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Abstract 

In metazoans, both transcription initiation and the escape of RNA polymerase ( RNAP ) from promoter-proximal pausing are key rate-limiting steps 
in gene e xpression. T hese processes pla y out at ph y sically pro ximal sites on the DNA template and appear to influence one another through 
steric interactions. Here, we examine the dynamics of these processes using a combination of st atistical modeling , simulation, and analysis 
of real nascent RNA sequencing data. We de v elop a simple probabilistic model that jointly describes the kinetics of transcription initiation, 
pause-escape, and elongation, and the generation of nascent RNA sequencing read counts under steady-state conditions. We then extend this 
initial model to allo w f or v ariability across cells in promoter-proximal pause site locations and steric hindrance of transcription initiation from 

paused RNAPs. In an e xtensiv e series of simulations, w e sho w that this model enables accurate estimation of initiation and pause-escape rates. 
Furthermore, w e sho w b y simulation and analy sis of real data that pause-escape is often strongly rate-limiting and that steric hindrance can 
dramatically reduce initiation rates. Our modeling frame w ork is applicable to a variety of inference problems, and our softw are f or estimation 
and simulation is freely a v ailable. 
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ntroduction 

cross all branches of life, homeostatic control of gene ex-
ression arises from a series of dynamic equilibria among
ompeting processes. For example, cellular RNA concentra-
ions reflect an equilibrium between RNA production and de-
ay; RNA polymerase ( RNAP ) occupancy reflects an equilib-
ium among transcription initiation, elongation, and termi-
ation; and protein concentrations reflect an equilibrium be-
ween protein synthesis and degradation. When such concen-
rations change, say, across conditions, cell types, or develop-
ental stages, it is typically because the relative rates of com-
eting processes are altered and a new equilibrium is reached,
ather than because any individual process is wholly enabled
r disabled. 
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For decades, research on the regulation of eukaryotic gene
expression focused on RNAP recruitment and transcription
initiation, which were thought to be the rate-limiting steps un-
der most circumstances ( 1 ) . In recent years, however, it has be-
come clear that many downstream steps in transcription can
be regulated. One striking observation, first noted at particu-
lar loci in Drosophila and mammals ( 2–6 ) , is that RNAPs are
frequently held in a ‘paused’ position about 18–60 nt down-
stream of the transcription start site, before escaping into pro-
ductive elongation ( 7–16 ) . Later studies showed that such
promoter-proximal pausing is widespread across metazoans
( 14 ) . Several lines of evidence indicate that the escape from
promoter-proximal pausing is frequently a regulated step in
gene expression ( 17 ) . It has been argued that regulation at the
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pause-escape stage may be particularly advantageous when a
rapid transcriptional response is required, as in heat shock or
other stimulus-controlled pathways ( 11 ,17–22 ) . 

It has been noted that promoter-proximal pausing not only
has a direct effect on the rate at which RNAPs proceed into
productive elongation, but may also have an indirect influ-
ence on the rate of productive initiation, owing to steric hin-
drance between paused and initiating RNAPs. The key obser-
vation is that the physical space immediately downstream of
the transcription start site ( TSS ) is limited: each RNAP has a
‘footprint’ of ∼33–35 nt ( 23 ,24 ) and the pause site is typically
no more than 60 nt downstream of the TSS. Thus, depending
on precisely how much space is required between two adja-
cent RNAPs, there is typically room for only one, or perhaps
two or three, RNAPs in the pause region before new initi-
ation events begin to be blocked. Indeed, computer simula-
tions of the movement of RNAPs along the DNA template
have suggested that such steric hindrance could substantially
reduce initiation rates ( 24 ) . More recently, genome-wide stud-
ies of human ( 25 ,26 ) and Drosophila ( 27 ) cells found strong
evidence that initiation rates were restricted by pause-escape
rates at many genes. Thus, it appears that rates of produc-
tive initiation are often governed by a dynamic equilibrium
between transcription initiation and pause-escape. 

In recent years, two types of approaches have domi-
nated in the study of transcriptional dynamics: ( 1 ) high-
resolution imaging approaches based on fluorescence in situ
hybridization, photobleaching, or electron micrography in
single cells ( e.g. ( 28–32 ) ) ; and ( 2 ) genomic approaches based
on nascent RNA sequencing ( NRS ) or chromatin immunopre-
cipitation ( ChIP ) and sequencing across populations of cells
( e.g. ( 17 , 25 , 27 ) ) . The imaging approaches allow for more di-
rect characterization of the dynamics of individual RNAPs,
but as yet, they cannot be carried out at scale; instead, they are
typically applied to one or a few loci. The genomic approaches
are more indirect, requiring tagging and pull-down of se-
quences such as newly synthesized RNA or RNAP-associated
DNA. In addition, because they produce summaries for large
populations of cells, they typically require fairly complex sta-
tistical analyses for interpretation. Nevertheless, these meth-
ods have the crucial advantage of being applicable at genome-
wide scale for modest cost, by exploiting the many recent ad-
vances in genome-sequencing and related technologies. 

For these reasons, we focus in this article on the study
of transcriptional dynamics using genomic data. We focus in
particular on the use of data from the ‘RO-seq’ family of
NRS protocols—including GRO-seq ( 9 ) , PRO-seq ( 15 ,33 ) and
ChRO-seq ( 34 ) —which specifically detect active RNAPs in
transcriptionally-competent complexes ( 35 ) . These protocols
have matured dramatically in recent years, with major im-
provements in resolution, background signal, ease-of-use and
cost. They can be thought of as producing ‘snapshots’ of the
positions of engaged RNAPs across a population of cells ei-
ther at steady-state or in a time course after a stimulus is ap-
plied. We develop a general statistical modeling framework
that allows interpretation of these snapshots in a manner that
reveals relative rates of transcriptional initiation, promoter-
proximal pause escape, and elongation, as well as interrela-
tionships among these processes. 

Notably, we focus on modeling transcriptional dynamics
under equilibrium conditions, which, in comparison to studies
of time courses following transcriptional stimuli, allows us to
examine larger sets of genes and avoid the potential off-target
effects of commonly used drugs such as triptolide. The focus 
on steady-state conditions also leads to relatively simple and 

interpretable mathematical results. Importantly, our methods 
are applicable not only to newly produced NRS data sets,
but to the thousands of sequenced samples that are already 
publicly available in databases such as the Gene Expression 

Omnibus ( 36 ) . 
We apply these new methods to both simulated and real 

NRS data, and refine our model to account for variable pause 
sites across cells and steric hindrance of transcription initi- 
ation from paused RNAP. To support our experiments, we 
have developed a fast and flexible simulator for NRS data,
called SimPol, which is freely available along with our soft- 
ware for parameter estimation ( see ‘Code Availability’ ) . Al- 
together, we find strong quantitative evidence that promoter- 
proximal pausing has major importance in the dynamics of 
transcription in human cells, that RNAP occupancy in the 
pause region tends to be high at many genes, and that initia- 
tion rates are frequently limited by paused RNAPs. We discuss 
various implications of these findings in detail. 

Materials and methods 

A simple probabilistic model for transcription 

initiation, promoter-proximal pausing, and 

elongation 

Our initial model consists of two layers: a continuous-time 
Markov model for the movement of individual RNA poly- 
merases ( RNAPs ) along a transcription unit ( TU ) , and a con- 
ditionally independent generating process for the read counts 
at each nucleotide site ( Figure 1 A, B, see also bioRxiv: https: 
// doi.org/ 10.1101/ 2021.01.12.426408 ). Together, these com- 
ponents produce a full generative model for NRS read counts 
along the TU, permitting inference of transcriptional rate pa- 
rameters from the raw data. There is a long history of appli- 
cation of similar quantitative models to the processes of tran- 
scription and translation ( 37–43 ), but to our knowledge, they 
have not been used to study promoter-proximal pausing or its 
feedback on transcription initiation rates. 

Our Markov model consists of a state Z i for each nu- 
cleotide position i ∈ {1, …, N } of the RNAP plus an additional 
state, Z 0 , that represents free RNAPs. It is parameterized by 
a transcription-initiation rate α, a rate of promoter-proximal 
pause escape β, and a termination rate γ (see Supplementary 
Table S1 for a summary of modeling notation). In addition,
it includes an elongation rate ζi for each position i , which 

can either be assumed constant across sites (with ζi = ζ as 
throughout this manuscript) or allowed to vary. For math- 
ematical convenience (see below), the parameters α, β and 

γ are multiplied by the corresponding ζi parameters. In this 
manuscript, we focus on inference of α and β and largely ig- 
nore γ, because the 3 

′ ends of TUs are difficult to characterize.
In this version of the model, promoter-proximal pausing is 

assumed to occur at a fixed position k along the DNA tem- 
plate, where k can be pre-estimated from the data. This as- 
sumption will be relaxed in subsequent sections. We further 
assume that the read counts at each position i are Poisson- 
distributed with mean μi , where μi is a scaled version of the 
probability density of Z i (and, hence, the RNAP density at nu- 
cleotide i ) that reflects the initiation and elongation rates, as 
well as the sequencing depth. Finally, in order to make use of 
a time-homogeneous Markov chain, we assume that RNAPs 

https://doi.org/10.1101/2021.01.12.426408
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Figure 1. ( A ) Conceptual illustration of model, focusing on the kinetic model for RNAP movement on the DNA template. Gray arrow indicates that a 
second la y er of the model describes generation of nascent RNA sequencing ( NRS ) read counts based on the distribution of RNAP positions across cells. 
( B ) Graphical model representation with unobserved continuous-time Markov chain ( Z i ) and observed read counts ( X i ) . Read counts at each site X i are 
conditionally independent and Poisson-distributed given mean μi , which reflects both the density P ( Z i ) and the sequencing depth λ. ( C ) Design of SimPol 
( ‘Simulator of Polymerases’ ) . Based on user-defined initiation, pause-escape, and elongation rates, SimPol tracks the mo v ement in silico of RNAPs 
across N -bp DNA templates in C cells, then samples synthetic read counts based on RNAP positions. SimPol identifies collisions and prohibits RNAPs 
from passing one another. It also models variable pause sites and elongation rates. ( D ) Example of synthetic nascent RNA sequencing data from SimPol, 
shown in IGV ( 74 ) alongside matched real PRO-seq data from ( 19 ) for the DNAJA1 gene on chromosome 9 of the human genome. 
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re sufficiently sparse along the DNA template that collisions
etween them are rare—another assumption that will be re-
axed later. Notably, the model can be applied either in a
onequilibrium setting based on time-course data or to a sin-
le data set at steady state. We focus in this manuscript on the
ore limited steady-state case, because it is more mathemati-

ally convenient and interpretable, yet, as we show below, still
llows for a quantitative characterization of the dynamic equi-
ibrium between transcription initiation and pause-escape. In
rder to ensure identifiability of initiation and pause-escape
ates at steady state, we assume that initiating RNAPs remain
n the DNA template for its entire length, with negligible rates
f premature termination (see Discussion). 
This simple version of the model results in convenient,

losed-form maximum-likelihood estimators for β and a pa-
ameter closely related to α. Because the initiation rate α is
onfounded at steady-state with the elongation rate ζ and the
equencing depth λ, we instead work with a compound pa-
ameter χ = λα

ζ
representing the read-depth-scaled ratio of

he initiation rate to the elongation rate. It turns out that the
LE for χ is simply equal to the average read depth along the

ene body and the MLE for β is given by the ratio of the aver-
ge read depth in the gene body to that in the pause peak (see
elow). The estimates of both α and β can be considered rel-
tive to ζ, based on the multiplicative parameterization of the
model. Notably, similar average-read-depth estimators have
been widely used in the analysis of nascent RNA-sequencing
data, typically with more heuristic justifications. For example,
the inverse of the estimator for β is commonly known as the
‘pausing index’ ( 14 ,44 ), and the estimator for χ is often used
as a general measure of transcription output ( 19 ). In our case,
these estimators emerge as MLEs under a generative proba-
bilistic model, making it possible to characterize the dynamics
of transcription from raw NRS read counts at steady state. 

Continuous-time Markov model 

The probabilistic model (Figure 1 A, B) consists of a
continuous-time Markov model that describes the stochas-
tic movement of individual RNAPs along the DNA template,
and a conditional generating process by which read counts
arise independently at each site in proportion to RNAP oc-
cupancy (defined below). The Markov model consists of N
+ 1 states corresponding to the N possible nucleotide posi-
tions of the active site of an RNAP as it moves along an N -
nucleotide DNA template, plus an additional state (labeled 0)
that abstractly represents ‘free’ RNAPs, not currently engaged
in transcription and available for new initiation events. Each
state i in the Markov model corresponds to a binary random
variable Z i , indicating whether the RNAP is ( Z i = 1) or is not
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( Z i = 0) at position i at a particular time t (Figure 1 B). In our
setting, the use of this time-homogeneous model depends on
two key assumptions: (i) that collisions between RNAPs are
rare, allowing the movement of each RNAP to be considered
independently of the others and (ii) that premature termina-
tion of transcription is sufficiently rare that each RNAP can
be assumed to traverse the entire DNA template if it is given
enough time (see Discussion for limitations). 

The model distinguishes between two segments of each
transcription unit: (i) the first k nucleotides, known as the
pause peak , where RNAP tends to accumulate owing to
promoter-proximal pausing (typically k ≈ 50) ( 9 ); and (ii) the
subsequent N − k nucleotides, where RNAP tends to be rela-
tively unimpeded, which is typically referred to as the gene
body . Movement of the RNAP is defined by four rate pa-
rameters: an initiation rate α (from state 0 to state 1), a
pause-escape rate β (from state k to state k + 1), a termi-
nation rate γ (from state N to state 0), and a constant per-
nucleotide elongation rate ζ (for all other allowable transi-
tions). Because the states must be visited in a sequence, the in-
finitesimal generator matrix for the Markov chain Q = { q i j }
has a simple form, with positive terms only on the diagonal
q ij such that j = i + 1, negative terms on the main diagonal,
and zeroes elsewhere. For mathematical convenience, we as-
sume that the initiation, pause-escape, and termination steps
are coupled with single-nucleotide elongation steps and oc-
cur at rates ζα, ζβ and ζγ, respectively. As a result, as long
as ζ is the same across nucleotides, it can be considered a
scaling factor that applies equally to all steps in the process.
Specifically, 

q i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

αζ i = 0 , j = 1 

βζ i = k, j = k + 1 

γ ζ i = N, j = 0 

ζ all other i, j such that j = i + 1 

0 all other i, j such that i � = j 
− ∑ 

i ′ : i ′ � = j q i ′ j i = j, 

(1)

where element q ij indicates the instantaneous rate at which an
RNAP transitions from state i to state j , and by convention,
the values along the main diagonal are set such that the rows
sum to zero. 

