Ogawa, Lim et al.

1	Antibody-directed extracellular proximity biotinylation reveals Contactin-1 regulates axo-
2	axonic innervation of axon initial segments.
3	
4	Yuki Ogawa ^{1†} , Brian C. Lim ^{1†} , Shanu George ² , Juan A. Oses-Prieto ³ , Joshua M. Rasband ¹ , Yael
5	Eshed-Eisenbach ⁴ , Supna Nair ³ , Francesco Boato ² , Elior Peles ⁴ , Alma L. Burlingame ³ Linda Van
6	Aelst ² , and Matthew N. Rasband ¹
7	
8 9 10 11 12 13 14 15	 ¹ Baylor College of Medicine, Department of Neuroscience, Houston, TX, USA ²Cold Spring Harbor Laboratory, Division of Neuroscience, Cold Spring Harbor, NY, USA ³ University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA, USA ⁴Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot, Israel. [†] These authors contributed equally to this work.
16 17	Address correspondence to:
18 19 20 21 22 23 24 25 26	Dr. Matthew N. Rasband Department of Neuroscience Baylor College of Medicine One Baylor Plaza Houston, TX, 77030 <u>rasband@bcm.edu</u> Tel: 713-798-4494
27	8 figures, 5 supplemental figures, 3 supplemental tables, 1 supplemental data files.

Ogawa, Lim et al.

28 ABSTRACT

29	Axon initial segment (AIS) cell surface proteins mediate key biological processes in
30	neurons including action potential initiation and axo-axonic synapse formation. However, few
31	AIS cell surface proteins have been identified. Here, we used antibody-directed proximity
32	biotinylation to define the cell surface proteins in close proximity to the AIS cell adhesion
33	molecule Neurofascin. To determine the distributions of the identified proteins, we used
34	CRISPR-mediated genome editing for insertion of epitope tags in the endogenous proteins. We
35	found Contactin-1 (Cntn1) among the previously unknown AIS proteins we identified. Cntn1 is
36	enriched at the AIS through interactions with Neurofascin and NrCAM. We further show that
37	Cntn1 contributes to assembly of the AIS-extracellular matrix, and is required for AIS axo-axonic
38	innervation by inhibitory basket cells in the cerebellum and inhibitory chandelier cells in the
39	cortex.

Ogawa, Lim et al.

41 **MAIN**

42	The axon initial segment (AIS) is essential for proper neuronal and brain circuit function.
43	AIS integrate synaptic inputs, generate and modulate axonal action potentials, and regulate the
44	trafficking of proteins, vesicles, and organelles to maintain neuronal polarity. These functions
45	depend on a tightly regulated network of scaffolding and cytoskeletal proteins that serve as an
46	organizing platform for ion channels and cell adhesion molecules (CAMs) ^{1,2} . However, the AIS
47	proteins that have been described likely represent only a small fraction of the overall AIS
48	proteome since the molecular mechanisms involved in many AIS-associated processes remain
49	poorly defined.
50	Recently, proximity-dependent biotinylation (PDB) approaches have emerged as robust
51	experimental strategies to define the molecular composition of organelles and subcellular
52	domains ³ . PDB is particularly attractive to identify AIS proteomes since the AIS is very
53	detergent insoluble and refractory to more traditional proteomic approaches like
54	immunoprecipitation (IP) mass-spectrometry. Streptavidin pulldown of biotinylated AIS
55	proteins allows for the use of much stronger solubilizing detergents. We previously used one
56	PDB approach (BioID) to discover new AIS proteins ⁴ ; we targeted the biotin ligase BirA* to the
57	AIS by fusing it to a variety of known AIS cytoskeleton-associated proteins. These experiments
58	identified known and some new cytoplasmic AIS proteins, including Mical3 and Septins.
59	However, our experiments were strongly biased towards cytoplasmic proteins and recovered
60	very few membrane and cell surface proteins. Some PDB approaches have successfully
61	captured cell surface proteins. For example, Li et al. (2020) 5 used an extracellular, membrane
62	tethered horseradish peroxidase (HRP) to identify cell surface proteins that function as

Ogawa, Lim et al.

63	regulators of neuronal wiring; their transgenic approach revealed the cell surface proteome of
64	Drosophila olfactory projection neurons. Shuster et al. ⁶ used the same approach in mice, but
65	restricted the expression of the membrane tethered HRP to Purkinje neurons to reveal their cell
66	surface proteome. However, neither of these approaches was designed to interrogate
67	subcellular domains. As an alternative approach, Takano et al. (2020) ⁷ used a split PDB
68	strategy (Split-TurboID) to elucidate the cell surface proteome of astrocyte-neuron synapses.
69	Their experiments revealed transcellular interactions between neuronal NrCAM and astrocytic
70	NrCAM that stabilize the structure and function of inhibitory synapses.
71	To overcome some of the limitations of intracellular PDB for identification of AIS cell
72	surface proteins, we used Selective Proteomic Proximity Labeling Assay Using Tyramide
73	(SPPLAT) ^{8,9} ; the approach has also been called Biotinylation by Antibody Recognition (BAR) ¹⁰ .
74	Our application of this strategy uses highly specific primary antibodies against the extracellular
75	domain of the AIS-enriched CAM Neurofascin (Nfasc) to direct HRP conjugated secondary
76	antibodies to the AIS. Addition of biotin-tyramide and hydrogen peroxide generates biotin
77	phenoxyl radicals that biotinylate membrane proteins within a range of ~250 nanometers of the
78	peroxidase ¹¹ . We performed this labeling at multiple timepoints throughout neuronal
79	development in vitro on live neurons. We identified all previously reported AIS extracellular,
80	and membrane cell adhesion and recognition molecules. In addition, we found many novel
81	membrane proteins that were reproducibly in proximity to Nfasc, with different temporal
82	enrichment profiles. We further investigated a subset of these using CRISPR-mediated
83	endogenous gene tagging. Among these, we identified Contactin-1 (Cntn1) as a new, bona fide
84	AIS CAM recruited to the AIS through interaction with the AIS CAMs Nfasc and NrCAM.

Ogawa, Lim et al.

85	Remarkably, loss of Cntn1 severely impaired inhibitory axo-axonic innervation of the AIS in both
86	cerebellar Purkinje neurons and cortical pyramidal neurons. Thus, using antibody directed
87	extracellular proximity biotinylation, we identified Cntn1 as a new AIS protein that regulates
88	axo-axonic innervation of the AIS.
89	
90	Proximity Biotinylation at the AIS Membrane
91	We reasoned the Nfasc proximity proteome could be used to help define the AIS cell
92	surface proteome since Nfasc is highly enriched at the AIS. Therefore, we adapted the
93	SPPLAT/BAR method ^{8,10} for use with live, unpermeabilized neurons; we avoided fixation to
94	maximize protein recovery and subsequent mass spectrometry. We labeled rat hippocampal
95	neurons in culture with highly specific and validated chicken primary antibodies against the
96	ectodomain of Nfasc ¹² , since its 186 kDa isoform (NF186) is highly enriched at the AIS (Fig. 1a,
97	b), with lower concentrations along the distal axon, at growth cones, and in the soma ¹³ . After
98	live labeling with the anti-Nfasc primary antibody, HRP-conjugated anti-chicken secondary
99	antibodies were used to label the anti-Nfasc primary antibody. The Nfasc-localized HRP
100	generates the reactive biotin phenoxyl from biotin tyramide (biotin phenol), resulting in the
101	addition of tyrosine residues to proteins in proximity to Nfasc with a range of several hundred
102	nm ^{9,11} . As with other PDB methods, nonspecifically and endogenously biotinylated proteins, as
103	well as non-specific protein background adsorbing to solid phase surfaces during the
104	enrichment steps and prior to the mass spectrometry analysis, must be excluded. The omission
105	of the primary antibody serves as a simple and straightforward negative control. Without
106	fixation or detergents, the membrane-impermeability of biotin-phenoxyl restricts the

Ogawa, Lim et al.

biotinylation reaction to the extracellular surface. Hereafter, we refer to this method as Nfasc-BAR.

109	We found that Nfasc-BAR resulted in AIS-enriched streptavidin labeling that colocalized
110	with NF186 (Fig. 1b); this pattern was not seen when the anti-Nfasc antibody was omitted. The
111	amount of biotinylation also depends on the duration of the labeling reaction (Fig. S1a). For the
112	experiments described below, we used a reaction time of 5 minutes (Fig. S1b). To identify
113	biotinylated AIS proteins, we then solubilized neuronal membranes using a strong solubilization
114	buffer, purified biotinylated proteins using streptavidin-conjugated magnetic beads, and finally
115	identified the biotinylated proteins using mass spectrometry (Fig. 1a). To confirm the
116	reproducibility and robustness of our approach we performed surface proximity labeling in
117	parallel using rabbit polyclonal antibodies targeting the ectodomain of NrCAM (Fig. S1c),
118	another AnkG-binding CAM found at the AIS. Proximity biotinylation directed by NrCAM
119	antibodies strongly labeled the AIS (Fig. S1c). Importantly, the resulting mass spectrometry
120	datasets confirmed the robustness of the strategy since Nfasc-BAR and NrCAM-BAR proximity
121	proteomes were highly concordant (Fig. S1d; supplemental Table 1).
122	
123	NF186 proximity proteomes across neuronal development

124 The maturation of axons includes the enrichment of proteins that mediate key functions 125 or developmental mechanisms. For example, toward the end of the first week *in vitro*, the 126 scaffolding protein AnkyrinG (AnkG) localizes to the proximal axon; this enrichment precedes 127 and is necessary for the subsequent recruitment of Nfasc, and voltage-gated Na⁺ (Nav) and K⁺ 128 (Kv) channels to the AIS ^{14,15}. NF186 enrichment at the AIS and along distal axons also increases

Ogawa, Lim et al.

129	during development (Fig. 2a). To determine the extracellular Nfasc proximity proteome and
130	how it changes during development (both before and after AIS formation), we performed
131	Nfasc-BAR on primary hippocampal neurons at five different timepoints (supplemental Table 2):
132	from day in vitro 4 (DIV4; prior to AIS formation) to DIV28 after establishment of the AIS-
133	associated ECM (Fig. S2); all experiments were performed three times independently for each
134	developmental timepoint with 2 million neurons per experiment. To compare Nfasc cell surface
135	proximity proteomes from cultures of different ages, we normalized peptide spectral match
136	(PSM) counts to total spectral counts in the set of endogenously biotinylated carboxylases
137	detected (Fig. S2), as a correction factor for differences in total protein amount used in
138	individual pulldowns (see methods). We found that as neurons, the AIS, and axons develop, the
139	cell surface Nfasc proximity-proteome changes, with an increasing number of proteins
140	displaying significant changes in fold enrichment (Fig. 2, supplemental Table 2). Consistent with
141	a developing and maturing AIS and increasing levels of overall Nfasc, volcano plots (Fig. 2a and
142	supplemental table 3) show the enrichment of proteins identified using Nfasc-BAR compared to
143	controls at the various developmental time points. We used a cutoff of $log_2(Nfasc PSMs/Ctrl$
144	PSMs) or $log_2[fold change (FC)] > 2$ (vertical dotted line) with a significance cutoff of p<0.05
145	(horizontal dotted line).
146	To visualize the increase in proteins identified using Nfasc-BAR across development and
147	to select candidates to focus on, we identified 285 proteins that satisfied two filtering criteria
148	for at least one of the five timepoints: (1) normalized PSMs > 10 and (2) $log_2(Nfasc PSMs/Ctrl$
149	PSMs) or $log_2(FC) > 2$ (Fig. S2; Supplemental Table 2). Among these 285 proteins there were a

150 variety of protein expression profiles (Fig. 2b). Although present, relatively few proteins

Ogawa, Lim et al.

