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ABSTRACT In this study, we investigated the microbial diversity and community 
composition of soil samples collected from various sites along the Potomac River 
within an urbanized region. The study integrates microbial analysis into an undergrad­
uate chemistry curriculum, bridging theoretical education with practical, real-world 
applications. Our findings revealed the presence of both typical marine soil bacteria 
and bacterial taxa indicative of urbanization and waste runoff. Notably, the identi­
fied taxa shared among all samples demonstrated a strong presence of Burkholderia­
ceae, Nitrosomonadaceae, and Pedosphaeraceae, which are associated with agricultural 
pollution, organochlorine pesticide contamination, and bromochloromethane pollution. 
We observed significant variations in microbial community diversity across different 
sampling sites, emphasizing the influence of environmental factors on microbial 
abundance and diversity. These insights carry significant implications for understanding 
the consequences of urbanization on soil microbial communities along the Potomac 
River and can inform strategies for managing and preserving these ecosystems. Further 
research is warranted to elucidate the effects of soil health and microbial diversity in this 
region.

IMPORTANCE This study integrates microbial analysis into an undergraduate chemistry 
class, offering students a hands-on approach to environmental research. We examined 
the soil along the urbanized Potomac River, discovering a mix of common marine 
microbes and others that are indicators of urban waste and pollution. Our findings 
provide valuable insights into the environmental impacts of urbanization on soil health 
and reveal the effectiveness of using modern genetic tools to teach students about 
real-world issues. This innovative educational approach not only deepens students’ 
understanding of chemistry and ecology but also prepares them to be thoughtful, 
informed participants in addressing contemporary environmental challenges while 
shedding light on the state of the soil microbiome near and around the DC metro area.

KEYWORDS metagenomics, environmental microbiology, soil microbiology, Potomac 
River, undergraduate research

T he Potomac River, renowned for its rich historical significance, flows through the 
Mid-Atlantic region of the USA, traversing the Potomac Highlands before draining 

into the Chesapeake Bay. The river contains a drainage area of about 14,500 square 
miles and is approximately 405 miles long. The Potomac basin stretches across parts of 
four states (Maryland, Pennsylvania, Virginia, and West Virginia) as well as the District of 
Columbia. The Potomac basin is the second largest watershed in the Chesapeake Bay 
watershed (1). This includes the land areas where water drains toward the mouth of the 
Potomac, such as the Anacostia River (8.5 miles long), which empties into the Potomac 
River at Hains Point in Washington, DC (2, 3). The watershed contains a large population, 

Month XXXX  Volume 0  Issue 0 10.1128/spectrum.02540-23 1

Editor Erik F. Y. Hom, University of Mississippi, Oxford, 
Mississippi, USA

Address correspondence to Alexandra Taraboletti, 
ataraboletti@gmail.com.

The authors declare no conflict of interest.

See the funding table on p. 13.

Received 18 August 2023
Accepted 6 September 2023
Published 24 October 2023

Copyright © 2023 Taraboletti et al. This is an 
open-access article distributed under the terms of 
the Creative Commons Attribution 4.0 International 
license.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

01
 N

ov
em

be
r 

20
23

 b
y 

14
3.

48
.6

.4
9.

https://crossmark.crossref.org/dialog/?doi=10.1128/Spectrum02540-23&domain=pdf&date_stamp=2023-10-24
https://doi.org/10.1128/spectrum.02540-23
https://creativecommons.org/licenses/by/4.0/


mostly located in the Washington metropolitan area, with forest being the largest land 
use and agriculture and urban areas being the second largest land uses in the upper 
and lower basins, respectively.

