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Abstract: 11 

Human neural organoid models offer an exciting opportunity for studying often 12 

inaccessible human-specific brain development; however, it remains unclear how precisely 13 

organoids recapitulate fetal/primary tissue biology. Here, we characterize field-wide replicability 14 

and biological fidelity through a meta-analysis of single-cell RNA-sequencing data for first and 15 

second trimester human primary brain (2.95 million cells, 51 datasets) and neural organoids 16 

(1.63 million cells, 130 datasets). We quantify the degree to which primary tissue cell-type 17 

marker expression and co-expression are recapitulated in organoids across 12 different 18 

protocol types. By quantifying gene-level preservation of primary tissue co-expression, we 19 

show neural organoids lie on a spectrum ranging from virtually no signal to co-expression near 20 

indistinguishable from primary tissue data, demonstrating high fidelity is within the scope of 21 

current methods. Additionally, we show neural organoids preserve the cell-type specific co-22 
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expression of developing rather than adult cells, confirming organoids are an appropriate 23 

model for primary tissue development. Overall, quantifying the preservation of primary tissue 24 

co-expression is a powerful tool for uncovering unifying axes of variation across 25 

heterogeneous neural organoid experiments. 26 

  Introduction:  27 

Pluripotent stem cells create self-organized multi-cellular structures, termed organoids, 28 

when cultured in a 3D in vitro environment1,2. The advantage of organoid models over 2D cell 29 

culture counterparts is their ability to generate structures that resemble endogenous tissues 30 

both in the differentiated cell-types produced and their 3D spatial organization3,4. The ability to 31 

model organogenesis in a controlled in vitro environment creates opportunities to study 32 

previously inaccessible developmental tissues from both humans and a range of model 33 

organisms5,6,7. As such, organoids are genetically accessible8 and environmentally 34 

perturbable9 models enabling the study of molecular, cellular, and developmental mechanisms 35 

behind tissue construction. However, the applicability of studies in organoids to in vivo biology 36 

hinges on how well these in vitro models recapitulate primary tissue developmental processes, 37 

which remains an open question.    38 

Quantifying the degree to which organoid systems replicate primary tissue biological 39 

processes is a critical step toward understanding the strengths and limitations of these in vitro 40 

models10–14. However, studies that perform such primary tissue/organoid comparisons are 41 

inherently confounded by batch15 (in vivo vs in vitro), making it difficult to disentangle batch 42 

effects from underlying primary tissue and organoid biology. Meta-analytic approaches across 43 

many primary tissue and organoid datasets offer a route around these confounds, enabling the 44 

discovery of replicable primary tissue and organoid signatures independent of batch, which 45 

can then be interrogated for how well organoids recapitulate primary tissue biology16–18. An 46 
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important biological signature for this purpose is gene co-expression19. Genes that are 47 

functionally related tend to be expressed together, resulting in correlated gene expression 48 

dynamics that can define functionally relevant gene modules19. Gene co-expression 49 

relationships represent a shared genomic space that can be aggregated across experiments 50 

(e.g.,20) in either in vivo or in vitro systems, thus providing a useful framework for quantifying 51 

functional similarities and differences. Excitingly, coupling meta-analytic comparisons of 52 

primary tissue and organoid co-expression with single-cell RNA-sequencing data (scRNA-seq) 53 

stands to deliver cell-type specific quantifications of organoids’ current capacity for producing 54 

functionally equivalent cell-types to primary tissues21,22.  55 

 Among organoid systems, human neural organoids are particularly well suited for meta-56 

analytic evaluation due to well-described broad cell-type annotations and their known lineage 57 

relationships23, the wide variety of differentiation protocols in use24, and the increasing amount 58 

of single-cell primary brain tissue and neural organoid data publicly available. In particular, the 59 

diversity of differentiation protocols for human neural organoids poses a unique challenge for 60 

organoid quality control that can be met by meta-analytic approaches. Neural organoids can 61 

either be undirected25 (multiple brain region identities) or directed (specific brain region 62 

identity) with an increasing number of protocols striving to produce a wider variety of region-63 

specific organoids11,26–37. Meta-analytic primary tissue/organoid comparisons across 64 

differentiation protocols stand to derive generalizable quality control metrics applicable to any 65 

differentiation protocol, fulfilling a currently unmet need for unified quality control metrics 66 

across heterogeneous neural organoids. 67 

Prior comparisons between primary brain tissues and neural organoids demonstrated 68 

that organoids have the capacity to produce diverse cell-types that capture both regional and 69 

temporal variation similar to primary tissue data as assayed through transcriptomic10,11,13,16,17, 
70 
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38, epigenomic39,40, electrophysiologic41, and proteomic studies42. At the morphological level, 71 

neural organoids can produce cellular organizations structurally similar to various in vivo brain 72 

regions, including cortical layers43 and hippocampus27, as well as modeling known inter-73 

regional interactions like neuromuscular junctions34 and interneuron migration29. Additionally, 74 

several prior studies have compared primary tissue/organoid co-expression and concluded 75 

that neural organoids recapitulate primary brain tissue co-expression5,13,39, but these 76 

assessments are highly targeted to study-specific properties, limiting potential generalization or 77 

potential assessment across the field. Typically, only a single organoid differentiation protocol 78 

is used in these assessments and it remains unclear whether organoids across different 79 

protocols will produce similar results. This lack of breadth also affects the use of primary tissue 80 

data used as a reference, with the primary tissue datasets utilized being treated as gold-81 

standard datasets with little consideration for the extent one primary tissue reference may 82 

generalize to another. While prior meta-analytic comparisons of primary tissue/organoid co-83 

expression have been performed17, these were done at the bulk level (lack cell-type resolution) 84 

and included a small number of cortical organoid protocols, limiting the biological resolution 85 

and generalizability of these findings.   86 

In this study, we perform a meta-analytic assessment of primary brain tissue (2.95 87 

million cells, 50 datasets, Fig. 1A) and neural organoid (1.63 million cells, 130 datasets, 12 88 

protocols, Fig. 1B) scRNA-seq datasets, constructing robust primary tissue cell-type specific 89 

markers and co-expression to query how well neural organoids recapitulate primary tissue cell-90 

type specific biology. We sample primary brain tissue data over the first and second trimesters 91 

and across 15 different developmentally defined brain regions, extracting lists of cell-type 92 

markers that define broad primary tissue cell-type identity regardless of temporal, regional, or 93 

technical variation (Fig. 1A). We derive co-expression networks from individual primary tissue 94 
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and organoid datasets as well as aggregate co-expression networks across datasets (Fig. 1C). 95 

From these networks, we assess the strength of co-expression within primary tissue cell-type 96 

marker sets as well as the preservation of co-expression patterns between primary tissue and 97 

organoid data (Fig. 1D-E). We also provide an R package to download our primary tissue 98 

reference co-expression network to assay new neural organoid data using simple, meaningful, 99 

and fast statistics (Fig. 1F). By constructing robust primary tissue cell-type representations 100 

through meta-analytic approaches, we demonstrate the preservation of primary tissue cell-type 101 

co-expression provides both specific and generalizable characterization of the primary tissue 102 

fidelity of human neural organoids.   103 

 104 

Results: 105 

Meta-analytic framework for primary tissue/organoid comparisons 106 

We reason that, if they exist, primary tissue cell-type specific signals robust to temporal, 107 

regional, and technical variation will constitute in vivo standards applicable to any organoid 108 

dataset regardless of time in culture or differentiation protocol. We first show it is possible to 109 

learn sets of marker genes that define broad primary tissue cell-types (Fig. 1A, Supp. Table 1) 110 

across timepoints (gestational weeks GW5-GW25) and brain regions (15 developmentally 111 

defined brain regions) through a meta-analytic differential expression framework (Fig. 1A, Fig. 112 

2A-B). We then compare co-expression within these marker sets between primary tissue and 113 

organoid data to quantify the degree organoids preserve primary tissue cell-type specific co-114 

expression. An important aspect of our analysis is our cross-validation of primary tissue 115 

differential expression and co-expression. We employ a leave-one-out cross-validation 116 

approach when learning robust differentially expressed marker genes from our annotated 117 

primary tissue datasets (2,174,934 cells, 37 datasets) and we interrogate co-expression of our 118 
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primary tissue marker genes within a large cohort of unannotated primary tissue datasets 119 