151	showed a reduction in the cell surface Nfasc proximity proteome. Most proteins identified in
152	the Nfasc proximity proteome increased in abundance (Fig. 2c; only the 100 candidates with the
153	largest increase across all time points are shown). We also plotted the log_2FC at each time
154	point for the 100 proteins with the largest fold change (DIV 4 only had 63 proteins with log_2FC
155	>2) (Fig. S3). The results for each protein were highly reproducible at each time point and
156	consistently revealed similar sets of cell surface proteins. Cytoplasmic AIS proteins such as
157	AnkG, $\beta4$ spectrin, and TRIM46 were conspicuously absent consistent with our experimental
158	design to restrict the biotinylation to cell surface proteins.
159	

160 The Nfasc-BAR proximity proteome includes AIS enriched proteins

161 Among the cell surface proteins that passed our selection criteria (Fig. S2), we found all 162 known AIS membrane proteins and AIS enriched extracellular matrix molecules with the 163 notable exception of ion channels (Fig. 3a). Why might that be the case since ion channels are 164 known to be highly enriched at the AIS? The number of PSMs recovered for any protein 165 depends on: 1) the number of available extracellular tyrosine residues (Nfasc-BAR-mediated 166 biotinylation occurs on tyrosine residues); 2) the amount and local membrane density of the 167 protein; and 3) the proximity of the protein to the biotinylation source. Since ion channels are 168 highly enriched at the AIS and are in close proximity to Nfasc, their absence from our data set 169 likely reflects the small number of extracellular tyrosine residues found in ion channels and a 170 topology that has extracellular residues very close to the membrane. For example, the AIS-171 enriched K⁺ channel subunit KCNQ3 has four extracellular regions comprising 45 amino acids, 172 with two of those being tyrosine (Fig. 3b); we did not detect any KCNQ3 peptides in our

Ogawa, Lim et al.

173	experiments. Similarly, Nav1.2 (encoded by Scn2a), the main voltage-gated Na ⁺ channel
174	expressed at AIS in DIV14 hippocampal neurons, has an average of one tyrosine per
175	extracellular domain and many are very close to or immediately adjacent to the membrane. In
176	contrast to ion channels, cell adhesion molecules like Nfasc and Contactin-1 (Cntn1) have large
177	extracellular domains with many tyrosine residues (Fig. 3b). Thus, the low number of
178	extracellular tyrosines found in ion channels and the proximity of these residues to the
179	membrane may make them difficult to biotinylate using Nfasc-BAR; other membrane or cell
180	surface proteins with few or inaccessible tyrosine residues may also be poorly represented in
181	our data set.
182	In contrast to ion channels, an analysis of the 201 proteins identified at DIV14 showed
183	no correlation between the number of PSMs for a protein and the number of extracellular
184	tyrosines (Figs. 3c, d). This suggests a much stronger dependence of PSM number on proximity
185	and protein abundance. As an estimate for both proximity and abundance, we calculated the
186	ratio of extracellular tyrosines to PSM count for all 201 proteins identified at DIV14. Thus, a
187	lower ratio suggests greater abundance of protein and closer proximity to the HRP-dependent
188	biotinylation source (Fig. 3e). This analysis shows many candidates with low extracellular
189	tyrosine/PSM ratios that were also previously reported to be directly or indirectly linked to
190	Nfasc, including PlxnA4, Ncam1, L1CAM, and NrCAM (Fig. 3e) ^{16,17} .
191	
192	Tagging of endogenous membrane proteins
193	Our results across 5 developmental timepoints yielded an NF186 proximity proteome

194 (Fig. 2a); filtering based on fold-enrichment and number of PSMs recovered resulted in 285

Ogawa, Lim et al.

195	candidate cell surface proteins in close proximity to NF186 (Fig. S2). Among these, Nfasc-BAR
196	successfully identified the 13 previously reported AIS-enriched cell surface proteins (excluding
197	ion channels; Fig. 3a). However, it is unlikely that the remaining 272 proteins are also enriched
198	at the AIS since NF186 is present in lower densities in the soma, axons, and at growth cones ¹³ ,
199	some of the proteins were identified before the AIS forms or is mature (e.g., DIV4), and the
200	range of SPPLAT/BAR is ~200-300 nm ^{9,11} . Thus, proteins identified by Nfasc-BAR may be in
201	proximity to NF186 but not enriched at the AIS. We previously used antibodies to validate the
202	AIS proteomes we identified using BioID ⁴ . However, antibodies are frequently non-specific and
203	for reasons that are unclear, many antibodies that label AIS are not against their claimed
204	targets ¹⁸⁻²⁰ . Therefore, to circumvent some of the challenges associated with antibodies and to
205	look for AIS- and axon-enriched proteins, we performed CRISPR-mediated epitope tagging of
206	endogenous proteins ^{19,21-23} . We selected 23 different candidates (Fig. 4a) identified using
207	Nfasc-BAR based on 1) the high fold-enrichment compared to control BAR, 2) the high number
208	of PSMs recovered, and 3) the estimate of proximity to the biotin source (Figs. 2 and 3).
209	Included in these 23 candidates were four cell adhesion molecules previously reported at the
210	AIS: Nfasc, NrCAM, L1CAM, and Cntn2 ²⁴⁻²⁶ . To endogenously label these 23 cell surface
211	proteins, we generated two adeno-associated viruses (AAV) to transduce cultured DIV 0 rat
212	hippocampal neurons with 1) Cas9 and 2) a gene specific single guide RNA (sgRNA), a sgRNA
213	that recognizes donor recognition sites (DRS) flanking spaghetti monster fluorescent protein
214	with V5 tags (smFP-V5), and smFP-V5 (Fig. 4b). The gene specific sgRNAs were targeted to the
215	last exon of each gene of interest allowing for the insertion of smFP-V5 in the last exon. 2
216	weeks after transduction, neurons were fixed and immunostained for β 4 spectrin to label the

Ogawa, Lim et al.

217	AIS, and V5 to detect the endogenously tagged cell surface protein. Since we targeted the last
218	exon (C-terminus) of each protein resulting in premature termination of the protein, it is
219	possible the addition of the smFP-V5 disrupted the normal localization of the cell surface
220	protein. However, C-terminal tagging of endogenous Nfasc, NrCAM, L1CAM, and Cntn2 all
221	resulted in AIS labeling as previously reported ²⁵⁻²⁷ (Figs. 4c-f). The candidates we tested
222	labeled AIS, axons, and dendrites (Figs. 4 and S4). For example, endogenous tagging of Ncam1
223	revealed uniform surface labeling in somatodendritic, AIS, and axonal domains (Fig. 4g), while
224	Ptprs and Tenm4 showed preferential labeling of AIS and axons (Figs. 4h, i); endogenous
225	labeling of Adgrl3 strongly labeled dendrites and spines (Fig. 4j). Among all the candidates we
226	tested that had not previously been reported at the AIS, we found that endogenous tagging of
227	Cntn1 showed the strongest labeling at the AIS (Fig. 4k).
220	

228

229 Cntn1 is a bona fide AIS cell surface protein

230 Cntn1 is a glycosylphosphatidyl inositol (GPI)-anchored cell adhesion molecule widely expressed throughout the nervous system in both neurons and glia ²⁸. It has essential roles in 231 232 forming the axoglial junctions flanking nodes of Ranvier where it forms a complex together with axonal Caspr and the glial 155 KDa splice variant of Nfasc (NF155) ^{29,30}. Cntn1-null mice die in 233 234 the 3rd postnatal week, emphasizing the importance of Cntn1 to normal function. Cntn1 was also reported at nodes of Ranvier, although its function there is unknown ³¹; detection of nodal 235 or paranodal Cntn1 requires different fixation and treatment conditions ³², suggesting that in 236 237 some subcellular domains Cntn1 may engage in protein-protein interactions that preclude 238 immunostaining. With this in mind, our efforts to immunolabel Cntn1 at AIS in control mouse

Ogawa, Lim et al.

239	brain failed. Nevertheless, we performed immunostaining in vitro using a goat-polyclonal anti-
240	Cntn1 antibody in control and Cntn1-deficient neurons. We disrupted endogenous Cntn1
241	expression in cultured hippocampal neurons using AAV to express Cas9 and three control or
242	three Cntn1 specific sgRNAs (Fig. 5a). Whereas neurons transduced with Cas9 and the control
243	sgRNAs had Cntn1 and AnkG immunolabeling at the AIS (Fig. 5b, arrowheads), neurons
244	transduced with the Cntn1 sgRNAs lost both the perisomatic and AIS Cntn1 immunoreactivity
245	(Fig. 5c, arrowhead). Thus, immunostaining of cultured hippocampal neurons reveals AIS
246	Cntn1. These results also demonstrate the specificity of the Cntn1 antibody. However, loss of
247	AIS Cntn1 had no effect on AIS AnkG (Fig. 5c, arrowhead), or clustering of Nfasc or Na ⁺ channels
248	(data not shown).
249	Transduction of DIV10 cultured hippocampal neurons using AAV to express myc-tagged
250	Cntn1 (Fig. 5d, e) also showed Cntn1-myc enriched at the AIS that colocalized with $eta4$ spectrin
251	at DIV14 (Fig. 5e, arrowheads). Similarly, retro-orbital injection of AAV Cntn1-myc in 13-week
252	old mice, showed strong AIS enrichment of Cntn1-myc in transduced cortical neurons four
253	weeks after injection (Fig. 5d, f, arrowheads). Finally, we performed in vivo AAV-dependent and
254	CRISPR-mediated tagging of endogenous Cntn1 using smFP-V5 (Fig. 5g). As with cultured
255	neurons (Fig. 4k), we found the sgRNA targeting <i>Cntn1</i> resulted in V5 labeling of cortical neuron
256	AISs (Fig. 5h, arrowheads). Together, these results show that Cntn1 is a <i>bona fide</i> AIS cell

258

259 **Cntn1** is localized at the AIS through binding to L1-family cell adhesion molecules

Ogawa, Lim et al.

260	Since Cntn1 is a GPI-anchored cell surface protein, we reasoned that it must be
261	recruited to the AIS through interactions with a co-receptor or some other AIS transmembrane
262	protein. Cntn1 has 6 N-terminal immunoglobulin-like (Ig-like) and 4 C-terminal fibronectin III
263	(FNIII) domains (Fig. 6a). To determine how Cntn1 is clustered at the AIS, we generated myc-
264	tagged Cntn1 with various internal deletions of these domains. We found the N-terminus and
265	first four Ig-like domains of Cntn1 are required for its AIS clustering (Fig. 6b). In contrast,
266	deletion of the last two Ig domains or any of the FNIII domains did not affect recruitment of
267	Cntn1 to the AIS (Fig. 6c).
268	What membrane protein recruits Cntn1 to the AIS? Biochemical and cell biological
269	studies suggest that Cntn1 interacts with members of the AnkG-binding L1 family of cell
270	adhesion molecules including Nfasc, L1CAM, and NrCAM ^{33,34} . Although all three of these CAMs
271	are enriched at the AIS, L1CAM is also found at high levels along the distal axon (Figs. 4c-e). To
272	determine if the AIS-enriched Nfasc or NrCAM recruits Cntn1 to the AIS, we generated sgRNAs
273	vectors (Fig. 5a) to delete Nfasc and NrCAM from neurons. Surprisingly, removal of Nfasc or
274	NrCAM alone had no effect on the clustering of Cntn1 at the AIS (Figs. 6d, e). However,
275	simultaneous deletion of both Nfasc and NrCAM blocked the AIS clustering of Cntn1 (Figs. 6d,
276	arrowhead; e). These results suggest that the AIS enriched CAMs Nfasc and NrCAM
277	redundantly recruit Cntn1 to the AIS through its first four Ig-like domains.
278	
279	Cntn1 helps assemble the AIS extracellular matrix
280	We found Tenascin-R (Tnr) in our Nfasc-BAR proximity proteome (Fig. 3a). Tnr is an

281 extracellular matrix molecule and a known Cntn1 interactor ³³. Immunostaining of cultured

Ogawa, Lim et al.

