figures where 585 
those colors appear. 586 

Supplementary Figures and Tables 587 

Supplementary Figure 1: Data processing workflow. After quality-controlling reads, we executed 588 
two different, parallel, workflows to identify the microbial taxa and genes that comprised each 589 
sample. We used seven different algorithmic approaches (Xtree, MetaPhlAn4/StrainPhlAn4, 590 
Phanta, Kraken2 with multiple parameter settings) and four different databases to classify short 591 
reads into different taxonomic categories (bottom left). We also did a de novo assembly analysis 592 
to identify the abundance of non-redundant genes/functions as well as Metagenome-Assembled 593 
bacterial and viral genomes. We executed all regression analyses for every resultant abundance 594 
matrix across the taxonomic ranks ranging from species to phylum.  595 
 596 
Supplementary Figure 2: Read alignment statistics. A) Counts and percentages of reads 597 
aligning to the human reference genome. B) Aligned reads by taxonomic classification method. 598 
 599 
Supplementary Figure 3: Top 10 bacterial genera identified by site by GTDB in metagenomic 600 
sequencing. A) Raw alignment data. B) Decontaminated reads. 601 
 602 
Supplementary Figure 4: Top 10 bacterial genera identified by site by GTDB in 603 
metatranscriptomic sequencing. A) Raw alignment data. B) Decontaminated reads. 604 
 605 
Supplementary Figure 5: Top 10 viral genera identified by site by GenBank alignment in 606 
metagenomic sequencing. A) Raw alignment data. B) Decontaminated reads. 607 
 608 
Supplementary Figure 6: Top 10 viral genera identified by site by GenBank alignment in 609 
metatranscriptomic sequencing. A) Raw alignment data. B) Decontaminated reads. 610 
 611 
Supplementary Figure 7: Top 10 genera identified by site by Kraken2 in metagenomic 612 
sequencing. A) Raw alignment data. B) Decontaminated reads. 613 
 614 
Supplementary Figure 8: Top 10 genera identified by site by Kraken2 in metatranscriptomic 615 
sequencing. A) Raw alignment data. B) Decontaminated reads. 616 
 617 
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Supplementary Figure 9: Top 25 bacterial genera identified by site by GTDB in (A) metagenomic 618 
sequencing and (B) metatranscriptomic sequencing in the ground control and mid-flight capsule 619 
swabs.  620 
 621 
Supplementary Figure 10: Correlation analysis of bacterial and viral families across time and 622 
body sites. Heatmaps show the Pearson correlation between microbial abundance across time 623 
across all body sites. The abundances from the two in-flight timepoints were merged to generate 624 
the middle heatmap. Columns and rows were hierarchically clustered based on the mid-flight 625 
heatmap, and any organisms with zero standard deviation Pearson correlations in the mid-flight 626 
heatmap were omitted. Organisms with zero standard deviation Pearson correlations in the other 627 
heatmaps were set to Pearson = 0. Gray boxes in panel A indicate examples of bacterial families 628 
that had variable recovery to baseline correlation across time. The grey box in panel B indicates 629 
a potentially persistent shift in bacterial family-level ecology.  630 
 631 
Supplementary Figure 11: Similarity between FDR-significant associations fit with mixed versus 632 
generalized linear models (sans a random effect). 633 
 634 
Supplementary Figure 12: Regression results across short-read taxonomic classification 635 
methods. 636 
 637 
Supplementary Figure 13: Degree of overlap in the identity of significant bacterial and viral 638 
features as a function of body site and sequencing type. 639 
 640 
Supplementary Figure 14: Benchmarking a viral classifier across taxonomic ranks. Synthetic 641 
viral communities were generated from 100 genomes at random levels of abundance (from the 642 
GenBank database used in the rest of this study). A) The number of recovered genomes out of 643 
100, for 10 mock communities for the genus and species levels. B) The number of true positive 644 
