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SUMMARY
The activity of neurons in the auditory cortex is driven by both sounds and non-sensory context. To investi-
gate the neuronal correlates of non-sensory context, we trained head-fixed mice to perform a two-alterna-
tive-choice auditory task in which either reward or stimulus expectation (prior) was manipulated in blocks.
Using two-photon calcium imaging to record populations of single neurons in the auditory cortex, we found
that both stimulus and reward expectation modulated the activity of these neurons. A linear decoder trained
on this population activity could decode stimuli as well or better than predicted by the animal’s performance.
Interestingly, the optimal decoder was stable even in the face of variable sensory representations. Neither the
context nor the mouse’s choice could be reliably decoded from the recorded neural activity. Our findings
suggest that, in spite of modulation of auditory cortical activity by task priors, the auditory cortex does not
represent sufficient information about these priors to exploit them optimally. Thus, the combination of rapidly
changing sensory information with more slowly varying task information required for decisions in this task
might be represented in brain regions other than the auditory cortex.
INTRODUCTION

Appropriate choices based on sensory stimuli are critical to

survival. An animal hears a sound, such as a mouse’s squeak

or an owl’s hoot, and must decide whether and how to respond

to it. The appropriate response depends not only on what the

stimulus is but also on the behavioral context. This behavioral

context includes the animal’s present and previous experience,

including its memories about what sounds it has heard and

what previous choices were successful. Thus, an animal’s

response to sensory stimuli adapts to behavioral context.

Contextual adaptation of neural responses occurs throughout

the auditory system, from the cochlea to the auditory cortex and

beyond. These adaptations allow for better use of limited re-

sources, such as dynamic range (in the case of feedback to

the cochlea) or limited attentional resources.1 Sound responses

in the auditory cortex and elsewhere in the auditory stream are

also modulated by sound statistics,2 task engagement,3,4 move-

ment,5 spectral attention,6 and fear.7 Contextual modulation of

sound-evoked responses represents a ubiquitous feature of

auditory, as well as non-auditory, sensory representations.8

To drive behavior, neural representations formed in the audi-

tory cortex must be ‘‘decoded’’9,10 by the downstream areas

to which it projects. Here, we address two questions about the

decoding of auditory cortical representations. First, we ask
4470 Current Biology 33, 4470–4483, October 23, 2023 ª 2023 Elsev
whether noise in the cortical representation of auditory stimuli

constrained the performance of animals performing an auditory

discrimination task. Second, we ask how downstream brain

areas can decode neural representations in the auditory cortex

if those representations are themselves changing because of

contextual adaptation. That is, if a sensory representation in

area X changes, how can downstream area Y properly exploit

the information from X? Mathematically, this problem arises

because the usual formulation in which sensory areas communi-

cate via an ‘‘information channel’’ to downstream areas requires

that both the sender and the receiver agree on a (fixed) code, and

unilateral changes in that codemight be expected to degrade the

fidelity of information transfer. Intuitively, one might imagine that

changing representations might lead to miscommunication be-

tween brain areas, for the same reason that changing the mean-

ing of red and green at traffic lights might disrupt traffic flow.

To address these questions quantitatively, we developed a

two-alternative-choice auditory decision-making task in which

we could manipulate either of two contextual variables: stimulus

probability11–14 or reward size.15,16 To maximize reward in this

task, subjects must combine stimulus information with the

context: stimulus + context / choice. We operationally define

the term ‘‘context’’ in what follows to refer to non-sensory vari-

ables, such as stimulus probability or reward amount, which we

explicitly measured or controlled during the experiment; this
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definition excludes themany additional variables (such as the an-

imal’s level of hunger), which we did not measure. Using two-

photon calcium imaging to record the simultaneous activity of

hundreds of neurons in the auditory cortex while mice were per-

forming either the stimulus-probability or reward-size task, we

examined what could be decoded from auditory cortical activity

in the face of adapting representations.

Here, we report that although changes in both reward and

stimulus contexts modulated neural representations of sound

in the auditory cortex, the optimal decoder for sound was

remarkably invariant to different encodings. In many behavioral

sessions, decoding the activity of one or a small handful of neu-

rons matched or exceeded the performance of the animal on a

trial-by-trial basis, suggesting that cortical noise did not limit

the animals’ performance during this task. By contrast, neither

context nor choice could be reliably decoded from auditory

cortical activity as behavioral context varied, implying that the

animals’ decisions depended on the integration of information

represented outside the auditory cortex. Our results demon-

strate that sound stimuli are encoded by the auditory cortex

and can be reliably and stably read out by downstream areas,

even when the encoding is modulated by behavioral context.

The stability of auditory cortical sound decoding suggests that

plasticity in brain areas downstream of the auditory cortex likely

mediate behavioral adaptation induced by changes in behavioral

context.
RESULTS

We first show that mice exploit changes in behavioral context

(reward size or stimulus probability) to optimize choices in an

auditory decision task. Then, using two-photon calcium imaging

of neuronal activity in the primary auditory cortex, we establish

that sound-evoked neuronal responses are modulated by

changes in behavioral context. Next, we construct decoders of

neuronal activity and show that decoding the activity of a small

number of neurons—sometimes even a single neuron—matched

or exceeded the performance of the animal. Finally, we show that

sound decoding is stable, suggesting that (1) downstream areas

of the auditory cortex do not require context-dependent change

of decoding weights to optimize the sound readout and that (2)

plasticity in downstream areas is essential for context-based

reward maximization.
Mice combine sensory stimulus and context in a
perceptual decision-making task
We developed a tone-frequency discrimination task for head-

fixedmice (Figures 1A and 1B).17 Mice were placed on a cylindri-

cal treadmill facing three lick spouts. To initiate a trial, mice were

required to lick the center spout, which triggered the delivery of a

‘‘tone cloud’’ sound stimulus composed of 58 overlapping brief

pure tones (each pure tone 0.03 s, total 0.6 s). A 0.5-mL water

reward was delivered at the center spout at the end of the stim-

ulus, at which point the subject was required to lick the left or

right spout, depending on whether there were more low (5–10

kHz) or high (20–40 kHz) frequency tones in the tone cloud. Cor-

rect choices were rewarded with a sucrose water reward (5%,

2 mL), while incorrect choices resulted in a noise burst (0.2 s).
The tone clouds were presented at six levels of difficulty (propor-

tion high tones 0, 0.25, 0.45, 0.55, 0.75, 1).

On alternating sessions, we manipulated either the stimulus

probability (the fraction of trials where the stimulus was of the

high or low category) or the reward amount. In the stimulus

probability task, the stimulus probability for each category

alternated between 70%–30% and 30%–70% in blocks of

200 trials (Figure S1A). Thus, in a 70%–30% block, the stim-

ulus was drawn with 70% probability from one of the three

stimuli for which a left response was rewarded (0%, 25%,

45% high-frequency tones). In the reward amount task, the

reward amount (3 or 1 mL) associated with correct left and

right choices varied in blocks of 200 trials, holding the stim-

ulus probability at 50%–50%. After mice experienced the

two asymmetric blocks of stimulus probability or reward

amount, these two parameters were set to 50%–50% and

2–2 mL for the rest of the session.

In each case, the optimal behavior in the face of sensory

uncertainty is to make biased decisions. Performance varied

smoothly with trial difficulty, with near-perfect performance on

easy trials (0 or 1 proportion high tones; Figures 1B and 1C)

and near chance on difficult trials (0.45 or 0.55). The animal could

exploit the context to achieve a higher reward rate, especially on

the difficult trials. If the animal was in a 30%–70% block, where

high-frequency (rightward) trials are more common than low fre-

quency trials, the mouse should choose rightward more often.

Similarly, if a block has more reward on the right (3 mL) than left

(1 mL), the best strategy on difficult trials is to choose rightward.

The optimal strategy can be computed based on the task struc-

ture (context) and the estimated uncertainty about the stimulus.

We analyzed 83 pairs of stimulus probability and reward

amount sessions. Choice behavior was significantly biased to

the side associated with the high stimulus probability or large

reward amount (p = 1.6E�27 and 5.9E�21 in a linear mixed-ef-

fects model18 in the stimulus and reward tasks, each 83 sessions

and 6 mice) (Figures 1D and S1B), but not by the order of asym-

metric blocks (Figures S1C and S1D), confirming that mice used

the context information to modify their actions. A logistic regres-

sion analysis revealed that the stimulus probability and reward

amount affected the choices but did not affect the stimulus

sensitivity (slope of psychometric curve) or lapse rate (error

rate at 0% and 100% high tones) (Figure 1E).

We also assessed whether the mice made optimal use of the

context. To compute the optimal strategy, we assumed an ideal

observer with a stimulus sensitivity estimated from the mouse’s

psychometric curve.19–21 We found that the subjects’ behavior

on the stimulus task was considerably less biased than that pre-

dicted from an ideal observer model (linear mixed-effects model,

p = 2.3E�25) (Figure 1F) but only slightly suboptimal for the

reward task (p = 0.091). These are consistent with the observa-

tion that the ideal observer obtained more reward than mice

(linearmixed-effectsmodel, p = 4.4E�14 and 4.5E�8 in the stim-

ulus and reward tasks, each 83 sessions and 6 mice), although

mice obtained more reward than an unbiased behavior model

with same stimulus sensitivity (p = 0.035 and 1.1E�12). The dif-

ference in the observed behavioral bias between the stimulus

and reward tasks may arise in part from the fact that subjects

can detect a block switch on a single trial for the reward task

(because the reward amount on a given port changes by a factor
Current Biology 33, 4470–4483, October 23, 2023 4471



Figure 1. Stimulus probability and reward amount bias choice in auditory discrimination task

(A) Behavioral setup.