(776,343 cells, 14 datasets). This approach ensures we are extracting primary tissue markers 120 

and co-expression relationships independent of temporal, regional, and technical variation, a 121 

powerful approach for deriving broad primary tissue signatures appropriate for comparison to a 122 

wide range of organoid datasets.  123 

 124 

Cross-temporal and -regional primary tissue cell-type markers 125 

 To learn markers that define broad primary tissue cell-types (see methods), we apply 126 

the MetaMarkers44 framework to our cross-temporal and -regional annotated primary tissue 127 

datasets (Fig. 2A-B). MetaMarkers uses robust differential expression statistic thresholds (log2 128 

fold-change >= 4 and FDR-adjusted p-value <= 0.05) for determining whether a gene is 129 

differentially expressed (DE) within individual datasets, then ranks all genes via the strength of 130 

their recurrent DE across datasets (see methods). We test the generalizability of our primary 131 

tissue MetaMarker gene sets in predicting primary cell-types by employing a leave-one-out 132 

primary tissue cross-validation (Fig. 2A-B). We construct an aggregate expression predictor in 133 

the left-out dataset using MetaMarkers learned from the remaining datasets (see methods), 134 

quantifying how well the MetaMarker gene sets predict the left-out cell-type annotations with 135 

the area-under-the-receiver-operating-characteristic curve statistic (AUROC, Fig. 2B-C). The 136 

AUROC is the probability of correctly prioritizing a true positive (e.g., cell of the right type) 137 

above a negative, (e.g., cell of the wrong type), given some predictor of the positive class, in 138 

this case, aggregate cell-type marker expression.  139 

Starting with just the top 10 primary tissue MetaMarkers per cell-type, we achieve a 140 

mean AUROC across all primary tissue datasets of 0.944 ± 0.0280 SD, 0.864 ± 0.0796 SD, 141 

0.873 ± 0.0676 SD, 0.937 ± 0.0669 SD, 0.879 ± 0.0535 SD, and 0.931 ± 0.0737 SD, for 142 
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dividing progenitors, neural progenitors, intermediate progenitors, GABAergic neurons, 143 

glutamatergic neurons, and non-neuronal cell-types respectively (Fig. 2C). These extremely 144 

high performances demonstrate that even a small number of meta-analytically derived primary 145 

tissue cell-type markers have high utility in predicting primary tissue cell-type annotations 146 

regardless of temporal and regional variability. For all following analysis, we take the top 100 147 

MetaMarkers per cell-type as robust representations of our 6 broad primary tissue cell-type 148 

annotations (average AUROC >= 0.90 except for intermediate progenitors: 0.897 ± 0.0777 149 

SD), with the 100 MetaMarkers achieving modest increases in performance over the top 10 150 

MetaMarkers for all cell-types except GABAergic cells (Fig. 2C, mean AUROC for 100 151 

GABAergic MetaMarkers: 0.922 ± 0.0777 SD). When comparing MetaMarkers to markers 152 

derived from individual primary tissue datasets, we find the MetaMarkers are consistently top 153 

performers in predicting primary tissue annotations (Fig. 2D), with MetaMarkers producing the 154 

top results for intermediate progenitors, glutamatergic neurons, and GABAergic neurons 155 

(Supp. Fig. 1), as well as comparable performance to top individual datasets for dividing 156 

progenitors, neural progenitors, and non-neuronal cell-types (Supp. Fig. 1).  157 

We explore the primary tissue MetaMarker sets further by computing the average 158 

expression of the top 100 MetaMarkers for our 6 annotated cell-types across all cells within our 159 

37 annotated primary tissue datasets (Fig. 2E), continuing our leave-one-out approach. Each 160 

annotated primary tissue cell-type expresses the corresponding matched MetaMarker set over 161 

all other MetaMarker sets, with the exception of some off-target expression for the neural 162 

progenitor MetaMarkers in astrocytes (aggregated over all datasets Fig. 2E, individual datasets 163 

Supp. Fig. 1B). This demonstrates our MetaMarker gene sets act as robust cell-type markers 164 

in aggregate across all first and second trimester timepoints (Fig. 2E, Supp. Fig. 1B). 165 

Additionally, we investigate the expression of the top 100 MetaMarker gene sets across 166 
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annotated primary brain regions, demonstrating each primary tissue cell-type maximally 167 

expresses the corresponding primary tissue MetaMarker set across all annotated brain regions 168 

(Supp. Fig. 2A-B). Overall, we are able to meta-analytically extract cell-type markers that 169 

define broad primary tissue cell-types independent of temporal and regional variation. 170 

 171 

Broad primary tissue cell-type markers capture organoid temporal variation 172 

After extracting meta-analytic cell-type markers that capture broad primary tissue 173 

temporal and regional variation, we can test how well these markers also capture organoid 174 

temporal and regional (protocol) variation. We start with a large-scale temporal organoid 175 

atlas38 derived from a forebrain differentiation protocol containing timepoints ranging from 23 176 

days to 6 months in culture. When comparing primary tissue and organoid data along a 177 

temporal axis, one might expect younger primary tissue expression data to be a better 178 

reference for younger organoid cell-types (better able to predict cell-types) and vice-versa for 179 

older primary and organoid data (Supp. Fig. 3A). We test this relationship using the same 180 

AUROC quantification as in Figure 1C, but now using the top 100 primary tissue cell-type 181 

markers per primary tissue dataset to predict organoid cell-type annotations across all 182 

organoid timepoints (Supp. Fig. 3B, see methods). 183 

We observe highly consistent performance across all primary tissue datasets (GW5 – 184 

GW25) when predicting organoid cell-types regardless of the organoid timepoint (Supp. Fig. 185 

3B). The average difference in AUROC scores when predicting organoid cell-types using either 186 

our youngest (GW5) or oldest (GW25) primary data is 0.000382 ± 0.0357 SD, 0.141 ± 0.192 187 

SD, 0.139 ± 0.0317 SD, 0.00171 ± 0.113 SD and 0.119 ± 0.216 SD for dividing progenitors, 188 

neural progenitors, glutamatergic neurons GABAergic neurons, and non-neuronal cells 189 

respectively (No annotated intermediate progenitors in the GW25 primary tissue dataset). This 190 
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demonstrates strikingly consistent performance across distant primary tissue timepoints, 191 

highlighting that broad primary tissue cell-type signatures are applicable as reference for 192 

organoid cell-types regardless of the primary tissue or organoid timepoint. The one exception 193 

is for neural progenitors, where there seemingly is a temporal shift in performance with 194 

younger primary tissue datasets predicting younger organoid annotations over older organoid 195 

annotations and vice-versa for older primary tissue/organoid data (Supp. Fig. 3B). However, a 196 

subset of the young GW6-8 primary tissue datasets report sharp increases in performance 197 

predicting older organoid timepoints in opposition to other GW6-8 primary tissue datasets, 198 

suggesting variance in performance is driven by intersections between the quality of individual 199 

organoid and primary tissue datasets rather than overarching temporal variability. Importantly, 200 

our lists of top 100 primary tissue MetaMarkers perform comparably to marker sets from 201 

individual primary tissue datasets, with less variance in performance across the organoid 202 

timepoints for the differentiated cell-types (mean AUROC variance across organoid timepoints 203 

for individual primary tissue datasets vs. primary MetaMarker variance; glutamatergic: 0.0147, 204 

0.00672, GABAergic: 0.00487, 0.00201, non-neuronal: 0.00733, 0.00647, Supp. Fig. 3B). This 205 

demonstrates our meta-analytic primary tissue cell-type markers robustly capture organoid 206 

temporal variation. 207 

 208 

Broad primary tissue cell-type markers capture organoid protocol variation 209 

We assess whether our primary tissue MetaMarker gene sets capture organoid 210 

variation outside the annotated forebrain temporal organoid atlas by performing principal-211 

component analysis (PCA) across all organoid datasets, representing data from 12 different 212 

differentiation protocols. Our lists of 100 primary tissue MetaMarkers are consistently heavily 213 

weighted in the first PC across organoid datasets (Supp. Fig. 3C-D). While a large portion of 214 
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PC1-weighted genes are dividing progenitor MetaMarkers (representing cell-cycle signal), 215 

markers for non-dividing fetal cell-types also comprise those genes consistently heavily 216 

weighted in PC1 across organoid datasets (Supp. Fig. 3C-D).    217 

 218 

Aggregate organoid co-expression weakly captures primary tissue co-expression 219 

Our primary tissue MetaMarkers that capture both primary tissue and organoid 220 

temporal/regional variation enable assessments of cell-type specific co-expression between 221 

arbitrary primary tissue and organoid datasets. One normally would need matched cell-type 222 

annotations across datasets to compare cell-type specific biology, but here we couple our 223 

meta-analytically derived cell-type markers with gene co-expression quantifications, which do 224 

not rely on cell-type annotations, to extract cell-type specific co-expression from any given 225 

scRNA-seq dataset. Practically, if organoids are producing cell-types functionally identical to 226 

primary tissue cell-types, we would expect near identical co-expression relationships within our 227 

primary tissue MetaMarker gene sets across primary tissue and organoid datasets. 228 