282	hippocampal neurons using antibodies against Tnr showed that it strongly labeled the AIS and
283	colocalizes with Nfasc (Fig. 6f). Previous studies showed that Nfasc regulates the AIS
284	recruitment of the extracellular matrix molecule Brevican ¹⁵ . To determine if Nfasc or Cntn1
285	also regulate the AIS clustering of extracellular Tnr, we disrupted expression of Nfasc and
286	<i>Cntn1</i> ; sgRNA vectors (Fig. 5a) targeting <i>Nfasc</i> and <i>Cntn1</i> were highly efficient (Figs. 5c and 6g).
287	Although control sgRNAs had no effect on AIS Tnr, loss of both Nfasc and Cntn1 significantly
288	reduced Tnr's AIS enrichment (Fig. 6g, h). Thus, Nfasc and Cntn1 both contribute to the
289	assembly or stabilization of the Tnr-containing AIS extracellular matrix.
290	
291	Cntn1 regulates the assembly of pinceau synapses in the cerebellum.
292	Purkinje neuron AISs are innervated by inhibitory basket cell interneurons that
293	powerfully modulate neuronal excitability ³⁵ . Basket cells form a stereotypical 'pinceau'
294	synapse (Fig. 7a), with presynaptic terminals at the AIS highly enriched in Kv1 K $^{\scriptscriptstyle +}$ channels and
295	PSD-95, among other proteins ³⁶ . The loss of the AIS scaffolding protein AnkG disrupts pinceau
296	synapses and the AIS clustering of Nfasc, suggesting that their assembly requires AnkG-
297	dependent clustering of CAMs like Nfasc and NrCAM ³⁷ . Since AIS enrichment of Cntn1 also
298	depends on these CAMs, we wondered if Cntn1 plays important roles in cerebellar pinceau
299	synapse assembly. Therefore, we examined pinceau synapse formation in P18 Cntn1 -/- mice;
300	Cntn1 -/- are very sick and typically die before 3 weeks of age ³⁰ . Immunostaining of Purkinje
301	neurons using antibodies against Nfasc, Kv1.2, and PSD95 showed stereotypical enrichment and
302	clustering of these proteins at the AIS of control heterozygote Cntn1 -/+ mice, but Cntn1 -/-
303	mice had profoundly disrupted pinceau synapse formation (Fig. 7b, arrows) with significantly

Ogawa, Lim et al.

304	reduced Kv1.2 and PSD95 intensity at the pinceau synapse (Fig. 7c). Thus, Cntn1 is required for
305	proper assembly of pinceau synapses at the AIS of cerebellar Purkinje neurons.

306

307 Cntn1 regulates axo-axonic innervation of pyramidal neurons by chandelier cells

308 In the cortex and hippocampus, axo-axonic synapses are formed between chandelier 309 cells (ChCs, also known as axo-axonic cells) and the AIS of pyramidal neurons (PyNs). ChCs are 310 derived from progenitors in the ventral region of the medial ganglionic eminence. They have a 311 unique axonal arbor consisting of multiple arrays of short, vertically oriented terminals of 312 presynaptic boutons called cartridges, and each of these cartridges selectively innervates 313 neighboring PyN AISs. These ChCs powerfully reduce PyN output by inhibiting AIS excitability; this inhibition can subsequently modulate brain circuit function and behavior ³⁸⁻⁴⁰. However, 314 315 the mechanisms that control the precise innervation of PyN AISs by ChCs remains incompletely 316 understood, with ankyrin-interacting L1CAM so far being the only CAM known to be required 317 for ChC/PyN AIS innervation ⁴¹; since L1CAM is found throughout the axon and not just at the 318 AIS, additional mechanisms must exist to allow for precise AIS innervation. To determine if 319 Cntn1 regulates ChC/PyN AIS innervation, we performed in utero electroporation (IUE) using 320 control or Cntn1-targeting sgRNA- and smFP-HA-expressing plasmids in Nkx2.1-CreER;Rosa26-321 loxpSTOPloxp-tdTomato (Ai9) pregnant mice at embryonic day 15.5 (E15.5) (Fig. 8a). This 322 timing of IUE results in disruption of the *Cntn1* gene in layer II/III PyNs. At E18.5 tamoxifen was 323 administered to the pregnant mother to induce expression of tdTomato red fluorescence 324 protein (RFP) in a sparse group of layer II ChCs (Fig. 8b). We collected brains from P17 mice and 325 analyzed the innervation and assembly of inhibitory synapses on PyN AISs by immunostaining

Ogawa, Lim et al.

326	for AnkG or $\beta 4$ spectrin to label AISs, and antibodies to gephyrin and VGAT to label post- and
327	pre-synaptic compartments of GABAergic synapses, respectively. We found that transfection
328	with Cntn1 sgRNA significantly reduced the percentage of PyN AISs innervated by single RFP-
329	positive ChCs in layer II/III of the somatosensory cortex, as compared to control sgRNA (Figs. 8c,
330	arrowheads, and d). We found that Cntn1-deficient neurons also had significantly fewer
331	inhibitory synapses along their AIS as indicated by gephyrin (Figs. 8e and f) and VGAT puncta
332	(Figs. 8g and h). Together, these results show that Cntn1 is required for efficient ChC/PyN AIS
333	innervation and consequently, the proper assembly of AIS axo-axonic inhibitory synapses.
334	
335	DISCUSSION
336	AIS properties essential for brain function include: 1) high densities of ion channels, 2)
337	mechanisms to regulate neuronal polarity, and 3) precise innervation by inhibitory
338	interneurons. The molecular mechanisms regulating these properties all converge on the AIS
339	scaffolding protein AnkG ^{37,41-43} . However, the distinct proximal mechanisms regulating these
340	AIS properties remain poorly understood, highlighting the need to define the composition of
341	the AIS in much greater detail. BioID-dependent cytoplasmic proximity biotinylation and
342	differential mass spectrometry have partially elucidated AIS proteomes 4,44, but they are clearly
343	deficient in proteins involved in transient interactions, posttranslational modifications, and cell
344	surface proteins mediating extra- and intercellular interactions. Thus, experimental approaches
345	that address these deficiencies are desperately needed.
346	We aimed to use Nfasc-BAR to identify AIS cell surface proteins. The results were highly
347	reproducible at each developmental time point in vitro, but showed changing profiles of cell

Ogawa, Lim et al.

348	surface proteins during development. As expected, our data sets included known AIS cell
349	surface proteins, and consisted almost exclusively of cell surface proteins whose expression
350	levels increased with neuronal maturation. The strategy is highly flexible and can be used with
351	other AIS specific antibodies including those targeting cytoplasmic epitopes after detergent
352	solubilization; the strategy can also be applied to other neuronal compartments including
353	synapses, dendrites, and growth cones so long as highly specific and validated antibodies are
354	used.

355 Since Nfasc is highly enriched at the AIS, we expected AIS-enriched membrane proteins 356 to be over-represented in our data set. However, Nfasc is also found at lower densities in 357 somatodendritic and distal axonal domains, and their total membrane area exceeds that of the 358 AIS. Thus, despite the high density of AIS Nfasc, the total pool of Nfasc in non-AIS membrane is 359 likely much greater. HRP-mediated biotinylation is very efficient and has a range ~25 times 360 greater than BioID or APEX¹¹. Thus, the proteins we recovered are more accurately described 361 as an Nfasc surface proximity proteome, with a subset of those proteins also being found at the 362 AIS.

Given the promiscuity of Nfasc-BAR, the biggest challenge in our experiments was to determine which proteins to focus on and how to validate their presence or enrichment at the AIS. To this end, we narrowed our analysis using stringent filtering criteria including foldenrichment, significance of that enrichment, and a minimum number of PSMs recovered. We also estimated the relative proximity to Nfasc based on the ratio of extracellular tyrosine residues to the PSMs recovered. Nfasc-BAR and the filtering criteria used here may underestimate proximity or miss AIS proteins that were not well biotinylated (e.g. ion

Ogawa, Lim et al.

370	channels). Nevertheless, among the proteins recovered and that satisfied the filtering criteria,
371	our use of endogenous gene tagging revealed several that were present or even enriched at the
372	AIS, but that had not been previously described as AIS proteins. In particular, we found that
373	Cntn1 is highly enriched at the AIS. We validated its enrichment there by endogenous gene
374	tagging in vitro and in vivo, by expression of exogenous epitope-tagged Cntn1 at the AIS in vitro
375	and in vivo, and by immunostaining of cultured hippocampal neurons using Cntn1 antibodies
376	whose specificity was confirmed using CRISPR-mediated gene disruption. Other candidate AIS
377	proteins (e.g. Tenm4 and Ptprs) will require additional studies to further validate and confirm
378	they are bona fide AIS proteins. Additional endogenous gene tagging may reveal more AIS
379	membrane proteins since we only tested a small subset of the Nfasc proximity proteome.
380	The use of numerous methods to confirm that Cntn1 is a <i>bona fide</i> AIS protein is
381	important since relying on antibody staining alone can lead to incorrect assignment of a protein
382	being enriched at the AIS ¹⁸⁻²⁰ . Methods allowing CRISPR-mediated endogenous gene tagging
383	are a significant advance to validate protein localization without the confound of off-target
384	antibodies or mislocalization due to over-expression ²¹⁻²³ . However, the method of tag
385	insertion we used also disrupts coding regions in the last exon of the proteins analyzed, and
386	some proteins that depend on their C-terminal amino acids may be mislocalized. Thus, failure
387	of a protein to localize to the AIS after endogenous gene tagging should not be considered a
388	definitive criterion for exclusion as an AIS protein.
389	Cntn1 is a GPI-anchored cell adhesion molecule that has been studied in the nervous
390	system mainly in the context of its role in axon-glia interactions as an essential component of

391 the paranodal axoglial junction formed between axons and myelinating glia ³⁰. There, Cntn1

Ogawa, Lim et al.

392	participates in cis interactions in the axon with Caspr1 (Contactin ASsociated PRotein 1) and
393	trans interactions with the glial 155 kD form of Nfasc (NF155) ^{29,45} . Cntn1 can engage in diverse
394	interactions with many cell adhesion and extracellular matrix molecules including Caspr1,
395	members of the L1 family of cell adhesion molecules (Nfasc, NrCAM and L1CAM), Tnr, Tnc, and
396	receptor tyrosine phosphatase β ^{28,46,47} . Our experiments show that Cntn1's AIS localization
397	requires its first four Ig-like domains and redundant interactions with either Nfasc or NrCAM
398	(Fig. S5a), since only simultaneous deletion of both disrupts Cntn1's AIS localization. In
399	addition, Cntn1 helps assemble the AIS extracellular matrix since its loss affects Tnr
400	recruitment. Future experiments may also reveal roles for Cntn1 in association with other AIS
401	extracellular matrix molecules or membrane proteins including Tnc and Na ⁺ channel β subunits
402	⁴⁸ . The importance of Cntn1 in humans is highlighted by the observation that a pathogenic
403	variant of CNTN1 caused lethal severe fetal akinesia syndrome 49.
404	ChCs and basket cells precisely innervate cortical PyNs and Purkinje neurons,
405	respectively, to regulate AIS excitability. For example, Dudok et al. ³⁸ and Schneider-Mizell et al.
406	³⁹ showed that a variety of behaviors including pupil dilation, locomotion, and whisking can
407	synchronously activate populations of ChCs to inhibit PyNs through GABAergic synapses.
408	Together, these observations highlight the central role played by ChCs in modulating brain
409	states and behavior. Similarly, pinceau synapses provide strong inhibitory control over Purkinje
410	neuron output, but this is due to ephaptic inhibition rather than chemical inhibition ⁵⁰ . Despite
411	their importance, the molecular mechanisms responsible for the precise innervation and
412	maintenance of AIS axo-axonic synapses are incompletely understood.