(B) Trial structure. A blue light-emitting diode (LED) indicated the end of the inter-trial interval. Trials were self-initiated: licking the center spout triggered the sound

stimulus (0.6 s), at the end of which 0.5 mL of water was delivered on the center spout. Any side-lick thereafter triggered a sucrose reward (correct) or a noise burst

(error). Two example stimuli (tone clouds) are shown with a proportion of high-frequency tones 45% (top) and 100% (bottom). Black lines denote 30-ms pure

tones.

(C) Choice behavior in one session. Error bars show 95% confidence intervals. The choices were fit with a logistic regression (‘‘choice’’ in E).

(D) Choice bias in all the 83 sessions. Change in fraction rightward shows the difference of average choice probability in the logistic regression between the left

and right blocks (6 mice in each task).

(E) Choice selective bias. Logistic regression tested whether the choices during the task had no bias depending on blocks (unbiased), only bias in the choices

(choice), bias in the choices and sound sensitivity (choice + sensitivity), or bias in the choices with non-zero lapse rate (choice + lapse). Change in log likelihood in

‘‘choice’’ showed the increase of log likelihood from ‘‘unbiased.’’ Change in log likelihood in ‘‘choice + sensitivity’’ and ‘‘choice + lapse’’ showed the increase of log

likelihood from ‘‘choice’’ (83 sessions; central mark in box: median, edge of box; 25th and 75th percentiles, whiskers; most extreme data points not considered

outliers [beyond 1.5 times the inter-quartile range], here and hereafter; *p < 0.001 in likelihood ratio test in averaged log likelihood per mouse). Parentheses show

the number of parameters in the model.

(F) Suboptimal choice behavior in stimulus but not reward task. Bold lines show the mean psychometric functions in 83 sessions. Dotted lines show the optimal

behavior estimated from the stimulus sensitivity in the ‘‘choice’’ model.

See also Figure S1.
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of three), whereas detecting changes in stimulus probability be-

tween blocks requires multiple trials. Thus, the behavioral data

indicate that the mice exploit information about context to in-

crease their reward rate.
4472 Current Biology 33, 4470–4483, October 23, 2023
Two-photon microscopy in the auditory cortex during
two tasks
We imaged calcium activity from six mice expressing GCaMP6f

in excitatory neurons (see STAR Methods) (Figure 2A). We used



Figure 2. Two-photon microscopy in the auditory cortex during two tasks

(A) Setup for microscopy. Objective lens for microscope had a tilted angle to keep the mice parallel to the ground.

(B) Identification of the primary auditory cortex with one-photon, wide-field imaging. The 4-kHz pure tone-evoked responses through the cranial window provided

the locations of the primary, anterior, and secondary auditory fields (right). Three circles in the left panel show the approximate peak location of the tone-evoked

responses. Three rectangles show the imaging locations of two-photon microscopy in the example mouse. The depth of imaging field was different in every

session.

(C) Tone-evoked responses in one field of view in two-photon microscopy. The color of each region of interest (ROI) shows the best frequency (BF). ROIs with no

color did not show significant sound-evoked activity. Example calcium traces with means and standard errors are shown in the ROI with asterisk.

(D) Sound-responsemap in the imaged location. The BFmap of each field of viewwasmerged and superimposed in the z axis to show the BFmap in the xy plane.

The BF of each xy location was analyzed as the average BFs of neurons.

(E) Identification of overlapping ROIs imaged during both the stimulus and reward tasks. The colored and white ROIs were detected as overlapping and non-

overlapping, respectively. The magnified view of the square site is shown on the right.

(F) Average activity of task-relevant neurons across trials. The activity was normalized between 0 and 1 and aligned based on the peak activity timings in the

stimulus task.

(G) Peak activity timings of neurons across tasks. Based on the peak timings in the reward task (x axis), the proportion of peak timings in the stimulus task is shown

(y axis; the sum of each column is one) (n = 13,581, task-relevant neurons) (Spearman partial correlation eliminating the effect of mice or sessions, time: r = 0.56,

p < 1E�10).

See also Figure S2.
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one-photon wide-field imaging to identify the location of the pri-

mary auditory cortex (Figure 2B).22,23 In passive animals, 13%

(36/280) of all neurons per field of view (FOV) showed tone-

evoked activity in at least one frequency (Figure 2C); the rela-

tively low fraction of tone-responsive neurons is consistent

with previous reports.24–26 We defined a neuron’s best fre-

quency (BF) as the frequency which elicited the highest activity

(Figures 2D and S2A). To image the activity of the same neurons

during both the stimulus and reward tasks, we switched the task

on alternate days, keeping the same FOV (Figure 2E).We defined

‘‘task-relevant neurons’’ (Figure 2F) as any neuron showing

increased activity during trial compared with the inter-trial inter-

val in either the stimulus or reward task (see STARMethods). We

identified 13,581 task-relevant neurons out of 17,523 overlap-

ping neurons (78% of regions of interest [ROIs] per FOV on

average; 6 mice, 83 sessions). The peak activity time and signal

strength of task-relevant neurons were correlated across days

(Figures 2G and S2B)27 (for details, see STAR Methods section

Supplemental note).
Sound responses are modulated by the stimulus and
reward context
We investigated whether activity in the auditory cortex was

modulated by the stimulus or reward context. The median in-

ter-sound-interval was set to 6.6 s to minimize task-unrelated

sound-evoked activity changes.28 We analyzed sound-respon-

sive neurons with distinct activity during stimulus presentations

and differing activity across tone clouds (Figure 3A). 1,735 neu-

rons showed sound responses in both tasks. Each neuron’s

‘‘preferred tone cloud’’ was defined as the stimulus eliciting

maximum activity. This preference remained consistent between

tasks and correlated with passive pure tone presentation

frequencies (Figures S2C and S2D). 13% of total neurons re-

sponded to sounds, whereas 78% were influenced by the task.

Thus, consistent with previous findings in the auditory cortex,25

most task-responsive neurons were not sound-responsive.

We compared the activity between left and right blocks (Fig-

ure 3B) and found that 35.7% of sound-responsive neurons

were modulated by the changes in stimulus-probability or
Current Biology 33, 4470–4483, October 23, 2023 4473



Figure 3. Sound responses are modulated by context about stimulus probability and reward amount

(A) Sound-responsive neurons in an example field of view (FOV) in Figure 2E. Among the overlapping neurons (white), we defined the task-relevant neurons (gray).

Among the task-relevant neurons, we colored neurons according to the preferred tone cloud that elicited the highest activity in sound-responsive neurons.

(B) Traces of one neuron during left- and right-block trials in the stimulus probability task. The neuron increased the activity in the right block comparedwith the left

block. (Bottom) Tuning curve shows the activity during sounds. Means and standard errors.

(C) Number of sound-responsive neurons with context modulation (p < 0.05, two-sided Mann-Whitney U test at preferred tone cloud).

(D) Comparison of context modulation of activity between the sound-responsive and task-relevant neurons. Context modulation of sound-responsive neurons

was greater than sound-unresponsive task-relevant neurons (0.089 ± 0.16 vs. 0.025 ± 0.030, stimulus modulation; 0.048 ± 0.075 vs. 0.024 ± 0.027, reward

modulation; mean ± SD) (linear mixed-effects model in 6 mice, 83 sessions).

(E) Context modulation of sound-responsive neurons. Sound-responsive neurons were categorized to the difficult, moderate, and easy neurons, depending on

their preferred tone clouds. Scatterplot compared the activity of the preferred tone cloud between blocks. The red and blue points show the significant increase of

activity in the preferred and non-preferred block, respectively (p < 0.05 in two-sided Mann-Whitney U test). p value shows the population comparison with linear

mixed-effects model in 6 mice, 83 sessions. The activity was aligned to the preferred tone category. Tuning curve shows the medians and robust standard errors

of activity of sound-responsive neurons in the preferred and non-preferred blocks. x axis is the proportion of preferred tone category (*p < 0.01 in linear mixed-

effects model).

(F) Comparison of block-modulated activity between the stimulus and reward tasks. In each session, we analyzed the median block modulation of sound-

responsive neurons (linear mixed-effects model).