We first explore marker set co-expression within our unannotated primary tissue 229 

datasets, which were not included in deriving our primary tissue MetaMarker sets. The 230 

aggregate (Fig. 3A, see methods) unannotated primary tissue co-expression network nearly 231 

perfectly constructs cell-type specific co-expression modules when hierarchically clustering the 232 

co-expression of our top 100 primary tissue MetaMarker gene sets (Fig. 3B). Turning to the 233 

aggregate organoid co-expression network, while some cell-type co-expression structure 234 

exists, it is much weaker than the unannotated primary tissue co-expression with less well-235 

defined intra-gene set co-expression relationships (Fig. 3B). We quantify this through the 236 

Adjusted Rands Index (ARI) metric, comparing the MetaMarker clustering through co-237 

expression in any given network to the perfect clustering of MetaMarker gene sets by cell-type. 238 
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We perform this quantification for both the aggregate co-expression networks (diamond, 239 

triangle, and square special characters, Supp. Fig. 4A) and for all individual primary tissue and 240 

organoid co-expression networks (boxplots, Supp. Fig. 4A). Individual organoid networks 241 

perform worse than individual primary tissue networks on average, with the aggregate 242 

organoid network additionally underperforming compared to the aggregate primary tissue 243 

networks, though within the range of individual primary tissue networks (Supp. Fig. 4A). In 244 

aggregate, organoid co-expression weakly captures broad primary tissue cell-type specific co-245 

expression. This is potentially explained through the directed nature of the vast majority of 246 

organoid datasets we investigate, which may more accurately produce particular lineages 247 

(excitatory or inhibitory neurons as an example) rather than the comprehensive cell-248 

types/lineages present within primary tissue data. We explore cell-type specific co-expression 249 

within individual datasets further in the following analysis. 250 

 251 

Organoid datasets vary in primary tissue cell-type marker set co-expression 252 

Having broadly assessed co-expression across our MetaMarker gene sets, we then 253 

asked how well do organoids recapitulate primary tissue co-expression within each cell-type 254 

specific MetaMarker gene set. We score intra-gene set co-expression strength through a 255 

simple machine learning framework45,46, which quantifies whether genes in a given set are 256 

more strongly co-expressed with each other compared to the rest of the genome (Fig. 3C).  257 

Co-expression module scores across the annotated and unannotated primary tissue 258 

datasets are largely comparable with the exception of a sharp decrease in intermediate 259 

progenitor performance for the unannotated primary tissue datasets (Fig. 3D). Six out of the 260 

fourteen unannotated datasets are sampled from either the ganglionic eminences or the 261 

hypothalamus, potentially explaining this decrease in performance and suggesting our 262 
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intermediate progenitor MetaMarkers are enriched for signal from cortical areas. In contrast, 263 

performance is much more variable across the individual organoid datasets for all cell-types 264 

except the dividing progenitors, ranging from no signal (AUROC <= 0.50) to comparable 265 

results with primary tissue networks (Fig. 3D).  266 

Importantly, the variation among organoid datasets for co-expression of the 267 

differentiated cell-types is likely influenced via the compositional variation in cell-types 268 

produced across directed and undirected differentiation protocols. A protocol that aims to 269 

produce a directed excitatory lineage organoid is not expected to produce inhibitory cell-types 270 

and thus should not necessarily exhibit strong inhibitory neuron co-expression. That is indeed 271 

the case when comparing our co-expression module scores by organoid protocols (Supp. Fig. 272 

4B). For example, the dorsal patterned forebrain organoid protocol produces stronger 273 

excitatory module co-expression compared to inhibitory module co-expression.   274 

In contrast, undirected organoid protocols are expected to produce a variety of 275 

lineages/cell-types comparable to those present in primary tissue samples and should exhibit 276 

consistent strong co-expression across cell-types. Instead, we report the undirected organoid 277 

protocols (cortical, cerebral) as the more variable protocols for producing strong cell-type co-278 

expression (Supp. Fig. 4B). Visualizing the top and bottom performing cerebral organoid co-279 

expression networks for glutamatergic co-expression reveals the extent of this variability, in 280 

comparison to the top performing primary tissue co-expression network (Fig. 3E). The top 281 

performing organoid network produces near identical intra- and inter-cell type co-expression 282 

relationships to the primary tissue dataset (Fig. 3E). Contrastingly, the bottom performing 283 

organoid co-expression network exhibits extensive off-target inter-cell type co-expression and 284 

extremely poor intra-cell type co-expression, essentially failing to recapitulate primary tissue 285 

cell-type co-expression (Fig. 3E). While variability in co-expression performance may reflect 286 
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compositional differences among directed organoids, the dramatic range in performance 287 

across the undirected organoid datasets reveals extensive variability in fidelity to primary 288 

tissue.  289 

 290 

Organoid datasets vary in preserving gene-level primary tissue co-expression 291 

We take our primary tissue/organoid co-expression comparisons a step further and ask 292 

how well individual organoid datasets preserve gene-level primary tissue co-expression 293 

relationships. For any given individual gene, we quantify whether that gene’s top co-expressed 294 

partners are preserved in one co-expression network compared to another (Fig. 4A). We use 295 

the aggregate co-expression network from the annotated primary tissue datasets as our 296 

reference co-expression network and test how well individual co-expression networks, either 297 

primary tissue or organoid, perform in preserving primary tissue gene-level co-expression 298 

patterns (Fig. 4A, top 10 co-expressed neighbors). We start by quantifying the preserved co-299 

expression of genes within our primary tissue MetaMarker gene sets, using the average 300 

preserved co-expression AUROC as a measure of preserved co-expression for any given 301 

gene set (Fig. 4A). Across our 6 annotated primary tissue cell-types, primary tissue co-302 

expression networks deliver consistently high performance for preserved co-expression scores 303 

of our primary tissue MetaMarker gene sets (Fig. 4B, mean preserved co-expression score 304 

across cell-types and primary tissue datasets: annotated 0.970 ± 0.0241 SD, unannotated 305 

0.963 ± 0.00940 SD). This indicates that across the highly temporally and regionally diverse 306 

primary tissue data, the co-expression relationships of our MetaMarker gene sets are 307 

incredibly highly preserved, again reflecting the temporally and regionally robust nature of our 308 

primary tissue cell-type markers.  309 
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In contrast, individual organoid datasets vary substantially in preserved co-expression 310 

scores across our primary tissue MetaMarker gene sets (Fig. 4B). As before with our 311 

quantification of intra-gene set co-expression, compositional variation across directed organoid 312 

protocols may influence the variation in performance for differentiated cell-types, especially for 313 

excitatory and inhibitory neurons (Supp. Fig. 5). To explore the effects of likely compositional 314 

variation, we compared preserved co-expression scores of organoids grown in a vertical 315 

shaker versus an orbital shaker47, where the original authors reported either a GABAergic or 316 

glutamatergic character for organoids grown in either a vertical or orbital shaker respectively. 317 

We report that organoids grown in an orbital shaker produce higher preserved primary tissue 318 

co-expression scores for intermediate progenitors and glutamatergic cell-types whereas 319 

organoids grown in a vertical shaker produce higher scores for GABAergic cell-types, in 320 

agreement with the authors original observations (3 replicates each, glutamatergic, 321 

intermediate progenitor, GABAergic; Orbital: 0.896 ± 0.0105 SD, 0.795 ± 0.00146 SD, 0.665 ± 322 

0.0302 SD. Vertical: 0.644 ± 0.0126 SD, 0.686 ± 0.0167 SD, 0.762 ± 0.00589 SD). However, 323 

regardless of putative compositional variation across organoid protocols and/or treatments, we 324 

demonstrate that organoids from all sampled protocols consistently fail to preserve 325 

glutamatergic or GABAergic primary tissue co-expression at a level comparable to primary 326 

tissue (Supp. Fig. 5, Preserved Co-expression score ~0.90 or higher). This suggests a 327 

persistent remaining biological gap in the fidelity of organoid neurons in reference to primary 328 

tissue neurons. Organoids across protocols additionally exhibit near-zero preservation of non-329 

neuronal primary tissue co-expression, suggesting organoids generally do not produce or 330 

produce extremely dysregulated non-neuronal cell-types (Fig. 4B, Supp. Fig. 5). 331 

 332 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.03.31.535112doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.31.535112
http://creativecommons.org/licenses/by/4.0/


 15

 Additionally, we report extensive variability in the preservation of primary tissue 333 

progenitor co-expression across organoid datasets. Again, regardless of the differentiation 334 

protocol, organoids persistently fail to achieve comparable preserved co-expression of the 335 

neural and intermediate progenitor MetaMarkers in reference to primary tissue data (Fig. 4B, 336 

Supp. Fig. 5). In contrast to the differentiated cell-types, where compositional variation of 337 

lineages across differentiation protocols may explain performance, progenitors are present 338 

within every neural organoid. Variability in preserved co-expression of progenitor Meta-339 

Markers is likely a stronger reflection of the fidelity to primary tissue of any given organoid 340 

dataset. Interestingly, a vascularized organoid protocol produces the highest preserved co-341 

expression of the neural and intermediate progenitors as well as the glutamatergic and 342 