Ogawa, Lim et al.

413	Loss of AnkG from Purkinje neurons disrupts pinceau synapse formation and has been
414	attributed to mislocalization of AIS NF186; however, loss of ankyrin-binding NrCAM, L1CAM, or
415	CHL1 did not affect pinceau synapse assembly ³⁷ . These observations are consistent with our
416	findings that Cntn1 also regulates pinceau synapse assembly (Fig. S5b), since loss of AnkG
417	affects both NF186 and NrCAM localization ⁵¹ . We report here that Cntn1's AIS localization can
418	be independently directed by both of these CAMs (Fig. 6d). This result is consistent with the
419	observation that the specific deletion of NF186 alone in adults does not disrupt pinceau
420	synapse maintenance ⁵² , suggesting that Cntn1 can also partner with other AIS CAMs (e.g.,
421	NrCAM) for synapse maintenance. Since Cntn1 -/- mice die by P21, we cannot rule out the
422	possibility that pinceau synapses fail to develop due to widespread developmental defects.
423	Future studies utilizing Purkinje neuron specific deletion of Cntn1 will be required to more
424	precisely define Cntn1's role in pinceau synapse assembly and maintenance.
425	Previously, Tai et al. ⁴¹ reported a small RNAi screen of 14 candidate cell adhesion
426	molecules to identify regulators of PyN AIS innervation by ChCs. The candidates screened
427	included Nfasc, NrCAM, and all previously reported AIS CAMs (e.g. Cntn2). Loss of Nfasc,
428	NrCAM, or Cntn2 alone had no effect on ChC/PyN AIS innervation; but the impact of
429	simultaneous loss/depletion of Nfasc and NrCAM remains to be tested. Importantly, among the
430	candidates screened, only loss of L1CAM significantly reduced PyN AIS synaptic innervation by
431	ChCs, despite the fact that L1CAM is found not only at the AIS, but along the entire axon ²⁵ .
432	This suggests that L1CAM may cooperate in cis with other membrane or adhesion molecules
433	like Cntn1 for precise innervation of the AIS by ChCs (Fig. S5c). In addition to L1CAM, Hayano et
434	al. ⁵³ reported the cell adhesion molecule Igsf11 functions both pre- and post-synaptically in

Ogawa, Lim et al.

435	layer 2/3 of cortex to regulate assembly of PyN/ChC axo-axonic synapses. However, we did not
436	find Igsf11 in our Nfasc-BAR results at any time point; although this may reflect Igsf11 having
437	relatively few extracellular tyrosines. Alternatively, there may be differences between neurons
438	in vitro and in vivo, or even between types of neurons.
439	One limitation of this study is that the proximity biotinylation experiments were
440	performed on cultured neurons. AIS cell surface proteins whose localization depends on the
441	native brain environment may not be represented. For example, AIS GABAergic synapses may
442	form in vitro, but they are rare, making it difficult to identify presynaptic receptor(s) for Cntn1
443	and L1CAM using Nfasc-BAR. Future experiments using extracellular split TurboID ⁵⁴ , where
444	PyNs and ChCs each express one half of TurboID may help to identify the pre-synaptic receptor
445	found on ChCs. Alternatively, developing in situ Nfasc-BAR for use with brain tissue may reveal
446	additional AIS cell surface proteins and their receptors.
447	In summary, we used extracellular proximity biotinylation to identify Cntn1 as a new AIS
448	adhesion molecule. Cntn1 is restricted to the AIS through its binding to AnkG-localized Nfasc or
449	NrCAM (Fig. S5a). In Purkinje neurons, Cntn1 is required for AIS innervation by basket cells (Fig.
450	S5b). In PyNs, Cntn1 functions together with L1CAM to regulate the AIS-specific targeting and
451	developmental assembly of PyN/ChC axo-axonic synapses (Fig. S5c). Thus, our results suggest a
452	model where axo-axonic innervation of diverse neuron types converges on AIS-enriched Cntn1.
453	

454

Ogawa, Lim et al.

455 **METHODS**

456 Animals

457	Timed pregnant Sprague-Dawley rats were obtained from Charles River Laboratories.
458	Rats were euthanized for embryo collection at E18. Brains were collected from Cntn1 -/- and +/-
459	mice at P17 (catalog #Jax:034216, RRID:IMSR_JAX:034216). The Cntn1 mice were maintained at
460	the Weizmann Institute of Science, Rehovot, Israel. PO ICR mice were used for intraventricular
461	injection of AAV for overexpression of Cntn1-Myc. Transgenic Cas9 mice (catalog #Jax: 027650,
462	RRID: IMSR_JAX:027650) were used for intraventricular injection of AAV to perform tagging of
463	endogenous Cntn1. Nkx2-1 ^{tm1.1(Cre/ERT2)Zjh} /J and B6;129S6-Gt(Rosa)26Sor ^{tm9(CAG-tdTomato)Hze} /J were
464	a gift from Dr. Z.J. Huang ⁵⁵ . Swiss Webster mice were purchased from Charles River (Cat#
465	CRL:24; RRID: IMSR_CRL:24). All experiments were performed in compliance with the National
466	Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by
467	the Baylor College of Medicine, the Cold Spring Harbor, and the Weizmann Institute of Sciences
468	Institutional Animal Care and Use Committees.
469	

470 *Cell Culture*

Primary cultures of hippocampal neurons were obtained from E18 Sprague-Dawley rat
embryos. Hippocampi were dissected and dissociated. For imaging, neurons were plated onto
Poly-D-Lysine (Sigma) and laminin-coated glass coverslips (Life Technologies) at a density of
~1.25 X 10⁴ cells/cm². For mass spectrometry, neurons were plated onto Poly-D-Lysine and
laminin-coated 10 cm dishes at a density of ~2.5 X 10⁴ cells/cm². Hippocampal neurons were
maintained in Neurobasal medium (Life Technologies) containing 1% Glutamax (Life

Ogawa, Lim et al.

- 477 Technologies), 1% penicillin and streptomycin (Life Technologies), and 2% B27 supplement (Life
 478 Technologies) in an incubator at 37°C with 5% CO₂.
- 479
- 480 Biotinylation by Antibody Recognition

Cultured rat primary neurons ($\sim 2 \times 10^6$ primary hippocampal neurons for each 481 482 condition) were biotinylated at each of 5 different timepoints. Cells were live labeled by 483 incubating with primary antibodies diluted in culture media for 1 hr at 37°C, then washed with 484 neurobasal media and incubated in culture media alone for 1 hr at 37°C. Cells were incubated 485 with horseradish peroxidase (HRP)-labeled secondary antibodies diluted in culture media for 30 486 min at 37°C, then washed with PBS. Biotin tyramide (Perkin Elmer Cat# NEL749A001KT) was 487 diluted 1:500 in a dilution buffer containing H_2O_2 , and applied to cells for 5 min at 4°C. Cells 488 were washed with PBS and lysed in RIPA buffer (50 mM Tris-HCl, 150 mM NaCl, 0.5% sodium 489 deoxycholate, 0.1% SDS, and 1% NP-40). Biotinylated proteins were isolated using streptavidin 490 magnetic sepharose beads (GE Healthcare Cat# 28-9857-38) overnight at 4°C and then washed 491 seven times in RIPA buffer. Control cells were labeled and processed using the same steps 492 except for the omission of primary antibodies. 493

494 Mass Spectrometry.

Sample-incubated streptavidin magnetic sepharose beads were resuspended in 5 mM
DTT in 100 mM NH₄HCO₃ and incubated for 30 min at room temperature. After this,
iodoacetamide was added to a final concentration of 7.5 mM and samples incubated for 30
additional minutes. In all, 0.5 μg of sequencing grade trypsin (Promega) was added to each

Ogawa, Lim et al.

499	sample and incubated at 37°C overnight. Supernatants of the beads were recovered, and beads
500	digested again using 0.5 μ g trypsin in 100 mM NH ₄ HCO ₃ for 2 h. Peptides from both consecutive
501	digestions were recovered by solid phase extraction using C18 ZipTips (Millipore, Cat#
502	ZTC18S096), and resuspended in 0.1% formic acid for analysis by liquid chromatography-mass
503	spectrometry (LC-MS/MS). Peptides resulting from trypsinization were analyzed on a QExactive
504	Plus (Thermo Scientific), connected to a NanoAcquity™ Ultra Performance UPLC system
505	(Waters). A 15-cm EasySpray C18 column (Thermo Scientific) was used to resolve peptides (90-
506	min gradient with 0.1% formic acid in water as mobile phase A and 0.1% formic acid in
507	acetonitrile as mobile phase B). MS was operated in data-dependent mode to automatically
508	switch between MS and MS/MS. The top ten precursor ions with a charge state of 2^+ or higher
509	were fragmented by high-energy collisional dissociation. Peak lists were generated using PAVA
510	software ⁵⁶ . All generated peak lists were searched against the rat subset of the UniProt
511	database (UniprotKB 2017.11.01) using Protein Prospector ⁵⁷ . The database search was
512	performed with the following parameters: a mass tolerance of 20 ppm for pre- cursor masses;
513	30 ppm for MS/MS, cysteine carbamidomethylation as a fixed modification and acetylation of
514	the N terminus of the protein, pyroglutamate formation from N-terminal glutamine, and
515	oxidation of methionine as variable modifications. All spectra identified as matches to peptides
516	of a given protein were reported, and the number of spectra (Peptide Spectral Matches, PSMs)
517	used for label free quantitation of protein abundance in the samples.
510	

518

519 Antibodies

Ogawa, Lim et al.

520	The following antibodies were used for <i>in vitro</i> biotinylation (dilutions for each antibody
521	are indicated in parentheses): chicken polyclonal antibody anti-neurofascin (1:1000; R&D
522	Systems Cat# AF3235, RRID:AB_10890736), rabbit polyclonal anti-NrCAM (1:1000; Abcam Cat#
523	ab24344, RRID:AB_448024), anti-chicken HRP-labeled secondary antibody (1:2000; Aves Labs
524	Cat# H-1004, RRID:AB_2313517), anti-rabbit HRP-secondary antibody (1:2000; Jackson
525	ImmunoResearch Labs Cat# 111-035-003, RRID:AB_2313567).
526	The following antibodies were used for immunofluorescence studies (dilutions for each
527	antibody are indicated in parentheses): chicken polyclonal anti-neurofascin (1:500; R&D
528	Systems Cat# AF3235, RRID:AB_10890736), chicken polyclonal anti-MAP2 (1:1000; EnCor
529	Biotechnology Cat# CPCA-MAP2, RRID:AB_2138173), mouse monoclonal anti-Ankyrin-G (1:500;
530	NeuroMab N106/36, RRID:AB_10673030), mouse monoclonal anti-Tenascin-R (1:250; R&D
531	Systems Cat# MAB1624, RRID:AB_2207001), rabbit polyclonal anti-NrCAM (1:250; Abcam Cat#
532	ab24344, RRID:AB_448024), rabbit polyclonal anti- eta 4 spectrin (1:500, Rasband lab,
533	RRID:AB_2315634), rabbit polyclonal anti-Kv1.2 (1:250, James Trimmer, University of California,
534	Davis, RRID:AB_2756300), mouse monoclonal anti-PSD-95 (1:250; Antibodies Incorporated Cat#
535	75-028, RRID:AB_2292909), mouse monoclonal anti-Tuj1 (1:700; BioLegend Cat# 801202,
536	RRID:AB_10063408), goat polyclonal anti-Cntn1 (1:500; R&D Systems Cat# AF904,
537	RRID:AB_2292070), mouse monoclonal anti-Myc (1:2000; MBL International Corporation Cat#
538	M192, PRID: AB_11160947), rat monoclonal anti-HA (1:500; Millipore Sigma Cat# 11867423001,
539	RRID: AB_390918), mouse monoclonal anti-V5 (1:500; Invitrogen Cat# R960CUS, RRID:
540	AB_159298). Anti-RFP (guinea pig pAb, 1:1000, Synaptic systems 390 005), anti-gephyrin

Ogawa, Lim et al.