Stationary distribution 

This continuous-time Markov model allows for calculation of
the probability of transitioning from any state i to any other
state j over a period of time t ≥ 0, but in this article we are in-
terested in steady-state conditions and therefore focus on the
limiting distribution for ending states as t → ∞ . This station-
ary distribution, denoted π, is invariant to ζ and can be found
easily by solving the equation πQ = 0 . Because state 0 is sim-
ply an abstraction to allow for the recirculation of RNAP, we
omit it and describe the stationary distribution conditional on
RNAP occupancy along the DNA template. This conditional
stationary distribution can be expressed as π = (π1 , . . . , πN 

)
such that, 

πi = 

1 

Z 

·
⎧ ⎨ 

⎩ 

1 
β

i = k 

1 
γ

i = N 

1 i ∈ { 1 , . . . , N − 1 } , i � = k, 

(2)

with normalization constant Z = N − 2 + 

1 
β

+ 

1 
γ

. 
This distribution has an intuitive interpretation. First, it is 
natural that, conditional on RNAP occupancy, the steady- 
state distribution is invariant to both α (which defines the 
rate at which occupancy is initiated but has no effect there- 
after) and ζ (which defines the ‘flow’ along the DNA tem- 
plate but does not favor one nucleotide position over an- 
other). In addition, as a result of local slowdowns in elon- 
gation, πi is elevated relative to the gene body by factors 
of 1 

β
and 

1 
γ

at the pause peak and termination peak, re- 
spectively. Notice that both peaks take the form of ‘spikes’ 
at single nucleotide positions under this model; in later sec- 
tions we will generalize the model to allow for a broader pause 
peak. 

When comparing different transcription units, we have to 

allow for differences in TU-specific initiation and elongation 

rates. In particular, in addition to obeying equation 2 , the 
relative RNAP densities at TU j will be proportional to 

α j 

ζ j 
,

where αj and ζj are the TU’s initiation and elongation rates, re- 
spectively. Furthermore, as detailed below, estimation of these 
rates is confounded by the sequencing depth, λ. Because these 
parameters are not identifiable at steady state, we represent 
them by the compound parameter χ j = 

λα j 

ζ j 
. 

In addition, the termination peak tends to be difficult to 

characterize with real nascent RNA sequencing data, owing to 

transcriptional run-on, poorly characterized 3 

′ ends of genes,
and other factors. Therefore, from this point on, we omit the 
parameter γ and assume N is defined such that ambiguities at 
the 3 

′ ends of TUs are excluded. 
With these assumptions, when comparing the RNAP den- 

sities at various sites i along various TUs j , we expect them to 

be proportional to, 

μi, j = 

{ χ j 

β
i = k 

χ j i ∈ { 1 , . . . , N} , i � = k. 
(3) 

Generative model for sequence data 

To allow for the fact that the RNAP positions are only indi- 
rectly observed through the sequencing process, we add a sec- 
ond layer to the model that describes the probabilistic process 
by which sequencing read counts are generated conditional on 

an underlying density of RNAP at each nucleotide, as defined 

by the continuous-time Markov model. In this way, we obtain 

a full generative model for the observed sequence data that 
is defined by the model parameters, enabling inference of all 
parameters from the data. 

Because we have freedom in how to set the read-depth 

scaling parameter λ (see below), we simply take μij (as de- 
fined in equation 3 ) to be the expected read depth at po- 
sition i of TU j . We then assume that the read count X i , j 

is Poisson-distributed with this mean. It is possible to use 
other generating distributions to allow for overdispersion of 
the read counts (see bioRxiv: https:// doi.org/ 10.1101/ 2021. 
01.12.426408 ), but the Poisson assumption seems to be ad- 
equate in our case and it is particularly convenient for param- 
eter inference. 

With these assumptions, let the data for a single TU be de- 
noted X = (X 1 , . . . , X N 

) , where X i represents the number of 
sequencing reads having their 3 

′ end aligned to position i . (We 
omit the j index in this case to simplify the notation.) Assum- 
ing conditionally independent Poisson distributions at each 

site, the steady-state log likelihood function for a single TU 

https://doi.org/10.1101/2021.01.12.426408
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s given by, 

	 ( X ; χ, β ) = log P ( X | χ, β ) 

= log 

{ [ 

N ∏ 

i =1 

Pois 
(
X i 

∣∣χ)] 

× Pois ( X k | χ/β ) 
Pois ( X k | χ ) 

} 

= log 

{ [ 

N ∏ 

i =1 

χX i e −χ

X i ! 

] 

× β−X k e −χ
(

1 
β
−1 

)} 

= s log χ − X k log β − χ

(
N + 

1 

β
− 1 

)
− log Z, 

(4)

here s = 

∑ N 

i =1 X i is a statistic equal to the sum of all read
ounts and Z = 

∏ N 

i =1 X i ! is a normalization term that does not
epend on the model parameters and can be ignored during
ptimization. 

nference at steady state 

nder this likelihood function (equation 4 ), the maximum-
ikelihood estimators for χ and β have simple closed-form so-
utions: 

ˆ χ = 

s − X k 

N − 1 

, (5)

ˆ β = 

s − X k 

X k (N − 1) 
. (6)

otice that the estimator for χ is simply the average read
epth, excluding the pause peak, and the estimator for β is
he ratio of that same average read depth to the read depth
n the pause peak. These are estimators that have been widely
sed in the analysis of nascent RNA sequencing data, with
ore heuristic justifications ( 14 , 19 , 44 ). 
In practice, it tends to be better to avoid the complex sig-

al in the pause region in estimating χ and instead estimate
t from a downstream portion of the gene body. We define
 

′ = 

∑ j+ M −1 
i = j X i , where M is the length of the interval consid-

red, and estimate χ and β as, 

ˆ χ = 

s ′ 

M 

ˆ β = 

s ′ 

X k M 

. (7)

or the remainder of the paper, we assume the use of these
impler, more robust estimators for χ and β. 

llowing for variation in the pause site 

n real samples, the pause site tends to vary across cells, lead-
ng to a broad pause peak in nascent RNA sequencing data.

e address this complication by allowing the location of the
ause peak, k , to vary between a k min and a k max according
o an appropriate distribution, and then assuming each read
ount X k within this range reflects a mixture of cells that do
nd do not have their pause site at position k . Assume that,
or k ∈ { k min , …, k max }, f k represents the fraction of cells with
ause site k , and that the read count X k derives from a mix-
ure of one Poisson distribution with rate χ/ β · f k and a second
oisson distribution with rate χ · (1 − f k ). If we denote by Y k
he (unknown) portion of the read count that derives from the
first process, then the log likelihood function can be expressed
as (cf. equation 4 ), 

	 ( X ; χ, β ) = 

k min −1 ∑ 

i =1 

log [ Pois ( X i | χ ) ] 

+ 

k max ∑ 

k = k min 

log 
[ X k ∑ 

Y k =0 

Pois 
(
Y k | χ/β · f k 

)

× Pois 
(
X k − Y k | χ · (1 − f k ) 

) ]

+ 

N ∑ 

i = k max +1 

log [ Pois ( X i | χ ) ] . (8)

This log likelihood function does not have a closed-form
solution but it is straightforward to maximize by expecta-
tion maximization. The complete-data log likelihood func-
tion, with known values of Y k , can be expressed in terms of
compact sufficient statistics (analogous to equation 4 ) as, 

	 c ( X , Y ; χ, β ) = s log χ − t log β − χ

(
N + 

1 

β
− 1 

)

+ 

k max ∑ 

k = k min 

Y k log f k + (X k − Y k ) log (1 − f k ) 

− log Z, (9)

where s = 

∑ 

i X i and t = 

∑ 

k Y k . The expected value of this
function, averaging over the latent variables Y k —the quantity
to maximize in EM—is simply, 

〈 	 c ( X , Y ; χ, β ) 〉 = s log χ − 〈 t〉 log β − χ

(
N + 

1 

β
− 1 

)

+ 

k max ∑ 

k = k min 

〈 Y k 〉 log f k 

+( X k − 〈 Y k 〉 ) log ( 1 − f k ) − log Z, (10)

where 〈 Y k 〉 and 〈 t 〉 = 

∑ 

k 〈 Y k 〉 denote the posterior expected
values of Y k and t , respectively. For simplicity, assume that χ
is pre-estimated for a portion of the gene body downstream of
k max using equation 7 . If in addition the values of f k are fixed,
then β can be simply estimated as, 

ˆ β = 

ˆ χ

〈 t〉 , (11)

The values 〈 Y k 〉 can be computed by observing that, because
X k is the sum of two Poisson-distributed variables, Y k | X k is
binomially distributed with probability, 

p k = 

f k χ/β

f k χ/β + (1 − f k ) χ
= 

{ 1 
1 −β+ β/ f k 

f k � = 0 

0 f k = 0 

(12)

Therefore, 〈 Y k 〉 = X k · p k , and 

〈 t〉 = 

∑ 

k 

X k · p k = 

∑ 

k 

X k 

1 − β + β/ f k 
I ( f k � = 0) . (13)

Thus, an EM algorithm can be implemented by iteratively ap-
plying equations 11 and 13 , in turn, until convergence. 

Furthermore, to estimate the distribution of pause sites
from the data at each TU, we assume the f k values have a
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truncated Gaussian distribution with mean μ and variance σ2 ,

f k = 

1 

Z 

×
{ 

1 
σ

e −
1 
2 

(
k −μ

σ

)2 

k ∈ { k min , . . . , k max } 
0 otherwise , 

(14)

where the explicit normalization constant Z is needed because
the distribution is applied to a bounded interval and is defined
at integer values only. 

In this case, the EM updates for μ and σ2 are simply, 

ˆ μ = 

〈 u 〉 − 〈 z 〉 
〈 t〉 − 〈 w 〉 , ˆ σ 2 = 

〈 v 〉 − 〈 r 〉 
〈 t〉 − 〈 w 〉 − ˆ μ2 , (15)

where, 

〈 t〉 = 

∑ 

k 

〈 Y k 〉 , 〈 w 〉 = 

∑ 

k 
f k 

1 − f k 
(X k − 〈 Y k 〉 ) , 

〈 u 〉 = 

∑ 

k 

〈 Y k 〉 k, 〈 z 〉 = 

∑ 

k 
f k 

1 − f k 
(X k − 〈 Y k 〉 ) k, 

〈 v 〉 = 

∑ 

k 

〈 Y k 〉 k 

2 , 〈 r 〉 = 

∑ 

k 
f k 

1 − f k 
(X k − 〈 Y k 〉 ) k 

2 . 

Notice that all of these quantities are easily computed from
the 〈 Y k 〉 values together with f k and X k . 

Approximate relationship between β and the 

pausing index I P 
The model above requires iterative estimation, but an approx-
imate closed-form expression for β in terms of the pausing
index I P can be obtained by noting that the excess reads in
the pause region, t , can be estimated reasonably well by mul-
tiplying the difference between the average read depths in the
pause region and gene body by the length of the pause region,
L = k max − k min + 1: 

t ≈ L ( ̂  χP − ˆ χ ) = L ̂  χ ( I P − 1 ) , (16)

where ˆ χP is the average read depth in the pause region and
I P = 

ˆ χP 
ˆ χ is the pausing index as computed by averaging across

the pause region. Therefore, 

ˆ β = 

ˆ χ

t 
≈ 1 

L ( I P − 1 ) 
. (17)

Thus, an interpretable pause-escape rate parameter can be es-
timated approximately from the pausing index I P . This equa-
tion provides a physical interpretation for I P and also ex-
plains why our naive initial estimation strategy tended to over-
estimate β by a factor of approximately L . This strategy, how-
ever, does not allow estimation of the mean or variance of the
pause site at each gene. 

Allowing for steric hindrance of initiation 

To accommodate steric hindrance of initiation at steady state,
we introduce a distinction between a potential rate of initia-
tion in the absence of occlusion of the initiation site, α, and the
effective rate of initiation after a portion of initiation events
are blocked by an existing RNAP molecule, which we denote
ω . We assume ω = (1 − φ) α, where φ is the probability of
that the ‘landing pad’ required for a new initiation event is
already occupied by an RNAP. Thus, ω ≤ α. Notice that any
estimation of initiation rates based on the density of RNAPs in
the gene-body will be representative of ω , not α; a correction
may be required to estimate α accurately. 
We first assume that the ‘footprint’ of an engaged poly- 
merase, 	 , is sufficiently large that at most one RNAP can 

be present in this region at a time. (We relax this assumption 

below.) We further assume that elongation up to position k 

occurs much faster than the initiation rate αζ or the pause- 
escape rate βζ, so that the dynamics of elongation through the 
pause peak can be ignored. In this case, occupancy of the land- 
ing pad can be described using a simple two-state continuous- 
time Markov model (Figure 2 A). Here, either the landing pad 

is unoccupied (state 0) and is therefore available for new ini- 
tiation events, which occur at rate αζ; or the landing pad is 
already occupied by an RNAP (state 1) and no new initiation 

events can occur until that RNAP escapes from the pause site,
which occurs at rate βζ. Thus, at steady state, the landing-pad 

occupancy φ is simply given by the stationary distribution of 
the occupied state, 

φ = 

αζ

αζ + βζ
= 

α

α + β
, (18) 

and the effective initiation rate, allowing for steric hindrance,
is given by, 

ω = α(1 − φ) = 

αβ

α + β
. (19) 

Notice that these equations also imply that ω = φβ, mean- 
ing that, at steady state, the effective initiation rate ω must 
always be less than or equal to the pause-escape rate β, with 

ω approaching β as the landing-pad occupancy φ approaches 
unity. Therefore, if one estimates an effective initiation rate ˆ ω 

and a pause-escape rate ˆ β from the data, as described above,
then one can obtain estimates of φ and α as follows, 

ˆ φ = 

ˆ ω 

ˆ β
, ˆ α = 

ˆ ω 

1 − ˆ φ
= 

ˆ ω ̂

 β

ˆ β − ˆ ω 

. (20) 

Notice that the estimator for φ will be proportional to the 
read-counts in the pause peak (see, e.g., equation 7 ). 