See also Figures S2, S3, and S6.
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reward-amount (Figure 3C). Context modulation of sound-

responsive neurons was greater than sound-unresponsive

task-relevant neurons (Figure 3D). We then aligned the activity

of each sound-responsive neuron based on its ‘‘preferred
4474 Current Biology 33, 4470–4483, October 23, 2023
block,’’ i.e., the block associated with the preferred tone cloud

stimulus for that neuron. Specifically, the preferred block was

‘‘left’’ for neurons whose preferred tone cloud was in the ‘‘low’’

category and ‘‘right’’ for neurons whose preferred tone cloud
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was in the ‘‘high’’ category. We categorized the neurons by their

preferred tone difficulty and compared activity between blocks

elicited during the preferred tone cloud stimulus. We found

that the activity could be modulated in either the positive or

negative direction (Figures 3E, S3A, and S3B), irrespective of

choices (Figures S3C–S3E). Modulation was stronger for the

reward task (Figure 3F). These results indicate that the sound

encoding by neurons in the auditory cortex is modulated by stim-

ulus or reward expectation and that the magnitude of the

neuronal modulation is correlated with the behavioral bias

(Figure 1D).

Neural decoding of stimulus category is comparable to
mouse behavior
We next asked how other brain areas could make use of neural

representations in the auditory cortex to decode the behaviorally

relevant stimulus category (low- or high-frequency). We first

quantified the decoding performance of single neurons during

sound presentation (0.6 s) over the whole session (ignoring the

block structure), using a model in which downstream areas

decode the stimulus category by setting an optimal threshold

on the recorded signal (Figure 4A). For each session, the optimal

threshold was determined on a training set and then used to

classify the neural activity into low and high tones. We found

that in a significant fraction of sessions (25% and 55%, respec-

tively, out of 83 sessions in the stimulus and reward tasks), the

performance of an ideal observer decoding the best single

neuron was better than that of the mouse itself during that ses-

sion (Figures 4B–4D), consistent with similar observations in

primates.20,29,30

We then quantified the decoding performance of the entire

neuronal population recorded simultaneously. We used a sparse

logistic regression (SLR) decoder, with nested 10-fold cross vali-

dation (Figure 4E).31 We chose the SLR decoder because it

performed as well as or better than other decoders tested (Fig-

ure S4A) and because it has a natural interpretation as a readout

by a population of downstream neurons. We again selected the

weights optimal for decoding the stimulus category. The neuro-

metric function obtained from this optimal SLR decoder was

analyzed by binarizing the probabilistic estimates (Figure 4F).

To avoid overfitting, the SLR was fitted with an L1 regularizer,

which identified sparse subsets of neurons for decoding (Fig-

ure 4G). Population decoding of sound was better on correct tri-

als than on error trials (Figure S4B).

As expected, decoding by the population was better than de-

coding by single neurons (Figure S4C), indicating that the sound

representation was distributed across the population. Popula-

tion decoding was often better than the performance of the ani-

mal, even when the biases were not exploited by the neural

decoder (Figure 4H). That is, the decoder was trained and tested

using all trials, regardless of whether they were from a left or right

block. All the decoding performance was tested using neuronal

activity elicited during sound presentation (0.6 s).

One possible concern is that this relatively long time window

might exceed the window over which mice accumulate sound

evidence and thus might provide the optimal neural decoder

with an unrealistic advantage compared with the mouse’s

behavior (Figures S4D–S4G). However, behavioral analysis sug-

gested that mice did accumulate evidence over the entire sound
presentation (Figure 4I), suggesting that the accumulation was

not responsible for the superior performance of the neural

decoder. Thus, the optimal readout of both single neurons and

neural populations often matched or exceeded the mouse’s per-

formance on a given session.

Noise correlation among neurons with similar tuning
constrains sound decoding performance
Although, as expected, population decoding was consistently

better than single-neuron decoding on single trials (Figure S4C),

in some cases the advantage gained from using extra neurons in

the decoder was relatively small. If extra neurons each carried in-

dependent information about the stimulus, then we would

expect the inclusion of additional neurons to improve the perfor-

mance of the decoder; but if the information represented by

different neurons were redundant, then the decoding perfor-

mance would saturate. We therefore examined the role of sin-

gle-trial correlations in limiting the readout of the stimulus from

the neuronal population.32–34

We first investigated the ‘‘signal correlations,’’ defined as the

correlation between the average stimulus-evoked calcium ac-

tivity for each of the six tone clouds, for all sound-responsive

neurons. As expected, signal correlations were higher among

neurons with the same preferred tone cloud than neurons

with different preferences (example session, Figure 5A; 83 ses-

sions, Figure 5B). We then explored noise correlations and

found a similar tendency. The activity of neurons with similar

stimulus-driven responses were more correlated on single trials

than those with different responses (Figures 5A and 5C). Noise

correlations were higher between neurons with same preferred

stimulus, independent of the distance between them (linear

mixed-effects model, p = 0.53 and 8.4E�16), indicating the

higher noise correlation was not simply a consequence of the

tendency of similarly tuned neurons to be closer on the tono-

topic map.

To assess the effect of these noise correlations on stimulus

decoding, we compared the performance of a decoder acting

on single-trial activity to the performance of a decoder with ac-

cess to uncorrelated activity obtained on scrambled trials. As

expected, decoding based on scrambled trials continued to

improve as more neurons were included in the decoder,

whereas the performance of the single trial decoder reached

an asymptote after around 10–20 neurons and reached 95%

of maximum correct rate with 8 neurons on median (Figure 5D).

These results confirm the role of noise correlations in limiting

the potential for reading out activity from a population of neu-

rons. However, the fact that the performance of even the

single-trial population decoder often outperformed that of the

animal itself (Figure 4) suggests that these noise correlations

were often not the sole or even main factor in limiting the ani-

mals’ performance.

Optimal decoder for stimulus category is stable
Our previous analyses indicate that cortical noise is not the sole

or even main factor limiting the performance of the animal on this

task, suggesting that the performance is limited by representa-

tions outside of the auditory cortex. This raises the question:

how can downstream brain areas decode neural representations

in the auditory cortex if those representations are themselves
Current Biology 33, 4470–4483, October 23, 2023 4475



Figure 4. Comparable performance of neural sound decoding and mouse behavior

(A) Sound decoding in single neurons. We optimally identified a threshold to discriminate the high- and low-category tones in each neuron (cross validation).

(B) Distribution of correct rate in single neurons. The vertical bar shows the average correct rate of mice behavior (83 sessions). Sound-responsive neurons are

separated into context modulated (red) and non-modulated (black).

(C) Neurometric and psychometric functions in single session. The neurometric function was analyzed from the best sound-decoding neuron in a given session.

(D) Scatterplot comparing the sound discrimination between the best single neuron and mouse behavior in each session. Single neurons often outperformed the

mouse behavior (linear mixed-effects model in 6 mice, 83 sessions).

(E) Population sound decoding with sparse logistic regression (SLR). SLR sparsely extracted neurons for decoding.

(F) Sound decoding in one session. Each point shows the estimated probability of high tone category in each trial (400 trials) (top). The probabilistic sound

estimation was binarized at 0.5 to analyze the neurometric function (bottom). Error bars show the 95% confidence intervals.

(G) Means and standard errors of correct rate of SLR as a function of number of neurons (83 sessions in each task).

(H) Comparison of performance between neuronal population and mouse behavior (linear mixed-effects model in 6 mice, 83 sessions).

(I) Psychophysical kernels. Logistic regression analyzed how tones at each time point and the context information contributed to the choice behavior. Medians

and median absolute deviations (left, *p < 0.01 in linear mixed-effects model in 6 mice, 83 sessions).

See also Figure S4.
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changing because of contextual adaptation? One might imagine

that changing representations might lead to miscommunication

between brain areas, for the same reason that changing the

meaning of red and green at traffic lights might disrupt the flow

of traffic.
4476 Current Biology 33, 4470–4483, October 23, 2023
To maximize reward in this task, an ideal observer (as a model

of areas downstream of the auditory cortex) with access to the

neural activity in the auditory cortex, and with perfect knowledge

of context, would make choices by combining auditory activity

and stimulus context as follows:



Figure 5. Noise correlations limit sound decoding

(A) Signal and noise correlations in one session. Cross correlogram shows the correlations between sound-responsive neurons, sorted using hierarchical

clustering. Color bars at the top and left show the preferred tone cloud of neurons. Scatterplot shows the relationships among signal correlations, noise cor-

relations, and the physical distance between neurons. Red and blue dots show the data from neurons with same and different preferred tone clouds, respectively

(easy stimuli only). Lines show the moving average.

(B)Signal correlation in 83sessions. (Left)Boxplotscompared the signal correlationbetweenneuronpairs of sameanddifferent preferred tone clouds (p<1E�10 in

linearmixed-effectsmodel in 6mice, 83 sessions, plotswithout the outliers). (Right) Signal correlation in all neuron pairs as a function of distance between neurons.

Medians and robust standard errors (binned every 100 mm of distance between neurons) (*p < 0.001 in linear mixed-effects model in 6 mice, 83 sessions).

(C) Noise correlations, as in (B). High noise correlations in the neuron pairs with same preferred tone cloud were observed irrespective of distances (left: p =

1.3E�25 and 2.1E�18 in linear mixed-effects model in 6 mice, 83 sessions; right, *p < 0.001).