Human population growth, industrialization, and urbanization have caused a drastic 
increase in pollution levels within the Potomac basin (4–10). Washington, DC, has a 
long history of water pollution, with the Potomac and Anacostia rivers subjected to 
chemical pollution for over 200 years. The Anacostia River, in particular, is one of the 
top 10 most polluted rivers in the USA, containing sewage, metals, polycyclic aromatic 
hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) (9). Excessive nutrient inputs 
(mainly nitrogen from nonpoint sources) have caused the eutrophication of surface 
waters (11). The Potomac River is also plagued by high bacterial growth due to sew­
age runoff and improper waste disposal, leading to the river being used as a sewage 
drain (10). These poor waste management practices and the resulting bacterial growth 
have led to the formation of cyanobacteria blooms in years of drought and low river 
volume. The blooms deplete oxygen levels (hypoxic bottom-water dissolved oxygen) 
and result in the rivers being considered unswimmable and unfishable (7, 10, 12), as 
confirmed by the Potomac Conservancy (2020), which gave the river a grade of B (13). 
These human-influenced increases in waste and nutrient loads (including discharge from 
sewage treatment plants, atmospheric deposition, and urban/agricultural runoff) have all 
negatively impacted the Potomac basin.

In response to these issues, recent initiatives have been launched to maintain the 
cleanliness and health of the Potomac River, including the Clean Rivers Project, which 
aims to reduce combined sewer overflows and increase community monitoring of 
pollutants and toxins (14). Sewer separation is just one component of the plan to 
mitigate combined sewer overflows to the Potomac River and is part of the larger 
project to clean all three waterways in the District. There has also been a heightened 
level of community monitoring of pollutants and toxins in the Potomac River, particularly 
through the efforts of the Interstate Commission on the Potomac River Basin (ICPRB). 
This increased scrutiny has provided valuable insights into the health of the river and 
helped to further galvanize support for the protection and preservation of this important 
waterway.

In line with these efforts, this study aims to investigate the current environmental 
health of the Potomac River region in the DC metro area via a PCR amplicon study of 
soil samples from various locations along the basin. Soil hosts a wide range of microor­
ganisms that play crucial roles in the ecosystem, and this is especially true for freshwater 
ecosystems like the Potomac River. The microbial communities present in soil have been 
shown to be a marker of and have a significant impact on the overall health of these 
ecosystems. By examining the soil samples collected along the Potomac River, we can 
gain valuable insights into the connection between soil microbes and the health of 
the river basin. The findings of this research have the potential to inform management 
practices aimed at maintaining and improving the health of the Potomac River for future 
generations.

MATERIALS AND METHODS

Sample collection

The river soil samples were collected in 50-mL sterile conical tubes, in triplicate, at a 
distance of 3–5 m from the banks of the Potomac River and a 6-inch depth from the soil 
surface. Ethanol and paper towels were used interchangeably between each soil sample 
collection to ensure clean, sterile tools. Samples were transported to the laboratory 
within an hour of collection and stored in a −20°C refrigerator until further processed.

Physiochemical measurements

Relative nitrogen, phosphorus, and potassium levels were measured using a LaMotte 
NPK Soil Test Kit. Approximately 0.5 g of soil was extracted for each sample, and 
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the nitrogen, phosphorus, and potassium levels were recorded as specified in the kit 
procedure. The pH of each sample was collected using a Soil Condition Meter. The soil 
meter probe was inserted directly into the soil sample and allowed to equilibrate for 1 
min prior to recording the sample pH.

DNA extraction

The tubes were ultrasonicated for 1 min each to achieve cell disruption. Extraction was 
completed using a Qiagen DNeasy PowerSoil Kit protocol (8). Approximately 0.25 g of 
each soil sample was weighed and recorded. To achieve cell disruption, the samples 
were ultrasonicated for 1 min each. Samples were then stored at −20°C until PCR was 
performed. NanoDrop was used to confirm the quality and concentration of the DNA 
obtained from the soil samples (Table S1).