Steric hindrance with multiple RNAPs 

As it turns out, the assumption of ≤1 RNAPs per pause re- 
gion is often too restrictive, and the presence of more than 

one RNAP in this region can have a substantial impact on 

the landing-pad occupancy φ. In this section, we generalize 
the model for steric hindrance to allow for any number r of 
RNAPs in the pause region, focusing in particular on the case 
of r ≤ 3, which we expect to cover essentially all plausible 
scenarios in human cells. 

Let s p be the minimum center-to-center spacing, in nu- 
cleotides, between adjacent RNAPs on the DNA template. As 
noted in the main text, structural data suggests s p is at least 
33 nt but more plausibly s p ≈ 50 nt ( 23 , 24 , 45 , 46 ); we also
consider the case of s p = 70 nt for comparison. We further as- 
sume that a new initiation event can successfully occur if, and 

only if, the previous RNAP has advanced to a position i > s p 
(in other words, the ‘landing pad’ for new initiation events has 
size 	 = s p ). Consequently, the maximum possible number of 
RNAPs in the pause region is r = 1 if the pause site k ≤ s p ,
r = 2 if s p < k ≤ 2 s p , r = 3 if 2 s p < k ≤ 3 s p , and so on (see
Figure 2 B). In general, r = 
 k s p 

� . 
In addition, we assume a probability mass function f k for 

the pause site k across cells, with cumulative distribution func- 
tion F (k ) = 

∑ k 
i =0 f k . Let q 1 be the density associated with r =

1; that is, q 1 = F ( k = s p ). Similarly, q 2 is the density associated
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A

B

C

D

Figure 2. ( A ) Two-state continuous-time Markov model for steric hindrance of transcriptional initiation, assuming at most one RNAP at a time in the 
pause region. The pause region must be either unoccupied (state 0) or already occupied by another RNAP (state 1). Transitions from state 0 to state 1 
occur at the (unimpeded) initiation rate, αζ, and transitions from state 1 to state 0 occur at the pause-escape rate, βζ. The stationary frequency of state 
1 defines the landing-pad occupancy φ and is given by α

α+ β . ( B ) Illustration showing a hypothetical distribution of pause sites k and its implications for 
the number of RNAPs that can simultaneously occupy the pause region. When k ≤ s p , where s p is the minimum center-to-center spacing between 
adjacent RNAPs, only one RNAP is possible (Case 1 in the text); when s p < k ≤ 2 s p , up to two are possible (Case 2); and when 2 s p < k ≤ 3 s p , up to 
three are possible (Case 3). Notice that the portion of the density corresponding to each Case r is given by q r . ( C ) Generalization of Markov model to 
accommodate up to two RNAPs in the pause region (Case 2). ( D ) Further generalization to accommodate up to three RNAPs (Case 3). The equation for 
φ can be generalized to account for these cases (see text). 
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ith r = 2, q 2 = F ( k = 2 s p ) − F ( k = s p ); and q 3 = F ( k = 3 s p )
F ( k = 2 s p ). In general, q r = F ( k = rs p ) − F ( k = ( r − 1) s p )

Figure 2 B). 
Now, in each cell, k has a single value and therefore one of a

eries of mutually exclusive cases must apply. Let us denote by
ase r (for r ∈ {1, 2, 3, …}) that the maximum possible num-
er of RNAPs is r . Thus, in Case 1, r = 1 and k ≤ s p ; in Case
, r = 2 and s p < k ≤ 2 s p ; and so on. Given f k , we know that
ase r occurs with probability q r . Therefore, we can calcu-

ate φ as a mixture of case-specific landing-pad probabilities,
= 

∑ ∞ 

r =1 q r φr , where φr is the probability that the landing
ad (first s p nucleotides) is occupied in case r . In practice, we
pproximate this quantity as φ ≈ ∑ R 

r =1 q 

′ 
r φr where R is the

aximum plausible value of r (here, R = 3) and, 

q 

′ 
r = 

{
q r r ∈ { 1 , 2 , . . . , R − 1 } 
1 − ∑ R −1 

r =1 q r r = R, 
(21)

here the last term, q 

′ 
R 

, is ‘rounded up’ to account for the
emaining tail of the distribution. 

The case of r = 1 has already been described in the previous
ection. It can be captured by a two-state model, where the
anding-pad is either unoccupied (state 0) or occupied by a
ingle RNAP (state 1; Figure 2 A). Therefore, 

φ1 = 

α

α + β
. (22)

It turns out that the cases of larger values of r follow natu-
ally through the addition of more states. For example, when
 = 2, the landing pad is either unoccupied (state 0), occupied
y one RNAP (state 1), or occupied by two RNAPs (state 2).
ssuming no two events can occur simultaneously, state 2 can
be reached only when a new initiation event occurs while state
1 is occupied (at rate αζ), and a pause-release event in state 2
causes a return to state 1 (at rate βζ). The result is a chain of
states as shown in Figure 2 C. In addition, under the assump-
tion that elongation through the pause peak is instantaneous,
the landing pad is occupied if, and only if, state 2 is occupied.
Thus, φ2 is given by the stationary frequency of state 2 in this
model, which can be shown to be, 

φ2 = 

α2 

α2 + β2 + αβ
. (23)

Similarly, the case of r = 3 can be addressed by extending
the chain further with a state 3, and setting φ3 equal to the
stationary frequency of that state (Figure 2 D), 

φ3 = 

α3 

α3 + β3 + α2 β + αβ2 
. (24)

Therefore, assuming R = 3, we can estimate φ as, 

φ = q 1 φ1 + q 2 φ2 + (1 − q 1 − q 2 ) φ3 

= 

q 1 α
α+ β

+ 

q 2 α2 

α2 + β2 + αβ
+ 

(1 −q 1 −q 2 ) α3 

α3 + β3 + α2 β+ αβ2 , (25)

allowing for the possibilities of one, two, or three RNAPs in
the pause region of each cell. As s p grows larger and / or f k
shifts toward the TSS, the fraction q 1 approaches 1, and Equa-
tion ( 25 ) approaches Equation ( 18 ). 

As it turns out, substitution of ω / (1 − φ) in place of α in
this more general expression for φ leads to a complex poly-
nomial that cannot be easily solved for ω . Instead, we solve
this equation numerically to obtain φ and α from ω and β

(analogous to equation 20 ). 
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Fitting the steric-hindrance model to data 
The multi-RNAP steric hindrance model can be combined
with the model for variable pause sites across cells and fitted
to the data by a relatively straightforward extension of the
EM algorithm described above. As in that case, we assume
that the unscaled initiation rate, χ, is pre-estimated from data
in the gene body. In addition, however, this case requires pre-
estimation of the scale-factor λ and the elongation rate ζ, so
that a scaled estimate of the effective initiation rate, ω = 

χζ

λ
,

can be obtained from each estimate of χ. In practice, we obtain
these scale factors by calibrating with respect to other studies
(see ‘Calibrating the initiation rate,’ below). 

In addition, we must address the problem that the landing-
pad occupancy φ is constrained to fall between 0 and 1, but
the relationships above do not enforce such a constraint. For
example, in the single-RNAP case, where φ = 

ω 
β

(equation 20 ),
φ will be undefined whenever ω > β. A similar (but more
complicated) relationship holds in the multi-RNAP case. 

To address this problem, we take a Bayesian approach and
assume a (weakly) informative prior distribution for φ. This
strategy not only restricts φ to the allowable range but has
the benefit of regularizing the model when information in the
data about φ is weak. With the assumption of a Beta( φ | a , b )
prior for φ, with shape parameters a and b (we assume a = b
= 2 throughout), the likelihood (cf. equation 8 ) becomes, 

L ( X ; χ, β ) = 

∫ ⎡ 

⎣ 

k min −1 ∏ 

i =1 

Pois ( X i | χ ) 

⎤ 

⎦ 

×
[ k max ∏ 

k = k min 

X k ∑ 

Y k =0 

Pois 
(
Y k | χ/β · f k 

)

× Pois 
(
X k − Y k | χ · (1 − f k ) 

) ]

×
⎡ 

⎣ 

N ∏ 

i = k max +1 

Pois ( X i | χ ) 

⎤ 

⎦ × Beta 
(
φ | a, b 

)
dφ, 

(26)

and the expected complete-data log likelihood (cf. equa-
tion 10 ) becomes, 

〈 	 c ( X , Y ; χ, β, φ) 〉 

= s log χ − 〈 t〉 log β − χ

(
N + 

1 

β
− 1 

)

+ 

[ k max ∑ 

k = k min 

〈 Y k 〉 log f k + (X k − 〈 Y k 〉 ) log (1 − f k ) 
]

+(a − 1) log φ + (b − 1) log (1 − φ) − log Z. (27)

From a comparison of equations 10 and 27 , it is evident that
the calculation of the summary statistics 〈 t 〉 , 〈 u 〉 , 〈 v 〉 , 〈 w 〉 , 〈 z 〉 ,
and 〈 r 〉 and the updates for μ and σ2 will all remain unchanged
(equations 12 –15 ). However, this simplified presentation ob-
scures that the parameters φ and β are implicitly linked by a
function, φ = g ( β; χ), which is indirectly defined by equation
25 as well as by the relationship ω = (1 − φ) α. Thus, the up-
date for β in this case is no longer that shown in equation 11
but now must also consider the terms that depend on φ. As
it turns out, in the full multi-RNAP model, rewriting equa-
tion 27 in terms of β only (i.e., by substitution for φ) leads 
to rather unwieldy polynomial expressions. Nevertheless, the 
M -step in the EM algorithm can be performed numerically 
without much trouble. In particular, on each iteration of the 
algorithm, we calculate all expected sufficient statistics as be- 
fore ( E -step), but then, for the M-step, we estimate β by nu- 
merically maximizing the portion of equation 27 that depends 
on β and φ, that is, 

ˆ β = arg max 

β

[
− 〈 t〉 log β − χ

β
+ (a − 1) log φ

+( b − 1) log ( 1 − φ) 
]

(28) 

subject to the constraints of equation 25 and the relation- 
ship ω = (1 − φ) α. Thus, the previous EM algorithm can be 
adapted to the multi-RNAP steric hindrance case by simply 
replacing the M -step for β with this numerical optimization.
No other changes are required. 

SimPol simulator 

SimPol (‘Simulator of Polymerases’) tracks the independent 
movement of RNAPs along the DNA templates of a large 
number of cells (Figure 1 C). It accepts several user-specified 

parameters, including the initiation rate, pause-escape rate, a 
constant or variable elongation rate, the mean and variance 
of pause sites across cells, as well as the center-to-center spac- 
ing constraint between RNAPs ( s p ), the number of cells being 
simulated, the gene length, and the total time of transcription 

(Supplementary Table S2). The simulator simply allows each 

RNAP to move forward or not, in time slices of 10 

−4 minutes,
according to the specified position-specific rate parameters. It 
assumes that at most one movement of each RNAP can occur 
per time slice. The simulator monitors for collisions between 

adjacent RNAPs, prohibiting one RNAP to advance if it is 
at the boundary of the allowable distance from the next. Af- 
ter running for the specified time, SimPol outputs a file in csv 
format that summarizes all RNAP positions across cells. An 

R script (also provided) can then be used to simulate nascent 
RNA sequencing read counts based on this file. SimPol is writ- 
ten in C++ and makes use of multi-threading to improve per- 
formance. A typical simulation (e.g., transcribing a 2kb gene 
in 20,000 cells for 400,000 steps) requires only a few minutes 
on a desktop computer. 

Generation of synthetic NRS data 

Using SimPol, we simulated genes 2000 bp in length with ini- 
tiation ( αζ) and pause-escape ( βζ) rates that spanned two or- 
ders of magnitude, ranging from 0.1 to 10 events per min. per 
cell. Elongation rates at each nucleotide position were ran- 
domly sampled from a truncated normal distribution, with 

mean = 2000 nt / min, sd = 1000 nt / min, min = 1500 nt / min
and max = 2500 nt / min. When a fixed pause site was as- 
sumed, it occurred at position k = 50 nt; variable pause sites 
assumed a truncated normal distribution for k , with mean = 

50 nt, sd = 25 nt, min = 17 nt and max = 200 nt. Our main
simulations assumed a center-to-center spacing s p = 50 nt, but 
alternative simulations assumed s p = 33 nt and s p = 70 nt.
For each parameter combination, we simulated 20 000 cells 
for the equivalent of 40 min (400 000 time slices), which ap- 
peared to be sufficient to reach equilibrium in all cases (see 
also Supplementary Table S2 for a summary). 
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Based on the output of each SimPol run, we randomly sam-
led 5000 of the 20 000 cells. This sampling step was per-
ormed 50 times for each run. To save in computation, the
ame source collection of 20 000 cells was used for each repli-
ate, after verifying that it made little difference to rerun the
ull simulation to equilibrium each time. For each of these
eplicates, we then sampled a read count at each position i
rom a Poisson distribution with mean μi such that, 

μi = λc · R i 

C s 
, (29)

here R i is the number of sampled cells having an RNAP
hose active site (center) is at position i and C s = 5000 is

he total number of sampled cells. The scale parameter λc 

as calibrated such that a typical choice of initiation ( αζ =
 events / min) and pause-escape ( βζ = 1 events / min) rate pa-
ameters resulted in an average read depth of 0.049 reads / bp
n the gene body, as we observed in the real data from ref. ( 19 )
median value). 