541	(mouse mAb lgG1	, 1:500, Synaptic Systems	; 147 011), and anti-VGAT	(guinea pig pAb, 1:500,
-----	-----------------	---------------------------	---------------------------	-------------------------

542 Synaptic Systems 131 004).

543	The following secondary antibodies were used: Alexa Fluor 555 goat anti-rat (1:1000,
544	Thermo Fisher Scientific A-11006), Alexa Fluor Plus 555 goat anti-rabbit (1:1000, Thermo Fisher
545	Scientific A32732), Alexa Fluor 647 goat anti-rabbit (1:1000, Thermo Fisher Scientific A-21244),
546	Alexa Fluor 555 goat anti-guinea pig (1:1000, Thermo Fisher Scientific A-21435), Alexa Fluor 647
547	goat anti-guinea pig (1:1000, Thermo Fisher Scientific A-21450), Alexa Fluor 647 goat anti-
548	mouse IgG1 (1:1000, Thermo Fisher Scientific A-21240), Alexa Fluor 488 goat anti-mouse IgG2a
549	(1:1000, Thermo Fisher Scientific A-21131), Aminomethylcoumarin (AMCA) anti-chicken IgY
550	(1:1000 Jackson Immunoresearch labs 103-155-155), Alexa Fluor 488 anti-chicken IgY, (1:1000
551	Jackson Immunoresearch labs 103-545-155), Alexa Fluor 488 anti-mouse IgG (1:1000 Thermo
552	Fisher Scientific A11029), Alexa Fluor 594 anti-rabbit (1:1000 Thermo Fisher Scientific A11034),
553	Alexa Fluor 594 anti-mouse IgG (1:1000 Thermo Fisher Scientific A32742). Streptavidin Alexa
554	Fluor 594 conjugates were purchased from Thermo Fisher Scientific (1:5000; S11227). Hoechst
555	fluorescent reagent (1:100,000; Thermo Fisher Scientific Cat# H3569, RRID:AB_2651133) was
556	used to label nuclei.

557

558 In Utero Electroporation and Tamoxifen Induction

559 To manipulate Cntn1 expression in pyramidal neurons (PyNs) and sparsely label 560 chandelier cells (ChCs) in the same neocortical layer, ventricular zone-directed *in utero* 561 electroporation targeting neocortical PyN progenitors was performed in *Nkx2.1-CreER;Rosa26-*562 *loxpSTOPloxp-tdTomato (Ai9)* embryos. Specifically, Swiss Webster females were bred with

Ogawa, Lim et al.

563	<i>Nkx2.1-CreER</i> ^{+/-} ; <i>Ai9</i> ^{+/+} males. Pregnant females at 15.5 days of gestation were anesthetized, the
564	uterine horns were exposed, and approximately 1 μl of plasmid solution (0.75 $\mu g/\mu l$ pCAG-
565	1BPNLS-Cas9-1BPNLS + 1.5 μ g/ μ l pAAV-3x-sgRNA-smFP (with control or target specific sgRNAs;
566	see STAR Methods) was injected manually into the lateral ventricle of the embryos using a
567	beveled glass micropipette (Drummond Scientific). After injection, five square 50 ms pulses of 45
568	V with 950 ms intervals were delivered across the uterus with two 5 mm electrode paddles (BTX,
569	45-0489) positioned on either side of the head (BTX, ECM830). After electroporation, the uterine
570	horns were placed back in the abdominal cavity of the pregnant dam and the wound was
571	surgically sutured. Tamoxifen (3 mg/30 g of body weight) was administered to the pregnant dam
572	by oral gavage at 18.5 days of gestation to induce CreER activity and excision of the STOP cassette,
573	resulting in tdTomato red fluorescent protein expression in a sparse population of nascent
574	neocortical ChCs in their offspring. Pups were euthanized at postnatal day 17.

575

576 Immunofluorescence labeling

577 Cultured rat primary hippocampal neurons were fixed in 4% paraformaldehyde (PFA, pH 578 7.2) for 15 minutes at 4°C. Acutely dissected brains were drop fixed in 4% paraformaldehyde 579 (PFA, pH 7.2) for 60 minutes at 4°C. Brains were then equilibrated overnight in 20% and 30% 580 sucrose in 0.1 M PB overnight at 4°C. Brains were then sectioned at 12-25 µm and mounted on 581 coverslips. Fixed neurons and brain sections were permeabilized and blocked with 10% normal 582 goat serum in 0.1 M PM with 0.3% Triton X-100 (PBTGS) for one hour. Cells and sections were 583 then incubated in primary antibodies diluted in PBTGS overnight at room temperature or 4°C. 584 Tissues and cells were then washed three times using PBTGS for 5 min. each. Fluorescent

Ogawa, Lim et al.

585	secondary antibodies were then diluted in PBTGS and added to cells and tissues for one hour.
586	Coverslips were then washed once using PBTGS, 0.1 M PB, and finally 0.05 M PB for 5 min.
587	each. Coverslips were then mounted using Vectashield plus (vector labs) anti-fade mounting
588	media.
589	For immunostaining of electroporated neonatal brains, P17 mice were deeply
590	anesthetized with isoflurane and perfused transcardially with PBS and 4% paraformaldehyde
591	(PFA) in 0.1 M phosphate buffer. Brains were post-fixed in 4% PFA in 0.1 M phosphate buffer
592	overnight at 4°C and then cryoprotected with 30% sucrose in PBS. 50 μm thick coronal sections
593	were subsequently generated using a Vibratome (Leica VT1000S). For gephyrin and VGAT
594	immunostaining, brain slices were subjected to mild antigen retrieval with 10 mM citrate buffer
595	for 30 minutes at 60°C. Subsequently, brain slices were blocked and permeabilized with 10%
596	normal goat serum (NGS) and 0.3% Triton X-100 in PBS at RT for 30 minutes and then incubated
597	with primary antibodies diluted in 2% NGS and 0.3% Triton X-100 in PBS overnight at 4°C.
598	Fluorescent secondary antibodies diluted in 2% NGS and 0.3% Triton X-100 in PBS were applied
599	for 2 h at RT the following day. Sections were then washed three times with PBS for 20 min per
600	wash and mounted with Fluoromount-G (Southern Biotech).

601

602 Plasmid construction

The sgRNAs and the homology-independent donor templates were generated following strategies similar to those described previously ^{19,22,23,58}. Briefly, the U6 promoter and scaffold sequences were PCR amplified from pMJ117 and pMJ179 (gifts from Jonathan Weissman,

Ogawa, Lim et al.

606 Addgene plasmid #85997 and #85996). The smFP-V5 (a gift from Loren Looger, Addgene

607 plasmid #59758) was used as a knock-in donor.

608	The knockout constructs expressing three independent sgRNAs and a smFP-HA marker
609	(pAAV-3x-gRNA-smFP) were generated as follows: the U6 promoter and scaffold sequences
610	were PCR amplified from pMJ114, pMJ117, and pMJ179 (gifts from Jonathan Weissman,
611	Addgene plasmid # 85995, #85997, and #85996). Human Synapsin1 promoter and smFP-HA
612	were PCR amplified from pAAV-hSyn-EGFP (a gift from Bryan Roth, Addgene Plasmid #50465)
613	and pCAG_smFP-HA (a gift from Loren Looger, Addgene plasmid #59759), respectively. The
614	plasmid PX552 (a gift from Feng Zhang, Addgene plasmid #60958) was digested with a Notl
615	restriction enzyme (NEB) and used as a plasmid backbone. DNA fragments were ligated
616	together using an In-Fusion Snap Assembly Master Mix (Takara). The sgRNA sequences for
617	knock-in and knockout are listed in the supplemental materials table. The AAV-SpCas9 plasmid
618	(a gift from Feng Zhang, Addgene plasmid #60957) was modified by removing the HA tag.
619	Cntn1 constructs were generated in both pcDNA3 and AAV backbones. pcDNA3 was
620	digested with <i>EcoRI</i> restriction enzyme (NEB) and pAAV-hSyn-EGFP (a gift from Bryan Roth,
621	Addgene Plasmid #50465) was digested with <i>BamHI</i> and <i>XhoI</i> restriction enzymes (NEB) and
622	used as plasmid backbones. Full-length and truncated Cntn1 was PCR amplified from rat
623	contactin-myc ³⁴ and ligated together using an In-Fusion Snap Assembly Master Mix (Takara).
624	All DNA constructs were verified by sequencing (Genewiz and plasmidsaurus).
625	

626 Adeno-associated virus (AAV) production

Ogawa, Lim et al.

627	Small scale AAV cell-lysates were produced using the AAVpro Purification Kit (All Serotypes)
628	(Takara) with slight modifications. Briefly, HEK293T cells were triple-transfected with AAV
629	plasmid, helper plasmid (Agilent Technologies, Cat # 240071), and serotype PHP.S or PHP.eB
630	plasmids (a gift from Viviana Gradinaru, Addgene plasmids #103002 and #103005) with PEI Max
631	(Polysciences, Cat # 24765). The medium was changed the next day of transfection and cells
632	were incubated for 3 days after transfection. HEK cells were then collected and lysed with the
633	AAV Extraction Solution A plus. The extracted solution was centrifuged at 10,000 x g for 10 min
634	to remove debris and mixed with Extraction Solution B. This small scale AAV solution was stored
635	at 4°C and used for neuronal transduction into cultured neurons. AAV vectors for in vivo
636	transduction were produced by the Baylor College of Medicine Neuroconnectivity Core or in
637	our lab following the strategies described previously ⁵⁹ .
638	
639	Viral transduction of neurons
640	For viral transduction of cultured neurons, 10 μl of AAV-Cas9 and 10 μl of AAV-sgRNA and
641	donor, or AAV-3x-sgRNA-smFP, were added into a well of a 12-well plate at 0-1 DIV. The
642	medium was replaced 2 days after infection. For viral transduction of neurons in vivo, AAV
643	vectors were injected into the lateral ventricles of neonatal mice as described previously 60 .
644	Briefly, PO to P2 pups were anesthetized on ice and 1-2 μ l of AAV vectors were bilaterally
645	injected. The pups were placed in a heated cage until the animals recovered and then returned
646	to their mother. For transduction of neurons in adult, viruses were injected retro-orbitally in 13

647 week-old C57BI/6J mice. Tissues were collected 4 weeks after infection.

648

Ogawa, Lim et al.

649 Confocal Image Acquisition and Analysis of ChC/PyN AIS Innervation and GABAergic Synapse

650 **Density at PyN AISs**

651 For analysis of ChC/PyN AIS percent innervation, images of coronal brain slices (50 µm thick) were 652 acquired using an LSM 800 confocal laser-scanning microscope (Zeiss) with a 63x oil-immersion 653 objective and sequential acquisition settings applied at a resolution of 1024x1024 pixels. 200 µm 654 x 200 µm images of single RFP+ ChCs and neighboring GFP+ electroporated PyNs in layer II of the 655 somatosensory cortex were collected using a z series of 30-36 images with a depth interval of 1 656 µm. ChC/PyN AIS percent innervation was calculated by dividing the number of GFP+ PyNs 657 innervated at their AIS by a single RFP+ ChC by the total number of GFP+ PvNs in the entire 200 658 μ m x 200 μ m image z stack. Representative maximum projection images were generated from 659 10 z-series images with a depth interval of 1 μ m. To quantify the average density of gephyrin or 660 VGAT puncta per µm on the AIS of PyNs, 90 µm x 90 µm images were acquired at a resolution of 661 1280x1280 pixels using a z-series of 40-60 images with a depth interval of 0.37 μ m. The number 662 of gephyrin or VGAT puncta overlapping with AnkG+ or β 4-spectrin+ PyN AISs in individual z-663 plane images was manually counted and AIS lengths were measured using Zeiss Zen (Blue Edition) 664 imaging software. Gephyrin or VGAT puncta density at the AIS was then calculated by dividing 665 the number of PyN AIS gephyrin or VGAT puncta by the length of the AIS. Representative 666 maximum projection images of PyN AIS GABAergic synapses visualized via gephyrin or VGAT 667 immunostaining were generated using a z-series of 10 images with a depth interval of 0.37 μ m. 668

669 *Image Acquisition*

Ogawa, Lim et al.