GABAergic cell-types. This suggests that vascularized organoids are particularly adept at 343 

producing cell-types with high fidelity to primary tissue, but also that the preservation of co-344 

expression is associated across cell-types. We quantify this by computing correlations of 345 

preserved co-expression scores between the 6 MetaMarker gene sets across all organoid 346 

datasets and find significantly positive correlations (FDR-adjusted p-value < .001) across all 347 

comparisons with the exception of the non-neuronal cell-type (Fig. 4C, non-neuronal FDR-348 

adjusted p-values range from 0.650 to 0.731). This indicates preserved primary tissue co-349 

expression is a global feature of organoid datasets. For example, if an organoid is producing 350 

neural progenitors that preserve primary tissue co-expression, that organoid is likely producing 351 

other cell-types that preserve primary tissue co-expression.  352 

Neural organoids are commonly employed for the study of diverse disease mechanisms 353 

through various perturbations. We tested the relevance of our preserved co-expression scores 354 

for quantifying primary tissue fidelity across normal and perturbed organoids. A subset of our 355 

organoid datasets come from studies that performed diverse perturbations (22q11.2 deletion, 356 
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SMARCB1 knockdown, exposure to Alzheimer’s serum, SETBP1 point mutations, amyotrophic 357 

lateral sclerosis patient-derived organoids). We compare the MetaMarker preserved co-358 

expression scores between normal and perturbed organoids and find only a single significant 359 

difference across all cell-type MetaMarker sets (Intermediate Progenitor normal vs. mutant 360 

preserved co-expression score FDR-adjusted p-value: 0.0295, Supp. Fig. 6A). This 361 

demonstrates our broad primary tissue cell-type co-expression signatures are also applicable 362 

for comparison with organoids in perturbation experiments.   363 

 364 

Fidelity of finer resolution cell-types through preserved co-expression 365 

 While our broad cell-type annotations are useful for unifying meta-analysis across 366 

heterogeneous primary tissue and organoid datasets, it is also of interest the degree neural 367 

organoids are capable of producing primary tissue cell-types at a finer resolution. As our 368 

approach for quantifying the preservation of co-expression is derived from a genome-wide co-369 

expression network of primary neural tissue, we can also putatively assess preserved co-370 

expression of more specific cell-type markers. We investigate preserved co-expression of 371 

more specific cell-type markers by utilizing marker genes derived from a morphogen screen in 372 

neural organoids that reported the production of extensive neural cell-type diversity48. As 373 

examples of protocol specific trends, we show the dorsal patterned forebrain organoid 374 

preserves co-expression of telencephalic excitatory neuron markers over markers for mib-brain 375 

and thalamic excitatory neurons as well as dopaminergic mid-brain neurons (Fig. 4D). 376 

Similarly, the ventral mid-brain organoid protocol, which reported production of dopaminergic 377 

neurons, preserves co-expression of dopaminergic neuron markers over excitatory neuron 378 

markers on average (Fig. 4D). Extending across all the organoid datasets, we demonstrate 379 

preserved co-expression of fine resolution cell-types exhibit high correlations with the 380 
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preservation of our broader class-level markers for several Glutamatergic and GABAergic cell-381 

types (Fig. 4E). In summary, our results show that disruption of co-expression at one level of 382 

cell-type hierarchy captures disruption at finer levels, suggesting a single score for organoid 383 

fidelity can capture shared variation. More generally, our quantification for preserved co-384 

expression in organoids can also be applied to the study of finer resolution cell-types to study 385 

variation from the shared baseline.    386 

 387 

Genome-wide preservation of co-expression reveal consistent organoid deficits 388 

After revealing cell-type specific variation for preserving primary tissue co-expression 389 

within organoids, our co-expression networks additionally allow genome-wide assessments of 390 

preserved co-expression. We extend our analysis via GO terms to quantify preserved primary 391 

tissue co-expression within organoids across the whole genome. GO terms with significantly 392 

preserved primary tissue co-expression (see methods) in organoids are mostly related to basic 393 

cellular functions like response to DNA damage and protein translation, as well as GO terms 394 

related to neurodevelopment (Fig. 4F). GO terms that significantly lack preservation of primary 395 

tissue co-expression are largely related to angiogenesis or immune function (Fig. 4F), 396 

concordant with the fact that organoids lack vasculature and an immune system. These results 397 

demonstrate quantifications of preserved co-expression can capture known biological deficits 398 

in neural organoids.    399 

 While GO terms are useful for partitioning the genome into functional units for 400 

comparison, our co-expression networks also enable assessments of preserved co-expression 401 

for individual genes. As a particular use-case, we search for genes with exceptionally high 402 

preserved primary tissue co-expression across primary tissue datasets that also have poor 403 

preserved primary tissue co-expression across organoid datasets. We only consider genes 404 
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that have some measurable expression in every organoid and primary tissue dataset and 405 

compute the average preserved co-expression AUROC for each gene across the organoid and 406 

primary tissue datasets (Supp. Fig. 6B). The top 10 enriched GO terms for genes (76 in total) 407 

with high primary tissue (average AUROC >= 0.99) and low organoid (average AUROC < 0.70) 408 

preserved co-expression are related to extra-cellular matrix (ECM) and vascular 409 

characterizations (Fig. 4G). The poor conservation of genes related to vasculature can be 410 

explained by the absence of vascularization in the vast majority of our organoid datasets. The 411 

subset of these 76 genes in the ECM GO terms are CAV1, CAV2, COL4A1, CTSK, ENG, 412 

LAMB1, LAMC1, NID1, NID2, DDR2, and VWA1. Notably, these genes produce collagen and 413 

laminins, components of Matrigel, the artificial ECM typically included in organoid cultures. 414 

These results highlight preserved primary tissue co-expression of ECM-related genes as a 415 

particularly consistent deficit across neural organoids, suggesting that investigations into the 416 

signaling between artificial ECM and cells in organoid cultures may be a route forward for 417 

general improvements of organoid fidelity.   418 

In summary, we interrogate co-expression in organoids at multiple levels, revealing 419 

organoids vary in preserving primary tissue co-expression at gene-, cell-type, and whole 420 

genome resolutions through the use of a robust aggregate primary tissue co-expression 421 

network. We demonstrate the applicability of our approach for quantifying primary tissue fidelity 422 

in organoids against a variety of use-cases, such as comparing different culture conditions 423 

(vertical vs orbital shaking), comparing normal and perturbed organoids, and investigating 424 

preserved co-expression of individual genes and fine resolution cell-type markers. 425 

 426 

Temporal variation in organoid preservation of primary tissue co-expression 427 
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We score preserved co-expression in organoids using the aggregate primary tissue co-428 

expression network (GW5-25), which by design aims to capture signal robust to temporal 429 

variation. To investigate temporal trends in organoid co-expression, we employ a similar 430 

approach as when predicting organoid cell-type annotations (Supp. Fig. 3), this time 431 

quantifying the preservation of primary tissue co-expression for the top 100 cell-type markers 432 

per individual primary tissue dataset across all organoid timepoints (Fig. 5A-B). We uncover a 433 

broad temporal shift in the preservation of primary tissue co-expression within organoids 434 

across all cell-types, with younger organoids (23 days – 1.5 months) as the top performers for 435 

mostly first trimester primary tissue co-expression transitioning to older organoids (2 – 6 436 

months) as top performers for mostly second trimester primary tissue co-expression (Fig. 5B). 437 

This temporal shift is broadly consistent across the cell-types, beginning around GW9-10 (Fig. 438 

5B). Our approach in predicting organoid annotations in Figure 2 is based on aggregate 439 

marker expression and did not produce temporally variable results, whereas our approach 440 

here comparing preserved co-expression of the same marker genes does produce temporally 441 

variable results. This indicates that the co-expression relationships of genes rather than their 442 

expression levels better capture temporal variation in developing systems.  443 

 444 

Organoids preserve developing brain co-expression over adult brain co-expression 445 

We demonstrate temporal variation in developing brain co-expression relationships is 446 

captured by organoids, but only from the single forebrain organoid protocol used in the 447 

temporal organoid atlas. In order to extend analysis across all our organoid datasets and 448 

assess broad temporal variation in co-expression, we next investigate the preserved co-449 

expression within organoids of both developing and adult brain co-expression relationships. 450 

 451 
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We construct an aggregate adult co-expression network from a medial temporal gyrus 452 

scRNA-seq dataset49. We compare the preserved co-expression scores of organoids for either 453 

developing or adult glutamatergic, GABAergic, and non-neuronal cell-types. Organoids 454 

unanimously preserve developing brain co-expression over adult co-expression (Supp. Fig. 455 

6C) for glutamatergic and GABAergic cell-types with equally poor performance for the non-456 

neuronal cells, again suggesting organoids generally fail to produce non-neuronal cell-types. 457 