PCR/gel electrophoresis

DNA products were PCR amplified using primers “515F–806R” targeting the V4 region 
of the 16S SSU rRNA—used by the Earth Microbiome Project (9). Primer sequences 
are as follows: 515F (Parada)–806R (Apprill), F: GTGYCAGCMGCCGCGGTAA; R: GGAC­
TACNVGGGTWTCTAAT. Primers and primer constructs were designed by Greg Caporaso 
(10, 11). Modifications to primer degeneracy were done by the labs of Jed Furhman 
(12) and Amy Apprill (13). Forward-barcoded constructs were redesigned by Walters (14). 
Amplification conditions were performed in a 25-µL reaction volume and consisted of 
13 µL of nuclease-free water, 10 µL of 2× PCR master mix, 0.5 µL forward primer, 0.5 µL 
reverse primer, and 1 µL soil DNA. The thermal cycle was programmed for 120 s at 94°C 
for initial denaturation, followed by 35 cycles of 45 s at 94°C for denaturation, 60 s at 50°C 
for annealing, 90 s at 72°C for extension, and a final extension at 72°C for 10 min. PCR 
products were examined by gel electrophoresis at 100 V for 45 min in a 1% (w/v) agarose 
gel with ethidium bromide in 1× TAE buffer and compared to a 1-kb DNA ladder (Fig. S1).

16S rRNA amplicon sequencing and analysis

After demultiplexing to assign reads to samples at the New York Genome Center, 
the resulting FASTQ files were placed in the CyVerse Discovery Environment so that 
sequences could be analyzed in the DNA Subway Purple Line (15, 16), which is a graphic 
user interface for QIIME2. Using the demultiplexed sequence counts summary (Fig. 
S2), low-quality sequences were trimmed to position 243 (TruncLenF: 243, TruncLenR: 
243). After trimming, samples were rarified (rarification depth Min: 1, Max: 5,000), 
with sampling depths based on the frequency per sample data (Fig. S3). Operational 
taxonomy unit (OTU) tables were then generated by matching to the Silva (16S/18S 
rRNA) database.

Statistics and analysis

The Marker Data Profiling (MDP) module in MicrobiomeAnalyst (17, 18) was used to 
further process the OTU tables generated by DNA Subway. An overview of the library size 
revealed two sample outliers with <10 read counts (YD1 and CP3; Fig. S4). These samples 
were removed from further grouped analyses. To remove low-quality or uninformative 
features, data filtering was done using a low count filter (minimum count = 4, 20% 
sample prevalence cutoff) and a low variance filter (10% removed based on inter-quan­
tile range). To deal with the variations in sample depth and the sparsity of the data, 
normalization (total sum scaling) was applied. Using this data set, alpha diversity, beta 
diversity, pie chart, dendrogram, and abundance bar graphs were all generated.
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RESULTS

Sample collection and study site characteristics

Soil samples were collected in September 2021 from four locations/sites within the 
Potomac watershed (Table 1). The four sites, namely, OO, YD, YW, and CP, are each located 
at different points along the Potomac River, within the boundary of Washington, DC (Fig. 
1). Sampling was performed during a period in which the average temperature was 73°F 
and the average rainfall was 0.3 inches (https://www.weather.gov/; Fig. S5). In this period, 
the season was characterized as dry; however, for the 2 days between the collection of 
the samples, there was light rain in the region.

These sites were chosen as they lay along a portion of the river still heavily impac­
ted by combined sewer overflows (CSOs) (19–21). Washington, DC, has been making 
progress in cleaning up the Anacostia and Potomac rivers through the court-mandated 
project known as Clean Rivers (21). The project consists of 18 miles of underground 
tunnels designed to capture CSO before it reaches the rivers. One important tunnel, the 
“Potomac River Tunnel,” has still yet to be constructed, leaving much of the DC river 
region—namely, the sampled areas—polluted (19).