(D) Noise correlations limit performance.Means and standard errors (left). Vertical dotted line shows themedian number of neurons needed to achieve 95%of the

maximum correct rate of population decoding.We extracted the neurons that achieved the highest correct rate in non-shuffled activity and compared the correct

rate with the de-correlated activity (right) (linear mixed-effects model in 6 mice, 83 sessions).
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Optimal choice = F½Cortical sound representation

ðstimulus;contextÞ;context�:
In this equation, the optimal choice is some function F of both

the population response and the context. Context enters into the

formation of optimal choice in two ways. First, it enters implicitly,

by changing the neural representation of the sound itself, via the

term Cortical_sound_representation (Figure 3). Second, context

enters explicitly, by changing the optimal action for a given best
estimate of sound category. For example, if the neural response

encoding the auditory stimulus is completely ambiguous, then a

context in which the higher reward is at the left port would dictate

that the optimal choice would be ‘‘left.’’ Thus, the optimal choice

can be formed by first estimating the stimulus category from the

neural response (given the context) and then selecting the choice

that maximizes the reward (given the estimate of the stimulus

category). Below, we consider these two potential effects of

context separately.
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Figure 6. Stable sound readout from the auditory cortex

(A) Scheme of sound decoders. Decoder with dynamic weights trained and tested in the same block (optimal decoder). Constant weights had one series of

weights across blocks. Discordant weights trained and tested with different blocks (e.g., trained the decoder in left block and tested in right block).

(B) Means and standard errors of neuromeric functions in constant decoder (6 mice, 83 sessions in each task).

(C and D) Comparison of decoding performance (6 mice, 83 sessions). Sound decoding with constant weights had comparable performance with the dynamic

weights (linear mixed-effects model).

(E) Twomodels for how themouse exploits context for choice. The non-autonomous choicemodel and no-context model assumed the perfect and no knowledge

of context, respectively.

(F) Comparison of decoding performance in correct rate of sound category (left) and received reward amount (right) (linear mixed-effects model in 6 mice, 83

sessions).

(G) Context decoding from the auditory cortex (6 mice, 83 sessions).

(H) Biases in the neuromeric functions across blocks compared with those in themice behaviors. The bias was the difference of average right choice probability in

neuromeric functions between blocks (linear mixed-effects model in 6 mice, 83 sessions: non-autonomous model, p = 1.7E�4 and 0.086 in the stimulus and

reward tasks; no-context model, p = 5.6E�6 and 2.3E�17).

See also Figures S5 and S6.
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We first consider the implicit effect of context, through its ac-

tion on the neural encoding of the stimulus. In principle, the

optimal strategy for decoding the stimulus category from the

context-modulated neural response would be to use different

decoders for each of the two contexts. To quantify the effect
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of context on decoding, we therefore compared the perfor-

mance of a ‘‘dynamic weights’’ decoding strategy to that of

an invariant ‘‘constant weights’’ decoder (Figure 6A). When an

invariant constant weights decoder (trained on data from both

blocks) was used, performance was similar across blocks
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(Figure 6B; linear mixed-effects model in 6 mice, 83 sessions,

p = 0.073 and 0.079 in the stimulus and reward tasks). More-

over, sound decoding did not improve with a dynamic weights

decoder in which weights were trained and tested with data

within a block (Figure 6C; in this as in all analyses, performance

was tested on out-of-sample trials, i.e., samples not used for

training). Even using different blocks for training and testing

(e.g., trained with trials from the left block and tested with trials

from the right block) led to only a modest decline in perfor-

mance compared with the dynamic weights decoder (Figure 6D;

1.6% and 0.37% on median in the stimulus and reward tasks).

Furthermore, the stimulus category was identified more accu-

rately than the correct choice (Figures S5A and S5B). Choice

decoding reached a maximum after delivery of the reward or

noise burst (Figure S6; see STAR Methods). These analyses

indicate that, despite changes in sound-evoked responses

induced by manipulating context, the identity of the sound

can be read out effectively by an invariant decoder that does

not adapt to these manipulations.

We next consider the explicit effect of context on choice. We

first compared the performance of a decoding model that can

exploit perfect knowledge of the context (‘‘non-autonomous

choice model’’) with one that does not exploit context (‘‘no-

context model’’) (Figures 6E and 6F). Both models first de-

coded the tone category from the activity in the auditory cortex.

The non-autonomous choice model used the optimal decision

threshold to compute choices, while the no-context model

directly used the outputs of sound decoding as the choices.

This comparison revealed the large impact that context can

have on this task. The non-autonomous choice model achieved

a larger amount of reward compared with the no-context model

in 74 and 78 out of 83 sessions in the stimulus and reward task

(Figure 6F right). However, because making an optimal choice

in this task requires perfect knowledge of the context, we

next attempted to determine the context using only information

available from the auditory cortex (‘‘autonomous choice

model’’). Using the SLR decoder with 10-fold cross validation,

we found that the context could only be imperfectly decoded

from the population activity (Figure 6G, 66% and 70% on

average, chance level 50%). In general, stimulus decoding

was consistently better than context decoding (Figure S5C),

and the context decoded from the auditory cortex was insuffi-

cient to account for the observed bias in the neurometric func-

tion across blocks (Figure S5D). In other words, it does not

appear that the auditory cortex represents the behavioral

context well enough to account for the observed context-

dependent shifts in the psychometric curves. Taken together

with the invariance of sound decoding, these analyses suggest

that the mouse makes choices by combining the auditory stim-

ulus with a representation about context, which is encoded

downstream (or outside) of the auditory cortex. We compared

the shifts in the psychometric curve predicted by the non-

autonomous choice model and no-context model to the

observed behavior of the mice (Figure 6H). For both tasks,

the observed behavior was intermediate between the two

models. This suggests that, consistent with Figure 1F, the ani-

mal makes suboptimal use of the block structure of the task but

exploits more of the available context information than is easily

decoded from activity in the auditory cortex.
Shifts of decoding threshold are small compared with
contextual modulation of neurons
The stability of the stimulus decoder, given the variability of the

neural encoding, seems to pose a conundrum because wemight

expect that the optimal decoder would vary as the sound repre-

sentationwasmodulated by changes in context. One straightfor-

ward resolution of this conundrum would be if the decoder relied

only on neurons whose activity was not modulated by context.

However, as expected, sound decoding relied mainly on

sound-responsive neurons (Figure S7A) while the decoder relied

on both neurons modulated by context and those not modulated

by context (Figure 7A). Thus, stable sound decoding was not

achieved by relying only on neurons not modulated by context.

To resolve this apparent conundrum, we investigated the

relationship between sound encoding and decoding in single

neurons. Figure 7B shows a representative neuron with strong

stimulus contextual modulation. However, even though contex-

tual modulation was strong (Figure 7B, bottom), the decoding

threshold (vertical green line, df/f) was almost unchanged, sug-

gesting that the change in decoding thresholds was small

compared with the contextual modulation. This relationship

was observed across the population of sound-responsive neu-

rons extracted in the decoder (Figures 7C, left, and S7B),

because the contextual modulations and changes in decoding

thresholds wereweakly correlated (Spearman partial correlation,

r = 0.13 and 0.070 in the two tasks). The contextual modulations

did not improve the decoding performance with dynamic

weights (Figure 7C, right). In these analyses, the decoding per-

formance was estimated without cross validation to verify that

the decoding with block-dependent weights was always better

than with a constant weight. These results indicate that the de-

coding filter of each neuron was relatively stable compared

with their contextual modulation. One possible role of the

contextual modulation with the stable decoding filter was to

improve the decoding performance (Figures 7D and S7C).

DISCUSSION

We have used two-photon calcium imaging to record the simul-

taneous activity of hundreds of neurons in the auditory cortex of

mice performing a context-dependent, two-alternative-choice

auditory decision task. We find that (1) both the animal’s

behavior and neuronal activity are context-dependent; (2) the ac-

tivity of single neurons in the auditory cortex can often be de-

coded to yield performance as good as or even better than the

animal, and adding additional neurons often leads to relatively

minor improvements in performance; (3) the optimal stimulus

decoder remains largely invariant, in spite of context-dependent

changes in encoding; and (4) the context decoded from the audi-

tory cortex was insufficient to account for the animal’s behavior.

Our results suggest a model in which downstream areas can

easily read out information about the stimulus from the activity

in the auditory cortex, in spite of context-dependent changes

in activity.

Since the earliest recordings in the auditory cortex, it has been

clear that neuronal activity in the auditory cortex is strongly

modulated by non-sensory features. Hubel described neurons

that ‘‘appear to be sensitive to auditory stimuli only if the cat

‘pays attention’ to the sound source.’’1 Subsequent studies
Current Biology 33, 4470–4483, October 23, 2023 4479



Figure 7. Context modulation of sound responses does not disrupt stable sound decoding

(A) Proportion of context-modulated sound-responsive neurons extracted in sparse logistic regression (SLR) compared with that in all sound-responsive neurons

(linear mixed-effects model in 6 mice, 83 sessions in each task).

(B) Representative neuron with context-modulated activity and stable decoding filter. (Top) Decoding thresholds (green lines) which separated the distribution of

activity during low and high tones were similar between blocks. (Bottom) Contextual modulation of activity. Data presentation same as in Figure 3B.

(C) Decoding threshold, contextual modulation, and correct rate of sound-responsive neurons extracted in the decoder. The contextual modulations were larger

than the change in decoding threshold between blocks (left) (linear mixed-effects model in 6 mice, 83 sessions). Correlation between the decoding performance

and contextual modulation (right) (Spearman partial correlation, p = 0.60 and 0.89). Contextual modulation was the absolute difference of neural activity at

preferred tone cloud between blocks.