We extend this analysis genome-wide and place organoids in context between developing and 458 

adult data by computing the average preservation of co-expression AUROC across all genes 459 

for organoid, developing, and adult co-expression using the annotated primary developing 460 

brain tissue network as the reference. The adult co-expression network produces a global 461 

preserved developing brain co-expression score of 0.591, indicating very poor performance 462 

across the genome in preserving developing co-expression relationships (Supp. Fig. 6D). 463 

Organoids vary substantially in their global preservation of developing brain co-expression with 464 

some organoid datasets performing comparably to the adult data. This result is largely 465 

influenced by the number of cells present within individual organoid datasets (Supp. Fig. 6D, 466 

corr 0.647, p-value < .001), suggesting a cell-sampling limitation for uncovering developing 467 

brain co-expression within organoids. However, organoid datasets report more variable global 468 

preserved co-expression scores compared to down-sampled developing brain data (Supp. Fig. 469 

6D), indicating a remaining gap between primary developing brain tissue and organoid data 470 

not explained through cell number sampling alone.  471 

We further explore the applicability of our preserved co-expression quantifications for 472 

investigating temporal variation through a study that tested the limits of neuronal maturation in 473 

organoids. This study generated data from human cortical organoids either transplanted or not 474 

into developing rat brains to test the limits of maturation organoids can achieve in vitro50. We 475 
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compare the preservation of developing and adult co-expression between these age-matched 476 

non-transplanted and transplanted human cortical organoids. We report that while the non-477 

transplanted organoids preserve developing co-expression over adult for glutamatergic and 478 

GABAergic markers (Supp. Fig. 6E, non-transplanted glutamatergic and GABAergic mean 479 

developing brain AUROCs: 0.798 ± 0.0278 SD, 0.698 ± 0.0208 SD. Non-transplanted 480 

glutamatergic and GABAergic mean adult AUROCs: 0.672 ± 0.0234 SD, 0.585 ± 0.0291 SD), 481 

the transplanted organoids have increased preservation of adult co-expression for 482 

glutamatergic markers (Supp. Fig. 6E, transplanted glutamatergic mean developing brain 483 

AUROCs: 0.759 ± 0.00909 SD. Transplanted glutamatergic mean adult AUROCs: 0.850 ± 484 

0.0332 SD). This indicates the transplanted human organoids are adopting adult human 485 

glutamatergic co-expression, concordant with the original authors’ conclusions of increased 486 

maturation in transplanted organoids. The transplanted organoids additionally report increased 487 

preservation of both developing and adult non-neuronal marker co-expression, in agreement 488 

with the original authors’ observations of oligodendrocytes within transplanted organoids. By 489 

recapitulating known maturation dynamics in organoid models, we demonstrate the broad 490 

applicability of preserved co-expression quantifications for investigating a range of biological 491 

phenomenon in neural organoids. 492 

 493 

Variability in organoid co-expression is driven by marker gene expression 494 

We investigate the impact of various technical features in our analysis on our co-495 

expression results by assessing their correlation with our co-expression module scores and 496 

preserved co-expression AUROCs, focusing on technical features like sequencing depth, 497 

number of cells, etc. An important technical consideration for our analysis is ensuring all 498 

datasets have an identical gene namespace for meaningful comparisons of expression data. 499 
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We fit all datasets to the GO gene universe, dropping gene annotations not in GO or zero-500 

padding missing GO annotations in individual datasets. Excessive zero-padding of genes 501 

within our MetaMarker gene sets may artificially lower co-expression module scores or 502 

preserved co-expression scores, though we find this relationship to be relatively weak with little 503 

impact on score variance (Supp. Fig. 7, R2 for co-expression module scores and zero-padding: 504 

0.00267, 0.0165, 0.126, 0.0261, 0.0354, 0.00451, R2 for preserved co-expression and zero-505 

padding: 0.0665, 0.322, 0.151, 0.0307, 0.0411, 0.00203 for neural prog., dividing prog., 506 

intermediate prog., glutamatergic, GABAergic, and non-neuronal cell-types respectively). 507 

Sequencing depth is also similarly found to have little impact on our co-expression module 508 

scores or preserved co-expression scores (Supp. Fig. 7). Rather, the features strongly related 509 

to performance are the number of cells in a dataset and the strength of marker set expression 510 

(Supp. Fig. 7, range of significant positive (p-value < .05) correlations between marker set 511 

expression or cell number and co-expression module scores or preserved co-expression 512 

scores: 0.204 – 0.809).  513 

 514 

Preservation of primary tissue co-expression as a generalizable quality control metric 515 

As a general summary, our approach for quantifying preserved primary tissue co-516 

expression across numerous organoid protocols reveal the axes on which organoids lie for 517 

recapitulating primary tissue co-expression relationships at gene, cell-type, and whole-genome 518 

resolutions. These assessments provide powerful quality control information, identifying which 519 

genes and/or cell-types organoids can or cannot currently model on par with primary tissue 520 

data. We make our methods accessible through an R package to aid in future organoid studies 521 

and protocol development, providing means for rapidly constructing co-expression networks 522 

from scRNA-seq data (Fig. 6A) as well as querying preserved co-expression of users’ data 523 
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with our aggregate primary tissue brain co-expression network (Fig. 6A). Additionally, we make 524 

the results of our meta-analysis across primary tissue and organoid datasets available for 525 

users to place their data in reference to a field-wide collection (Fig. 6B). 526 

 527 

Discussion 528 

Through the use of meta-analytic differential expression and co-expression, we are able to 529 

provide cell-type specific measurements of human neural organoids’ current capacity to 530 

replicate primary tissue biology. We extracted broad cell-type markers that define primary brain 531 

tissue cell-types across a large temporal axis (GW5 – 25) and across numerous heterogenous 532 

brain regions to act as a generalizable primary tissue reference for organoids that also vary 533 

temporally and regionally (by protocol). By quantifying intra-marker set co-expression and the 534 

preservation of co-expression across networks, we revealed human neural organoids lie on a 535 

spectrum of near-zero to near-identical recapitulation of primary tissue cell-type specific co-536 

expression in comparison to primary tissue data. We made our aggregate primary tissue 537 

reference data and methods for measuring preserved co-expression publicly available as an R 538 

package to aid in the quality control and protocol development of future human neural 539 

organoids. 540 

Prior work comparing primary brain tissue and neural organoid systems demonstrated 541 

organoids can produce cell-types11,12 and morphological structures27,43 similar to primary 542 

tissues and are capable of modeling temporal13,38,40 and regional3,12,28,29 primary tissue 543 

variation. Multiple lines of evidence support these findings such as assessments of 544 

cytoarchitecture and cell-type proportions3,11,16,23, whole transcriptome and marker gene 545 

expression correlations10,12, and comparisons of co-expression modules5,13,17,39. Our meta-546 

analytic approach is able to quantify these field-wide observations within a generalizable 547 
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framework, recapitulating that organoids model broad primary tissue biology with our specific 548 

approach offering several key advancements for primary tissue/organoid comparisons. First, 549 

we derive quantifications of preserved primary tissue co-expression that can be extended from 550 

individual genes to the entire genome and, second, we place organoid co-expression in 551 

reference to robust meta-analytic primary tissue performance providing a general benchmark 552 

for protocol development and quality control across heterogeneous organoid systems.    553 

Certainly, while comparisons between primary tissue and organoid systems at a high-554 

resolution of cell-type annotation are of interest, our results centered on broad cell-types at the 555 

cell-class level constitute a critical foundation for these more fine-tuned investigations of 556 

organoids. Cell-type specification within the brain involves complex spatial and temporal 557 

mechanisms51 to produce the high cellular heterogeneity we observe, with the exact resolution 558 

of meaningful cell-type annotations still being actively debated and posing a general 559 

conceptual challenge within the field of single-cell genomics52. We focus here on establishing 560 

methods for assessing consistent and accurate production of primary tissue cell-types at the 561 

class-level within organoids as a critical actionable first step towards increasing primary tissue 562 

fidelity across variable organoid differentiation protocols. While we prioritize broad cell-type 563 

comparisons, we also display the flexibility of our approach by scoring the preserved co-564 

expression of finer resolution cell-type markers. This demonstrates our quantifications of 565 

preserved co-expression are applicable to a variety of cell-type annotation resolutions.  566 