Soil physiochemical measurements

The physiochemical measurements (Table 2) of the soil samples collected along the 
Potomac River revealed that relative nitrogen levels were 20 ppm or below in all samples. 
The relative phosphorus levels ranged from 4 to 10 ppm, while all potassium levels were 
80 ppm or above. In addition, the pH levels of the soil samples collected along the 
Potomac River ranged from pH 6.8 to 8.4, with the majority of samples being neutral to 
slightly basic.

TABLE 1 Soil sampling sites along the Potomac River

SN# Date/time Site of collection GPS coordinates

OO1 2:30 p.m.
09/22/2021

SE DC Wharf waterside Latitude: 38.8821
Longitude: −77.0281

OO2 2:35 p.m.
09/22/2021

SE DC Wharf waterside Latitude: 38.8821
Longitude: −77.0281

OO3 2:40 p.m.
09/22/2021

SE DC Wharf waterside Latitude: 38.8821
Longitude: −77.0281

YD1 2:20 p.m.
09/20/2021

Georgetown Waterfront Park Latitude: 38.900559
Longitude: −77.058686

YD2 2:26 p.m.
09/20/2021

Georgetown Waterfront Park Latitude: 38.900559
Longitude: −77.058686

YD3 2:37 p.m.
09/20/2021

Georgetown Waterfront Park Latitude: 38.900559
Longitude: −77.058686

YW1 7:30 p.m.
09/30/2021

1138–1140 Ohio Dr. SW Latitude: 38.87792
Longitude: −77.03797

YW2 7:32 p.m.
09/30/2021

1138–1140 Ohio Dr. SW Latitude: 38.87795
Longitude: −77.03794

YW3 7:32 p.m.
09/30/2021

1138–1140 Ohio Dr. SW Latitude: 38.87795
Longitude: −77.03794

CP1 2:34 p.m.
09/22/2021

Tidal Basin Washington DC Latitude: 38.885904
Longitude: −77.049705

CP2 2:35 p.m.
09/22/2021

Tidal Basin Washington DC Latitude: 38.885904
Longitude: −77.049705

CP3 2:36 p.m.
09/22/2021

Tidal Basin Washington DC Latitude: 38.885904
Longitude: −77.049705
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DNA quality and amplification

DNA samples obtained in the extraction protocol were of good yield (>20 ng/µL) 
and quality (260/280 value >1.8). The measurements of isolated DNA, for quality and 
quantity, are presented in Table S1. Expected amplification was obtained in almost 
all samples—exhibiting strong bands as visualized with an agarose gel (Fig. S1). This 

FIG 1 Sample site map. Map of the Potomac watershed, with the DC metro area highlighted. Pins with site names (YD, CP, OO, and YW) show where the Potomac 

River samples were collected. Map data ©2023 Google.
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suggests some error in the processing of samples YD1 and CP3, and they should be 
distinguished as outliers.

Microbial diversity and community profiling

The amplified DNA from these four sites was analyzed via Illumina HiSeq paired-end 
sequencing, generating 29,164 clean reads (average 2,430 per sample; range from 1,426 
to 4,367) and 666 OTUs (defined at 97% sequence similarity). More detailed summary 
statistics of the sequences can be found in the supplemental material. Samples YD3 and 
CP3, which had reads of 10 and 0, respectively, match samples found not amplified via 
PCR (Fig. S1 and S2) and were removed as outliers from further data analysis.

The distribution of microbial alpha diversity indices is visualized in Fig. 2A. Overall, the 
mean values in alpha diversity indices varied among samples grouped by collection site 
along the river; however, these differences were not statistically significant (ANOVA, P > 
0.05). Notably, communities sampled from a small tidal channel parallel to the main river 
body (DC Wharf; OO) showed higher mean alpha diversity when compared to all other 
samples.

Principal coordinates analysis [PCoA, =multidimensional scaling (MDS)] of the 
normalized OTUs based on Bray-Curtis distances (Fig. 2B) also showed a separation 
between soil samples collected along the main river body (CP, YD, and YW) versus 
those collected along the parallel channel (OO); this observation is reinforced through 
dendrogram analysis (Bray-Curtis distances, Ward clustering; Fig. 2C).