(D) Contextual modulation improved decoding performance. D correct rate and D Z scored df/f show the difference of correct rate and the difference of activity

between preferred and non-preferred block, respectively (Spearman partial correlation, p = 4.5E�20 and p = 1.6E�21 in the stimulus and reward tasks).

See also Figure S7.
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revealed that neural responses are modulated by sound statis-

tics, attention, task engagement, and reward expecta-

tion.1–3,5–7,35 Reinforcing the importance of such contextual

modulation, we found that only 13% of neurons responded to

tones presented during passive listening, whereas 78% of neu-

rons responded to some component of the task and about a third

(36%) of sound-modulated neurons weremodulated by changes

in either reward amount or stimulus probability. This modulation

raised questions about how downstream brain areas could reli-

ably decode stimulus identity.

To address these issues, we adopted a decoding approach,36

and assessed how well an ideal observer, with access to activity

of hundreds of auditory cortex neurons, could perform on this

auditory decision task. In pioneering experiments, Newsome

and colleagues related the activity of pairs of neurons in monkey

area MT (middle temporal area of extrastriate visual cortex) to

decisions about motion direction.29,30 We found, in agreement

with these early results, that single neurons could be decoded

to yield performance comparable to that of the animal.20,37,38

This raised the question of why decoding the activity of multiple

neurons simultaneously would not do even better. Newsome and

colleagues, extrapolating from pairs of neurons, concluded that

correlations among neurons limited decoding fidelity. In princi-

ple, such correlations could increase or decrease decodability

of a population compared with uncorrelated activity, depending

on the nature of the correlations.34,39 Recent recordings of large

neuronal populations with two-photon imaging have extended

these results beyond pairs of neurons in the context of stimulus
4480 Current Biology 33, 4470–4483, October 23, 2023
encoding.40 Here, we have found that the same principles apply

in the auditory cortex. We have shown directly that, in behaving

animals, decoding the activity of hundreds of auditory neurons

simultaneously does not dramatically increase the neurometric

performance compared with decoding the activity of one or

just a few of the best neurons (Figure 5D).

Given the substantial fraction of neuronsmodulated by context

in this task,8,41–46 we expected that the optimal decoding filter

would vary in order to adapt to thismodulation. Surprisingly, how-

ever, we found that a single linear decoder performed as well as

one that adapted from block to block; the representation of stim-

ulus was orthogonal to the representation of context.47 In neural

terms, this implies that there is no need for hypothetical down-

stream brain areas decoding the stimulus using the output of

the auditory cortex to ‘‘know’’ the behavioral context. On the

other hand, at the behavioral level, mice do exploit behavioral

context in this task to maximize reward (Figure 1). This implies

that the behavioral context is combinedwith stimulus information

outside the primary auditory cortex (Figure 6). Candidate brain

areas are the medial prefrontal cortex,48 parietal cortex,11,49,50

retrosplenial cortex,51 anterior striatum,52 and secondary audi-

tory cortex,4,53–57 where neurons have been shown to be modu-

lated by stimulus or reward expectation. Our study also points to

the need for exploring high-resolution methodologies like high-

density silicon probes58,59 to bridge the gap in temporal resolu-

tion compared with two-photon calcium imaging (Figures S4D–

S4G). Although definitive determination of the causal role of the

auditory cortex and downstream regions in perceptual decisions
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requires manipulations of activity, the decodability of the repre-

sentations in the face of modulation observed in this study was

nonetheless suggestive.

The fact that a simple context-invariant linear model can effec-

tively decode stimuli in the face of context-dependent modula-

tion of activity provides clues as to how the cortex represents

stimuli and context. Further experiments are needed to

determine whether our results generalize to other sources of

contextual modulations, such as thirst, attention, and task

engagement.1,3,5–7,59 It would also be of interest to explore

how contextual modulation of auditory neurons is acquired by

imaging before, during, and after training.
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Carandini, M., Harris, K.D., Callaway, E.M., Keller, G., Rózsa, B., et al.
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Funamizu_et_al_2P_auditory_public

Other

Bpod framework (control for behavioral task) Sanworks r0.5

Microphone for sound calibration Brüel and Kjaer Type 4939
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to Akihiro Funamizu (funamizu@iqb.u-tokyo.ac.jp).

Materials availability
This study did not generate new materials.

Data and code availability
Data analyses were conducted in Matlab scripts. Original codes are going to be publicly available as of the date of publication on

Github. The link is listed in the key resources table. The imaging data (df/f) are deposited in Zenodo. The link is in the key resources

table. The other imaging data which are not deposited because of the large data size (> 1 TB) are available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All animal procedures were approved by the Cold Spring Harbor Laboratory Animal Care and Use Committee in an Association for

Assessment and Accreditation of Laboratory Animal Care (AAALAC International)-accredited facility and carried out in accordance

with National Institutes of Health standards. Mice were housed in a temperature-controlled room with non-inverted, normal 12h/12h

light/dark cycle.

Chronic window preparation
Weused 6male transgenic GCaMP6fmice (ai93+/–; lsl-tTA+/+; emx-cre+/–) (ai93, Jax stock 024103; lsl-tTA, Jax stock 008600; emx-

cre, Jax stock 005628), 8 to 20 weeks of age.63–66 Before surgery, mice were restricted to 1.5 mL of water per day for at least two

weeks.Mouseweight was checked daily to avoid dehydration. Two days before surgery,mice got free water access. The surgery had

two steps. On day 1, we implanted a head bar for head-fixation of mice. On day 2, after recovery from the head-bar surgery, we im-

planted the cranial window over the auditory cortex.

For the head-bar surgery (day 1), mice were implanted with a custom designed light-weight head bar. Mice were anesthetized with

isoflurane (1.5% at induction, below 1% to maintain) with an additional analgesic (meloxicam 2mg/kg subcutaneous) and eye
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ointment. The mice were placed in a stereotaxic apparatus. The scalp was removed above the entire cortical area. The skull was

cleaned with hydrogen peroxide. The head bar was attached to the skull with metabond adhesive (parkell, S380). The craniotomy

surgery (day 2) was done under isoflurane anesthesia, using the headbar to immobilize the head. Eye ointment was applied. Melox-

icam (2 mg/kg subcutaneous), enrofloxacin (5mg/kg subcutaneous) and dexamethasone (2 mg/kg subcutaneous) were adminis-

tered.67 Enrofloxacin was also applied once per week to further prevent infection after surgery. After opening the skin, lidocaine

was injected to themuscle above the auditory cortex. Themuscle was removed and a craniotomywasmade over the left hemisphere

of auditory cortex (2.9 mm posterior and 4.2 mm lateral of the bregma) with a diameter of 3 mm, without puncturing the dura mater.

A 3 mm diameter glass window (CS-3R, Warner Instruments) was mounted directly onto the dura and sealed with a mixture of krazy

glue and dental acrylic powder (Lang, Jet denture repair powder/liquid). After surgery, water was given freely until the mouse

recovered.

After recovery from surgery, behavioral training started. Mouse weight was carefully monitored, and additional water was given

after daily training to keep the weight over 85% of the pre-restriction weight.

METHOD DETAILS

Behavioral training
Behavioral setup

The setup including part numbers and 3D print files was described before.17 The setup was placed inside a custom sound booth by

Industrial Acoustics Company (Bronx, New York). The training was done with head-restrained mice positioned over a cylindrical

treadmill running on ball bearings. The rotation of the treadmill was measured with a rotary encoder (200 P/R, Yumo). Two speakers

(Avisoft Bioacoustics) were placed diagonally in front of mice for auditory stimulation. The speakers were calibrated with a free-field

microphone (Type 4939, Brüel and Kjaer).68 Water was delivered through 19 gauge stainless steel tubing connected to solenoid

valves (Lee Company) located outside the sound box. Water was calibrated weekly and was delivered through three spouts

connected to a custom lick detection circuit. The behavioral systemwas controlled by a customMatlab (Mathworks) program running

on Bpod framework (https://sanworks.io) in Linux.

Task structure

The tone frequency discrimination task required mice to select the left or right spout depending on the frequency of the sound

stimulus. Mice were required to withhold licking for 0.5 sec before a trial start. A blue LED indicated the trial start (end of inter-

trial-interval) and mice were required to lick the center spout to start a sound stimulus with a delay of 0.1 to 0.3 sec. The sound

stimulus was a ‘tone cloud’ stimulus as described before69 (see below). At the end of the tone cloud, mice received a small reward

of water (0.5 ml) at the center spout. During the sound stimulus, mice were allowed to lick any spout. When the tone cloud contained

more low tones than high tones (low category tone), the selection of left or right spout provided a large reward (2 ml of 2% sucrose

water) (correct) or a noise burst (0.2 sec) (error), respectively. The high category tone cloud had the opposite correct and error

choices. The time between the side lick and reward/noise varied between 0 and 0.2 sec. The interval of tone cloud between trials

was at least 5.4 sec (6.6 sec in median), except in 1 out of 96,420 trials in 166 sessions (4.4 sec), to eliminate a sound adaptation

in the auditory cortex.28 When mice did not select the side spout within 30 sec from the trial start, a new trial started.