One exciting application for the use of neural organoid systems is the study of a wide-range 567 

of human neurological diseases using human in vitro models53,54, which critically depends on 568 

the in vivo fidelity of cell-types produced in organoids. Neural organoids have been used to 569 

model and investigate human disorders of neurodevelopmental3,55, neuropsychiatric56–58, and 570 

neurodegenerative59–61 nature, as well as infectious diseases28,62,63. It is essential that 571 
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organoid systems model in vivo cell-types with extreme fidelity to fully realize the therapeutic 572 

potential of human organoids and ensure findings in these in vitro models are not specific to 573 

potential artifactual or inaccurate in vitro biology. While our results demonstrate that high 574 

primary tissue fidelity in organoids is currently methodologically possible, we also report a high 575 

degree of variability across organoids and studies/protocols indicating a remaining 576 

methodological gap. The broad applicability of our meta-analytic approach offers the potential 577 

for benchmarking primary tissue fidelity across numerous organoid protocols, aiding in 578 

increasing the quality of neural organoids for use in a wide-range of human health-related 579 

translational investigations.  580 

The generalizable and flexible nature of our analysis is well suited to aid in the 581 

development of organoid differentiation protocols and the general quality control of neural 582 

organoids. Our results demonstrate the type of experiments possible through comparing 583 

preserved co-expression across organoid experimental variables, such as the differences in 584 

preserved co-expression between organoids grown in vertical or orbital shakers, as well as 585 

between transplanted or non-transplanted organoids. Importantly, our broad sampling across 586 

organoid protocols enabled clear identification of promising avenues for increasing organoid 587 

primary tissue fidelity. The strong performance across cell-types for the vascularized protocol 588 

we assessed suggests vascularized protocols as a route forward for global increases in 589 

primary fidelity. Additionally, our findings of specific ECM-related genes with consistent poorly 590 

preserved primary tissue co-expression in organoids suggests investigations into the 591 

interactions between Matrigel or other ECM-substrates and organoids may lead to general 592 

protocol adjustments for increasing primary tissue fidelity64. Looking beyond neural organoids, 593 

our framework for quantifying preserved co-expression can be applied to other organoid 594 

systems granted there is sufficient annotated primary tissue data to act as a reference.   595 
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 596 

Methods 597 

Dataset download and scRNA-seq pre-processing 598 

Links for all downloaded data (GEO accession numbers, data repositories, etc.) are 599 

provided in Supp. Table 1. All scRNA-seq data was processed using the Seurat v4.2.0 R 600 

package65. Data made available in 10XGenomics format (barcodes.tsv.gz, features.tsv.gz, 601 

matrix.mtx.gz) were converted into Seurat objects using the Read10X() and 602 

CreateSeuratObject() Seurat functions. Data made available as expression matrices were 603 

converted into sparse matrices and then converted into Seurat objects using the 604 

CreateSeuratObject() function. Ensembl gene IDs were converted into gene names using the 605 

biomaRt v2.52.066 package.  606 

Where metadata was made available, we separated data by batch (Age, Donor, Cell 607 

line, etc.) for our final total of 130 organoid and 51 primary tissue datasets (Supp. Table 1). We 608 

processed and analyzed each batch independently without integration. We used consistent 609 

thresholds for filtering cells across all datasets, keeping cells that had less than 50% of reads 610 

mapping to mitochondrial genes and had between 200 and 6000 detected genes. Several 611 

datasets provided annotations for potential doublets; we excluded all cells labeled as doublets 612 

when annotations were made available. All data made available with raw expression counts 613 

were CPM normalized with NormalizeData(normalization.method = 'RC', scale.factor = 1e6), 614 

otherwise normalizations were kept as author supplied.  615 

For primary tissue and organoid data made available with cell-type annotations, we 616 

provide our mapping between author provided annotations and our broad cell-type annotations 617 

in Supp. Table 2. Vascular annotated cell-types were excluded. 618 
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 619 

Primary tissue MetaMarker generation and cross-validation 620 

MetaMarkers were computed using the MetaMarkers v0.0.144 R package, which 621 

requires shared cell-type and gene annotations across datasets to derive a ranked list of 622 

MetaMarkers. Gene markers for individual datasets were first computed using the 623 

compute_markers() function on the CPM normalized expression data for our annotated 624 

primary tissue datasets (Supp. Table. 1). A ranked list of MetaMarkers was then computed 625 

using the make_meta_markers() function using all 37 individual annotated primary tissue 626 

dataset marker lists. Genes are first ranked through their recurrent differential expression (the 627 

number of datasets that gene was called as DE using a threshold of log2 FC >= 4 and FDR p-628 

value <= .05) and then through the averaged differential expression statistics of each gene 629 

across individual datasets. When we take the top 100 markers per individual dataset as in Fig. 630 

2D, Fig. 5, Supp. Fig. 1A, and Supp. Fig. 3B, we rank markers for each dataset by their 631 

AUROC statistic as computed with the compute_markers() MetaMarkers function.   632 

For the cross-validation of our primary tissue MetaMarkers, we excluded a single 633 

annotated primary tissue dataset, computed MetaMarkers from the remaining 36 annotated 634 

primary tissue datasets, and then used those MetaMarkers to predict the cell-type annotations 635 

of the left-out dataset. We construct an aggregate expression predictor to quantify the 636 

predictive strength a list of genes has, in this case our MetaMarker lists, in predicting cell-type 637 

annotations. Taking any arbitrary number of genes (10, 20, 50, 100, 250, or 500 MetaMarkers), 638 

we sum the expression counts for those genes within each cell and then rank all cells by this 639 

aggregate expression vector. We compute an AUROC using this ranking and the cell-type 640 

annotations for a particular cell-type through the Mann-Whitney U test. Formally: 641 

 642 
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     ����� �  
�

�� 	 ��
 

where U is the Mann-Whitney U test statistic, �� is the number of positives (cells with a 643 

given cell-type annotation) and �� is the number of negatives (cells without that cell-type 644 

annotation). 645 

� � �� 

����� � 1�

2
 

where �� is the sum of the positive ranks. 646 

As an example, if there are 10 genes that are perfect glutamatergic markers (only 647 

glutamatergic cells express these genes), then ranking cells by the summed expression of 648 

these genes will place all glutamatergic cells (positives) in front of all other cells (negatives), 649 

producing an AUROC of 1. The violin plots in Supp. Fig. 1B and in Figure 2E visualize our 650 

aggregate expression approach, where datapoints per cell-type are the aggregated expression 651 

counts for the given top 100 MetaMarkers across all cells per dataset (Supp. Fig. 1B) or 652 

aggregated across all datasets (Fig. 2E). We also compared the aggregate expression of the 653 

Neural Progenitor MetaMarkers across author provided cell-type annotations included in our 654 

broad Non-neuronal annotation, revealing the off-target expression of Neural Progenitor 655 

MetaMarkers is specific to annotated astrocytes (Supp. Fig. 1B). 656 

For Supp. Fig. 1A, we took the top 100 cell-type markers per individual primary tissue 657 

dataset (x-axis) and used those genes to predict cell-type annotations as described above for 658 

all other annotated primary tissue datasets, reported as the AUROC boxplot distributions. The 659 

MetaMarker distribution was computed using a leave-one-out approach as described above. 660 

We ranked the individual primary tissue datasets by their median AUROC performance per 661 
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cell-type to derive the distributions of ranks presented in Figure 2D, excluding the dividing 662 

progenitor data as performance was highly consistent across all primary tissue datasets. 663 

 664 

Cross-regional primary tissue MetaMarker expression 665 

 We investigated the aggregate expression of our top 100 MetaMarkers per cell-type 666 

across annotated brain regions separately for the annotated first-trimester and second-667 

trimester primary tissue atlases due to differing regional annotations. MetaMarkers were 668 

computed with a leave-one-out approach as described above using all 37 of the annotated 669 

primary tissue datasets. For the heatmaps in Supp. Fig. 2, rows represent the annotated cells 670 

present within the given dataset, columns represent the aggregated expression for the top 100 671 

given cell-type MetaMarkers and each annotated region present. We average the aggregated 672 

expression for each cell-type per region and then normalize each region (column) by the 673 

maximum average expression value across the cell-types. A value of 1 indicates that cell-type 674 

is the one maximally expressing the given MetaMarker set for that brain region. The heatmaps 675 

are ordered by cell-type and region and are not clustered. 676 

 677 

Organoid PCA 678 

PCA analysis was performed using the Seurat function RunPCA() with the top 2000 679 

variable features, determined using the Seurat function 680 

FindVariableFeatures(selection.method = ‘vst’, nfeatures = 2000). For each organoid dataset, 681 

we took the eigenvector for the first principal component, computed the absolute value, and 682 

then divided by the maximum value to compute a normalized vector between 0 and 1. We 683 

visualized the normalized eigenvectors for each organoid dataset in Supp. Fig. 3C, keeping 684 
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primary tissue MetaMarker genes that were detected in the top 2000 variable genes of at least 685 

10 organoid datasets. Genes missing from any given dataset’s top 2000 variable genes were 686 

given a value of 0. The heatmap was produced using the ComplexHeatmap v2.12.167 package 687 

and was hierarchically clustered using the ward.D2 method for both rows and columns. 688 