Among the identified OTUs, members of bacteria were predominant (98.05%), and 
a small number of OTUs were classified in the domain of archaea (1.95%). Identifica-
tion of the OTUs at finer taxonomic levels yielded 73 phyla, 167 classes, 417 orders, 
705 families, 1,439 genera, and 570 species. At the phylum level, Proteobacteria was 
dominant (39.0%), followed by Acidobacteria (14.0%), Actinobacteria (14.0%), Chloroflexi 
(8.0%), Verrucomicrobia (7.0%), Bacteroidetes (6.0%), Planctomycetes (5.0%), Cyanobacteria 
(2.0%), Gemmatimonadetes (1.0%), and Firmicutes (1.0%); these top 10 bacterial phyla 
constituted 96% of the total OTUs (Fig. 3A). Among Proteobacteria, the class Gammap­
roteobacteria was predominant (47.5%), followed by Alphaproteobacteria (38.3%), and 
Deltaproteobacteria (14.2%; Fig. 3B); among Acidobacteria, subgroup 6 predominates 
(48.74%), with a noticeable presence of subgroup 4 (18.75%; Fig. 3C).

Microbial composition analysis

Core microbiome threshold analysis at the family level revealed the top shared/
identified taxa to be Burkholderiaceae, Nitrosomonadaceae, Pedosphaeraceae, Xanthobac­
teraceae, metagenome, Pirellulaceae, Methyloligellaceae, Pyrinomonadaceae, Gaiellaceae, 
and Solirubacteraceae (Fig. 4).

TABLE 2 Soil physiochemical measurements

SN# Sample mass Nitrogen Phosphorus Potassium pH

OO1 0.501 g ≤20 ppm ≤4 ppm ≥80 ppm 7.4
OO2 0.500 g ≤20 ppm 6 ppm ≥80 ppm 7.8
OO3 0.501 g ≤20 ppm ≤4 ppm ≥80 ppm 8.3
YD1 0.502 g ≤20 ppm 10 ppm ≥80 ppm 8.4
YD2 0.500 g ≤20 ppm 10 ppm ≥80 ppm 7.7
YD3 0.500 g ≤20 ppm 10 ppm ≥80 ppm 6.8
YW1 0.501 g ≤20 ppm 6 ppm ≥80 ppm 7.8
YW2 0.500 g ≤20 ppm 10 ppm ≥80 ppm 7.3
YW3 0.501 g ≤20 ppm 6 ppm ≥80 ppm 7.3
CP1 0.500 g ≤20 ppm ≤4 ppm ≥80 ppm 7.7
CP2 0.500 g ≤20 ppm ≤4 ppm ≥80 ppm 8.4
CP3 0.501 g ≤20 ppm ≤4 ppm ≥80 ppm 8.1
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Site-specific distribution of microbial composition

Grouped percent abundance data (Fig. 5A) highlights taxon abundance differences 
(genus level) based on the sampling site. Detailed box plot comparisons (Fig. 5B) show 
that Haliscomenobacter, Pseudomonas, Devosia, Luteolibacter, Ilumatobacter, Nitrospira, 
Steriodobacter, and Myxococcales (Blrii41) were found in higher abundance in location OO 
compared to the other sites. Acinetobacter and Pseudoxanthomonas were also found in 
higher abundance, together at sites OO and CP. Pirellula, Nocardioides, Gaiella, and MND1 
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were, instead, found in high abundance in sites along the upper stretch of the river (YW 
and YD). All correlation tables can be found in Table S2.

DISCUSSION

The present study reports physiochemical and bacterial information at the phylum and 
subgroup levels of soil collected along the DC metro region of the Potomac River as a 
means to relay information pertaining to the environmental health of the river basin.