For simplicity, we performed this step separately at each
ucleotide only in the pause region (the first 200 nucleotides).
ecause the RNAP densities throughout the gene bodies are
airly homogeneous, and the corresponding read counts are
veraged anyway, we sampled the total read count for each
ene body in one final step by scaling the Poisson distribu-
ion appropriately. This strategy also allowed us to extrapo-
ate from our 2,000-bp simulated genes to genes of more real-
stic length. Specifically, the total read count for the gene body
as sampled from a Poisson distribution with mean μGB such

hat, 

μGB = λc · R GB 

C s 
· l targ 

l sim 

, (30)

here R GB is the total number of RNAPs across the simulated
ene body, C s = 5000 is the total number of cells sampled,
 targ = 19 800 bp is the target gene-body length, and l sim 

= 1,
00 bp is the simulated length. Notice that the scale parame-
er λc was held fixed throughout so that average read-depths
ould increase or decrease appropriately as the rate parame-

ers were altered. 

nalysis of real data 

e obtained published K562 PRO-seq libraries from the heat
hock ( 20 ) and celastrol studies ( 19 ) and processed them us-
ng the PROseq2.0 pipeline (https:// github.com/ Danko-Lab/
roseq2.0) in single-end mode ( 47 ). The 3 

′ ends of reads—
hich approximately represent the active sites of isolated
NAPs—were recorded in bigWig files and used for analy-

is. Mapping was performed with human genome assembly
RCh38.p13 and gene annotation were downloaded from
nsembl (release 99) in GTF ( 48 ). Annotations of protein-
oding genes from the autosomes and sex chromosomes were
sed, excluding overlapping genes on the same strand. To
mprove TSS positioning, we augmented the gene annota-
ions with CoPRO-cap (Coordinated Precision Run-On and
equencing with 5 

′ Capped RNA) data for K562 cells from
ef. ( 16 ) (see ( 26 ,49 ) for similar uses of GRO-cap data). In
articular, we used the position with highest CoPRO-cap sig-
al within a 250 bp radius around each annotated TSS as a
efined TSS and discarded genes for which no CoPRO-cap sig-
al was found. We then considered the 200 bp starting at this
efined TSS as the ‘pause region,’ and the region from 1250 bp
o up to 90 kb downstream (but not past the annotated end of
the gene) of this TSS as the ‘gene body. ’ W e excluded any gene
with fewer than 20 reads mapped to either the pause peak
or the gene body. For the remaining genes, the read counts at
each of 200 positions in the pause region, and the total read
counts in the gene body, were summarized in a table and used
for all downstream analyses. 

Calculation of half-lives 

RNAP half-lives were calculated from estimates of the pause-
escape rate β and average values of the pause-site position k
by the following equation, 

T 1 / 2 = log 2 · k̄ − 1 + 1 / ̂  β

ζ
, (31)

where k̄ = 50 nt, ζ = 2000 nt / min, and 

ˆ β is the estimated
pause-escape rate. Here, the quantity ( ̄k − 1 + 1 / ̂  β ) /ζ repre-
sents the expected time required for an RNAP to pass through
the pause region and the pause site, and the factor log 2 con-
verts the mean of an exponential distribution to a half-life. 

Discriminative motif finding 

DNA sequences 200 bp downstream of the TSS were ex-
tracted, and STREME ( 50 ) was used to identify the motifs
enriched in the 10% genes with narrowest pause peaks (small-
est ˆ σ 2 ) compared with the 10% of genes with broadest peaks
(largest ˆ σ 2 ). Tomtom ( 51 ) was then used to annotate the re-
sults with known motifs from HOCOMOCO v11 ( 52 ). To
validate the sequence motif enrichment of TAF1, ChIP-seq
signals for TAF1 in K562 cells downstream of the TSS were
extracted separately for genes exhibiting narrow and broad
peaks. These signals were plotted using the R package Geno-
mation ( 53 ). 

Calibrating the initiation rate 

As described in the Results section, we made use of a ‘low’ (L)
calibration of 0.2 initiation events per minute ( 54–57 ), and a
‘high’ (H) calibration based on ref. ( 26 ), who reported a me-
dian of 1.0 initiation events per minute for mRNAs in K562
cells. These calibrations were performed separately for each of
our four analyzed data sets: the untreated and treated samples
from the heat-shock ( 20 ) and celastrol ( 19 ) studies. We per-
formed all calibrations using ‘housekeeping’ (HK) genes from
ref. ( 58 ), to minimize sensitivity to differences between assays
and other properties. We first identified a subset of genes that
fell in the intersection of the HK set, the genes from ( 26 ), and
each of our sets. This subset numbered between 1079 and
1082 genes for our four data sets. In each case, for the L cal-
ibration, we simply scaled our ω values so that the median
value of ω ζ within this set was equal to 0.2 events / min in the
control samples. For the H calibration, we scaled our ω values
so that the median value of ω ζ within this set matched the me-
dian value reported by Gressel et al. ( 26 ) for the same subset
of genes, which were 1.52 and 1.53 events / min in the control
samples. The ω ζ in treated samples were then scaled based on
the ratio of spike-in reads ( 19 ) or total mappable reads ( 20 )
between the control and treated samples. Finally, to focus on
genes exhibiting robust expression in both the treated and un-
treated samples, we identified a subset of genes that fell in the
top 80% by ˆ χ in both samples. This filter resulted in a total of
6,182 genes for the heat-shock data set and 5,964 genes for

(https://github.com/Danko-Lab/proseq2.0)
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Results 

An evaluation with simulated data reveals 

strengths and limitations of the initial model 

To examine the quality of the maximum-likelihood estima-
tors for the initial probabilistic model (Figure 1 A, B, see Ma-
terials and Methods), we developed a fast, flexible computa-
tional simulator, called SimPol (‘Simulator of Polymerases’),
that tracks the progress over time of individual RNAPs across
DNA templates in thousands of cells under user-defined ini-
tiation, pause-escape, and elongation rates (Figure 1 C). Un-
like our assumed model, SimPol tracks potential collisions be-
tween RNAPs and prohibits one RNAP from passing another
along the template. In addition, it allows for variation across
cells in pause-site location and variation across both cells and
nucleotide positions in local elongation rate (see Materials &
Methods for details). After running to equilibrium, the simula-
tor generates synthetic read counts at each nucleotide position
by counting the RNAPs across cells, and then sampling read
counts conditional on local RNAP density (see Figure 1 D for
an example gene with synthetic data). 

Using SimPol, we generated synthetic data sets for a range
of plausible initiation and pause-escape rates, with read depths
corresponding to those of genes with median expression lev-
els from real data (see Materials & Methods). We performed
separate sets of simulations for cases where the pause site is
fixed at a known value k and for cases where k is allowed
to vary across cells according to a truncated Gaussian distri-
bution. We assumed a mean value of k equal to 50 nt and
a standard deviation of 25 nt, approximately as we observe
in real data (see Materials & Methods), and required a min-
imum center-to-center distance between adjacent RNAPs of
50 nt (as in ( 25 )). For each simulated data set, we estimated
χ and β from the synthetic data and compared the estimated
and true rates. In cases where the pause site was variable, we
naively estimated β by using the average read depth across
a 200 bp pause peak region, reasoning that such an averag-
ing approach is typically used in computing a pausing index
(e.g. ( 19 )). However, we considered other estimators as well
(see below). In addition, for β, we evaluated the product βζ—
which represents the absolute rate of pause-escape—assuming
the mean value of ζ = 2 kb / min that was used for simulation.
For α, we calibrated our estimates relative to a baseline case
simulated with αζ = 1 and no pausing and again assumed ζ

= 2 kb / min. In this way, we were able to account for both the
sequencing read depth and the elongation rate, and express
both the initiation and pause-escape rates in absolute units of
events per minute, for ease of interpretation. 

We found that these initial estimates of α and β were accu-
rate in some cases but significantly biased in others (Figure 3 ,
Supplementary Figure S1). In particular, estimates of the initi-
ation rate α were close to the truth when α was not too large
and β was not too small; but either a moderately high α or
a moderately low β led to a notable downward bias in the α
estimates (Figure 3 A). This bias ranged from ∼50% when α

was high or β was low but the other parameter was in the
favorable regime, to more than an order of magnitude when
both parameters were unfavorable. As we explore below, these
biases suggest an influence from steric hindrance of new initi-
ation events owing to RNAPs in the pause peak, which would
be expected to lead to under-estimation of α precisely when
pause-escape rates are low and / or initiation rates are high. Im-
portantly, these biases can be pronounced for plausible values
of α and β, suggesting that it can be misleading to treat aver- 
age read counts in the gene body as a measure of the initiation 

rate (see Discussion). 
By contrast, in the case where the pause site was held fixed 

and assumed known during estimation, estimates of β were 
accurate across a range of true α and β values (Figure 3 B; Sup- 
plementary Figure S1), indicating that the model describes the 
dynamics of pause-escape well. When the distance to the pause 
site, k , was allowed to vary across cells, however, and the read- 
depth in the pause peak was estimated by averaging across 
sites, the increased read density owing to pausing was dra- 
matically under-estimated, resulting in a strong upward bias 
in estimates of β (Figure 3 C; Supplementary Figure S1). In 

this case, the ‘spike’ of read counts becomes a rounded ‘peak’,
and using its average height across the region naturally over- 
estimates β. As it turns out, this simple source of bias is de- 
ceptively difficult to eliminate. For example, if the maximum,
rather than the average, read-depth in the pause peak is used in 

the estimator for β, the bias is somewhat reduced but remains 
pronounced (Supplementary Figure S1). A better approach is 
to use the sum of read counts across the 200 bp pause-peak 

region (Figure 3 D). Even in this case, however, a downward 

bias in β is observed when the initiation rate equals or exceeds 
the pause-escape rate. To remedy this problem, we develop an 

extension to the model in the next section. 

Explicitly modeling pause-site variability across 

cells improves estimates of pause-escape rates 

To address the bias in estimation of β in the presence of vari- 
able pause sites, we extended the model to allow for a dis- 
tribution of pause sites across cells (see Materials & Meth- 
ods). In this version of the model, the read counts at each 

site in the pause peak are assumed to arise from a mixture 
of cells in which an RNAP is and is not paused at that posi- 
tion. If a Gaussian distribution of pause sites is assumed, the 
model can be fitted to the data relatively simply and efficiently 
by expectation maximization (EM). This procedure results in 

maximum-likelihood estimates not only of χ and β but also of 
the mean and variance of the pause-site position across cells.
Thus, this version of the model no longer requires prior infor- 
mation about the pause-site k , but instead allows its mean and 

variance to be estimated separately at each gene from the raw 

data. 
We reanalyzed our simulated data using this version of the 

model and found that it was highly effective at correcting the 
bias in estimated values of β. In this case, the same model ad- 
dresses the fixed and variable pause-site scenarios equally well 
across a range of values of α and β (Figure 4 A; Supplemen- 
tary Figure S2). Whereas the averaging approach described in 

the previous section resulted in over-estimates of β by more 
than two orders of magnitude, that bias was completely elim- 
inated when variability in the pause site was modeled directly.
Thus, typical average-based estimates of a ‘pausing index’ ( I P ) 
for real data may substantially under-estimate the prominence 
of promoter-proximal pausing in RNAP dynamics (see Dis- 
cussion). The model addresses this problem. Only when α is 
quite small and β is quite large (bottom of Supplementary Fig- 
ure S2), resulting in few excess reads in the pause peak, do the 
model-based estimates sometimes exhibit a substantial down- 
ward bias. Notably, while the full model requires an iterative 
method such as EM, it is possible to derive an approximate 
closed-form expression for β in terms of the pausing index I P ,
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Figure 3. Accuracy of estimated values of the transcription initiation rate α and pause-escape rate βunder the initial version of the model. Estimates are 
expressed as products with the elongation rate ζ ( αζ and βζ). ( A ) Simulated true vs. estimated values of αζ, for αζ∈ {0.1, 1, 10} (left to right) and βζ∈ 
{0.1, 1, 10} (see k e y). Dashed lines indicate the ground truth. (B–D). Estimated values of βζ for simulated true values of βζ= 1 and αζ∈ {0.1, 1, 10} (see 
k e y), when the pause-site k is fixed ( B ) or variable across cells ( C, D ) in simulation. In panel C, β is estimated using the average read-depth in the pause 
peak, and in panel D it is estimated using the sum of read counts across the region. Dashed lines indicate the ground truth. Results for other values of 
βζ are shown in Supplementary Figure S1. All boxplots summarize 50 replicates of the simulation; box boundaries indicate 1st and 3rd quartiles, and 
horizontal line indicates median. A value of ζ= 2 kb / min is assumed; αζ and βζ can be assumed to have units of events per minute. Pause sites occur 
at a mean position of k = 50 nt. In the variable case, we assume a Gaussian distribution with a standard deviation of 25 nt. 
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hich clarifies the physical meaning of I P (see Materials &
ethods and Discussion). 
To validate the ability of our model to capture differences in

he pause-site distributions across cells, we applied it to syn-
hetic data sets with larger and smaller variances in pause-
ite locations. We found that the model was able to recover
he correct distributions fairly accurately, as long as the read
ounts in the pause peak were not too sparse (Figure 4 B). No-
ably, the model is provided with no prior information about
he mean or variance in the pause-site location, but is only
onstrained to consider a range of possible values (here from
 min = 1 to k max = 200). When applied to real data, the model
lso appears to do well at identifying plausible distributions
cross cells in the locations of pause sites (Figure 4 C). 

stimates of pause-escape rates and pause-site 

istributions for real data 

aving observed good performance on synthetic data, we ap-
lied the model to published PRO-seq data for K562 cells be-
ore and after heat shock ( 20 ), focusing at first on the un-
reated sample. In comparison to results from the previous
ersion of the model, the distribution of β estimates was
ubstantially shifted downward, as expected from simula-
ions (Figure 4 D). For comparison with experimental results
e.g. ( 25 , 26 , 59 )), we converted these estimated pause-escape
ates to half-lives for RNAP residence in the pause region,
onditional on an assumed elongation rate of ζ = 2 kb / min
 18 , 25 , 26 , 59 ). For a direct comparison, we considered the
time required for elongation up to the pause site, as well as the
waiting time for escape (see Materials & Methods). We esti-
mated a median half-life of 1.4 min. and a mean of 2.8 min.
(Supplementary Figure S3A). These estimates are fairly simi-
lar to ones obtained experimentally by Gressel et al. for hu-
man Raji B cells ( 25 ) (median pause duration of 1.4 min, cor-
responding to a median half-life of 1.0 min) and for K562
cells ( 26 ) (median pause duration of 1 min), but somewhat
smaller than those from some other recent experimental stud-
ies (e.g. ( 59 ); see Discussion). We additionally examined PRO-
seq data from another study of K562 cells ( 19 ) and estimated a
similar distribution of half-lives, with a median of 1.2 min. and
mean of 2.1 min. (Supplementary Figure S3B). Notably, induc-
tion of heat shock and treatment with the drug celastrol both
increased half-lives by 2–3-fold (Supplementary Figure S3C,
D), consistent with the observations of increased pause indices
in the original reports ( 19 ,20 ). 