 689 

Generating co-expression networks from scRNA-seq data 690 

To generate a shared gene annotation space across all datasets, we fit each dataset to 691 

the GO gene universe before computing co-expression matrices. Using human GO 692 

annotations (sourced 2023-01-01 using the org.Hs.eg.db v3.15.068 and AnnotationDbi 693 

v1.58.069 R packages), we excluded gene expression from a dataset if the gene annotation 694 

was not present in GO and we zero-padded missing GO genes for each dataset. 695 

We compute a gene-by-gene co-expression matrix per dataset using the spearman 696 

correlation coefficient computed across all cells in a given dataset. We then rank the 697 

correlation coefficients in the gene-by-gene matrix and divide by the maximum rank to obtain a 698 

rank-standardized co-expression matrix. All results reported using individual dataset co-699 

expression networks (Fig. 3D-E, Fig. 4B, Figs. 5-6, Supp. Figs. 4-7) were obtained using the 700 

rank-standardized co-expression networks.  701 

We compute the aggregated co-expression networks by taking the average of the rank 702 

standardized co-expression networks for each gene-gene index.  703 

 704 

Hierarchical clustering of primary tissue MetaMarkers by co-expression 705 

 706 
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We visualize the co-expression of primary tissue MetaMarker genes using the 707 

ComplexHeatmap package and the ward.D2 algorithm for hierarchical clustering. We use the 708 

fossil v0.4.0 package70 to compute the adjusted Rands Index with the adj.rand.index() function. 709 

To compute the adjusted Rands Index, we calculate a consensus clustering of MetaMarkers 710 

per co-expression network across 100 k-means clusterings (using the arguments row_km = 6, 711 

column_km = 6, row_km_repeats = 100, column_km_repeats = 100 within the Heatmap 712 

function) to compare to the perfect grouping of MetaMarkers by cell-type. 713 

For the heatmaps in Fig. 3E, genes are ordered within each MetaMarker gene set by 714 

their average intra-gene set co-expression. 715 

 716 

Co-expression module learning analysis  717 

EGAD v1.24.045 is a machine learning framework that quantifies the strength of co-718 

expression within an arbitrary gene-set compared to the rest of the genome with an AUROC 719 

quantification (Fig. 3C). We compute co-expression module AUROCs for all GO gene-sets 720 

(between 10 and 1000 genes per GO term) and our top 100 primary tissue MetaMarker gene-721 

sets for each individual primary tissue and organoid co-expression network as well as the 722 

aggregated annotated, unannotated and organoid networks. For the annotated primary tissue 723 

co-expression networks, we employ a leave-one-out approach, learning MetaMarkers from 36 724 

of the annotated datasets and computing co-expression module AUROCs for these 725 

MetaMarkers in the left-out dataset’s co-expression network. We compute co-expression 726 

module AUROCs using the EGAD run_GBA() function with default parameters. In Figure 3D, 727 

the ‘All GO terms’ distributions report the average co-expression module AUROC across all 728 

GO terms for each individual network.   729 
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 730 

Preservation of co-expression 731 

 To compute our preservation of co-expression AUROC, we take the top 10 co-732 

expressed partners for gene A in a reference co-expression network as our positive gene 733 

annotations. In a test co-expression network, we rank all genes through their co-expression 734 

with gene A and compute an AUROC using this ranking and the positive annotations derived 735 

from the reference network. If gene A in the test network has the exact same top 10 co-736 

expressed partners as in the reference network, that would result in an AUROC of 1. To 737 

summarize a given gene-set’s preserved co-expression, we take the average preserved co-738 

expression AUROC across all genes in that gene set as the preservation of co-expression 739 

score for that gene set. We use the aggregated annotated primary tissue co-expression matrix 740 

as our reference network. 741 

The preserved co-expression scores for the annotated primary tissue data in Figure 4B 742 

were computed with a leave-one-out approach. MetaMarkers and an aggregated co-743 

expression matrix were computed from 36 of the annotated primary tissue datasets and then 744 

preserved co-expression scores were computed using the co-expression network of the left-745 

out annotated primary tissue dataset. 746 

 747 

Preservation of fine resolution cell-types 748 

To define markers for finer resolution cell-types, we utilize the differential expression 749 

(DE) statistics computed from a study that performed a morphogen screen in neural organoids 750 

and reported extensive neural cell-type diversity48. For each cell-type, we rank genes by their 751 

adjusted DE p-value and take the top 10 genes per cell-type to compute preserved co-752 
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expression scores. When comparing against our MetaMarker gene sets in Figure 4E, we 753 

ensure no overlap in the top 10 cell-type and top 100 MetaMarker gene sets.   754 

 755 

Preservation of GO term co-expression 756 

 We compute p-values for the preservation of co-expression of GO terms using a mean 757 

sample error approach. Using the aggregated annotated primary tissue co-expression network 758 

as the reference and the aggregated organoid network as the test network, we first compute 759 

the preserved co-expression AUROCs for all individual genes, taking the mean and standard 760 

deviation value as the population mean and population standard deviation. For any given GO 761 

term, we first compute the preserved co-expression score for the term (the average of the 762 

preserved co-expression AUROCs for the genes in the term) and then compute the sample 763 

error for that score with: 764 

�� �  
�����

����
 

where �����is the population standard deviation and ��� is the number of genes in the GO 765 

term. We then compute a z-score through: 766 

��� �  
���� 
 �����

��
 

where ���� is the preserved co-expression score for the GO term and ����� is the population 767 

mean preserved co-expression AUROC. We compute left-sided p-values using the standard 768 

normal distribution: 769 

�� �  �� � � ���� 

 770 
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Where X is a normal distribution with mean = 0 and standard deviation = 1. We use the R 771 

function pnorm(���) to compute this p-value. 772 

We then compute the right-sided p-value as: 773 

�	 � 1 
  �� 

We adjust p-values using the R function p.adjust(method = ‘BH’). We filter for GO terms 774 

that have between 20 and 250 genes per term and use a threshold of FDR-corrected p-value 775 

<= 0.0001 to call significance. Significant left-sided p-values are interpreted as GO terms with 776 

significantly smaller preserved co-expression scores (significantly not preserved) than 777 

expected through sampling error and right-sided p-values are interpreted as GO terms with 778 

significantly larger preserved co-expression scores (significantly preserved) than expected 779 

through sampling error. We use the R package rrvgo to visualize the significant GO terms in 780 

Fig. 4F. 781 

 782 

Computing correlation significance 783 

 We employ a permutation test to compute p-values for any given correlation coefficient. 784 

We permute data-pairs and compute a correlation coefficient, repeating for 10,000 random 785 

permutations to generate a distribution of correlation coefficients under the null hypothesis of 786 

independence. We calculate a two-sided p-value for the original correlation coefficient as the 787 

number of permuted correlation coefficients whose absolute value is greater than or equal to 788 

the absolute value of the original correlation coefficient, divided by 10,000. We adjust p-values 789 

using the R function p.adjust(method = ‘BH’) and use a FDR-corrected p-value threshold of <= 790 

.05 to call significance. 791 

 792 
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Comparing co-expression of normal vs. perturbed organoids 793 

For both the co-expression module AUROCs and the preserved co-expression scores 794 

of normal and perturbed organoids, we test for significant differences per cell-type using the 795 

Mann Whitney U test, adjusting p-values with the R function p.adjust(method = ‘BH’) and using 796 

a FDR-corrected p-value threshold of <= .05 to call significance. 797 

 798 

Organoid temporal analysis 799 

The organoid temporal analysis for both predicting organoid annotations with primary 800 

tissue markers (Supp. Fig. 3B) and scoring the preserved co-expression of organoid co-801 

expression using primary tissue networks as reference (Fig. 5) were performed for all pair-wise 802 

combinations of the 37 annotated primary tissue datasets and the 26 temporally annotated 803 

forebrain organoid datasets. We excluded the GW7-28 annotated primary tissue dataset from 804 

the temporal preserved co-expression analysis (Fig. 5) due to the wide temporal range 805 

sampled. For predicting organoid annotations with primary tissue markers, we used the top 806 

100 markers per primary tissue dataset to construct aggregate expression predictors in the 807 

organoid datasets as described above. The MetaMarkers performance was calculated using 808 

MetaMarkers derived from all 37 annotated primary tissue datasets. For scoring preserved co-809 

expression, individual primary tissue networks were used as the reference with individual 810 

organoid networks as the test networks. We computed the preserved co-expression scores of 811 

the top 100 primary tissue cell-type markers per individual primary dataset for each individual 812 

organoid network.  813 

 814 

GO enrichment analysis 815 
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 We compute enrichment for GO terms using Fisher’s Exact Test as implemented 816 

through the hypergeometric test. We compute raw p-values for GO terms with between 10-817 