670	Images of immunofluorescence were captured using an Axio-imager Z2 microscope fitted with
671	an apotome attachment for structured illumination (Carl Zeiss MicroImaging) and a Nikon
672	Eclipse Ni2. 20X (0.8 NA), 40X (0.95 NA), and 63X (1.4 NA) objectives were used. Images were
673	taken using Zen 3.2 (Zeiss) or NIS-Elements (Nikon). For measurements of AIS streptavidin
674	fluorescence intensity, 20 neurons per timepoint per replicate were imaged and line scans were
675	drawn using Zen 3.2 software. Images were exported to Fiji, Adobe Photoshop, and Adobe
676	illustrator for figure presentation. Some figures were generated using Biorender.
677	
678	Statistical Analysis and Quantification
679	Unpaired, two-tailed Student's <i>t</i> -test was used for all statistical analyses unless otherwise
680	indicated. Data were analyzed using Microsoft Excel and GraphPad Prism. All error bars are
681	\pm SEM unless otherwise indicated. PSMs were normalized using the formula PSM _{Norm} = PSM _{DIVX} *
682	$Csum_{Max}$ / $Csum_{DIVX}$. PSM _{DIVX} is the raw PSM count for a candidate protein for a particular
683	replicate at the specified timepoint; Csum $_{Max}$ is the maximum sum of seven endogenously

biotinylated carboxylases Acaca, Acacb, Pc, Pcca, Pccb, Mccc1, Mccc2 for an individual replicate

across all 15 replicates; Csum_{DIVX} is the sum of seven endogenously biotinylated carboxylases

Acaca, Acacb, Pc, Pcca, Pccb, Mccc1, Mccc2 for an individual replicate at the specified timepoint

687 DIVX. Heatmaps were generated using GraphPad Prism. Candidates were rank-ordered by the

688 slope of the linear regression of their log₂ fold enrichment over time. The number of

- 689 extracellular tyrosines for proteins whose log₂ fold change was > 2 and that had at least ten
- 690 PSMs were counted using a script that extracted protein topology from the Uniprot database

Ogawa, Lim et al.

- 691 (www.uniprot.org). The tyrosine-PSM proximity plot was generated using Python
- 692 (www.python.org). Colors were added in Adobe Illustrator.

- 694 *Extended materials*
- 695 A detailed list of all materials including all gRNA sequences, antibodies, plasmids,
- 696 sources, etc. is provided in the supplemental extended materials file.

Ogawa, Lim et al.

697 **ACKNOWLEDGEMENTS**

- 698 The work reported here was supported by NIH research grants NS122073 (M.N.R.), MH119819
- 699 (L.V.A.) and NS116897 (L.V.A.), and by the Dr. Miriam and Sheldon G. Adelson Medical Research
- 700 Foundation (A.L.B., E.P., and M.N.R.). We thank Ayano Ogawa for illustrations.
- 701

702 AUTHOR CONTRIBUTIONS

- 703 Conceptualization methodology, validation, investigation, visualization, and writing— reviewing
- and editing: Y.O. and B.C.L.; Investigation, analysis, and writing reviewing and editing: S.G.;
- 705 Investigation and analysis: J.M.R., Y.E-E., and F.B.; Investigation, data curation: J.O-P.;
- Resources, supervision, funding acquisition, and writing reviewing and editing: A.L.B., E.P.,
- and L.V.A.; Conceptualization, methodology, data curation, writing— original draft and editing,
- 708 project administration, and funding acquisition: M.N.R.
- 709

710 **COMPETING INTERESTS**

- 711 The authors declare no competing interests.
- 712

713 DATA AVAILABILITY STATEMENT

- 714 All mass spectrometry data sets from experiments included here are deposited at PRIDE
- 715 (Proteomics Identifications Database).

Ogawa, Lim et al.

717 FIGURES

Ogawa, Lim et al.

719	Figure 1. Proximity-dependent biotinylation using Nfasc antibodies. a, Illustration of the
720	antibody-directed proximity biotinylation strategy. Anti-Nfasc antibodies bind to Nfasc, while
721	HRP-conjugated secondary antibodies bind to the Nfasc antibodies. Addition of biotin phenol
722	(biotin tyramide) in an H_2O_2 containing diluent results HRP-mediated conversion of the biotin
723	phenol to an active radical biotin phenoxyl that covalently adds the tyramide biotin to
724	extracellular tyrosine residues. Omission of the primary anti-Nfasc serves as a control. After
725	stringent solubilization and affinity capture by streptavidin-conjugated magnetic beads.
726	Biotinylated proteins are then identified by mass spectrometry. b , Fluorescence imaging of
727	DIV14 rat hippocampal neurons labeled by Nfasc-BAR or a control condition (no primary Ab).
728	Nfasc fluorescence (green) enrichment defines the AIS. Biotinylated proteins were detected
729	using Alexa594-conjugated streptavidin. Scale bars, 20 μm.

Ogawa, Lim et al.

1-50

51-100

Ogawa, Lim et al.

731

732	Figure 2. NF186 proximity proteomes across neuronal development. a, Volcano plots showing
733	the log ₂ -fold changes of proteins versus the statistical significance -log ₁₀ (pvalue) identified using
734	Nfasc-directed proximity biotinylation (N=3). p<0.05 was used as a cutoff for significance
735	(horizontal dashed line). Some identified proteins are indicated (corresponding gene names
736	listed), with those previously reported as AIS cell surface proteins in red, respectively. Inset
737	images show immunofluorescence labeling of NF186 at different timepoints of hippocampal
738	neuron development in vitro. Lower panels: magnified images show the Nfasc-labeled AIS at
739	each time point. Scale bars, 20 $\mu m.~\textbf{b}$, Heatmaps showing logfold changes at each timepoint
740	for all 285 proteins that satisfied two filtering criteria [(1) normalized PSMs > 10; (2) log_2FC
741	(Nfasc/Ctrl) > 2] for at least one of five timepoints, rank-ordered by the slope of the linear
742	regression of their log ₂ fold enrichment over time. c, Expanded heat map showing gene names
743	for the proteins (1-50 and 51-100) with the largest rate of increase in PSM count (B). Data
744	shown are from N = 3 replicates for each timepoint (see Figure S2).
745	

Ogawa, Lim et al.

Ogawa, Lim et al.

748	Figure 3. Nfasc-BAR identifies known AIS membrane and membrane-associated proteins. a,
749	Known AIS membrane and membrane associated proteins and their log_2FC (Nfasc/Ctrl). b ,
750	Illustration of membrane topology, average PSMs (at DIV14), and the number of extracellular
751	tyrosine residues for three different AIS and membrane proteins. Figure generated using
752	Biorender. c, d, Scatter plot of the number of peptide spectral matches (PSMs) for each
753	biotinylated protein identified by mass spectrometry as compared to the number of tyrosine
754	residues present in each protein's extracellular domain, shown at different scales. Proteins in
755	red were previously reported at the AIS. e, Proximity plot showing biotinylated proteins (at
756	DIV14) ordered by extracellular (EC) tyrosine/PSM ratio. The plot is an estimate of abundance
757	and proximity to the HRP secondary antibody bound to the Nfasc primary antibody. Each
758	protein is represented by a circle with size proportional to the number of PSMs identified for
759	that protein. Proteins analzyed in subsequent experiments are indicated by their gene names.
760	EC Tyrosine/PSM ratio: 0-0.5 green, 0.5-1.0 yellow, 1.0-1.5 blue, 1.5-2.0 red.
761	

Ogawa, Lim et al.

Ogawa, Lim et al.

763	Figure 4. Tagging of endogenous membrane proteins. a, Proteins whose distribution was
764	tested using endogenous protein tagging. The heatmap shows the increase in expression level
765	is shown as a function of days <i>in vitro</i> (see also Figure 2c). The presence of the tagged protein
766	in AIS, axon, and dendrite is indicated. b , Schematic of the knock-in vector for <i>in vitro</i> CRISPR-
767	mediated endogenous gene tagging. DRS, donor recognition sites. c-k , Examples of smFP-V5
768	tagged proteins (red) enriched at the AIS (c, d, f, k), the axon (e, g), dendrites (j), or in multiple
769	domains (e, g, h, i). AIS are labeled for $\beta 4$ spectrin (green) and are indicated by an arrowhead.

770 Scale bar, 20 μm.

Ogawa, Lim et al.

Ogawa, Lim et al.

773

774	Figure 5. Cntn1 is a bona fide AIS protein. a, Schematic of the knockout vector including 3
775	sgRNAs targeting the gene of interesting. The AAV generated using this vector were used for in
776	<i>vitro</i> transduction of neurons. b, c, Immunostaining for Cntn1 (green), AnkG (red) and Map2
777	(blue) after transduction with AAV to Cas9 and control (b) or Cntn1 (c) sgRNAs. Neurons
778	transduced with the Cntn1 sgRNAs lacked AIS Cntn1, but retained robust AnkG at the AIS. AIS
779	are indicated by the arrowheads. Scale bar, 10 μ m. d, Schematic of the Cntn1-myc
780	overexpression vector used for <i>in vitro</i> and <i>in vivo</i> infection of neurons. e , Transduction of
781	cultured hippocampal neurons using AAV to express Myc-tagged Cntn1. Cntn1-myc (red) is
782	enriched at the AIS (arrowhead) where it colocalizes with eta 4 spectrin (green). The
783	somatodendritic domain is identified using antibodies against Map2 (blue). Scale bar, 10 $\mu m.~\textbf{f}$,
784	In vivo transduction of cortical neurons using AAV to express Myc-tagged Cntn1. Cntn1-myc
785	(red) is enriched at the AIS (arrowhead) where it colocalizes with $\beta 4$ spectrin (green). Nuclei are
786	labeled using Hoechst dye (blue). Scale bar, 10 μ m. g, Schematic of the knock-in vector for <i>in</i>
787	vivo CRISPR-mediated endogenous tagging of Cntn1. DRS, donor recognition sites. AAV were
788	delivered by intracerebroventricular (ICV) injection at P0. h , <i>In vivo</i> transduction of cortical
789	neurons for CRISPR-dependent genome editing to tag endogenous Cntn1 using smFP-V5 (red).
790	The smFP-V5 tagged Cntn1 colocalizes with $\beta 4$ spectrin (green) at the AIS (arrowhead). Nuclei
791	are labeled using Hoechst dye (blue). Scale bar, 10 μ m.
792	

Ogawa, Lim et al.

793

Ogawa, Lim et al.