(identified and present in the sample), false positive (identified but not present in the sample), and 645 
false negative (i.e., not recovered) genomes for the genus and species levels for all 10 mock 646 
communities. C) The correlation between observed and expected read counts for each taxon as 647 
a function of being a true positive, false positive, or false negative.  648 
 649 
Supplementary Figure 15: The strongest associations between genes and flight for the oral 650 
microbiome. X-axes are average L2FC of all pre or post flight timepoints compared to the average 651 
mid-flight abundances for a given taxon. Columns correspond to different association categories 652 
that are described visually by the example line plots on top of each one. Dotted, gray, horizontal 653 
lines demarcate an L2FC of zero. Plotted taxa were selected by ranking significant features in 654 
each category by L2FC and showing up to 10 at once.  655 
 656 
Supplementary Figure 16: The strongest associations between genes and flight for the nasal 657 
microbiome. X-axes are average L2FC of all pre or post flight timepoints compared to the average 658 
mid-flight abundances for a given taxon. Columns correspond to different association categories 659 
that are described visually by the example line plots on top of each one. Dotted, gray, horizontal 660 
lines demarcate an L2FC of zero. Plotted taxa were selected by ranking significant features in 661 
each category by L2FC and showing up to 10 at once.  662 
 663 
Supplementary Figure 17: The strongest associations between genes and flight for the skin 664 
microbiome. X-axes are average L2FC of all pre or post flight timepoints compared to the average 665 
mid-flight abundances for a given taxon. Columns correspond to different association categories 666 
that are described visually by the example line plots on top of each one. Dotted, gray, horizontal 667 
lines demarcate an L2FC of zero. Plotted taxa were selected by ranking significant features in 668 
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each category by L2FC and showing up to 10 at once.  669 
 670 
Supplementary Table 1: Glossary and background. Definitions of terms used in this manuscript. 671 
Tab 2 contains a description of the negative controls used in this study for decontamination.  672 
 673 
Supplementary Table 2: Decontaminated bacterial abundances (GTDB) across ranks. 674 
 675 
Supplementary Table 3: Decontaminated bacterial abundances (MetaPhlAn4) across ranks. 676 
 677 
Supplementary Table 4: Decontaminated viral abundances (genbank) across classifiers and 678 
ranks. 679 
 680 
Supplementary Table 5: Decontaminated viral abundances (phanta) abundances across ranks. 681 
 682 
Supplementary Table 6: Decontaminated kraken2 abundances across ranks and 683 
confidence/masking strategies. Tab names indicate both rank, if reads were masked, and/or if a 684 
confidence threshold of 0.2 was used prior to alignment. 685 
 686 
Supplementary Table 7: Decontaminated bacterial and viral MAG abundances. 687 
 688 
Supplementary Table 8: Taxa filtered out following decontamination. 689 
 690 
Supplementary Table 9: Regression output, by rank, parsed for significant findings. This table 691 
contains parsed mixed modeling output for every short read alignment method. Each feature has 692 
been categorized based on pre/post flight beta coefficients) into categories. For example, a 693 
feature with a FDR-significant and negative pre- and post-flight levels (relative to mid-flight), is 694 
"transiently" decreased, as its abundance is less than the mid-flight abundance both before and 695 
afterwards. Each row, therefore, contains output from a single regression and reports the adjusted 696 
p-values and beta coefficients for the PRE-FLIGHT and POST-FLIGHT levels of Time variable 697 
(See Methods). 698 
 699 
Supplementary Table 10: Microbiome immune associations. The output from the lasso 700 
regressions between all increased/decreased microbial features and immune cell types. 701 
 702 