1000 genes and compute FDR-adjusted p-values using p.adjust(method = ‘BH’). We only 818 

consider GO sets with between 20 and 500 when choosing the top 10 GO sets in Figure 4G, 819 

ranked by FDR-adjusted p-value. 820 

 821 

R and R packages 822 

 All analysis was carried out in R v4.3.1. Colors with selected using the MetBrewer 823 

v0.2.0 R library. Plots were generated using ggplot2 v3.3.671. Spearman correlation matrices 824 

for co-expression networks were computed using a python v3.6.8 script, implemented in R with 825 

the reticulate v1.26 R package, as well as using functions from the matrixStats v0.62.0 R 826 

library. All code used in generating results and visualizations will be made public at the time of 827 

publication. The preservedCoexp R library is made available at 828 

https://github.com/JonathanMWerner/preservedCoexp. All code used for analysis is made 829 

available at https://github.com/JonathanMWerner/meta_organoid_analysis.   830 
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Figure 1 999 

 1000 

 1001 

Using meta-analysis to quantify preserved primary tissue co-expression in organoids 1002 

A Collection of annotated primary tissue brain scRNA-seq datasets, ranging from gestational 1003 

week (GW) 5 to 25 and sampling from 15 developmentally defined brain regions. The primary 1004 
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tissue datasets are annotated at broad cell-type levels (Neural Progenitor, Dividing Progenitor, 1005 

Intermediate Progenitor, Glutamatergic, GABAergic, and Non-neuronal) and these annotations 1006 

are used to compute MetaMarkers, cell-type markers identified through recurrent differential 1007 

expression. 1008 

B Collection of human neural organoid scRNA-seq datasets, sampling from 12 different 1009 

differentiation protocols. Included is an annotated temporal forebrain organoid dataset. 1010 

C Example of a sparse co-expression network derived from a scRNA-seq data and an 1011 

example of an aggregate co-expression network averaged over many scRNA-seq datasets. 1012 

The aggregate network enhances the sparse signal from the individual network. 1013 

D Schematic showing a quantification of intra-marker set co-expression 1014 

E Schematic showing a quantification for the strength of preserved co-expression between two 1015 

co-expression networks, measuring the replication of the top 10 co-expressed partners of an 1016 

individual gene across the networks. 1017 

F Example plot from the preservedCoexp R library, placing cell-type specific preserved co-1018 

expression scores of an example forebrain organoid dataset in reference to scores derived 1019 

from primary tissue datasets. Red lines denote the percentile of the organoid cell-type scores 1020 

within the primary tissue distributions. 1021 

 1022 

 1023 

 1024 

 1025 

 1026 
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Figure 2 1027 

 1028 

Meta-analytic primary tissue cell-type markers 1029 

A Annotated UMAPs of the annotated primary tissue brain scRNA-seq datasets. 1030 
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B Example of our leave-one-out cross-validation approach for learning primary tissue 1031 

MetaMarkers and testing the markers’ capacity for predicting annotations in the left-out 1032 

dataset, quantified with the AUROC statistic. 1033 

C Meta-analytic primary tissue markers have high performance in predicting primary tissue 1034 

cell-type annotations. Boxplot distributions of the AUROC statistic for predicting cell-type 1035 

annotations across all leave-one-out combinations of our annotated primary tissue datasets, 1036 

with an increasing number of MetaMarkers used for predicting cell-type annotations on the x-1037 

axis. 1038 

D MetaMarkers have the highest performance in predicting primary tissue cell-type 1039 

annotations. Boxplots of marker gene-set performances. Gene-sets are the top 100 cell-type 1040 

markers from individual primary tissue datasets compared to the MetaMarker performance. 1041 

Performances for each cell-type in individual primary tissue datasets are presented in Supp. 1042 

Fig. 1A. Datasets are ordered by their median performance.   1043 

E Averaged distributions of gene expression for the top 100 MetaMarkers demonstrating clear 1044 

cell-type specificity. This is performed with a leave-one-out cross-validation, with individual 1045 

dataset distributions reported in Supp. Fig. 1B. 1046 

 1047 
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 1049 

 1050 

 1051 
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Figure 3 1053 

 1054 

 1055 

Neural organoids vary in recapitulating primary tissue cell-type marker set co-1056 

expression 1057 
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A Example of a sparse co-expression network derived from a scRNA-seq data and an 1058 

example of an aggregate co-expression network averaged over many scRNA-seq datasets. 1059 

The aggregate network enhances the sparse signal from the individual network.  1060 

B Marker gene-sets show clear cell-type clusters via their co-expression relationships in 1061 

primary tissue and organoid networks. The aggregated co-expression networks for the 1062 

unannotated primary tissue datasets and organoid datasets, showing the hierarchically 1063 

clustered co-expression of the primary tissue MetaMarkers for the 6 cell-types.  1064 

C Schematic for the co-expression module learning framework, measuring the co-expression 1065 

strength within an arbitrary gene-set compared to the rest of the genome, quantified with the 1066 

AUROC statistic. 1067 

D Distributions of co-expression module AUROCs for individual annotated primary tissue, 1068 

unannotated primary tissue, and organoid datasets for the co-expression strength of the 1069 

MetaMarker gene-sets for the 6 cell-types. The grey ‘All GO terms’ distributions report the 1070 

average co-expression module AUROC across all GO terms for each individual dataset. Co-1071 

expression module AUROCs for the aggregate co-expression networks are denoted with the 1072 

special characters. 1073 

E Top primary tissue and top and bottom organoid co-expression networks based on 1074 

Glutamatergic co-expression module AUROCs. Genes are ordered within each MetaMarker 1075 

gene set by their average intra-gene set co-expression. 1076 

 1077 

 1078 

 1079 
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Figure 4 1080 

 1081 

Neural organoids vary in their preservation of primary tissue gene-level co-expression 1082 

A Schematic showing the quantification for gene-level preserved co-expression. The 1083 

preserved co-expression score for any given gene-set is the average preserved co-expression 1084 

AUROC across all genes within that gene set. 1085 
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B Organoids strongly vary in preserved primary tissue cell-type specific co-expression in 1086 

comparison to fetal data. Boxplot distributions show the preserved co-expression scores for 1087 

the primary tissue MetaMarker gene-sets of the 6 cell-type annotations across all individual 1088 

networks.  1089 

C The majority of cell-types are significantly correlated in preserved co-expression within 1090 

organoid networks. Spearman correlation matrix for the preserved co-expression scores for all 1091 

6 cell-type annotations across all individual organoid datasets. 1092 

D Preserved co-expression scores computed from the dorsal patterned forebrain and ventral 1093 

midbrain organoid datasets for the top 10 cell-type markers of various neural cell-types. 1094 

E Scatter plots comparing the preserved co-expression score of the top 100 MetaMarkers 1095 

against the top 10 markers (no overlaps in gene sets) for various neural cell-types per 1096 

organoid dataset. Spearman correlation coefficients are reported in the bottom right corner. 1097 

F Scatter plots summarizing the semantic distances of GO terms that are significantly 1098 

preserved or non-preserved between the aggregate annotated primary tissue and organoid co-1099 

expression networks. 1100 

G Organoids globally fail to preserve primary tissue co-expression of ECM and vascular 1101 

related genes. Bar plot detailing the top 10 GO terms from a GO enrichment test of the 76 1102 

genes with high and low preserved co-expression AUROCs within primary tissue networks and 1103 

organoid networks respectively. The preserved co-expression for each individual gene from 1104 

primary tissue networks and organoid networks is reported in Supp. Fig. 6B. 1105 

 1106 
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Figure 5 1108 

 1109 

 1110 

Neural organoids capture temporal dynamics in primary tissue co-expression 1111 

A Schematic showing two potential outcomes when comparing the preserved co-expression 1112 

between primary tissue and organoid data on a temporal axis. There may be a temporal 1113 

relationship, with younger organoids recapitulating younger primary tissue co-expression over 1114 

older primary tissue co-expression and vice versa for older organoids, or there may be no 1115 

temporal relationship. 1116 

B Organoid co-expression models temporal trends in primary tissue co-expression. Line plots 1117 

showing the preserved co-expression scores computed from individual organoid co-expression 1118 

networks for cell-type markers of individual primary tissue datasets. Primary tissue datasets on 1119 

the x-axis are ordered from youngest to oldest.   1120 

 1121 
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Figure 6 1122 

 1123 

 1124 

The preservedCoexp R package enables fast computation of preserved co-expression 1125 

A The preservedCoexp R package can compute co-expression networks and genome-wide 1126 

preservation of co-expression in a few minutes even for low-memory computers. Line plots 1127 

showing the computational time to either compute co-expression networks or preserved co-1128 

expression as the number of cells or genes increases. Points are the mean value from 10 1129 

replicates, with error bars depicting ± 1 standard deviation. 1130 

B Example plot from the preservedCoexp R package, placing cell-type specific preserved co-1131 

expression scores of an example forebrain organoid dataset in reference to scores derived 1132 

from primary tissue datasets or organoid datasets. Red lines denote the percentile of the 1133 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.03.31.535112doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.31.535112
http://creativecommons.org/licenses/by/4.0/


 55

forebrain organoid cell-type scores within either the primary tissue distributions or organoid 1134 

distributions. 1135 

  1136 

 1137 
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