Interestingly, the pause peaks estimated for both of these
data sets varied substantially across genes in their breadth,
as quantified by the estimated variance across cells in the
pause-site position ( ̂  σ 2 ). Hypothesizing that the underlying
DNA sequences might contribute to the precision of paus-
ing, we searched for sequence motifs that distinguished the
pause regions having the narrowest peaks (10% with smallest
ˆ σ 2 ) from those having the broadest peaks (10% with largest
ˆ σ 2 ), focusing again on the untreated samples (see Materials
& Methods). In both the heat-shock ( 20 ) and celastrol ( 19 )
data sets, we found that the most strongly enriched motif
in the narrow peaks closely matched the binding motif for
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Figure 4. ( A ) Accuracy of estimated values of the pause-escape rate β under the version of the model that allows for a distribution of pause-sites k 
across cells. Shown are estimated values of βζ for simulated true values of βζ= 1 and αζ∈ {0.1, 1, 10} (see k e y), when the pause-site k is fixed (left) or 
variable across cells (right) in simulation. Dashed lines indicate the ground truth. Results for other values of βζ are shown in Supplementary Figure S2. 
All boxplots summarize 50 replicates of the simulation; box boundaries indicate 1st and 3rd quartiles, and horizontal line indicates median. Simulated 
pause sites occurred at a mean position of k = 50 nt. In the variable case, we assumed a Gaussian distribution with a standard deviation of 25 nt. ( B ) 
Examples of pause peaks in simulated data, showing assumed distribution of pause sites (blue dashed line) and distribution inferred by expectation 
maximization (red solid line). ( C ) Similar examples from real data from ( 20 ). ( D ) Estimates of βζ under the original a v eraging approach (horizontal axis) vs. 
estimates of βζ under the model that allows for variable k across cells (vertical axis). ( E ) Contour plot showing the distribution of estimated means 
(horizontal axis) and standard deviations (vertical axis) of the pause peak position k , under the ‘no heat shock’ (NHS) and ‘heat shock’ (HS) conditions. 
Data from ( 20 ). In panels A and D, a value of ζ= 2 kb / min is assumed; thus, αζ and βζ can be assumed to have units of events per minute. 
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 A T A-Box Binding Protein Associated Factor 1 (TAF1), the
argest subunit of general transcription factor IID (TFIID) and
 key component of the pre-initiation complex (PIC) ( 60 ,61 )
Supplementary Figures S4 and S5, panels A & B). Consis-
ent with these motif enrichments, chromatin immunoprecip-
tation and sequencing (ChIP-seq) data for TAF1 in K562
ells from the ENCODE project ( 62 ) exhibits a substantially
tronger signal at narrow peaks than at broad peaks, partic-
larly near the TSS (Supplementary Figures S4C and S5C).
nterestingly, it has recently been shown that the PIC alone
s sufficient to establish RNAP pausing, and that rapid TAF1
epletion induces pause-release genome-wide ( 46 ). We found
ther enriched motifs, but they mostly consisted of repetitive,
ighly G+C-rich sequences, similar to observations in other
ecent studies ( 25 , 63 , 64 ). 

We were also interested in possible effects of cellular stress
n pause-site locations. Metaplots summarizing the accumu-
ated PRO-seq signal across large classes of genes have sug-
ested that pause peaks may tend to shift in location and be-
ome sharper following stress, particularly for downregulated
enes (e.g., ( 20 ,33 )). To test whether our model supported
uch a change, we compared our estimates of the pause site lo-
ations, before and after application of heat shock (Figure 4 E).
ndeed, we observed a striking reduction in both the mean and
ariance of k after heat shock. This shift may reflect differ-
nces in activity of protein complexes required for pausing,
ncluding NELF , DSIF , P-TEFb, or the PIC (e.g. ( 46 ,65 )). For
omparison, we examined PRO-seq data from the celastrol
tudy, which reported a stress response that resembles heat
hock in some ways ( 19 ). In this case, however, we did not
bserve a clear change in the mean and variance of k (Supple-
entary Figure S6). 

 modeling extension to accommodate steric 

indrance in initiation 

t seemed likely that the observed under-estimation of α was
riven by steric hindrance of initiation from paused RNAPs
Figure 3 A), as has been noted in previous studies of both
imulated and real data ( 24–27 ). To ensure that steric hin-
rance was indeed driving this phenomenon in our setting,
e collected two types of auxiliary data from our simulation

xperiments. First, we tracked the fraction of cells in which
he ‘landing pad’ for a potential new initiation event was al-
eady occupied by an RNAP (‘landing-pad occupancy’), which
s a close proxy in our simulations for the fraction of poten-
ial initiation events that were not allowed to occur owing to
teric hindrance. We found that this fraction was frequently
uite high (often 50% or more, and in some cases ≥90%),
nd tended to be highest when the bias in estimated α was
ost pronounced (Supplementary Figure S7A). Second, we
easured the rate at which initiation events successfully oc-

urred (not being blocked) and compared it with our estimates
f α, finding much better agreement between this ‘effective’
sometimes called ‘productive’ ( 25 ,26 )) initiation rate and our
stimates (Supplementary Figure S7B). Finally, we found that
ur estimation accuracy for α (as measured by the ratio of the
stimated to true values) had a close negative correlation with
he landing-pad occupancy ( Supplementary Figure S7C). To-
ether, these findings indicate that new initiation events in our
imulations are frequently blocked by RNAPs occupying the
egion just downstream of the TSS, and that this phenomenon
xplains much, if not all, of the bias in estimation of α. 
We therefore extended our probabilistic model to address
this problem and permit a quantitative description of steric
hindrance of initiation at steady state. Briefly, we introduced
a distinction between an effective initiation rate ω and a po-
tential initiation rate α, letting ω = (1 − φ) α, where φ is the
landing-pad occupancy. The model assumes that a fraction φ

of new initiation events are blocked by RNAPs occupying the
landing pad, and the remaining fraction 1 − φ are allowed to
proceed (see Materials & Methods for complete details). It al-
lows for more than one RNAP per pause region, because the
landing pad will likely be blocked in some cases by RNAPs
stacking up behind the pause site. Based on our observations
above, we reinterpreted our previous estimator for α instead
as an estimator for the effective rate ω (and hence, redefined
χ = λω 

ζ
). This new model allows us to compute φ in terms of

α, β, k , and an assumed minimum spacing between RNAPs,
denoted s p . An extended EM algorithm allows joint estimation
of φ, α, and β from the data, with a Beta prior distribution to
ensure that φ remains in the allowable range, φ ∈ (0, 1) (Ma-
terials & Methods). In effect, this strategy allows us to correct
the assumed model for steric hindrance, yielding estimates not
only of the effective initiation rate ω and pause-escape rate β,
as in the previous case, but also of the landing-pad occupancy
φ and, hence, the potential initiation rate α. 

When we applied this new model to our simulated data,
we found that it generally appeared to work as intended. The
estimates of φ were broadly consistent with an empirical mea-
sure of the landing-pad occupancy across a range of values of
α and β (Figure 5 A), Not surprisingly, given the indirect infor-
mation about φ in the data, the variance in these estimates was
substantial; nevertheless, their mean values were close to the
truth even for large φ, although the Beta prior did sometimes
produce a slight downward bias in this case. The estimates of
the pause-escape rate β remained quite good overall even in
the presence of substantial amounts of steric hindrance (Sup-
plementary Figure S8). 

The most difficult parameter to recover was the potential
initiation rate α, about which the data are only weakly infor-
mative via the effective initiation rate ω and the landing-pad
occupancy φ. Nevertheless, α was estimated well when α ≤ β

and φ ≤ 0.5 (Supplementary Figure S9). When α � β and φ

→ 1, however, the denominator of the estimator α = 

ω 
1 −φ

be-
comes unstable, and in the most extreme cases (e.g. αζ = 10,
βζ = 0.1), it is no longer possible to estimate α accurately. In
these cases, the effective initiation rate is still estimated well,
but it is not possible to extrapolate from it to the potential
rate, because only a tiny fraction of potential initiation events
are allowed to occur. 

Our initial experiments assumed a value of s p = 50 nt
for the minimum center-to-center spacing between adjacent
RNAPs (following ( 25 )), but the true value of s p is not known
with any certainty; therefore, we examined the robustness of
our model to other plausible values of this parameter. In gen-
eral, smaller values of s p will increase the chances that a single
paused RNAP will not block the landing pad, but will also
allow more RNAPs to stack up behind the pause site. In con-
trast, when s p grows larger and approaches k , the distance
to the pause-site, at most one RNAP can occupy the pause
region at a time, and that RNAP will necessarily block the
landing pad (see Materials & Methods for details). We used
SimPol to generate data sets for two alternative choices of s p :
a more generous value of s p = 70 nt and the minimum possi-
ble value of s p = 33 nt ( 24 ). The case of s p = 33 nt is probably
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Figure 5. ( A ) Accuracy of estimated landing-pad occupancy φ under the version of the model that allows for steric hindrance in initiation and multiple 
RNAPs per pause region. Scatter plots show the fraction of simulated cells for which the first 50 nt (the ‘landing-pad’) are occupied by an RNAP at steady 
state (‘Empirical φ’) vs. the fraction predicted to be occupied under the model (‘Estimated φ’) based on the simulated NRS data, assuming a minimum 

spacing of s p = 50 nt. Results are shown for simulated true values of αζ∈ {0.1, 1, 10} (left to right) and βζ∈ {0.1, 1, 10} (see k e y), with 50 simulations 
per parameter combination. Dashed line indicates y = x , and colored crosses represent the means of the corresponding points. A value of ζ= 2 kb / min 
is assumed, so that αζ and βζ are in e v ents per minute. ( B ) Distribution of estimated φ for 6182 robustly expressed genes in K562 cells before (NHS) 
and after (HS) heat shock under the low (L) calibration ( 20 ) (see Materials & Methods for details). ( C ) Percentages of genes having fully occupied 
landing-pads ( φ> 0.95) before (NHS) and after (HS) heat shock, under the low (L) and high (H) calibrations. ( D, E ) Distributions of scaled estimates of the 
‘effective’ ( ω ζ) and ‘potential’ ( αζ) rates of transcription initiation, in events per minute per cell, for the same genes. Panel D represents the NHS case 
and panel E represents the HS case. The x -axes are truncated to highlight the bulk of the distributions. Gray arrows indicate effects of steric hindrance. 
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nrealistic given the physical space required for the other com-
onents of the PIC (e.g., ( 45 ,46 )) but is nevertheless useful as
 bound. In our simulations, where k has a mean of 50 and
tandard deviation of 25, ≥2 paused RNAPs are possible at
2%, 54%, and 23% of cells for s p = 33, s p = 50, and s p
 70 nt, respectively; and ≥3 paused RNAPs are possible at
8%, 2.4% and 0.02%, respectively. 
The estimates of φ did not differ dramatically as s p was

aried, but this sensitivity analysis did reveal two types of bias
Supplementary Figure S10). First, when s p was small and α ≈
, φ tended to be somewhat overestimated. This overestima-

ion in φ appears to be a consequence of a slight underestima-
ion of β in the presence of multiple RNAPs per pause region
Supplementary Figure S11), which are ignored by our vari-
ble pause-site model. Second, we observed a downward bias
hen αζ and βζ both took the maximum value of 10, appar-

ntly because RNAPs in transition between paused positions,
hich are ignored by the model, make a nonnegligible con-

ribution to landing-pad occupancy in this highly saturated
ase. This effect is most evident when s p ≥ 50. Overall, how-
ver, the φ and β estimates were reasonably accurate across
ll parameter values, indicating that the model is fairly robust
o assumptions about RNAP spacing. 

 quantitative characterization of steric hindrance 

n K562 cells 

sing this model we re-analyzed the untreated K562 sample
rom Vihervaara et al. ( 20 ), focusing on 6,182 robustly ex-
ressed genes (the top 80% by ˆ χ). When fitting the model
o real data, however, a problem of scale arises: the effective
nitiation rate ω can only be estimated up to a scale factor,
hich is determined by the (unknown) ratio of the read depth

o the elongation rate, λ/ ζ. At the same time, the pause-escape
ate β—whose estimator is a ratio of two summary statistics
equations 7 and 11 )—has a fixed scale; thus, the estimator
or the landing-pad occupancy, ˆ φ ≈ ω/β (equations 20 and
5 ), depends on the choice of scale for ω . 
To address this problem, we calibrated the scale of ω using

ublished estimates of the initiation rate. Because there is con-
iderable uncertainty about this quantity in the literature, we
elected two different calibration points, one on the low end
f the reported range for median productive initiation rates
n eukaryotes, at 0.2 events per minute ( 54 ,66 ), and another
n the higher end, at ∼1.0 events / min (median of estimates re-
orted by ( 26 )). We used a set of ‘housekeeping’ genes ( 58 ) for
alibration, reasoning that these genes would minimize sensi-
ivity to differences among species, cell types, and conditions.

e scaled our estimates of ω in the control samples such that
he median value of ω ζ within housekeeping genes in our set
as either equal to 0.2 (the low (L) calibration) or equal to the
edian value in matched housekeeping genes from ref. ( 26 ),
hich was 1.5 events / min (the high (H) calibration; see Ma-

erials & Methods for details). 
In the case of the L calibration, we found that the distribu-

ion of φ estimates across genes spanned a fairly broad range,
ith a median of 0.16 and a mean of 0.25 (Figure 5 B), sug-

esting that, on average, about a quarter of landing pads are
ccupied at steady state, but considerable fractions of genes
ave substantially lower or higher occupancies. About 5% of
enes were predicted to have their landing-pads fully occupied
 φ ≥ 0.95; Figure 5 C). The scaled estimates of the effective ini-
iation rate ω ζ were roughly exponentially distributed, with a
median of 0.17 events per minute per cell (Figure 5 D). By com-
bining our estimates of φ and ω ζ, we were additionally able
to obtain per-gene estimates of the potential initiation rate αζ.
These estimates were modestly inflated, with a median of 0.22
and ∼3% of values ≥2.0 events per minute (Figure 5 D). Thus,
steric hindrance appears to result in a reduction in the effec-
tive initiation rate in these cells, but the effect is fairly subtle
in this condition. 