Methods 703 

Informed consent and IRB approval 704 

All subjects were consented at an informed consent briefing (ICB) at SpaceX (Hawthorne, CA), 705 
and samples were collected and processed under the approval of the Institutional Review Board 706 
(IRB) at Weill Cornell Medicine, under Protocol 21-05023569. All crew members have 707 
consented for data and sample sharing. 708 

Sample collection, extraction, and sequencing 709 

We sequenced analyzed samples from human skin, oral, and nasal environmental swabs before, 710 
during, and after a 3-day mission to space. This dataset comprised paired metagenomic and 711 
metatranscriptomic sequencing for each swab. A total of 750 samples were analyzed in this study 712 
by the four crew members of the Inspiration4 mission. They were taken from ten body sites (Fig 713 
1A) across eight collection points (3 pre-launch, 2 mid-flight and 3 post-flight) between June of 714 
2021 and December of 2021. They additionally collected twenty samples from multiple Dragon 715 
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Capsules from ten different locations. A full description of the sample collection and sequencing 716 
methods are available in Overbey et al. (Collection of Biospecimens from the Inspiration4 Mission 717 
Establishes the Standard Omics Measures for Astronauts (SOMA) Initiative [in review, Nature 718 
Methods]) and Overbey et al. (The Space Omics and Medical Atlas (SOMA): A comprehensive 719 
data resource and biobank for astronauts [in review, Nature Communications]). 720 
 721 
The crew were each provided sterile Isohelix Buccal Mini Swabs (Isohelix, #cat MS-03) and 1.0mL 722 
dual-barcoded screw-top tubes (Thermo Scientific, cat# 3741-WP1D-BR/1.0mL) prefilled with 723 
400uL of DNA/RNA Shield storage preservative (Zymo Research, cat# R1100). Following sample 724 
collection, swabs were immediately transferred to the barcoded screw-top tubes and kept at room 725 
temperature for less than 4 days before being stored at 4C until processing. 726 
DNA, RNA and proteins were isolated from each sample using the QIAGEN AllPrep 727 
DNA/RNA/Protein Kit (QIAGEN, cat# 47054) according to the manufacturer’s protocol, yet 728 
omitting steps one and two. In order to lyse biological material from each sample, 350uL of each 729 
sample was transferred to a QIAGEN PowerBead Tubes with 0.1mm glass beads and secured to 730 
a Vortex-Genie 2 using an adapter (cat# 1300-V1-24) before being homogenized for 10 minutes. 731 
350uL of the subsequent lysate was then transferred to a spin-column before proceeding with the 732 
protocol. Concentration of the isolated DNA, RNA and protein for each sample were measured 733 
by fluorometric quantitation using the Qubit 4 Fluorometer (Thermo Fisher Scientific, cat# 734 
Q33238) and a corresponding assay kit. The Qubit 1Xds DNA HS Assay Kit was used for DNA 735 
concentration (cat# Q33231) and the RNA HS Assay Kit (cat# Q32855) was used for RNA 736 
concentration. 737 
 738 
For shotgun metagenomic sequencing, library preparation for Illumina NGS platforms was 739 
performed using the Illumina DNA FLEX Library prep kit (cat# 20018705) with IDT for Illumina 740 
DNA/RNA US Indexes (cat# 20060059). Following library preparation, quality control was 741 
assessed using a BioAnalyzer 2100 (Agilent, cat# G2939BA) and the High Sensitivity DNA assay. 742 
All libraries were pooled and sequenced on a S4 flow cell of the Illumina NovaSeq 6000 743 
Sequencing System with 2 × 150 bp paired-end reads.  744 
 745 
For metatranscriptomic sequencing, library preparation and sequencing were performed at 746 
Discovery Life Sciences (Huntsville, Alabama). The extracted RNA went through an initial 747 
purification and cleanup with DNase digestion using the Zymo Research RNA Clean & 748 
Concentrator Magbead Kit (cat# R1082) per the manufacturer’s recommended protocol on the 749 
Beckman Coulter Biomek i5 liquid handler (cat# B87583). Following cleanup, rRNA reduction for 750 
RNA-seq library reactions were performed using New England Bioscience (NEB) NEBnext rRNA 751 
Depletion Kit (Human/Mouse/Rat) (cat# E6310X) and libraries were prepared using the NEB 752 
NEBnext Ultra II Directional RNA Library Prep Kit (cat# E7760X) with GSL 8.8 IDT Plate Set B 753 
indexes. Following library preparation, quality control was assessed using the Roche KAPA 754 
Library Quantification Kit (cat# KK4824). All libraries were pooled and sequenced on a S4 flow 755 
cell of the Illumina NovaSeq 6000 Sequencing System with 2 × 150 bp paired-end reads. 756 
 757 
For fecal collection, all subjects are provided with DNA Genotek OMNIgene-GUT (OM-200) kits 758 
for gut microbiome DNA collection. Each subject was instructed to empty their bladder and collect 759 
a fecal sample free of urine and toilet water. From the fecal specimen, each subject used a sterile 760 
single-use spatula, provided by the OMNIgene-GUT kit, to collect the feces and deposit it into the 761 
OMIgene-GUT tube. Once deposited and sealed, the user was instructed to shake the sealed 762 
tube for 30 seconds in order to homogenize the sample and release the storage buffer. All 763 
samples from each timepoint were stored at room temperature for less than 3 days before storing 764 
at -80°C long-term. Fecal samples collected using the OMNIgene-GUT kit are stable at room 765 
temperature (15°C to 25°C) for up to 60 days.  766 
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 767 
DNA was isolated from each sample using the QIAGEN PowerFecal Pro DNA Kit (cat# 51804). 768 
OMNIgene-GUT tubes thawed on ice (4°C) and vortexed for 10 seconds before transferring 769 
400uL of homogenized feces into the QIAGEN PowerBead Pro Tube with 0.1mm glass beads 770 
and secured to a Vortex-Genie 2 using an adapter (cat# 1300-V1-24) before being homogenized 771 
at maximum speed for 10 minutes. The remainder of the protocol was completed as instructed by 772 
the manufacturer. The concentration of the isolated DNA was measured by fluorometric 773 
quantitation using the Qubit 4 Fluorometer (Thermo Fisher Scientific, cat# Q33238), and the Qubit 774 
1Xds DNA Broad Range Assay Kit was used for DNA concentration (cat# Q33265).  775 
 776 
For shotgun metagenomic sequencing, library preparation for Illumina NGS platforms was 777 
performed using the Illumina DNA FLEX Library prep kit (cat# 20018705) with IDT for Illumina 778 
DNA/RNA US Indexes (cat# 20060059). Following library preparation, quality control was 779 
assessed using a BioAnalyzer 2100 (Agilent, cat# G2939BA) and the High Sensitivity DNA assay. 780 
All libraries were pooled and sequenced on the Illumina NextSeq 2000 Sequencing System with 781 
2 × 150 bp paired-end reads.  782 
 783 