Stimulus generation

The tone cloud was 0.6 sec long and consisted of a series of 30 ms pure tones with rise/decay ramps of 3 ms, presented at a rate of

100 tones per second. The frequency of each tone was sampled from the bottom 6 and top 6 tones of 18 logarithmically spaced slots

(5 to 40 kHz). The tone cloud in each trial contained the low (5 – 10 kHz) or high frequency tones (20 – 40 kHz), and was categorized as

low or high depending on the dominant frequency. The proportion of high tones in each tone cloud was selected from 6 settings (0,

0.25, 0.45, 0.55, 0.75, 1) with the probability of (25%, 12.5%, 12.5%, 12.5%, 12.5%, 25%, i.e., 2:1:1:1:1:2). In the stimulus probability

task, we changed the probability between categories (see below) but kept the stimulus probability within the category constant (i.e.,

2:1:1). The intensity of tone cloud was constant in each trial, but sampled from either 70, 75 or 80 dB SPL (sound pressure level in

decibels with respect to 20 mPa) to discourage mice from using loudness to solve the task.

Stimulus probability and reward amount tasks

Every session started with an easy block where only the 100% low or high tone cloudswere presented 60 to 80 trials with the stimulus

probability of 50%-50% (low-high). The stimulus probability task then changed the stimulus probability of the low or high category

tones in blocks of 175 to 220 trials (200 trials in 70 out of 83 sessions). The stimulus probability of one block started with either 70%-

30% (low-high, left block) or 30%-70% (right block), and the probability reversed in the next block. After mice experienced the two

blocks, the stimulus probability became 50%-50% for the rest of the session (post block). The reward amount for the correct choice

was constant in all trials (2 ml).

The reward amount task changed the reward amount of the left and right spout in blocks, while the stimulus probability was 50%-

50% (low-high) in all trials. In each block, the reward amount for the left-right correct choice was either 3ml-1ml or 1ml-3ml (left or right

block). The block schedule was the same as in the stimulus probability task.

Training schedule

The initial phase of training was described previously.17 On the first day of training, we used only stimuli with 0.1 or 0.9 proportion high

tones and free sucrose water from the correct side spout (free-reward trials). From the second day of training, we mixed the free-

reward trials and the choice trials which required mice to select side spouts to get reward. Mice learned to lick the side spouts
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independently, presumably by feeling the delivery of the free-reward and licking towards it. We gradually decreased the proportion of

free-reward trials. Based on performance (no strict criteria), we introducedmore difficult tone clouds. The inter-trial-interval was then

increased gradually by 3 days of training. We introduced the stimulus probability task and reward amount task after mice succeeded

in getting reward in the task without any manipulations of stimulus or reward (about 90 % correct in 100 % low or high tone clouds).

Before starting the imaging sessions, mice were fully trained on the stimulus and reward amount tasks.

Recording schedule

Each mouse performed both the stimulus probability task and reward amount task. We imaged the same field of view (FOV) and

neurons during both tasks as follows: we imaged from one FOV during the stimulus probability task (day 1) and reward amount

task (day 2), then switched to another FOV during reward amount task (day 3) and stimulus probability task (day 4). Day 5 had the

same procedure as day 1 and so on. We did not use the following sessions for analysis: (i) mice did not complete the two blocks

with opposite stimulus probability or reward amount in a given session, (ii) mice made errors in more than 25 % of trials with either

the 100% low or high tone cloud. In these cases, the same combination of FOV and taskwas selected the next day. Exceptionally, the

same FOV was imaged in 11 and 2 sessions in the stimulus probability and reward amount tasks, respectively. In these sessions, we

selected one session for analysis only based on the behavior data without analyzing the imaging data. Also, sessions described

below were not used in the analyses: (i) the FOV was imaged only during either stimulus probability or reward amount task (7 and

1 sessions in stimulus and reward task), (ii) the FOV had a few bright cells which might indicate over-expressed GCaMP6f (1 session

each task), (iii) the difference of imaging date between the two tasks was 17 days (1 session). In total, we analyzed 83 sessions in both

the stimulus probability and reward amount task. The difference of imaging date between tasks was typically one day (1 day

difference, 60 session pairs; 2 days, 15 pairs; 3 days, 7 pairs; 4 days, 1 pair).

Wide-field imaging
To identify the position of primary auditory cortex and determine the locations for two-photon imaging, we conducted one-photon

wide-field calcium imaging through the chronic window.Mice were awake and head-fixed on the treadmill. Two blue LEDswere used

for illumination through fiber guides directed on the window. Emitted photons were captured by a CCD camera (Vosskuehler

1300QF). Frames were acquired at 4 Hz using a custom Labview software (National Instruments). Sound stimuli were presented

at approximately every 6 s. Each stimulus was a 2 s train of pure tone pulses (20 Hz) at the frequency of either 4, 11 or 32 kHz

with the intensity of 70 dB SPL. The sound evoked activity (F) was analyzed in each pixel as follow:

dF

F
=
s � b

b
; (Equation 1)

where s and b were the average intensity of stimulus (2 s, 8 frames) and pre-stimulus frames (2 s, 8 frames), respectively. Each fre-

quency tone was repeated 10 times in a pseudo random order (30 stimuli in total). The 4-kHz pure-tone evoked a characteristic

constellation of activity in primary, anterior, and secondary auditory fields (A1, AAF and A2 (or SRAF)).22,23 Themost posterior activity

spot was identified as A1 (Figure 2).

Two-photon imaging
After training in the task, we started imaging experiments. As we observed almost no clearly over-expressing cells with GCaMP6f in

our transgenic mice, we continued the experiments for 4 to 12 weeks. We imaged 9 to 21 fields of view (FOVs) from 2 to 3 selected XY

locations per mouse (Figures 2 and S2). The depths of FOVs were between 110 and 510 mm. The FOVs were mainly from layers 2 and

3 (79 out of 83 sessions below 400 mm). On each experimental day, we imaged one FOV of one location.

Imaging was performed using a custom-built two-photon microscope with the objective lens at an adjustable angle to image

auditory cortex without tilting the mouse. The resonant scanner was outside of the sound box, rendering it inaudible inside the

box. We used a 20x/N.A. 1.0 water immersion objective for imaging (Olympus). A Ti:sapphire laser (Chameleon, Coherent) was

operated at 910 nm to excite fluorescence, which was detected with GaAsP photomultiplier tube (Hamamatsu) in the spectral range

of 500 – 540 nm (Chroma ET520/40m-2p). A 12kHz resonant scanning system was used to acquire images at 45 Hz at a resolution of

512 x 512 pixels corresponding to a 380 x 550 mm2 field of view with the 20x objective. The microscope and image acquisition were

controlled by an open source software (ScanImage, Vidrio Technologies62). In each task session, we imaged for about one hour

continuously inmore than 500 trials.When slow drift of the imaging planewas observed, the objective positionwasmanually adjusted

(typically 1 mmat a time) during the inter-trial interval tomatch the recording site as precisely as possible to an average image taken at

the beginning of the session.

Data analysis
All analyses were conductedwithMatlab (MathWorks). In the figures, error bars of themean represent standard deviation or standard

error of themean (s.e.m.). Error bars of themedian representmedian absolute deviation (MAD) or robust standard error (1.4826*MAD/

sqrt(n); n = number of data points).70

Behavioral analysis

In every behavioral task session (one per day, one imaging plane at one location), trials in which mice succeeded to select the left or

right spout were analyzed. In total, we analyzed 166 sessions from 6mice from the stimulus probability task (83 sessions) and reward
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amount task (83 sessions) (mouse1, 20 sessions; mouse2, 42 sessions; mouse3, 28 sessions; mouse4, 24 sessions; mouse5, 34 ses-

sions; mouse6, 18 sessions). Each field of view (FOV) was imaged during the two tasks.

We used a logistic regression to quantify the behavior bias between blocks (psychometric function) (Figure 1). The same equation

was used to analyze the neurometric function of single and population neurons described later (Figures 4 and 6)71:

p = l1 +
1 � l1 � l2

1+exp ð � AÞ ;
A = b0+b1Ehigh + b2S+ b3S3Ehigh; (Equation 2)

where pwas the probability to select the right spout. b0� 3 were regression coefficients. b1 determined the slope of the psychometric

curve of behavior (stimulus sensitivity). b2 quantified the choice bias between the left and right blocks, while b3 quantified the change

of stimulus sensitivity by blocks. l1 and l2 were lapse rates which were l1 = l2 for the model fitting in Figure 1E. Ehigh was the pro-

portion of high frequency tones in a tone cloud. Ehigh had 6 settings (0, 0.25, 0.45, 0.55, 0.75 1). Swas -1 or 1 for the left or right block.

For model fitting, we used the trials only during left and right blocks.

To determine which parameters were relevant for mice behavior, we used a likelihood ratio test.We first averaged the log likelihood

of the logistic-regression model across sessions in each mouse and then averaged across mice (Figure 1E).72 The parameters were

set to achieve the maximum likelihood. In addition, we modeled the mice behavior in each block with the full-parameter logistic

regression model (Equation 2). This full model was used to analyze the difference of right choice probability between blocks (D frac-

tion rightward) based on the average choice probability in logistic regression in each block (Figures 1D and 6). As the full model was

independently applied to the data in each block, b2 and b3 were set to 0 (4 parameters in total).