When we assumed the H calibration, the φ distribution
shifted accordingly to the right. Indeed, in this case 76.3% of
genes were predicted to have fully occupied landing pads ( φ
≥ 0.95; Figure 5 C), and as a result, the majority of αζ values
became poorly defined, suggesting that this initiation-rate cal-
ibration is perhaps too aggressive. Nevertheless, by consider-
ing a broad range of potential initiation-rate calibrations, we
estimated that the landing-pad occupancy is generally fairly
substantial, with the median value of φ ranging from 16% to
full occupancy. Thus, our model predicts that steric hindrance
has a substantial impact on initiation rates at steady state, even
in the untreated condition. 

For comparison, we repeated the analysis with the treated
sample, following heat shock (HS). Consistent with obser-
vations of increased pausing after HS ( 20 ,26 ), we found a
dramatic shift toward larger φ estimates in this sample (Fig-
ure 5 B). With the L calibration, the fraction of genes with
fully occupied landing pads ( φ ≥ 0.95) increased from 5.4%
to 21.5% (Figure 5 C). Accordingly, steric hindrance was pre-
dicted to have a substantially stronger impact on the effec-
tive initiation rate after HS, decreasing from a median of 0.25
events / min to 0.13 events / min (Figure 5 E). We also analyzed
untreated and treated samples from the K562 / celastrol study
( 19 ) using 5,964 genes with initiation rates calibrated using
similar L and H strategies (Materials & Methods). The results
were qualitatively similar to those from the heat-shock analy-
sis, but the absolute φ estimates were somewhat lower, shift-
ing from a median of 0.13 in the untreated case to 0.30 after
treatment (L calibration; Supplementary Figure S12A). Appli-
cation of celastrol resulted in a striking increase in fully occu-
pied landing-pads, from 2.7% to 14.8% of genes under the L
calibration, but as in the heat shock analysis, the H calibra-
tion indicated nearly complete landing-pad occupancy before
treatment and a limited shift after treatment (Supplementary
Figure S12B). Prediction of αζ indicated a modest reduction
in initiation rates from steric hindrance before treatment (Sup-
plementary Figure S12C) and a more pronounced one after
treatment (Supplementary Figure S12D). Overall, we found
that steric hindrance has a clear impact on productive initia-
tion, and that impact is particularly striking during responses
to cellular stress. 

Characterization of heat-induced and 

heat-repressed genes 

The previous analysis grouped all genes together, poten-
tially obscuring important differences among up- and down-
regulated genes. Therefore, we re-examined the K562 heat-
shock data from Vihervaara et al. ( 20 ), this time focusing
on groups of genes designated in that study as heat-induced
(503 genes) or heat-repressed (4399 genes). We first com-
pared estimates of the effective initiation rate ( ω ζ) and the
pause-escape rate ( βζ) for these two sets of genes, sepa-
rately considering the untreated, or non-heat shock (NHS),
and heat-shock (HS) conditions. As expected, the model did
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find that, under HS, the effective initiation rates of designated
heat-repressed genes significantly decreased, whereas those of
designated heat-induced genes significantly increased (Sup-
plementary Figure S13A). In addition, we found that heat-
repressed genes showed a significant decrease in the pause-
escape rate under HS, suggesting that promoter-proximal
pausing contributes to down-regulation of these genes (Sup-
plementary Figure S13B) as concluded by the authors ( 20 ) (see
also ( 21 )). By contrast, the heat-induced genes showed rela-
tively little change in the pause-escape rate under HS. While
increased rates of pause-escape are known to be important in
the HS response ( 67 ), initiation rates have also been reported
to increase at up-regulated genes ( 20 ,22 ). Our observations
suggest that the increased initiation rates are more durable,
and dominate once a new equilibrium is reached. We carried
out a parallel analysis of the untreated and treated samples
from the K562 / celastrol study ( 19 ) with similar results (Sup-
plementary Figure S14). 

Even among up- or down-regulated genes, changes in
gene expression can in principle be driven more at the
transcription-initiation stage or at the pause-escape stage. Our
steady-state model cannot fully reconstruct the dynamics of
a change in transcriptional output, but we hypothesized that
it would, in at least some cases, provide an indication of
which stage had been dominant. To address this question, we
searched for examples of genes that fell in each of four dis-
tinct classes: (A) down-regulated primarily at pause-escape;
(B) down-regulated primarily at initiation; (C) up-regulated
primarily at pause-escape; or (D) up-regulated primarily at
initiation. The normalized PRO-seq read counts, together with
model-based estimates of the effective initiation rate ( ω ζ) and
the pause-escape rate ( βζ) for two examples of each class are
shown in Supplementary Figure S15A–D. In each case, the
PRO-seq signal in the gene body indicates clear up-regulation
or down-regulation, but the behavior at the pause peak rel-
ative to the gene body indicates differences in the primary
driver of the change in expression. For example, the gene
EMC2 , which is down-regulated nearly four-fold in response
to heat shock (Supplementary Figure S15A), shows a marked
increase in the PRO-seq signal at the pause peak relative to
the gene body, leading to a 15-fold decrease in its estimated
pause-escape rate, suggesting that pause-escape is the driver of
down-regulation. By contrast, the gene AGL , which is down-
regulated about two-fold, shows almost no change in the es-
timated pause-escape rate (Supplementary Figure S15B), sug-
gesting that down-regulation is driven by initiation. These ex-
amples demonstrate that our steady-state model can identify
cases where changes in expression are likely to have been
driven by initiation or pause-escape. Future extensions to
nonequilibrium models and time-course data will improve this
type of analysis. 

Discussion 

The widespread occurrence of promoter-proximal pausing has
been one of the major surprises of the past ∼15 years in the
study of gene regulation. Most studies of this phenomenon
have focused on its molecular mechanisms and its direct im-
pact on rates of productive elongation ( 17 ). In addition, how-
ever, there have been indications that such pausing, when suf-
ficiently pronounced, also imposes indirect limits on rates of
transcription initiation ( 24–27 ). In this article, we have shown
through analysis of simulated and real data that many as-
pects of this complex interplay between initiation and pause- 
escape can be captured by relatively simple probabilistic 
models. 

Our models not only describe raw read counts as a func- 
tion of variable rates of initiation and pause-release, enabling 
estimation of these rates from NRS data, but they also allow 

for variable pause sites across cells, for reductions in initia- 
tion rates via steric hindrance, and for the effects of multi- 
ple RNAPs stacking up behind the pause site. We have shown 

by simulation that both variable pause sites and steric hin- 
drance can have major impacts on the estimated rate param- 
eters. Our analysis of real data indicates not only that pause 
sites tend to be highly variable, but that their degree of vari- 
ability is correlated with particular sequence motifs as well 
as with stress responses. Similarly, steric hindrance of tran- 
scription initiation appears to occur at many genes and is in- 
tensified in stress responses. Both of these phenomena appear 
to play major roles in shaping the patterns of aligned reads 
from NRS data, particularly near the 5 

′ ends of transcription 

units. We have focused in our initial work on applications to 

PRO-seq data, where read counts can be assumed to reflect 
the density of engaged, transcriptionally competent RNAPs.
Additional work will be required to see if our methods can 

be adapted for use with protocols that more broadly iden- 
tify chromatin-associated RNAs or Pol II molecules, such as 
mNET-seq or caRNA-seq (reviewed in ( 35 )). 

Our analysis shows that, even at steady-state, it is possible 
to obtain accurate estimates of relative initiation and pause- 
escape rates. If, in addition, separate estimates are available 
of the average elongation rate per gene, then the initiation 

and pause-escape rates can be expressed in absolute terms as 
numbers of events per cell per unit time. In turn, these esti- 
mated rates can be used to obtain various downstream quan- 
tities of interest, such as pausing half-lives (Supplementary 
Figure S3), landing-pad occupanies (Figure 5 B, C, Supplemen- 
tary Figure S12A, B), or, through combination with other data 
sources, half-lives of RNA molecules or related quantities ( 68 ).
Even when estimated elongation rates are not available, it may 
be adequate for some applications to estimate ‘ballpark’ rates 
based on the average rate of elongation across genes, which 

appears to be fairly stable at ∼2 kb / min in mammalian cells 
( 18 , 25 , 26 , 59 ). We have adopted this approach here in ap-
proximating absolute initiation rates, landing-pad occupan- 
cies (Figure 5 ; Supplementary Figure S12), and pausing half- 
lives (Supplementary Figure S3) from publicly available NRS 
data. We should emphasize, however, that our per-gene esti- 
mates are only approximate and may be biased by differences 
across genes in elongation rate. 

With these caveats, our estimates of the half-lives of paused 

RNAPs—with mean values of 2–3 min. in untreated K562 

cells and ∼6 min. after heat shock or celastrol treatment (Sup- 
plementary Figure S3)—agreed reasonably well with previous 
experimental estimates. For example, Jonkers et al. measured 

a mean half-life of 6.9 min. at ∼3200 genes in mouse ES cells 
( 59 ); Shao et al. found most half-lives were between 5 and 

20 min at 2300 genes in Drosophila Kc167 cells ( 27 ); and 

Gressel et al. estimated a median pause duration of 1.4 min.
(corresponding to a half-life of 1.0 min.) for 2135 genes in 

human Raji B cells ( 25 ). (The same group subsequently esti- 
mated a similar rate for 6355 protein-coding genes in K562 

cells ( 26 ).) In addition, Henriques et al. reported half-lives of 
promoter Pol II complexes from Drosophila S2 cells of ∼2–
15 min at selected loci ( 69 ). However, differences in species,
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ell types, treatments and sets of genes make these estimates
ifficult to compare precisely . Notably , the largest estimates
 27 ,59 ) were obtained after treatment with triptolide, which
ould potentially lead to some inflation in the estimates ( 31 ).
espite these differences, our method seems to be in general

greement overall with previous findings that paused Pol II is
ypically stable for minutes, and sometimes for tens of min-
tes, although we detect fewer extremely long half-lives than
ome previous studies. It is likely that our estimator for β
eaches saturation when pause peaks become unusually ele-
ated, leading to reduced sensitivity for the extreme tail of the
istribution of pausing half-lives. At the same time, our es-
imator may be more sensitive to short half-lives than some
xperimental methods. 

Despite such limitations, the use of steady-state rather than
ime-course data also has some important advantages. This
pproach allows us to analyze all expressed genes, not just
 subset at which expression can be induced. In addition, it
equires no chemical treatment to block initiation or pause
scape, and therefore avoids potential off-target effects. At
he same time, it is worth noting that our framework can
e extended to the nonequilibrium setting and the use of
ime-course data (see bioRxiv: https:// doi.org/ 10.1101/ 2021.
1.12.426408 ). In that setting, it could be used to infer gene-
pecific elongation rates together with the other quantities.
his version of the model, however, is considerably more
omplicated mathematically, more difficult to fit to data, and
arder to interpret. Additional work will be required before it
an be applied to real data. 

Our estimator for the pause-escape rate β is closely re-
ated to the quantity known as the ‘pausing index’ ( I P ), which
s frequently used to measure the prominence of promoter-
roximal pausing ( 14 ,44 ). In the case where the pause site is
onstant across cells, we have shown that I P is precisely the
nverse of the maximum likelihood estimator for the rate pa-
ameter β. When the pause site varies across cells, however, it
ecomes less straightforward to interpret I P in physical terms,
nd a naive interpretation may lead to a strongly biased char-
cterization of the pause-escape rate (e.g. Figure 4 D). The de-
ails of how I P is calculated—e.g. by averaging the read counts
n the pause region or using their maximum value (Figure 3 C
nd Supplementary Figure S1)– -also become important in this
ase. We have shown that our model has a natural extension
o variable pause sites, which permits estimation of both the
ate parameter β and the distribution of pause sites per gene
y expectation maximization. In this setting, β no longer has a
imple relationship to I P . Interestingly, however, it is possible
o find an approximate closed-form relationship in the case
here I P is calculated by averaging, namely, 1 

ˆ β
≈ L ( I P − 1 ) ,

here L = k max − k min + 1 is the length of the pause region
see Materials & Methods, equation 17 ). We anticipate that
his relationship may help to standardize definitions of I P and
larify its physical meaning. 

Our model also has implications for how to interpret the av-
rage read depth in the gene body ( ̂  χ in our notation), which is
 natural measure of the transcriptional output at each gene.
he model makes clear—as other investigators have previ-
usly argued ( 25 ,26 )—that ˆ χ is a measure of the rate of ‘ef-
ective’ or ‘productive’ transcription initiation at steady state,
ather than of the ‘potential’ rate. That is, in our notation, χ is
roportional to ω rather than α. Moreover, in the presence of
teric hindrance, ω ≈ φβ (equation 19 ; see also equation 25 ),
which means that ω (and hence χ) is effectively limited by the
pause-escape rate β. Notably, this equation provides a sim-
ple and interpretable characterization of the ‘pause-initiation
limit’ described by Gressel et al. ( 25 ,26 ). It says that the ef-
fective initiation rate ω can never be greater than the pause-
escape rate β, with equality when the landing-pad is fully oc-
cupied ( φ = 1). The physical meaning of the ‘potential’ ini-
tiation rate α is somewhat less clear but, at least when φ is
not too close to one, our model does allow extrapolation to
a larger rate at which initiation events would hypothetically
occur in the absence of steric hindrance. These values can be
contrasted with the effective initiation rate in assessing the im-
portance of steric hindrance. 