Sample quality control 784 

All metagenomic and metatranscriptomic samples underwent the same quality control pipeline 785 
prior to downstream analysis. Software used was run with the default settings unless otherwise 786 
specified. The majority of our quality control pipeline makes use of bbtools (V38.92), starting with 787 
clumpify [parameters: optical=f, dupesubs=2,dedupe=t] to group reads, bbduk [parameters: 788 
qout=33 trd=t hdist=1 k=27 ktrim="r" mink=8 overwrite=true trimq=10 qtrim='rl' threads=10 789 
minlength=51 maxns=-1 minbasefrequency=0.05 ecco=f] to remove adapter contamination, and 790 
tadpole [parameters: mode=correct, ecc=t, ecco=t] to remove sequencing error.41 Unmatching 791 
reads were removed using bbtool’s repair function. Alignment to the human genome with Bowtie2 792 
(parameters: --very-sensitive-local) was done to remove potentially human-contaminating 793 
reads.42 794 

Metagenomic assembly, bacterial and viral binning, and bin abundance quantification 795 

We assembled all samples with MetaSPAdes V3.14.3 (--assembler-only).43 Assembly quality was 796 
gauged using MetaQUAST V5.0.2.44 We binned contigs into bacterial Metagenome-Assembled-797 
Genomes on a sample-by-sample basis using MetaBAT2 [parameters: –minContig 1500].45 Depth 798 
files were generated with MetaBAT2’s built-in “jgi_summarize_bam_contig_depths” function. 799 
Alignments used in the binning process were created with Bowtie2 V2.2.3 [parameters: —very-800 
sensitive-local] and formatted them into index bamfiles with samtools V1.0.  801 
 802 
Genome bin quality was checked using the “lineage” workflow of CheckM V1.2.46. Medium and 803 
high-quality bins were dereplicated using deRep V3.2.2 [parameters: -p 15 -comp 50 -pa 0.9 -sa 804 
0.95 -nc 0.30 -cm larger]. The resulting database of non-redundant bins was formatted as an xtree 805 
database [parameters: xtree BUILD k 29 comp 2], and sample-by-sample alignments and relative 806 
abundances were completed with the same approach as before. Bins were assigned taxonomic 807 
annotations with GTDB-tK.47  808 

Identification and taxonomic annotation of assembled viral contigs 809 

To identify putative viral contigs, we used CheckV V0.8.1.48 For downstream viral abundance 810 
quantification, we filtered for contigs annotated as medium quality, high quality, or complete. This 811 
contig database was dereplicated using BLAST and clustered at the 99% identity threshold as 812 
described above using, the established and published approaches 813 
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(https://github.com/snayfach/MGV/tree/master/ani_cluster)49. The non-redundant viral contigs 814 
were formatted as an xtree database [parameters: xtree BUILD k 29 comp 0], and sample-by-815 
sample alignments and relative abundances were computed with the same approach as before, 816 
the only difference between the coverage cutoff used to filter out viral genomes, which was 817 
lowered to 1% total and 0.05% unique due to the fact that those in question came directly from 818 
the samples analyzed.  819 
 820 
We also aimed to assign taxonomy to putative viral contigs based on domain overlap with the 821 
GenBank reference database. We used a Hidden Markov Model (HMM) based approach 822 
(https://github.com/b-tierney/vironomy) to detect shared, single copy genetic features between 823 
query and reference genomes (from the pFam and TIGRFAM databases)50,51. Potential phyla 824 
were identified by screening the top five most similar reference genomes to those in the given 825 
query dataset. 826 