795	Figure 6. Cntn1 is recruited to the AIS through interactions with AnkG-binding L1-family cell
796	adhesion molecules. a, Cntn1-myc (red) is targeted to the AIS and colocalizes with $\beta4$ spectrin
797	(green). Cntn1 consists of 6 N-terminal Immunoglobulin (Ig)-like domains and 4 C-terminal
798	Fibronectin type III (FNIII) domains. Scale bar, 10 μ m. b, Cntn1-myc with N-terminal and
799	internal deletions of the first 4 Ig-like domains fail to localize at the AIS. Scale bar, 10 $\mu m.~c$,
800	Cntn1-myc localization to the AIS does not depend on the last 2 Ig-like domains or any FNIII
801	domain. Scale bar, 10 μ m. d, Cultured hippocampal neurons transduced with AAV to express
802	Cas9 and control, Nfasc, NrCAM, or Nfasc+NrCAM gRNAs. Neurons were labeled using
803	antibodies against HA as a transduction marker (to label the spaghetti monster fluorescent
804	protein tagged with HA, smFP-HA; blue), eta 4 spectrin (green), and Cntn1-myc (red). Scale bar,
805	10 μ m. e , Quantification of the percentage of transduced neurons with AIS Cntn1-myc. N= 3
806	independent experiments. Ordinary one-way ANOVA with Tukey's multiple comparisons test.
807	Error bars, ±SEM. The total number of neurons analyzed is also indicated. f, Immunostaining of
808	cultured hippocampal neurons using antibodies against Tenascin R (Tnr; red), $eta4$ spectrin
809	(green), and β 3 Tubulin (blue). Scale bar, 25 μ m. g , Cultured hippocampal neurons transduced
810	with AAV to express Cas9 and control, Nfasc, or Cntn1 gRNAs. Neurons were labeled using
811	antibodies against Tnr (red), eta 4 spectrin (green), and Nfasc (blue). Scale bar, 10 μ m. h,
812	Quantification of the percentage of transduced neurons with AIS Tnr. N= 3 independent
813	experiments. Ordinary one-way ANOVA with Tukey's multiple comparisons test. Error bars,
814	±SEM. The total number of neurons analyzed is also indicated.
815	

Ogawa, Lim et al.

Figure 7. Cntn1 is required for axo-axonic innervation of Purkinje neuron AIS. a, Illustration
of a Purkinje neuron (black) with a basket cell (red) forming the cerebellar pinceau on the AIS.
b, Immunostaining of P17 cerebellar pinceau in control and *Cntn1 -/-* mouse brain using
antibodies against Kv1.2 (red) and PSD95 (green) to label the pinceau, and Nfasc (blue) to label
the Purkinje neuron AIS. Scale bar, 10 µm. c, Violin plot of the mean Kv1.2 intensity of the
cerebellar pinceau in control and *Cntn1 -/-* mice. N=3 control and 2 *Cntn1 -/-* mice. The
number of pinceau analyzed is indicated.

Ogawa, Lim et al.

826

Figure 8. Pyramidal neuron Cntn1 is important for AIS synaptic innervation by ChCs. a, Illustration of the knockout and labeling strategy for PyN and ChCs. PyNs are electroporated at E15.5 using plasmids to express Cas9 and 3X sgRNA-smFP (HA tag) to delete expression on Cntn1. ChCs are labeled by expression of red fluorescent protein (RFP) using inducible Cre (CreER) in *Nkx2.1-CreER* mice at E18.5. b, Illustration of ChC (red) innervation of PyN (blue/green) AIS. c, Representative images of PyNs innervated at their AIS by ChC cartridges (red) in layer II of the

Ogawa, Lim et al.

834	somatosensory cortex from Nkx2.1-CreER;Ai9 mice co-electroporated at E15.5 with a plasmid
835	expressing Cas9 and a plasmid expressing smFP-HA and a control sgRNA or Cntn1 sgRNA; mice
836	were sacrificed at P17. AISs and PyNs are visualized by immunostaining for $\beta4$ spectrin (blue) and
837	HA (green), respectively. Stars in C indicate HA+ PyNs and arrows indicate ChC innervation of PyN
838	AISs. Arrowheads in C indicate AIS of transfected with Cntn1 sgRNA and that lack innervation by
839	ChC cartridges. Scale bar, 10 μ m. d , Quantification of the percentage of HA+ PyNs innervated by
840	single RFP+ ChCs at P17. 12 ChCs and 15–66 HA+ PyNs per ChC from 3 animals were analyzed for
841	each condition. Data are mean ± SEM. e, f, Representative images of HA+ PyN AISs from <i>Nkx2.1</i> -
842	CreER; Ai9 mice electroporated at E15.5 with plasmids indicated in (a) and sacrificed at P17.
843	Inhibitory synapses are visualized by immunostaining for the GABAergic postsynaptic marker
844	gephyrin (Gphn; red; e) or the GABAergic presynaptic marker VGAT (red; g). AISs (blue) are
845	visualized by immunostaining for AnkG in ${\bm e}$ and $\beta 4$ spectrin in ${\bm g}.$ Scale bars, 2 $\mu m.$ ${\bm f},$ ${\bm h},$
846	Quantification of the average number of gephyrin (f) or VGAT (h) puncta per μ m of HA+ PyN AIS
847	at P17. 23-40 AISs from 4 fields of view from 3 animals were analyzed for each condition. Data
848	are mean ± SEM.

849

Ogawa, Lim et al.

851 Extended Data:

852 **1.** Supplemental Figures S1-S5

- 853 **2.** Supplemental extended materials file, detailed listing of all reagents, plasmids, gRNA
- 854 sequences, antibodies, sources, etc.
- **3.** Supplemental Table 1, Nfasc-BAR and NrCAM-BAR proximity proteomes comparison
- 856 (included as excel file)
- 4. Supplemental Table 2, Nfasc-BAR proximity proteomes at DIV 4, 7, 14, 21, and 28
- 858 (included as excel file).
- **5.** Supplemental Table 3, Nfasc-BAR fold change and p-values for all identified proteins
- 860 (included as excel file).

Ogawa, Lim et al.

Figure S1. BAR-Nfasc and BAR-NrCAM are highly concordant. a, b, Biotinylation of the AIS
(arrowhead) as a function of biotin-tyramide incubation time. N = 3 independent experiments.
Error bars, ±SEM. Scale bar, 20 μm. c, Fluorescence imaging of DIV14 rat hippocampal neurons
labeled by NrCAM-BAR. NrCAM immunofluorescence (green) enrichment defines the AIS.
Biotinylated proteins were detected using Alexa594-conjugated streptavidin. Scale bar, 20 μm.
c, Scatter plot of the number of peptide spectral matches (PSMs) for each biotinylated protein

Ogawa, Lim et al.

- 868 identified by mass spectrometry using either Nfasc-BAR or NrCAM-BAR. Data were highly
- 869 concordant since most proteins identified fell on or close to the solid line representing equal
- 870 enrichment in both BAR conditions.

Ogawa, Lim et al.

Ogawa, Lim et al.

- 877 protein on the set, X is a Div time point, Y is the Div time point with the maximum value for
- 878 summed carboxylase PSMs. Candidates were distinguished from background by filtering based
- 879 on the number of PSMs identified and the fold change. Tables show the number of proteins
- that satisfied one or both criteria at a given timepoint. Circles show the number of proteins that
- 881 satisfied both criteria for 1-5 timepoints.

Ogawa, Lim et al.

Ogawa, Lim et al.

884 Figure S3. Fold-enrichment for the top 100 most enriched proteins identified using Nfasc-BAR

- 885 **during** *in vitro* **neuron development**. **a-e**, Log₂ fold-change (log₂(FC)) for the top 100 most
- enriched proteins identified at DIV 4 (a), 7 (b), 14 (c), 21 (d) and 28 (e). Known AIS proteins are
- 887 indicated in red. Error bars, ±SEM.

888

Ogawa, Lim et al.

Ogawa, Lim et al.

- 897
- 898

899 **Figure S5. Summary of results.** a, Cntn1 interacts with and is redundantly recruited to the AIS

- 900 through interactions with both NrCAM and Nfasc. **b**, Loss of AIS Cntn1 (orange at AIS) from
- 901 cerebellar Purkinje neurons disrupts basket cell innervation of the AIS and formation of pinceau
- 902 synapses. **c**, Loss of AIS Cntn1 (orange) from Pyramidal neurons results in reduced innervation
- 903 of AIS by Chandelier cells (ChC) and reduced numbers of AIS inhibitory synapses.
- 904

Ogawa, Lim et al.

906 **REFERENCES**

- 907 1 Leterrier, C. The Axon Initial Segment: An Updated Viewpoint. J Neurosci 38, 2135-2145,
- 908 doi:10.1523/JNEUROSCI.1922-17.2018 (2018).
- 909 2 Rasband, M. N. The axon initial segment and the maintenance of neuronal polarity. *Nat*
- 910 *Rev Neurosci* **11**, 552-562 (2010).
- 911 3 Samavarchi-Tehrani, P., Samson, R. & Gingras, A. C. Proximity Dependent Biotinylation:
- 912 Key Enzymes and Adaptation to Proteomics Approaches. *Molecular & cellular*
- 913 proteomics : MCP 19, 757-773, doi:10.1074/mcp.R120.001941 (2020).
- 914 4 Hamdan, H. et al. Mapping axon initial segment structure and function by multiplexed
- 915 proximity biotinylation. *Nature communications* **11**, 100, doi:10.1038/s41467-019-
- 916 13658-5 (2020).
- 917 5 Li, J. *et al.* Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators.
- 918 *Cell* **180**, 373-386 e315, doi:10.1016/j.cell.2019.12.029 (2020).
- 919 6 Shuster, S. A. *et al.* In situ cell-type-specific cell-surface proteomic profiling in mice.
- 920 *Neuron*, doi:10.1016/j.neuron.2022.09.025 (2022).
- 921 7 Takano, T. *et al.* Chemico-genetic discovery of astrocytic control of inhibition in vivo.

922 *Nature* **588**, 296-302, doi:10.1038/s41586-020-2926-0 (2020).

- 8 Rees, J. S., Li, X. W., Perrett, S., Lilley, K. S. & Jackson, A. P. Selective Proteomic Proximity
- 924 Labeling Assay Using Tyramide (SPPLAT): A Quantitative Method for the Proteomic
- 925 Analysis of Localized Membrane-Bound Protein Clusters. *Current protocols in protein*
- 926 science / editorial board, John E. Coligan ... [et al.] 88, 19.27.11-19.27.18,
- 927 doi:10.1002/cpps.27 (2017).

Ogawa, Lim et al.

000	~	12 1 1	NI /	D' I ' I	• • • • •	C 11	r (1
\mathbf{y}	u	Kotani		RIOCHAMICAL	VICUALIZATION C	IT COLL	CUITTOCO	molocular	clustoring in	livinσ
140	5	Rotani	, IN. CL UI.	Diochennear	VISUAIIZACION	лссп	Juliace	molecular	Clustering III	IIVIIIS

929 cells. *Proc Natl Acad Sci U S A* **105**, 7405-7409, doi:10.1073/pnas.0710346105 (2008).

- 930 10 Bar, D. Z. *et al.* Biotinylation by antibody recognition-a method for proximity labeling.
- 931 *Nature methods* **15**, 127-133, doi:10.1038/nmeth.4533 (2018).
- 932 11 Oakley, J. V. *et al.* Radius measurement via super-resolution microscopy enables the
- 933 development of a variable radii proximity labeling platform. Proc Natl Acad Sci U S A
- 934 **119**, e2203027119, doi:10.1073/pnas.2203027119 (2022).
- 935 12 Amor, V. *et al.* The paranodal cytoskeleton clusters Na(+) channels at nodes of Ranvier.
- 936 *eLife* **6**, doi:10.7554/eLife.21392 (2017).
- 937 13 Ghosh, A., Malavasi, E. L., Sherman, D. L. & Brophy, P. J. Neurofascin and Kv7.3 are
- 938 delivered to somatic and axon terminal surface membranes en route to the axon initial
 939 segment. *eLife* 9, doi:10.7554/eLife.60619 (2020).
- 940 14 Yang, Y., Ogawa, Y., Hedstrom, K. L. & Rasband, M. N. βIV spectrin is recruited to axon
- 941 initial segments and nodes of Ranvier by ankyrinG. *J Cell Biol* **176**, 509-519 (2007).
- 942 15 Hedstrom, K. L. *et al.* Neurofascin assembles a specialized extracellular matrix at the
- 943 axon initial segment. *J Cell Biol* **178**, 875-886, doi:10.1083/jcb.200705119 (2007).
- 944 16 Stevens, S. R. *et al.* Ankyrin-R regulates fast-spiking interneuron excitability through
- 945 perineuronal nets and Kv3.1b K(+) channels. *eLife* **10**, doi:10.7554/eLife.66491 (2021).
- 946 17 Pollerberg, G. E., Thelen, K., Theiss, M. O. & Hochlehnert, B. C. The role of cell adhesion
- 947 molecules for navigating axons: density matters. *Mech Dev* **130**, 359-372,
- 948 doi:10.1016/j.mod.2012.11.002 (2013).