Neural analysis

We used an open-source software, Suite2P, for the motion correction and extraction of regions of interest (ROIs) from raw imaging

data (https://github.com/cortex-lab/Suite2P).61 The parameters for Suite2P were default except the diameter of ROIs as 15. ROIs

were then manually extracted with the GUI in Suite2P. Suite2P also detected the overlapping ROIs between the images taken during

the stimulus probability task and reward amount task (registers2P). The parameters for overlap detection were default (proportion of

overlap, 0.6). In each ROI, a neuropil correction was done based on Suite2P. dFF ðtÞwas calculated based on the signal at frame t, F(t),

as follows:

dF

F
ðtÞ =

FðtÞ � F0

F0

; (Equation 3)

where F0 was the average signal during 1 sec (45 frames) before the LED onset (trial start) in each trial.

Task-relevant neurons

For every ROI, dFF ðtÞ were analyzed at the following 6 time windows during the task to investigate task-relevant neurons: (i) between

the LED and sound onsets; (ii) during the sound presentation (0.6 sec); (iii) between 0 and 1 sec from the choice; (iv) between 1 and 2

sec from the choice; (v) between 0 and 1 sec from the reward or noise-burst delivery; (vi) between 1 and 2 sec from the reward or

noise-burst delivery. The neural activity was analyzed in the following trials in each time window: (i, ii) all, low-, or high-category-

tone trials; (iii, iv) all, left-, or right-choice trials; (v, vi) all, reward, or noise-burst trials (3 conditions in each time window). This analysis

was independently applied to the activity during the stimulus probability task and reward amount task (2 tasks). We defined the ROI

as task-relevant when the aligned and averaged activity had a significantly positive value at any time window (6 settings), in any con-

dition (3 settings), and in any task (2 settings) compared to the baseline activity (36 settings in total (6 x 3 x 2)) (one-sided Wilcoxon

signed rank test, p < 0.036 after Bonferroni correction in each comparison). The baseline activity was defined as the activity before the

LED onset with the corresponding time window in each condition. The activity during left and right blocks was used in the analyses

here and hereafter.

Neural encoding

We investigated the activity of sound responsive neurons which had (1) significant increase of activity during sounds (time window of

(ii) in previous section) compared with the activity during inter-trial interval and (2) preferred tone cloud (p < 0.01 in Kruskal-Wallis test)

in both the stimulus probability and reward amount tasks. The preferred tone cloud of each neuron was defined as the stimulus with

the highest average activity in correct trials. The activity of sound responsive neurons were compared between left and right blocks to

identify the block (context) modulated neurons which had significant change of activity between blocks at the preferred tone cloud

(p < 0.05, two-sided Mann Whitney U-test) (Figure 3). The activity was also compared between correct and error trials (Figure S6).

Signal and noise correlation

Signal and noise correlations were investigated using the Pearson correlation coefficient between pairs of sound-responsive neu-

rons. Signal correlation was defined as the correlation coefficient between the mean activity of each 6 tone cloud in a given neuron

pair.33 For the noise correlation, the calcium traces for each of 6 tone clouds were independently z-scored (mean subtracted and

divided by the standard deviation) to get the variability of activity in each stimulus. The noise correlation was defined as the correlation

coefficient between the variability (noise) of neuron pairs.
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Single neuron decoding

Our decoder for single neurons used a simple threshold to categorize the neural activity into low and high tones. The average activity

during sound was used in the decoder. To compute the decoding performance of single neurons (Figure 4), the decoding threshold

was computed from the training data using 10-fold cross-validation and tested in the test data. The cross validation was applied 100

times to reduce the variance of decoding performance from the random grouping. To investigate the relationship between the de-

coding threshold, decoding performance, and block-dependent modulation (Figure 7), we investigated one threshold using all the

data. The block modulation was defined as the difference of median activity between blocks at the preferred tone cloud. The decod-

ing threshold and block modulation were z-scored (mean subtracted and divided by the standard deviation) for population analysis.

Population neural decoding

We used a sparse logistic regression (SLR) to decode sound category (low or high) from the population activity of task-relevant

neurons. We used a software package, sparse learning package (SLEP) (https://github.com/jiayuzhou).60 First, a logistic regression

provided the likelihood of decoding performance as follows:

pðSjF; bÞ =
1

1+exp

�
b0+

PN
i = 1

biFi

� ; (Equation 4)

where S was the tone category. Fi was the average activity (dFF ðtÞ) of each neuron during sounds. N was the number of task-relevant

neurons in each session. bi was the coefficient for neuron i. The SLRminimized the following equation with the regularization param-

eter l:

� 1

T

XT
trial = 1

log ðpðSjF;bÞÞ+ l
XN
i = 1

jbij: (Equation 5)

We used nested 10-fold cross validation to evaluate the decoding performance.31 First, trials of left and right blocks in one session

were equally divided into 10 groups. The 9 groups of datawere used to train the SLR, while the remaining 1 groupwas used to validate

the decoding performance. We repeated all the 10 combinations of training and test data to evaluate the performance in all trials. The

regularization parameter lwas determined with a 10-fold cross validation within the training data (9 groups of original data), such that

the test data (the remaining 1 group of data) was neither used to determine l nor b. The nested cross validation was applied 100 times

to reduce the variance of decoding performance from the random grouping. The likelihood of SLR was binarized at 0.5 (decision

threshold) to get the correct rate in each session. The binarized outputs were directly used as the choice outputs in the no-context

model, while the non-autonomous choice model had the optimal block-dependent decision thresholds for choices (Figure 6E). The

neurometric function in each block was analyzed based on the binarized likelihood in SLR. Choice bias in the neurometric function

was analyzed with the full-parameter logistic regression model which was independently applied in each block (Figures 4 and 6;

Equation 2).

Same as the sound decoding, the choice and context decoding were performed with the nested 10-fold cross validation to esti-

mate the choice and context in each trial, respectively (Figures 6 andS5). The output of context decoding in each trial was used for the

context input of the autonomous choice model (Figure S5D). In all the sound-, choice- and context-decoding with SLR, we used the

activity of task-relevant neurons.

We investigated the sound decoding performance on shuffled neural data to assess the effect of noise correlations on population

neural decoding (Figure 5D). In every task-relevant neuron, we swapped the activity for 2 trials with the same tone cloud and inves-

tigated whether the swap increased or decreased the correlations among neurons. If the average population correlations decreased

with the swap, we accepted the swap and otherwise rejected. In each neuron in each tone cloud, we repeated the swap 100 times.

This shuffling changed the noise correlation among neurons but did not change the signal correlation and mean tone-evoked

activity.33

To compare the decoding performance of constant weights, dynamic weights, and discordant weights (Figure 6A), we trained the

SLR by using an equal number of low- and high-category-tone trials in each block by subsampling the training data. This prevented

the decoder from using the knowledge of stimulus probability for classification especially in the stimulus probability task. For training

the SLR with dynamic weights, which had independent b and l in each block, the nested cross validation was separately applied to

the trials in left and right blocks. For training the SLR with constant weights, the nested 10-fold cross validation was applied once in

the two blocks. The number of trials for training was adjusted such that the equal number of trials were used to train the SLR with

dynamic and constant weights. Training of SLR with discordant weights was performed in the same way as the dynamic weights,

but trained and tested with the different blocks.

The performance of SLR in sound decodingwas comparedwith that of support vectormachine (SVM) (MATLAB, fitcsvm), standard

logistic regression (SLEP with l close to 0), and generalized linear model (GLM) during sound (Figure S4A). The decoders had con-

stant weights and used the activity of task-relevant neurons. For GLM, we used a log-linear model in which the log scale of neural

activity was fit to a linear regression with task parameters (sound category, choice, block, outcome, licking frequency for three spouts

(left, center, right), and locomotion speed). The relevant parameters were investigated with Lasso (software package, SLEP) with the

nested 10-fold cross validation. GLM decoder then used Bayes’ theorem to decode sound category from the log-linear model,

assuming that the activity of each neuron was independent.26
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Sound and choice decoding during the entire task

We investigated the decoding performance of sound and choice in 60 different time windows on trials that were selected to decor-

relate the two variables (Figures S6A–S6C). Each time window had 0.27 sec (12 frames) with a time step of 0.067 sec (3 frames). To

decode sound category without the choice effect, we sub-selected either left- or right-choice trials and independently decoded the

sound category. To decode choice without the sound effect, we sub-selected trials with each of 6 tone clouds and decoded the

choice. The decoding performance was defined as the average of the 2 and 6 cases in the sound and choice decoding, respectively.

All the decoding was done with nested 10-fold cross validation in SLR. The training data was sub-sampled such that the number of

trials for each category was equal. The 10-fold cross validationwas applied twice in this time-window analysis. The number of training

data was different between the sound and choice decoding, making it difficult to directly compare the performance of the two

decoders.