Gene catalog construction and functional annotation 827 

We generated gene catalogs using an approach piloted in prior studies.52–54. Bakta V1.5.1 was 828 
used to call putative Open-Reading-Frames (ORFs).55 The annotations reported in this study 829 
(e.g., Fig 5) derive directly from Bakta. We clustered predicted and translated ORFs (at 90% 830 
requisite overlap and 90% identity) into homology-based sequence clusters using MMseqs2 831 
V13.4511 56 [parameters: –easy-cluster –min-seq-id 0.9 -c 0.9]. The resulting “non-redundant” 832 
gene catalog and its annotations was used in the functional analysis. We computed the 833 
abundance of the representative, consensus sequences selected by MMseqs2 by alignment of 834 
quality-controlled reads with Diamond V2.0.14.57 We computed the total number of hits and 835 
computed gene relative abundance by dividing the number of aligned reads to a given gene by 836 
its length and then the total number of aligned reads across all genes in a sample. 837 

Benchmarking short read viral taxonomic classification against the GenBank database 838 

To identify viral taxonomic abundance via short read alignment, we mapped reads to a database 839 
of all complete, dereplicated (by BLAST at 99% sequence identity) GenBank viral genomes. We 840 
used the Xtree aligner for this method (see below), however given the difficulty of assigning 841 
taxonomic ranks to viral species based on alignment alone, we first benchmarked this process. 842 
We used Art(Huang et al. 2012) to generate synthetic viral communities at random abundances 843 
from 100 random viruses from the GenBank database. We then aligned (with Xtree) back to these 844 
genomes, filtered for 1% total coverage and/or 0.5% unique coverage, and compared expected 845 
read mapping vs. observed read mapping. We additionally computed True/False positive rates 846 
based on the proportion of taxa identified that were present in the mock community (True positive) 847 
versus those that were not (False positive) versus those that were present but not identified (False 848 
negative). Overall, we identified optimal classification at the genus-level, with >98% true positive 849 
rate (i.e., 98/100 taxa identified) and low false positive/negative rates (e.g., <10 taxa not present 850 
in the sample identified) (Supplementary Figure 14A-B). Species-level classification had higher 851 
false negative rates (generally arising from multi-mapping reads to highly similar species) and a 852 
60-70% true positive rate. Genus level classification also yielded a nearly perfect correlation 853 
(>0.99, on average) between expected and observed read mappings (Supplementary Figure 854 
14C). As a result, while we report analyses for every taxonomic rank in the supplement, in the 855 
main text we describe only genus-level viral analysis.  856 

Short-read taxonomic classification via alignment  857 

In total, we used and compared seven different short read mapping methods 858 
(MetaPhlAn4/StrainPhlAn, Xtree, Kraken2/Bracken run with four different settings, Phanta), which 859 
together utilize five different databases that span bacterial, viral, and fungal life. Additionally, we 860 
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identified and computed the relative abundance of non-redundant genes as well as bacterial and 861 
viral Metagenome-Assembled-Genomes (Supplementary Table 7). Subsequent downstream 862 
regression analyses were run on each resultant abundance table at each taxonomic rank.  863 
 864 
Unless otherwise stated, for the figures involving taxonomic data used in the main text of the 865 
manuscript, we used the XTree (https://github.com/GabeAl/UTree) [parameters: –redistribute]. 866 
XTree is a recent update to Utree58, containing an optimized alignment approach and increased 867 
ease of use. In brief, it is a k-mer based aligner (akin to Kraken2 59 but faster and designed for 868 
larger databases) that uses capitalist read redistribution60 in order to pick the highest-likelihood 869 
mapping between a read and a given reference based on the overall support of all reads in a 870 
sample for said reference. It reports the total coverage of a given query genome, as well as total 871 
unique coverage, which refers to coverage of regions found in only one genome of an entire 872 
genome database.  873 
 874 
For bacterial alignments, we generated an Xtree k-mer database [parameters: BUILD k 29 comp 875 
0] from the Genome Taxonomy Database representative species dataset (Release 207) and 876 
aligned both metagenomic and metatranscriptomic samples. We filtered bacterial and genomes 877 
for those that had at least 5% coverage and/or 2.5% unique coverage. Relative abundance was 878 
calculated by dividing the total reads assigned to a given genome by the total number of reads 879 
assigned to all genomes in a given sample. We additionally ran MetaPhlAn461 (default settings) 880 
as an alternative approach to bacterial taxonomic classification. 881 
 882 
For viral GenBank alignments, we generated an Xtree database [parameters: BUILD k 17 comp 883 
0] from all complete GenBank viral genomes. We first de-replicated these sequences with BLAST 884 
99% identity threshold via published approaches 885 
(https://github.com/snayfach/MGV/tree/master/ani_cluster).49,62 We filtered for genomes with 886 
either 1%/0.5% total/unique coverage. Relative abundance was calculated identically as with the 887 
bacterial samples. We additionally ran Phanta (default settings) as an alternative to this approach 888 
for viral classification63. 889 
 890 
As another set of methods for measuring taxonomic sample composition, we used Kraken2 and 891 
bracken, both with the default settings, to call taxa and quantify their abundances, 892 
respectively.59,64 We used the default kraken2 reference databases, which includes all NCBI listed 893 
taxa (bacteria, fungal, and viral genomes) in RefSeq, as of September 2022. We ran Kraken2 894 
with four different settings: default (confidence = 0) and unmasked reads, confidence = 0 and 895 
masked reads, confidence = 0.2 and unmasked reads, and confidence = 0.2 and masked reads. 896 
In the cases where we masked reads prior to alignment (to filter repeats and determine if fungal 897 
and other eukaryotic alignments were likely false positives), we used bbmask running the default 898 
settings. 899 
 900 
Finally, we computed beta diversity (Bray-Curtis) metrics for taxonomic abundances using the 901 
vegan package in R.65 902 