Ogawa, Lim et al.

- 949 18 Buffington, S. A., Sobotzik, J. M., Schultz, C. & Rasband, M. N. IkappaBalpha is not
- 950 required for axon initial segment assembly. *Mol Cell Neurosci* **50**, 1-9,
- 951 doi:10.1016/j.mcn.2012.03.003 (2012).
- 952 19 Ogawa, Y. & Rasband, M. N. Endogenously expressed Ranbp2 is not at the axon initial
- 953 segment. *J Cell Sci* **134**, doi:10.1242/jcs.256180 (2021).
- 20 Chang, K. J., Susuki, K., Dours-Zimmermann, M. T., Zimmermann, D. R. & Rasband, M. N.
- 955 Oligodendrocyte myelin glycoprotein does not influence node of ranvier structure or
- 956 assembly. *J Neurosci* **30**, 14476-14481 (2010).
- 957 21 Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-
- 958 independent targeted integration. *Nature* **540**, 144-149, doi:10.1038/nature20565
- 959 (2016).
- 960 22 Gao, Y. *et al.* Plug-and-Play Protein Modification Using Homology-Independent Universal
- 961 Genome Engineering. *Neuron*, doi:10.1016/j.neuron.2019.05.047 (2019).
- 962 23 Willems, J. *et al.* ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope
- 963 tagging of endogenous proteins in neurons. *PLoS Biol* **18**, e3000665,
- 964 doi:10.1371/journal.pbio.3000665 (2020).
- 965 24 Davis, J. Q. & Bennett, V. Ankyrin binding activity shared by the neurofascin/L1/NrCAM
- 966 family of nervous system cell adhesion molecules. *J Biol Chem* **269**, 27163-27166 (1994).
- 967 25 Boiko, T. *et al.* Ankyrin-dependent and -independent mechanisms orchestrate axonal
- 968 compartmentalization of L1 family members neurofascin and L1/neuron-glia cell
- 969 adhesion molecule. *J Neurosci* **27**, 590-603 (2007).

Ogawa, Lim et al.

970	26	Pinatel, D. et al. The Kv1-associated molecules TAG-1 and Caspr2 are selectively
971		targeted to the axon initial segment in hippocampal neurons. J Cell Sci 130, 2209-2220,
972		doi:10.1242/jcs.202267 (2017).
973	27	Davis, J. Q., Lambert, S. & Bennett, V. Molecular composition of the node of Ranvier:
974		identification of ankyrin-binding cell adhesion molecules neurofascin (mucin+/third FNIII
975		domain-) and NrCAM at nodal axon segments. <i>J Cell Biol</i> 135 , 1355-1367 (1996).
976	28	Shimoda, Y. & Watanabe, K. Contactins: emerging key roles in the development and
977		function of the nervous system. Cell Adh Migr 3 , 64-70, doi:10.4161/cam.3.1.7764
978		(2009).
979	29	Charles, P. et al. Neurofascin is a glial receptor for the paranodin/Caspr-contactin axonal
980		complex at the axoglial junction. Curr Biol 12, 217-220. (2002).
981	30	Boyle, M. E. et al. Contactin orchestrates assembly of the septate-like junctions at the
982		paranode in myelinated peripheral nerve. <i>Neuron</i> 30 , 385-397. (2001).
983	31	Rios, J. C. et al. Contactin-associated protein (Caspr) and contactin form a complex that
984		is targeted to the paranodal junctions during myelination. <i>J Neurosci</i> 20 , 8354-8364.
985		(2000).
986	32	Colakoglu, G., Bergstrom-Tyrberg, U., Berglund, E. O. & Ranscht, B. Contactin-1 regulates
987		myelination and nodal/paranodal domain organization in the central nervous system.
988		<i>Proc Natl Acad Sci U S A</i> 111 , E394-403, doi:10.1073/pnas.1313769110 (2014).
989	33	Volkmer, H., Zacharias, U., Norenberg, U. & Rathjen, F. G. Dissection of complex
990		molecular interactions of neurofascin with axonin-1, F11, and tenascin-R, which

Ogawa, Lim et al.

991	promote attachment and neurite formation of tectal cells. J Cell Biol 142, 1083-1093
-----	--

- 992 (1998).
- 993 34 Gollan, L., Salomon, D., Salzer, J. L. & Peles, E. Caspr regulates the processing of
- 994 contactin and inhibits its binding to neurofascin. *J Cell Biol* **163**, 1213-1218 (2003).
- 995 35 Kole, M. J. *et al.* Selective Loss of Presynaptic Potassium Channel Clusters at the
- 996 Cerebellar Basket Cell Terminal Pinceau in Adam11 Mutants Reveals Their Role in
- 997 Ephaptic Control of Purkinje Cell Firing. J Neurosci 35, 11433-11444,
- 998 doi:10.1523/JNEUROSCI.1346-15.2015 (2015).
- 999 36 Laube, G. *et al.* Ultrastructural localization of Shaker-related potassium channel subunits
- and synapse-associated protein 90 to septate-like junctions in rat cerebellar Pinceaux.
- 1001 Brain Res Mol Brain Res **42**, 51-61 (1996).

1002 37 Ango, F. *et al.* Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin

- 1003 family protein, directs GABAergic innervation at purkinje axon initial segment. *Cell* **119**,
- 1004 257-272 (2004).
- 1005 38 Dudok, B. *et al.* Recruitment and inhibitory action of hippocampal axo-axonic cells
- 1006 during behavior. *Neuron* **109**, 3838-3850 e3838, doi:10.1016/j.neuron.2021.09.033
- 1007 (2021).
- Schneider-Mizell, C. M. *et al.* Structure and function of axo-axonic inhibition. *eLife* 10,
 doi:10.7554/eLife.73783 (2021).
- 1010 40 Gallo, N. B., Paul, A. & Van Aelst, L. Shedding Light on Chandelier Cell Development,
- 1011 Connectivity, and Contribution to Neural Disorders. *Trends Neurosci* **43**, 565-580,
- 1012 doi:10.1016/j.tins.2020.05.003 (2020).

Ogawa, Lim et al.

1013	41	Tai, Y., Gallo, N. B., Wang, M., Yu, J. R. & Van Aelst, L. Axo-axonic Innervation of
1014		Neocortical Pyramidal Neurons by GABAergic Chandelier Cells Requires AnkyrinG-
1015		Associated L1CAM. Neuron, doi:10.1016/j.neuron.2019.02.009 (2019).
1016	42	Zhou, D. et al. AnkyrinG is required for clustering of voltage-gated Na channels at axon
1017		initial segments and for normal action potential firing. J Cell Biol 143, 1295-1304 (1998).
1018	43	Hedstrom, K. L., Ogawa, Y. & Rasband, M. N. AnkyrinG is required for maintenance of
1019		the axon initial segment and neuronal polarity. J Cell Biol 183, 635-640,
1020		doi:10.1083/jcb.200806112 (2008).
1021	44	Torii, T. et al. NuMA1 promotes axon initial segment assembly through inhibition of
1022		endocytosis. <i>J Cell Biol</i> 219 , doi:10.1083/jcb.201907048 (2020).
1023	45	Peles, E. et al. Identification of a novel contactin-associated transmembrane receptor
1024		with multiple domains implicated in protein-protein interactions. EMBO J 16, 978-988
1025		(1997).
1026	46	Zisch, A. H. et al. Neuronal cell adhesion molecule contactin/F11 binds to tenascin via its
1027		immunoglobulin-like domains. <i>J Cell Biol</i> 119 , 203-213, doi:10.1083/jcb.119.1.203
1028		(1992).
1029	47	Peles, E. et al. The carbonic anhydrase domain of receptor tyrosine phosphatase beta is
1030		a functional ligand for the axonal cell recognition molecule contactin. Cell 82, 251-260
1031		(1995).
1032	48	Kazarinova-Noyes, K. et al. Contactin associates with Na+ channels and increases their
1033		functional expression. J Neurosci 21, 7517-7525. (2001).

Ogawa, Lim et al.

- 1034 49 Reischer, T., Liebmann-Reindl, S., Bettelheim, D., Balendran-Braun, S. & Streubel, B.
- 1035 Genetic diagnosis and clinical evaluation of severe fetal akinesia syndrome. *Prenat*
- 1036 *Diagn* **40**, 1532-1539, doi:10.1002/pd.5809 (2020).
- 1037 50 Blot, A. & Barbour, B. Ultra-rapid axon-axon ephaptic inhibition of cerebellar Purkinje
- 1038 cells by the pinceau. *Nat Neurosci* **17**, 289-295, doi:10.1038/nn.3624 (2014).
- 1039 51 Jenkins, S. M. & Bennett, V. Ankyrin-G coordinates assembly of the spectrin-based
- 1040 membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron
- 1041 initial segments. *J Cell Biol* **155**, 739-746. (2001).
- 1042 52 Zonta, B. *et al.* A Critical Role for Neurofascin in Regulating Action Potential Initiation
- 1043 through Maintenance of the Axon Initial Segment. *Neuron* **69**, 945-956 (2011).
- 1044 53 Hayano, Y. *et al.* IgSF11 homophilic adhesion proteins promote layer-specific synaptic
- assembly of the cortical interneuron subtype. *Sci Adv* **7**, doi:10.1126/sciadv.abf1600
- 1046 (2021).
- 1047 54 Cho, K. F. *et al.* Split-TurboID enables contact-dependent proximity labeling in cells. *Proc*1048 *Natl Acad Sci U S A* **117**, 12143-12154, doi:10.1073/pnas.1919528117 (2020).
- 1049 55 Taniguchi, H., Lu, J. & Huang, Z. J. The spatial and temporal origin of chandelier cells in
- 1050 mouse neocortex. *Science* **339**, 70-74, doi:10.1126/science.1227622 (2013).
- 1051 56 Guan, S., Price, J. C., Prusiner, S. B., Ghaemmaghami, S. & Burlingame, A. L. A data
- 1052 processing pipeline for mammalian proteome dynamics studies using stable isotope
- 1053 metabolic labeling. *Molecular & cellular proteomics : MCP* **10**, M111 010728,
- 1054 doi:10.1074/mcp.M111.010728 (2011).

Ogawa, Lim et al.

- 1055 57 Clauser, K. R., Baker, P. & Burlingame, A. L. Role of accurate mass measurement (+/- 10
- 1056 ppm) in protein identification strategies employing MS or MS/MS and database
- 1057 searching. *Anal Chem* **71**, 2871-2882 (1999).
- 1058 58 Suzuki, K. & Izpisua Belmonte, J. C. In vivo genome editing via the HITI method as a tool
- 1059 for gene therapy. *Journal of human genetics* **63**, 157-164, doi:10.1038/s10038-017-
- 1060 0352-4 (2018).
- 1061 59 Konno, A. & Hirai, H. Efficient whole brain transduction by systemic infusion of
- 1062 minimally purified AAV-PHP.eB. J Neurosci Methods **346**, 108914,
- 1063 doi:10.1016/j.jneumeth.2020.108914 (2020).
- 1064 60 Kim, J. Y., Grunke, S. D., Levites, Y., Golde, T. E. & Jankowsky, J. L.
- 1065 Intracerebroventricular viral injection of the neonatal mouse brain for persistent and
- 1066 widespread neuronal transduction. *J Vis Exp*, 51863, doi:10.3791/51863 (2014).