We should emphasize that our model does depend on some
crucial simplifying assumptions. Perhaps the most restrictive
of these is the assumption that any initiating RNAP will even-
tually make its way along the entire DNA template, with no
possibility of premature termination (PT). Similarly, we as-
sume that the elongation process will not be blocked or sub-
stantially reduced by exogenous factors, such as UV-induced
DNA damage. It seems likely that PT does occur to a degree,
although its prevalence remains controversial. Several inves-
tigators have argued that the dynamics of RNAP occupancy
near the promoter is dominated by pausing, rather than PT, be-
cause promoter-associated RNAP complexes are quite stable
and predominantly localize to the pause region ( 27 , 59 , 69 ) (re-
viewed in ( 17 )). However, others have argued, based on imag-
ing or footprinting techniques, that PT may play a much more
prominent role ( 31 ,70 ). Even if PT does occur at appreciable
rates, its effect on our estimates will depend on precisely where
and when it occurs. For example, if PT tends to occur immedi-
ately after initiation, it may have little effect on our estimates
of the effective initiation or pause-escape rates. Indeed, if it oc-
curs within a few nucleotides of the TSS, it may be largely in-
visible to NRS assays. If, on the other hand, PT tends to occur
farther into the pause region, it will tend to influence estimates
of the pause-escape rate—causing them to be too low (because
some apparently paused RNAPs are actually lost to PT)—but
not those of the effective initiation rate. We cannot see any
way of fully incorporating PT in a probabilistic model based
on NRS data or any other readout of RNAP density—even one
that applies to the nonequilibrium setting—without relying on
external estimates of the position-dependent rate at which PT
occurs; otherwise it will necessarily be confounded with other
rates. Until such estimates become available, model-based es-
timates of the pause-escape rate, in particular, must be consid-
ered with this caveat in mind. 

A second process we ignore here is ‘bursting’ of transcrip-
tion initiation. There is now substantial evidence that rates
of transcription initiation do exhibit considerable temporal
variation in actively transcribed genes, with apparent oscil-
lations between active and inactive states ( 28–30 , 32 , 71 , 72 ).
This pattern is strictly inconsistent with our assumption of
a time-homogeneous Markov process. It is worth bearing in
mind, however, that our model effectively averages over the
processes that are occuring in a large population of cells. Un-
less those cells are synchronized in their bursting behavior,
it would seem that averaging over ‘on’ and ‘off’ states in
a bursting model, as our Markov model will effectively do,
may be adequate for our purposes—although it is true that
bursting could contribute to additional overdispersion in our

https://doi.org/10.1101/2021.01.12.426408
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Third, while we are able to model interactions among up
to three RNAPs in the pause region, we ignore interactions in
the gene body. Our simulations suggest that, at typical rates of
initiation and pause-escape, collisions between RNAPs in the
gene body should be fairly rare and have a limited impact on
RNAP dynamics. However, they may become important un-
der some conditions, when rates of transcription are unusually
high. Our strategy of focusing on collisions among RNAPs in
the pause region only and ignoring them in the gene body is
what allows us to avoid working with the more general but
difficult-to-analyze ‘totally asymmetric simple exclusion pro-
cess’ (TASEP) ( 37 ,38 ) (see also ( 43 )). Essentially, we simplify
the modeling problem by exploiting the fact that, at least when
promoter-proximal pausing is prominent, most relevant colli-
sions occur in the restricted region immediately downstream
of the TSS. 

It is now widely accepted that promoter-proximal pausing
is rate-limiting at many genes and this step is frequently regu-
lated ( 17 ). Our model provides a quantitative demonstration
of precisely how steric hindrance can modulate this impor-
tant regulatory step. The model confirms that, in the pres-
ence of rate-limiting pause-escape (small β), promoting initi-
ation (increasing α) will have little or no impact on transcrip-
tional output, because the pause-initiation limit will quickly
be reached. In this setting, a more rapid and effective tran-
scriptional response will come from releasing RNAPs from the
paused state (increasing β). At the same time, the model also
reveals that the dynamic equilibrium between initiation and
pause-escape will tend to limit the duration of the transcrip-
tional response to pause-release. The reason is that the geom-
etry of the pause region allows only a few RNAPs to be kept
‘in the chamber,’ ready to be released into productive elonga-
tion. As soon as these ∼1–3 RNAPs are released in each cell,
initiation will again become rate-limiting. Thus, the effects of
changes to initiation and pause-release cannot be fully sepa-
rated; rather, the two processes interact with one another in a
kind of dance, each limiting the other under certain circum-
stances. For this reason, each process is the natural target for
regulation of gene expression in a different regime—for ex-
ample, initiation when a sustained transcriptional response is
required, and pause-escape when a rapid and / or synchronous
but transient response is needed. Rates of initiation and pause-
escape are perhaps best thought of as two ‘knobs’ for control
of a single interrelated dynamical system near the TSS of each
gene. 

Data availability 

PRO-seq fastq files for the heat shock ( 20 ) and celastrol
( 19 ) datasets were downloaded from GEO with accession
numbers GSE89230 and GSE96869, respectively. BigWig files
for CoPRO-cap data were downloaded with accession num-
ber GSE116472 ( 16 ). The bigWig file for TAF1 Chip-seq
was downloaded from ENCODE with accession number
ENCFF101GBL ( 73 ). All data are for human K562 cells, and
replicates were combined for analysis. 

Code availability 

The SimPol simulator is available at https://github.com/
CshlSiepelLab/SimPol . Our software for parameter estima-
tion from NRS data is available at https://github.com/
CshlSiepelLab/UniMod . 
Supplementary data 

Supplementary Data are available at NAR Online. 

A c kno wledg ements 

We thank Charles Danko, Gilad Barshad, Armin Scheben,
Yifei Huang and other members of the Siepel and Danko lab- 
oratories for helpful discussions. We also thank Michael Lid- 
schreiber and Patrick Cramer for providing raw data from 

( 25 ,26 ). The content is solely the responsibility of the authors 
and does not necessarily represent the official views of the US 
National Institutes of Health. 

Funding 

US National Institutes of Health [R35-GM127070 and R01- 
HG009309 to A.S.]; Simons Center for Quantitative Biology 
at Cold Spring Harbor Laboratory. Funding for open access 
charge: US National Institutes of Health [R35-GM127070,
R01-HG009309 to A.S.]; Simons Center for Quantitative Bi- 
ology at Cold Spring Harbor Laboratory. 

Conflict of interest statement 

None declared. 

References 

1. Ptashne, M. and Gann, A. (1997) Transcriptional activation by 
recruitment. Nature , 386 , 569–577.

2. Rougvie, A.E. and Lis, J.T. (1990) Postinitiation transcriptional 
control in Drosophila melanogaster . Mol. Cell Biol., 10 , 
6041–6045.

3. Strobl, L.J. and Eick, D. (1992) Hold back of RNA polymerase II at 
the transcription start site mediates down-regulation of c-myc in 
vivo. EMBO J., 11 , 3307–3314.

4. Krumm, A. , Meulia, T. , Brunvand, M. and Groudine, M. (1992) The 
block to transcriptional elongation within the human c-myc gene 
is determined in the promoter-proximal region. Genes Dev., 6 , 
2201–2213.

5. Rasmussen, E.B. and Lis, J.T. (1993) In vivo transcriptional pausing 
and cap formation on three Drosophila heat shock genes. Proc. 
Natl. Acad. Sci. USA , 90 , 7923–7927.

6. Plet, A. , Eick, D. and Blanchard, J.M. (1995) Elongation and 
premature termination of transcripts initiated from c-fos and 
c-myc promoters show dissimilar patterns. Oncogene , 10 , 
319–328.

7. Kim, T.H. , Barrera, L.O. , Zheng, M. , Qu, C. , Singer, M.A. , 
Richmond, T.A. , Wu, Y. , Green, R.D. and Ren, B. (2005) A 

high-resolution map of active promoters in the human genome. 
Nature , 436 , 876–880.

8. Guenther, M.G. , Levine, S.S. , Boyer, L.A. , Jaenisch, R. and 
Young,R.A. (2007) A chromatin landmark and transcription 
initiation at most promoters in human cells. Cell , 130 , 77–88.

9. Core, L.J. , Waterfall, J.J. and Lis, J.T. (2008) Nascent RNA 

sequencing reveals widespread pausing and divergent initiation at 
human promoters. Science , 322 , 1845–1848.

10. Muse, G.W. , Gilchrist, D.A. , Nechaev, S. , Shah, R. , Parker, J.S. , 
Grissom, S.F. , Zeitlinger, J. and Adelman, K. (2007) RNA 

polymerase is poised for activation across the genome. Nat. 
Genet., 39 , 1507–1511.

11. Zeitlinger, J. , Stark, A. , Kellis, M. , Hong, J.W. , Nechaev, S. , 
Adelman, K. , Levine, M. and Young, R.A. (2007) RNA polymerase 
stalling at developmental control genes in the Drosophila 
melanogaster embryo. Nat. Genet., 39 , 1512–1516.

https://github.com/CshlSiepelLab/SimPol
https://github.com/CshlSiepelLab/UniMod
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad843#supplementary-data


Nucleic Acids Research , 2023 19 

1

1

1

1

1

1

1

1

2

2

2

2

2

2  

2

2

2

2

3

3

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad843/7331020 by C

old Spring H
arbor Laboratory user on 03 N

ovem
ber 2023
2. Lee, C. , Li, X. , Hechmer, A. , Eisen, M. , Biggin, M.D. , Venters, B.J. , 
Jiang, C. , Li, J. , Pugh, B.F. and Gilmour, D.S. (2008) NELF and 
GAGA factor are linked to promoter-proximal pausing at many 
genes in Drosophila. Mol. Cell Biol., 28 , 3290–3300.

3. Nechaev, S. , Fargo, D.C. , dos Santos, G. , Liu, L. , Gao, Y. and 
Adelman,K. (2010) Global analysis of short RNAs reveals 
widespread promoter-proximal stalling and arrest of Pol II in 
Drosophila. Science , 327 , 335–338.

4. Adelman, K. and Lis, J.T. (2012) Promoter-proximal pausing of 
RNA polymerase II: emerging roles in metazoans. Nat. Rev. 
Genet., 13 , 720–731.

5. Kwak, H. , Fuda, N.J. , Core, L.J. and Lis, J.T. (2013) Precise maps of 
RNA polymerase reveal how promoters direct initiation and 
pausing. Science , 339 , 950–953.

6. Tome, J.M. , T ippens, N.D. and Lis, J.T. (2018) Single-molecule 
nascent RNA sequencing identifies regulatory domain architecture 
at promoters and enhancers. Nat. Genet., 50 , 1533–1541.

7. Jonkers, I. and Lis, J.T. (2015) Getting up to speed with 
transcription elongation by RNA polymerase II. Nat. Rev. Mol. 
Cell Biol., 16 , 167–177.

8. Danko, C.G. , Hah, N. , Luo, X. , Martins, A.L. , Core, L. , Lis, J.T. , 
Siepel, A. and Kraus, W.L. (2013) Signaling pathways differentially 
affect RNA polymerase II initiation, pausing, and elongation rate 
in cells. Mol. Cell , 50 , 212–222.

9. Dukler, N. , Booth, G.T. , Huang, Y .F . , T ippens, N. , Waters, C.T. , 
Danko, C.G. , Lis, J.T. and Siepel, A. (2017) Nascent RNA 

sequencing reveals a dynamic global transcriptional response at 
genes and enhancers to the natural medicinal compound celastrol. 
Genome Res., 27 , 1816–1829.

0. V ihervaara, A. , Mahat, D.B. , Guertin, M.J. , Chu, T. , Danko, C.G. , 
Lis, J.T. and Sistonen, L. (2017) Transcriptional response to stress is 
pre-wired by promoter and enhancer architecture. Nat. Commun., 
8 , 255.

1. V ihervaara, A. , Mahat, D.B. , Himanen, S.V. , Blom, M. A.H. , Lis, J.T. 
and Sistonen,L. (2021) Stress-induced transcriptional memory 
accelerates promoter-proximal pause release and decelerates 
termination over mitotic divisions. Mol. Cell , 81 , 1715–1731.

2. Mahat, D.B. , Salamanca, H.H. , Duarte, F.M. , Danko, C.G. and 
Lis,J.T. (2016) Mammalian heat shock response and mechanisms 
underlying its genome-wide transcriptional regulation. Mol. Cell , 
62 , 63–78.

3. Tornaletti, S. , Reines, D. and Hanawalt, P.C. (1999) Structural 
characterization of RNA polymerase II complexes arrested by a 
cyclobutane pyrimidine dimer in the transcribed strand of 
template DNA. J. Biol. Chem., 274 , 24124–24130.

4. Ehrensberger, A.H. , Kelly, G.P. and Svejstrup, J.Q. (2013) 
Mechanistic interpretation of promoter-proximal peaks and 
RNAPII density maps. Cell , 154 , 713–715.

5. Gressel, S. , Schwalb, B. , Decker, T.M. , Qin, W. , Leonhardt, H. , Eick, D.
and Cramer,P. (2017) CDK9-dependent RNA polymerase II 
pausing controls transcription initiation. Elife , 6 , e29736.

6. Gressel, S. , Schwalb, B. and Cramer, P. (2019) The pause-initiation 
limit restricts transcription activation in human cells. Nat. 
Commun., 10 , 3603.

7. Shao, W. and Zeitlinger, J. (2017) Paused RNA polymerase II 
inhibits new transcriptional initiation. Nat. Genet., 49 , 
1045–1051.

8. Raj, A. , Peskin, C.S. , Tranchina, D. , Vargas, D.Y. and Tyagi, S. (2006) 
Stochastic mRNA synthesis in mammalian cells. PLoS Biol., 4 , 
e309.