Though soil nitrogen, phosphorous, and potassium (NPK) levels can vary depending 
on the specific environmental context and the types of plants or organisms present, 
all measured samples had relatively low nitrogen levels, low-medium phosphorous 
levels, and high potassium levels. Soil samples with low nitrogen levels, ranging from 
20 ppm or below, and medium to low levels of phosphorus, ranging from 4 to 10 
ppm, signal limited plant growth and productivity, which could lead to a decrease in 
overall biodiversity (15, 16). High levels of potassium, above 80 ppm, can indicate that 
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excess fertilizer or manure application has occurred, leading to eutrophication in nearby 
waterways (17–19).

The group patterns of the soil microbial data from all samples (Fig. 2) displayed 
variation in alpha diversity indices among samples but without significant differences 
(Fig. 2A). However, the DC Wharf site samples showed higher mean alpha diversity, 
indicating potential variations in microbial community composition between sites. The 

F
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m
il
y

Detection Threshold (Relative Abundance %)

FIG 4 Microbial composition and taxon set analysis at the family level. Core microbiome threshold map of the 100 most abundant family-level taxa found across 

all of the sampling sites (n = 10).

Research Article Microbiology Spectrum

Month XXXX  Volume 0  Issue 0 10.1128/spectrum.02540-23 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

01
 N

ov
em

be
r 

20
23

 b
y 

14
3.

48
.6

.4
9.

https://doi.org/10.1128/spectrum.02540-23


A

YW

YD

OO

CP

0.00 0.25 0.5 0.75 1.00
Relative Abundance

G
e

n
u

s

A
b

u
n

d
a

n
c
e

Haliscomenobacter Pseudomonas Devosia Luteolibacter Ilumatobacter

Nitrospira Acintobactor Pseudoxanthomonas

Pirellula Nocardioides Gaiella

Steroidobacter Myxococcales (Blrii41)

MND1

B
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PCoA and dendrogram analyses (Fig. 2B and C) revealed separation between samples 
collected along the main river body versus those collected along a small tidal channel, 
indicating possible discrepancies in human impact, water retention, and tidal/current 
effects. These patterns also corresponded to differences in soil phosphorous levels, with 
the samples collected along the tidal channel having slightly lower levels of phospho­
rous than those collected from the main river (Table 2).

The top taxa shared among all sampling sites match typical 16S rRNA-based analyses 
of phylum diversity found in soil, marine, and wastewater samples (Fig. 3) (22, 23). In 
particular, Proteobacteria, Actinobacteria, and Acidobacterium are well represented and 
often account for 90% of cultivated soil bacteria (Fig. 3A) (22). Proteobacteria is a diverse 
group of bacteria that is found in a variety of aquatic and terrestrial environments. This 
phylum is a major contributor to the microbial communities in the Potomac River basin 
and is likely responsible for the cycling of organic matter, nitrogen, and other essential 
elements. Actinobacteria and Acidobacterium are a group of bacteria that are typically 
associated with soil and are thought to play an important role in the decomposition of 
organic matter nutrient cycling processes. Proteobacteria (gamma), Actinobacteria, and 
Acidobacterium (subgroup 6) (Fig. 3B and C) have been reported to thrive in soil with 
low levels of nitrogen (20, 21). These findings are consistent with the physicochemical 
results obtained from the soil samples collected along the Potomac River (Table 2), which 
showed low levels of nitrogen across all sites. The abundance of these bacterial groups 
in the soil samples may be attributed to their ability to utilize alternative sources of 
nitrogen, such as organic matter, or to their capacity to fix atmospheric nitrogen (20). The 
presence of these bacteria is expected, but it confirms that the soil is impacted by human 
activities (22, 23).