Pure tone response
After each two-photon imaging session during the task, we investigated the pure tone responsiveness of neurons.We presented pure

tones (5 to 40 kHz with 18 logarithmically spaced slots, 30 ms with 3 ms rise/decay ramps, 50 or 75 dB SPL), white noise (30 ms with

3 ms rise/decay ramps, 50 or 75 dB SPL) and the tone clouds used during the task. The tone clouds were selected to contain 10

stimuli from each of 6 tone-cloud settings. We presented each stimulus in pseudo-random order with the inter-stimulus interval of

2 s. In total, we presented 440 stimuli (360 pure tones (18 frequencies x 2 intensities x 10 times); 20 white noise (2 intensities x 10

times); 60 tone clouds (6 settings x 10 times)).

Pure tones with 75 dB SPL were used to analyze the tone evoked responses of auditory cortical neurons. Based on the fluores-

cence intensity F(t), dF
F ðtÞ in each ROI was calculated by the same procedure as for the task (Equation 3), except that F0 was the

average fluorescence intensity during 1 s (45 frames) before the sound onset in each trial. Neural activity following the tone presen-

tation of 2 adjacent frequencies was analyzed together (9 frequency categories). When the activity within 1 s from the tone onset was

higher than the activity before sound at least in one of the 9 frequencies, we defined the neuron as tone responsive (one-sided Wil-

coxon signed rank test, p < 0.005). The best frequency (BF) of the neuronwas defined as the tone frequencywhich evoked the highest

activity.

Based on the BFs, we investigated the sound responsemap in the auditory cortex. In eachmouse, the imaging planes of all depths

were superimposed to average the BFs in XY locations (each location 200 x 200 mm with 100 mm step) (Figures 2 and S2).

Supplemental note
Two-photon microscopy in the auditory cortex during two tasks

We imaged calcium activity from six mice expressing GCaMP6f in excitatory neurons. All the mice performed both tasks. Because

the auditory cortex is located on the side of the head, the objective lens for imaging was placed diagonally, allowing the mouse to

remain in amore comfortable configuration parallel to the ground (Figure 2A).We first identified the location of primary auditory cortex

using one-photon wide-field imaging (Figure 2B). A 4-kHz pure-tone evoked a characteristic constellation of activity in primary, ante-

rior and secondary auditory fields (A1, AAF and A2 (or SRAF)).22,23 The most posterior activity spot was identified as A1, which was

target of further detailed study using two photon microscopy.

In each field of view (FOV), we investigated the frequency tuning of neurons by presenting pure tones with various frequencies (Fig-

ure 2C) to passive animals. We imaged three xy planes at varying depths along the z-axis to sample layers 2 and 3. On average, 13%

(36 / 280) of all neurons per FOV showed tone-evoked activity in at least one frequency (p < 0.005 in one-sided Wilcoxon signed rank

test); the relatively low fraction of tone-responsive neurons is consistent with previous reports in various preparations.24–26 We

defined a neuron’s best frequency (BF) as the frequency which elicited the highest activity. An example of a BF sound response

map, constructed as the average of neurons over the z-axis, is shown in Figure 2D (all mice, Figure S2A).

To image the activity of the same neurons during both the stimulus probability and reward amount tasks, we switched the task on

alternate days, keeping the same FOV (Figure 2E). We used a software package, Suite2P with registers 2P,61 to detect overlapping

regions of interest (ROIs) between the tasks, as well as to detect ROIs from raw imaging data. In total, Suite2P detected 23088 and

23350 ROIs in the stimulus probability and reward amount tasks, respectively (278 and 281 ROIs on average per FOV). Suite2P ex-

tracted 17523 overlapping ROIs (211 ROIs per FOV).

We identified task-relevant neurons from the overlapping ROIs (Figure 2F). We defined a ‘‘task-relevant neuron’’ as any neuron

showing increased activity in at least one of the following 6 time windows compared to the inter-trial interval in either the stimulus

probability or reward amount task (2 task settings) in 3 different trial types (36 settings in total (6 x 2 x 3), one-sided Wilcoxon signed

rank test, p < 0.036 after Bonferroni correction). The 6 time windows were (i) before the sound onset; (ii) during the sound presenta-

tion; (iii) between 0 and 1 sec from the choice; (iv) between 1 and 2 sec from the choice; (v) between 0 and 1 sec from the reward or

noise-burst delivery; (vi) between 1 and 2 sec from the reward or noise-burst delivery. The 3 different trial types in each time window

depended on the sound category (i, ii: all, low, high), choice (iii, iv: all, left, right), or outcome (v, vi: all, correct, incorrect). We identified

13581 task-relevant neurons out of 17523 overlapping neurons (78% of ROIs per FOV on average). The peak activity time and signal

strength of task-relevant neurons were correlated across days (Spearman partial correlation eliminating the effect of mice or ses-

sions, time: r = 0.56, p < 1E-10, strength: r = 0.71, p < 1E-10) (Figures 2G and S2B), consistent with a previous finding in mouse
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parietal cortex.27 When we focused on the time window at sound onset, the proportion of neurons that significantly increased the

activity in both the tasks was 27.5 % on average which was larger than that during passive sound presentations after both tasks

of 6.6 % (p = 3.6E-15 in linear mixed-effects model, 6 mice, 83 sessions).

Sound responses are modulated by the stimulus and reward context

We next tested if activity in auditory cortex was modulated by the block-wise changes in stimulus or reward context. We set the me-

dian inter-sound-interval to 6.6s tominimize changes in sound-evoked activity due to task-unrelated sound adaptation.28 Among the

task-relevant neurons, we focused on sound-responsive neurons that showed increased activity during stimulus presentation in the

stimulus probability and reward amount tasks compared to the activity during inter-trial interval, and that also had significantly

different activity in at least one tone cloud compared to the rest (p < 0.01 in Kruskal-Wallis test) (one session in Figure 3A, 83 sessions

in 2909 and 2573 neurons; 17% and 15% per FOV on average). Of these, 1735 neurons (11% per FOV) showed sound responses

during both tasks. For each sound-responsive neuron, we defined the ‘‘preferred tone cloud’’ as that stimulus which elicited the high-

est activity among all the tone clouds. The preferred tone cloud was preserved between the two tasks (Figure S2C, Spearman partial

correlation, r = 0.81, p < 1E-10), and correlated with the best frequency during passive pure tone presentation (Figure S2D, r = 0.32,

p = 1.4E-14 in stimulus task; r = 0.36, p = 1.4E-17 in reward task). The fraction of neurons responsive to sounds during the task was

comparable to the fraction responsive to pure tones during passive listening (13%) but much smaller than the 78% of neurons that

were modulated by the task (task-relevant neurons). Thus, consistent with previous findings in auditory cortex,25 most task-respon-

sive neurons were not sound-responsive.

We investigated the contextual modulation of sound responses by comparing the activity between left and right blocks within each

task. A representative sound-responsive neuron showing increased activity in the right block compared to the left block during the

stimulus probability task is shown in Figure 3B. We found that the activity of 35.7% of sound responsive neurons was modulated by

the changes in stimulus-probability or reward-amount (Figure 3C). Contextmodulation of sound responsive neuronswas greater than

sound-unresponsive task-relevant neurons (0.089 +/- 0.16 vs 0.025 +/- 0.030, stimulus modulation; 0.048 +/- 0.075 vs 0.024 +/-

0.027, reward modulation; mean +/- std) (Figure 3D). We then aligned the activity of each sound responsive neuron based on its

‘‘preferred block,’’ i.e. the block associated with the preferred tone cloud stimulus for that neuron. Specifically, the preferred block

was ‘‘left’’ for neurons whose preferred tone cloud was in the ‘‘low’’ category and ‘‘right’’ for neurons whose preferred tone cloud was

in the ‘‘high’’ category. We categorized the neurons by their preferred tone difficulty and compared activity between blocks elicited

during the preferred tone cloud stimulus. We found that the activity could be modulated in either the positive or negative direction

(Figure 3E). Contextual modulation was stronger in neurons tuned to the difficult or moderate tone clouds and weaker for those tuned

to easy tone clouds (Figures S3A and S3B), irrespective of choices (Figures S3C–S3E). We then analyzed the median block modu-

lations of sound-responsive neurons in each session (Figure 3F). This population block modulation was larger in the reward task than

in the stimulus task. These results indicate that the encoding of sound by neurons in auditory cortex is modulated by stimulus or

reward expectation and that the magnitude of the neuronal modulation is correlated with the behavioral bias (Figure 1D).

QUANTIFICATION AND STATISTICAL ANALYSIS

All the statistical tests in this studywere performed inMatlab 2016b.Wemainly used two-sided statistical tests; caseswherewe used

a one-sided test are clearly noted in the text. In tests with multiple comparisons, we set the significance threshold according to the

Bonferroni correction. Statistical tests in Matlab generated p = 0 when there were small p values. In these cases, we described the p

values as p < 1E-10. In the statistical tests with behavioral sessions across 6 mice, we used a linear mixed-effects model to take into

account the effects of sessions imaged from the same mice as the random effects.18 In the statistical tests with neurons across ses-

sions and mice, we used a linear mixed-effects model to consider the random effects of sessions and mice. Data collection and

analyses were not performed blind to the conditions of the experiments. No statistical methods were used to pre-determine sample

sizes but our sample sizes are similar to those generally used in the field.
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