9. Zenklusen, D. , Larson, D.R. and Singer, R.H. (2008) Single-RNA 

counting reveals alternative modes of gene expression in yeast. 
Nat. Struct. Mol. Biol., 15 , 1263–1271.

0. Suter, D.M. , Molina, N. , Gatfield, D. , Schneider, K. , Schibler, U. and 
Naef,F. (2011) Mammalian genes are transcribed with widely 
different bursting kinetics. Science , 332 , 472–474.

1. Steurer, B. , Janssens, R.C. , Geverts, B. , Geijer, M.E. , Wienholz, F. , 
Theil, A.F. , Chang, J. , Dealy, S. , Pothof, J. , van Cappellen, W.A. , et al. 
(2018) Live-cell analysis of endogenous GFP-RPB1 uncovers rapid 
turnover of initiating and promoter-paused RNA Polymerase II. 
Proc. Natl. Acad. Sci. U.S.A., 115 , E4368–E4376.

32. Ali, M.Z. , Choubey, S. , Das, D. and Brewster, R.C. (2020) Probing 
mechanisms of transcription elongation through cell-to-cell 
variability of RNA Polymerase. Biophys. J., 118 , 1769–1781.

33. Mahat, D.B. , Kwak, H. , Booth, G.T. , Jonkers, I.H. , Danko, C.G. , 
Patel, R.K. , Waters, C.T. , Munson, K. , Core, L.J. and Lis, J.T. (2016) 
Base-pair-resolution genome-wide mapping of active RNA 

polymerases using precision nuclear run-on (PRO-seq). Nat. 
Protoc., 11 , 1455–1476.

34. Chu, T. , Rice, E.J. , Booth, G.T. , Salamanca, H.H. , Wang, Z. , Core, L.J. ,
Longo, S.L. , Corona, R.J. , Chin, L.S. , Lis, J.T. , et al. (2018) 
Chromatin run-on and sequencing maps the transcriptional 
regulatory landscape of glioblastoma multiforme. Nat. Genet., 50 , 
1553–1564.

35. Wissink, E.M. , V ihervaara, A. , T ippens, N.D. and Lis, J.T. (2019) 
Nascent RNA analyses: tracking transcription and its regulation. 
Nat. Rev. Genet., 20 , 705–723.

36. Barrett, T. , Wilhite, S.E. , Ledoux, P. , Evangelista, C. , Kim, I.F. , 
Tomashevsky, M. , Marshall, K.A. , Phillippy, K.H. , Sherman, P.M. , 
Holko, M. , et al. (2013) NCBI GEO: archive for functional 
genomics data sets–update. Nucleic Acids Res. , 41 , D991–D995. 

37. MacDonald, C.T. , Gibbs, J.H. and Pipkin, A.C. (1968) Kinetics of 
biopolymerization on nucleic acid templates. Biopolymers: Orig. 
Res. Biomol., 6 , 1–25.

38. Zia, R. , Dong, J. and Schmittmann, B. (2011) Modeling translation 
in protein synthesis with TASEP: A tutorial and recent 
developments. J. Stat. Phys., 144 , 405–428.

39. Reuveni, S. , Meilijson, I. , Kupiec, M. , Ruppin, E. and Tuller, T. (2011) 
Genome-scale analysis of translation elongation with a ribosome 
flow model. PLoS Comput. Biol. , 7 , e1002127. 

40. Edri, S. , Gazit, E. , Cohen, E. and Tuller, T. (2014) The RNA 

polymerase flow model of gene transcription. IEEE T. Biomed. 
Circuits Syst., 8 , 54–64.

41. Azofeifa, J.G. and Dowell, R.D. (2017) A generative model for the 
behavior of RNA polymerase. Bioinformatics , 33 , 227–234.

42. Erdmann-Pham,D .D ., Dao Duc,K. and Song,Y.S. (2020) The key 
parameters that govern translation efficiency. Cell Syst., 10 , 
183–192.

43. Fischer, J. , Song, Y.S. , Yosef, N. , di Iulio, J. , Churchman, L.S. and 
Choder,M. (2020) The yeast exoribonuclease Xrn1 and associated 
factors modulate RNA polymerase II processivity in 5 ′ and 3 ′ gene
regions. J. Biol. Chem., 295 , 11435–11454.

44. Chen, F.X. , Smith, E.R. and Shilatifard, A. (2018) Born to run: 
control of transcription elongation by RNA polymerase II. Nat. 
Rev. Mol. Cell Biol., 19 , 464–478.

45. Chen, X. , Qi, Y. , Wu, Z. , Wang, X. , Li, J. , Zhao, D. , Hou, H. , Li, Y. , 
Yu, Z. , Liu, W. , et al. (2021) Structural insights into preinitiation 
complex assembly on core promoters. Science , 372 , eaba8490.

46. Fant, C.B. , Levandowski, C.B. , Gupta, K. , Maas, Z.L. , Moir, J. , 
Rubin, J.D. , Sawyer, A. , Esbin, M.N. , Rimel, J.K. , Luyties, O. , et al. 
(2020) TFIID enables RNA polymerase II promoter-proximal 
pausing. Mol. Cell , 78 , 785–793.

47. Chu, T. , Wang, Z. , Chou, S.P. and Danko, C.G. (2019) Discovering 
transcriptional regulatory elements from run-on and sequencing 
data using the web-based dREG gateway. Curr. Protoc. 
Bioinform., 66 , e70.

48. Cunningham, F. , Achuthan, P. , Akanni, W. , Allen, J. , Amode, M.R. , 
Armean, I.M. , Bennett, R. , Bhai, J. , Billis, K. , Boddu, S. , et al. (2019) 
Ensembl 2019. Nucleic Acids Res. , 47 , D745–D751. 

49. Zhao, Y. , Dukler, N. , Barshad, G. , Toneyan, S. , Danko, C.G. and 
Siepel,A. (2021) Deconvolution of expression for nascent RNA 

sequencing data (DENR) highlights pre-RNA isoform diversity in 
human cells. Bioinformatics , 37 , 4727–4736.

50. Bailey,T.L. (2021) STREME: accurate and versatile sequence motif
discovery. Bioinformatics , 37 , 2834–2840.

51. Gupta, S. , Stamatoyannopoulos, J.A. , Bailey, T.L. and Noble, W.S. 
(2007) Quantifying similarity between motifs. Genome Biol., 8 , 
R24.



20 Nucleic Acids Research , 2023 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad843/7331020 by C

old
52. Kulakovskiy, I.V. , Vorontsov, I.E. , Yevshin, I.S. , Sharipov, R.N. , 
Fedorova, A.D. , Rumynskiy, E.I. , Medvedeva, Y.A. , 
Magana-Mora, A. , Bajic, V.B. , Papatsenko, D.A. , et al. (2018) 
HOCOMOCO: towards a complete collection of transcription 
factor binding models for human and mouse via large-scale 
ChIP-Seq analysis. Nucleic Acids Res. , 46 , D252–D259. 

53. Akalin, A. , Franke, V. , Vlahovi ̌cek, K. , Mason, C.E. and Schübeler, D. 
(2015) Genomation: a toolkit to summarize, annotate and 
visualize genomic intervals. Bioinformatics , 31 , 1127–1129.

54. Larson, D.R. , Zenklusen, D. , Wu, B. , Chao, J.A. and Singer, R.H. 
(2011) Real-time observation of transcription initiation and 
elongation on an endogenous yeast gene. Science , 332 , 475–478.

55. Claypool, J.A. , French, S.L. , Johzuka, K. , Eliason, K. , Vu, L. , 
Dodd, J.A. , Beyer, A.L. and Nomura, M. (2004) Tor pathway 
regulates Rrn3p-dependent recruitment of yeast RNA polymerase 
I to the promoter but does not participate in alteration of the 
number of active genes. Mol. Biol. Cell , 15 , 946–956.

56. Schneider, D.A. , French, S.L. , Osheim, Y.N. , Bailey, A.O. , Vu, L. , 
Dodd, J. , Yates, J.R. , Beyer, A.L. and Nomura, M. (2006) RNA 

polymerase II elongation factors Spt4p and Spt5p play roles in 
transcription elongation by RNA polymerase I and rRNA 

processing. Proc. Natl. Acad. Sci. U.S.A., 103 , 12707–12712.
57. Tongaonkar, P. , French, S.L. , Oakes, M.L. , Vu, L. , Schneider, D.A. , 

Beyer, A.L. and Nomura, M. (2005) Histones are required for 
transcription of yeast rRNA genes by RNA polymerase I. Proc. 
Natl. Acad. Sci. U.S.A., 102 , 10129–10134.

58. Hounkpe, B.W. , Chenou, F. , de Lima, F. and De Paula,E.V. (2021) 
HRT Atlas v1.0 database: redefining human and mouse 
housekeeping genes and candidate reference transcripts by mining 
massive RNA-seq datasets. Nucleic Acids Res. , 49 , D947–D955. 

59. Jonkers, I. , Kwak, H. and Lis, J.T. (2014) Genome-wide dynamics of 
Pol II elongation and its interplay with promoter proximal 
pausing, chromatin, and exons. Elife , 3 , e02407.

60. Louder, R.K. , He, Y. , López-Blanco, J.R. , Fang, J. , Chacón, P. and 
Nogales,E. (2016) Structure of promoter-bound TFIID and model 
of human pre-initiation complex assembly. Nature , 531 , 604–609.

61. Patel, A.B. , Louder, R.K. , Greber, B.J. , Grünberg, S. , Luo, J. , Fang, J. , 
Liu, Y. , Ranish, J. , Hahn, S. and Nogales, E. (2018) Structure of 
human TFIID and mechanism of TBP loading onto promoter 
DNA. Science , 362 , eaau8872.

62. Dunham, I. , Kundaje, A. , Aldred, S.F. , Collins, P.J. , Davis, C.A. , 
Doyle, F. , Epstein, C.B. , Frietze, S. , Harrow, J. , Kaul, R. , et al. (2012) 
Received: March 6, 2023. Revised: September 13, 2023. Editorial Decision: September 14, 2023. Acc
© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution Lice

distribution, and reproduction in any medium, provided the original work is properly cited. 
An integrated encyclopedia of DNA elements in the human 
genome. Nature , 489 , 57–74.

63. Watts, J.A. , Burdick, J. , Daigneault, J. , Zhu, Z. , Grunseich, C. , 
Bruzel, A. and Cheung, V.G. (2019) Cis elements that mediate RNA 

polymerase II pausing regulate human gene expression. Am. J. 
Hum. Genet., 105 , 677–688.

64. Chou, S.P. , Alexander, A.K. , Rice, E.J. , Choate, L.A. and Danko, C.G. 
(2022) Genetic dissection of the RNA polymerase II transcription 
cycle. Elife , 11 , e78458.

65. Aoi, Y. , Smith, E.R. , Shah, A.P. , Rendleman, E.J. , Marshall, S.A. , 
Woodfin, A.R. , Chen, F.X. , Shiekhattar, R. and Shilatifard, A. (2020) 
NELF regulates a promoter-proximal step distinct from RNA Pol 
II pause-release. Mol. Cell , 78 , 261–274.

66. Darzacq, X. , Shav-Tal, Y. , de Turris, V. , Brody, Y. , Shenoy, S.M. , 
Phair, R.D. and Singer, R.H. (2007) In vivo dynamics of RNA 

polymerase II transcription. Nat. Struct. Mol. Biol., 14 , 796–806.
67. V ihervaara, A. , Duarte, F.M. and Lis, J.T. (2018) Molecular 

mechanisms driving transcriptional stress responses. Nat. Rev. 
Genet., 19 , 385–397.

68. Blumberg, A. , Zhao, Y. , Huang, Y .F . , Dukler, N. , Rice, E.J. , 
Chivu, A.G. , Krumholz, K. , Danko, C.G. and Siepel, A. (2021) 
Characterizing RNA stability genome-wide through combined 
analysis of PRO-seq and RNA-seq data. BMC Biol. , 19 , 30. 

69. Henriques, T. , Gilchrist, D.A. , Nechaev, S. , Bern, M. , Muse, G.W. , 
Burkholder, A. , Fargo, D.C. and Adelman, K. (2013) Stable pausing 
by RNA polymerase II provides an opportunity to target and 
integrate regulatory signals. Mol. Cell , 52 , 517–528.

70. Krebs, A.R. , Imanci, D. , Hoerner, L. , Gaidatzis, D. , Burger, L. and 
Schubeler,D. (2017) Genome-wide single-molecule footprinting 
reveals high RNA Polymerase II turnover at paused promoters. 
Mol. Cell , 67 , 411–422.

71. Fukaya, T. , Lim, B. and Levine, M. (2016) Enhancer control of 
transcriptional bursting. Cell , 166 , 358–368.

72. Bartman, C.R. , Hamagami, N. , Keller, C.A. , Giardine, B. , 
Hardison, R.C. , Blobel, G.A. and Raj, A. (2019) Transcriptional 
burst initiation and polymerase pause release are key control 
points of transcriptional regulation. Mol. Cell , 73 , 519–532.

73. Gertz, J. , Savic, D. , Varley, K.E. , Partridge, E.C. , Safi, A. , Jain, P. , 
Cooper, G.M. , Reddy, T.E. , Crawford, G.E. and Myers, R.M. (2013) 
Distinct properties of cell-type-specific and shared transcription 
factor binding sites. Mol. Cell , 52 , 25–36.

74. Robinson, J.T. , Thorvaldsdóttir, H. , Winckler, W. , Guttman, M. , 
Lander, E.S. , Getz, G. and Mesirov, J.P. (2011) Integrative genomics 

viewer. Nat. Biotechnol., 29 , 24–26.

epted: September 21, 2023 

nse (http: // creativecommons.org / licenses / by / 4.0 / ), which permits unrestricted reuse, 

 Spring H
arbor Laboratory user on 03 N

ovem
ber 2023


	Graphical abstract
	Introduction
	Materials and methods
	Results
	Discussion
	Data availability
	Code availability
	Supplementary data
	Acknowledgements
	Funding
	Conflict of interest statement
	References