Sample decontamination with negative controls 903 

Following taxonomic classification and identification of de novo assembled microbial genes, we 904 
removed potential contaminants from samples by comparison to our negative controls (detailed 905 
in Supplementary Table 8). We ran the same classification approaches for each negative control 906 
sample as described in the above paragraphs in this section. This yielded, for every taxonomy 907 
classification approach and accompanying database, a dataframe of negative controls alongside 908 
a companion dataframe of experimental data. On each of these dataframe pairs, we then used 909 
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the isContaminant function (parameters: method="prevalence", threshold = 0.5) of the decontam 910 
package66 to mutually high prevalence taxa between the negative controls and experimental 911 
samples. The guidance for implementation of the decontam package, including the parameter 912 
used, was derived from the following R vignette: 913 
https://benjjneb.github.io/decontam/vignettes/decontam_intro.html. Note that we used both 914 
metagenomic and metatranscriptomic negative control samples to decontaminate all data, 915 
regardless of if that data was itself metagenomic or metatranscriptomic. This decision was made 916 
to increase the overall conservatism of our approach..  917 

Metagenomic-Association-Study on bacteria, viruses, and genes 918 

Four mixed-model specifications were used for identifying microbial feature relationships with 919 
flight. Time is a variable encoded with three levels corresponding to the time of sampling relative 920 
to flight: PRE-FLIGHT, MID-FLIGHT, and POST-FLIGHT. The reference group was the MID-921 
FLIGHT timepoint, indicating that any regression coefficients had to be interpreted relative to flight 922 
(i.e., a negative coefficient on the pre-launch timepoint implies that a feature was increased in-923 
flight). We fit these models for all genes, viruses, and bacteria identified in our dataset by 924 
assembly, XTree (GTDB/GenBank), MetaPhlAn4, Kraken2 (all four algorithmic specifications), 925 
Phanta, and gene catalog construction. Each variable encoding a body site is binary encoding if 926 
a sample did or did not come from a particular region.  927 
 928 
To search for features that were changed across the entire body, we fit overall associations, oral 929 
associations, skin associations, and nasal associations.: 930 
 931 

1.  932 

 933 
 934 
Whereas, for associations with oral changes, we used: 935 
 936 

2.  937 

 938 
 939 
Whereas, for associations with nasal changes, we used: 940 
 941 

3.  942 

 943 
 944 
For identifying associations with skin swabs, we fit the following model: 945 
 946 

4.  947 

 948 
 949 
Note that in this final equation (4), the reference groups are samples deriving from the nasal and 950 
oral microbiomes; this means that highlighted taxa will be those associated with time and skin 951 
sites as compared to the oral and nasal sites. We additionally fit these same model specifications 952 
without the random effect and compared the results in Supplementary Figure 11. 953 



 

 30 

 954 
We used the lme467 package to compute associations between microbial features (i.e., taxa or 955 
genes) abundance and time as a function of spaceflight and bodysite. For all data types, we aimed 956 
to remove potential contamination prior to running any associations. We estimated p-values on 957 
all models with the LmerTest packages using the default settings.67,68 We adjusted for false 958 
positives by Benjaini-Hochberg adjustment and used a q-value cutoff point of 0.05 to gauge 959 
significance. 960 

Identifying and plotting time-dependent trends in microbial features 961 

We grouped microbial features associated with flight into six different categories. These were 962 
determined due to the fact that our model contained a categorical variable encoding a sample’s 963 
timing relative to flight: whether it was taken before, during, or afterwards. Since the modeling 964 
reference group was “MID-FLIGHT,” meaning that the interpretation of any coefficients would be 965 
directionally oriented relative to mid-flight microbial feature abundances. As a result, we were able 966 
to categorize features based on the jointly considered direction of association and significance for 967 
the “PRE-FLIGHT” and “POST-FLIGHT” levels of this variable. The below listed categories are 968 
all included in the association summaries provided in Supplementary Table 3. 969 
 970 