The significant presence of the phylum Chloroflexi in the samples may also indicate 
a shift in the environmental health of the river (Fig. 3A). Certain Chloroflexi bacteria 
are associated with halophilic and thermophilic environments, and their presence could 
suggest that the Potomac River basin is facing increased hydrological stress. Chloroflexi 
are known to be involved in organohalide respiration and have potential roles in the 
bioremediation of chlorinated compounds (24)—noted due to historic PCB pollution in 
the Chesapeake Bay region (25–28). Chloroflexi also play an important role in activated 
sludge water treatment plants (29, 30), and the presence of these bacteria may also be 
indicative of changes in the river basin’s nutrient cycle. Chloroflexi are known for their 
ability to break down organic matter, and their presence suggests that there may be an 
increase in the amount of organic matter entering the river basin.

The identified taxa (family level; Fig. 4) shared among all samples note the strong 
presence of Burkholderiaceae, Nitrosomonadaceae, and Pedosphaeraceae. These taxa are 
indicative of nitrogen cycling and an environment with by-products of sewage and 
agricultural runoff (24, 25). Burkholderiaceae has been positively correlated with aerobic 
chemoheterotrophy, aromatic compound degradation, and ureolysis. Xanthobacteraceae 
and Methyloligellaceae are typically found in environments with high levels of carbon, 
which could be due to the abundance of urban settings present along the Potomac River 
basin (26–28). Pirellulaceae, Pyrinomonadaceae, Sphingomonadaceae, and Saprospiraceae 
are known to be associated with soil, marine sediments, and biofilms (29, 30 Sphingomo­
nadaceae, Solibacteraceae, and Nitrosomonadaceae have all been positively correlated 
with aerobic nitrite oxidation, aerobic ammonia oxidation, and nitrification (all P < 0.05) 
(31). The abundance of these bacterial taxa is possibly an indication of elevated levels 
of urbanization and industrial activity in the vicinity. Taxon set analysis (Fig. S6), which 
compares environmental taxon sets to the shared family-level taxa, suggests that these 
top taxa are strongly correlated with agricultural pollution, organochlorine pesticide 
contamination, and bromochloromethane pollution.

Though many features found in all of the samples were associated with urban 
settings, Fig. 5 notes differences in taxon abundance found based on sampling 
sites, and these differences correspond to environmental differences as supported by 
multivariate analyses (Fig. S7). For instance, genus-level taxa, such as Acinetobacter and 
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Pseudoxanthomonas, were more abundant in samples from sites OO and CP, whereas 
Pirellula, Nocardioides, Gaiella, and MND1 were more abundant in samples from sites 
YW and YD. Haliscomenobacter, Pseudomonas, Devosia, Luteolibacter, Ilumatobacter, 
Nitrospira, Steriodobacter, and Myxococcales (Blrii41) were more abundant in samples 
from site OO. Taxa highly represented from sites YW and YD play a central role in carbon 
cycling through methane and plant and algal degradation, while taxa from sites OO 
and CP are involved in complex carbon utilization and activated sludge sites. While our 
sampling was primarily focused on identifying dominant microbial species in the region, 
we recognize that the scale and design of our sampling might not have captured the 
full range of community patchiness. Future endeavors in this region could benefit from 
a more intensive sampling strategy, specifically targeting the nuances of community 
composition patchiness driven by both natural and anthropogenic factors.

Conclusion

This research provides valuable insights into the microbial diversity and community 
composition of soil samples collected from various locations along the urbanized stretch 
of the Potomac River. Our findings underscore the notable variations in microbial 
community structure and diversity across different sampling sites, emphasizing the 
influence of environmental factors on microbial abundance. We identified specific 
bacterial taxa associated with high levels of urbanization, waste sites, and agricultural 
pollution. Additionally, the study brings attention to potential disparities in human 
impact among the soil samples. These contribute to a better understanding of the 
complex interplay between urbanization and soil microbial communities along the 
Potomac River. Further research is warranted to more comprehensively explore the 
impacts of soil health and microbial diversity in this region, with the aim of informing 
effective strategies for maintaining and improving the health of this vital waterway for 
future generations.
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