1) Transient increase in-flight – negative coefficient on the PRE-FLIGHT variable level, 971 
negative coefficient on the POST-FLIGHT variable, statistically significant for both  972 

2) Transient increase in-flight (low priority) – negative coefficient on the PRE-FLIGHT 973 
variable level, negative coefficient on the POST-FLIGHT variable, statistically significant 974 
for at least one of the two 975 

3) Transient decrease in-flight – positive coefficient on the PRE-FLIGHT variable level, 976 
positive coefficient on the POST-FLIGHT variable level, statistically significant for both  977 

4) Transient decrease in-flight (low priority) – positive coefficient on the PRE-FLIGHT 978 
variable level, positive coefficient on the POST-FLIGHT variable level, statistically 979 
significant for at least one of the two 980 

5) Potential persistent increase – negative coefficient on the PRE-FLIGHT variable level, 981 
positive coefficient on the POST-FLIGHT variable level, statistically significant for at least 982 
one of the two 983 

6) Potential persistent decrease – positive coefficient on the PRE-FLIGHT variable level, 984 
negative coefficient on the POST-FLIGHT variable level, statistically significant for at least 985 
one of the two 986 

 987 
We used these groups to surmise the time trends reported in Figures 1, 2, 3, 4, and 988 
Supplementary Figures 15-17. It would be intractable to visualize every association of interest, so 989 
we prioritized within each category based on the absolute value of beta-coefficients and adjusted 990 
p-values. In Figure 1C, we removed the “low priority” categories (two and four above) and only 991 
looked at the top 100 most increased and decreased significant genes, by group, relative to flight. 992 
We did so to make fitting splines feasible (especially in the case of genes, which had so many 993 
associations), and filter out additional noise due to low association-size findings.  994 
 995 
We took a similar approach for the barplots in Figures 2, 3, 4, and Supplementary Figures 15-17. 996 
We again filtered out the low priority associations and selected, for each body site represented in 997 
the figure (e.g., oral, skin, nasal) the top N with the greatest difference in absolute value of average 998 
L2FC relative to the mid-flight timepoints. In other words, we selected for microbial features with 999 
dramatic overall L2FCs. We maximized N based on the available space in the Figure in question. 1000 
We note that the complete, categorized association results are available in Supplementary Table 1001 
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12 and in the online data resource, and in creating the figures we did not identify a deviation 1002 
between the strongest findings there and those presented visually in the text. 1003 

Detecting strain sharing between the crew and environment before, during, and after flight 1004 

We modeled our strain-sharing analysis based on Valles-Collomer et al., 2021. Briefly, we used 1005 
the –s flag in MetaPhlAn4 to generate sam files that could be fed into StrainPhlAn. We used the 1006 
sample2markers.py script to generate consensus markers and extracted markers for each 1007 
identified strain using extract_markers.py. We ran StrainPhlAn with the settings recommended 1008 
by Valles-Collome et al. (--markers_in_n_samples 1, –samples_with_n_markers 10 – 1009 
mutation_rates –phylophlan_mode accurate). We then used the tree distance files generated by 1010 
StrainPhlAn to identify strain-sharing cutoffs based on the prevalence of different strains 1011 
(detailed tutorial: https://github.com/biobakery/MetaPhlAn/wiki/Strain-Sharing-Inference).  1012 

Association with host immune gene subtypes 1013 

The single cell sequencing approach and averaging of host genes to identify expression levels is 1014 
documented in Overbey et al [in review] and Kim at al [in review]. The resultant averaged 1015 
expression levels across cell types were associated with microbial feature abundance/expression 1016 
using lasso regression. We used the same log transformation approach as in the mixed effects 1017 
modeling for the microbial features, and we centered and rescaled the immune expression data. 1018 
In total, we computed one regression per immune cell type (N = 8) per relevant microbial feature, 1019 
with the independent variables being all human genes (N = 30,601). We selected features based 1020 
on their grouping described above, picking only those that were increased transiently or 1021 
persistently increased after flight. Due to the volume of gene-catalog associations, we only 1022 
analyzed persistently increased genes. We report outcomes with non-zero coefficients in the text.. 1023 

Figure generation and additional data processing notes 1024 

The GNU parallel package was used for multiprocessing on the Linux command line.69 We 1025 
additionally used a series of separate R packages for analysis and visualization.67,68,70–75 Figures 1026 
were compiled in Adobe Illustrator. 1027 
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Figures

Figure 1

Overview of dataset and summary of alpha diversity. A) Collection and analytic approach. Body swabs
were collected from ten different sites, comprising three microbial ecosystems (oral, nasal, skin) around
the body at eight different timepoints surrounding launch. These are referred to as L-92, L-44, L-3, FD1,



FD2, R+1, R+45, R+82, where “L-” refers to pre525 launch, “FD” corresponds to �ight day (i.e., mid-�ight),
“R” refers to recovery (i.e., post-�ight). Following collection and paired metagenomic/metatranscriptomic
sequencing, samples were processed to extract taxonomic (bacterial viral) and functional features to
determine their changes relative to �ight with a Microbiome Association Study (MAS). B) The total
number of features (species or genes) found to be statistically associated with either pre- or post-�ight
timepoints across sequencing methods. Features are grouped by the categories laid out in the Methods
regarding the nature of their changes relative to �ight. C) The time trajectories of transiently
increased/decreased signi�cant �ndings across sequencing type, feature type, and body site (after
�ltering to remove low priority [i.e., weakly signi�cant]) associations. Blank plots had either no signi�cant
�ndings or none that met the �ltering criteria. D) Same as D, except viewing associations that were
categorized as potentially persistent after �ight.



Figure 2

Site-speci�c changes and the oral microbiome architecture of space�ight. A) Signi�cant features by
speci�c swabbing sites. B) The strongest associations between bacteria and �ight for the oral
microbiome. X-axes are average L2FC of all pre-�ight or post-�ight timepoints compared to the average
mid-�ight abundances for a given taxon.Columns correspond to different association categories that are
described visually by the example line plots on top of each one. Dotted, gray, horizontal lines demarcate



an L2FC of zero. Plotted taxa were selected by ranking signi�cant features in each category by L2FC and
showing up to 10 at once.

Figure 3

Strong changes to the skin microbiome during space�ight. The strongest associations between bacteria
and �ight for the skin microbiome. X-axes are average L2FC of all pre or post �ight timepoints compared



to the average mid-�ight abundances for a given taxon. Columns correspond to different association
categories that are described visually by the example line plots on top of each one. Dotted, gray,
horizontal lines demarcate an L2FC of zero. Plotted taxa were selected by ranking signi�cant features in
each category by L2FC and showing up to 10 at once.

Figure 4



The viral and functional response of the microbiome to space�ight A-B) Host and molecular type of
viruses associated with �ight, by category. B) The strongest associations between viruses and �ight for
the skin and oral microbiomes. X-axes are average L2FC of all pre556 �ight or post-�ight timepoints
compared to the average mid-�ight abundances for a given taxon. Columns correspond to different
association categories that are described visually by the example line plots on top of each one. Dotted,
gray, horizontal lines demarcate an L2FC of zero. Plotted taxa were selected by ranking signi�cant
features in each category by L2FC and showing up to 10 at once. Viral genera are labeled “E” for targeting
a eukaryotic host and “P” for targeting a prokaryote. If no de�nite host is known, no label was assigned.
C) COG categories of all genes associated with �ight. D) Groups of speci�c protein products that were
associated with �ight. The legend in the black box is relevant for all �gures where those colors appear.



Figure 5

Microbial propagation through the Dragon Capsule and the crew. A) Beta diversities for bacterial
metagenomics. Heatmap color corresponds to average beta diversity, with black being the midpoint (0.5),
blue being totally dissimilar (1.0) and gray being highly similar (0.0). Columns are hierarchically clustered
considering all rows. The interpretation for a single cell is, for the crew member annotated on the right-
hand side, that body site’s 569 dissimilarity to all other cells in that column (so the Capsule and all other



crew samples from the same site). B) The number of strain-sharing events across time, where an event is
de�ned as the detection of the same strain between two different swabbing locations. C) Strain sharing
events between the crew and the capsule during the mid-�ight timepoints. D) Capsule locations where
strain sharing was identi�ed in the training capsule and during �ight. E) Organisms with at least two
strain sharing events detected within a given timepoint.

Figure 6



The landscape of potential immune-microbiome associations related to �ight. A) The total number of
microbial features, by type, associated with different immune cell subtypes for those that were long-term
increased after �ight (left panel) and decreased (right panel). B) The �ight-associated (increased in
abundance or expression) bacteria and viruses that were associated with the greatest number of host
genes. Viral genera are labeled “E” for targeting a eukaryotic host and “P” for targeting a prokaryote. If no
de�nite host is known, no label was assigned. C) The �ight-associated microbial genes that were
associated with the greatest number of host genes. We sorted for genes within each body site and
selected the top 15 with the greatest number of human gene associations. The legend in the black box is
relevant for all �gures where those colors appear.
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