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INTRODUCTION: The human neocortex is gen-
erally organized into six layers of neurons but
the size and cellular composition of these lay-
ers varies across the cortex, and this variation
is thought to underlie differences in connec-
tivity that impart specific functional special-
ization to distinct cortical areas. However, the
degree towhich cortical areas have a canonical
versus noncanonical organization has proved
difficult to reliably quantify. Single-nucleus and

spatial transcriptomic methods enable high-
resolution characterization of the cellular struc-
ture of the humanneocortex providing ameans
to quantitatively compare the molecular and
cellular structure and specialization of distinct
cortical areas.

RATIONALE: Eight cortical areas that are rep-
resentative of major variation in cellular ar-
chitecture and include primary sensory and

association cortices were sampled using single-
nucleus transcriptomics to generate a dataset
comprised of more than 1.1 million nuclei.

RESULTS:Nuclei were grouped based on gene
expression similarity into one of 24 cellular sub-
classes, which were found in all cortical areas.
Layer 4 intratelencephalic excitatory neurons
were present even in agranular areas that lacked
a histologically distinct layer 4, suggesting a
common subclass-level cellular blueprint across
the cortex. However, gene expression and sub-
class proportions varied substantially between
cortical areas, with more differences in excit-
atory projection neurons than inhibitory neu-
rons. All non-neuronal subclasses were shared
across cortical areas but their laminar distri-
butions varied between areas, and astrocytes
also expressed regional marker genes. Varia-
tion as a function of rostrocaudal location in
the cortex was a clear organizational feature
where neighboring cortical areas were most
similar, in line with previous observations of
gene expression similarity by topographic prox-
imity in the cortex. At a finer cell-type level of
analysis, area-enriched and area-specific cell
types were apparent in multiple cortical areas,
but most notably in the primary visual cortex
(V1) that had many distinct excitatory neuron
types and several distinct inhibitory neuron
types that reflect the specialized cellular archi-
tecture of this area in humans and other pri-
mates. V1 specialized inhibitory cell types were
mostly Somatostatin-expressing neurons likely
originating from the medial ganglionic emi-
nence during development. Layer 4 in V1, which
is visibly enlarged and has multiple sublayers,
was notably different from other areas with
discrete sublaminar distributions of specialized
excitatory and inhibitory neurons revealed by
spatial transcriptomics.

CONCLUSION: A common set of cell types are
found across human cortical areas that have
diverse functions. Excitatory projection neu-
rons exhibit large spatial gradients and regional
differences in proportions, laminar distributions,
and gene expression that are less pronounced
in inhibitory neurons or non-neuronal cells. V1
is molecularly distinct from other cortical areas
and several excitatory and inhibitory neuronal
types are found only in V1. The ratio of excit-
atory to inhibitory neurons in V1 is also more
than double that of other cortical areas, reflect-
ing specialization of the human cortex for pro-
cessing visual information.▪
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Regional specializations of human cortical cell types. (A) Single nucleus RNA-sequencing data from
eight areas of the human neocortex were used to generate a cross-areal taxonomy with shared and
area-specific types. (B) The relative number of excitatory and inhibitory neurons is similar across all areas
except V1. Neuronal cell-type proportions and gene expression varied systematically from the rostral (R)
to caudal (C) cortex with additional regional signatures. (C) Some excitatory neuron types that are exclusive
to V1 are in the visual input layer 4, which is expanded compared to other cortical areas.
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Variation in cytoarchitecture is the basis for the histological definition of cortical areas. We used single
cell transcriptomics and performed cellular characterization of the human cortex to better understand
cortical areal specialization. Single-nucleus RNA-sequencing of 8 areas spanning cortical structural
variation showed a highly consistent cellular makeup for 24 cell subclasses. However, proportions of
excitatory neuron subclasses varied substantially, likely reflecting differences in connectivity across
primary sensorimotor and association cortices. Laminar organization of astrocytes and oligodendrocytes
also differed across areas. Primary visual cortex showed characteristic organization with major
changes in the excitatory to inhibitory neuron ratio, expansion of layer 4 excitatory neurons, and
specialized inhibitory neurons. These results lay the groundwork for a refined cellular and molecular
characterization of human cortical cytoarchitecture and areal specialization.

A
real parcellation of the neocortex is prem-
ised on the idea that structural varia-
tions in cellular architecture (1–3) and
myeloarchitecture (4) underlie function-
al divisions [reviewed in (5)]. Neocortex

has a 6-layered organization common across
species and areas, apart from agranular areas
such as the primary motor cortex (M1) that
lack layer 4. Cortical layers contain projection
neurons with generally stereotyped input and
output properties hypothesized to represent a
“canonical” circuitry (6, 7). However, cortical
areas differ in positional topography, shape
and size, laminar and columnar organization,
and neuron proportions (8–10).
Advances in single cell transcriptomics have

revealed a complex, hierarchical cortical cell-
type architecture based on gene expression
signatures that is conserved across species
except at the finest cell-type distinctions (11–15).
Prior work in M1 established a cellular hierar-
chy consisting of 24 neuronal and non-neuronal
subclasses with distinct laminar patterning

and correlated phenotypic properties (table
S1) and revealed deeper cellular complexity in
any given cortical area than previously appre-
ciated (12, 13, 15–19). The current study aims to
quantitatively define the cellular architecture of
eight human neocortical areas representative of
topographic, functional, and structural variation,
using single nucleus RNA-seq (snRNA-seq) and
spatial transcriptomics methods.

Within-area cell taxonomies demonstrate
common subclass architecture

To sample major axes of cortical variation, we
analyzed eight neocortical areas that included
M1 and primary somatosensory (S1), auditory
(A1), visual (V1) and association areas [dorso-
lateral prefrontal cortex (DFC), anterior cin-
gulate cortex (ACC), middle temporal gyrus
(MTG) angular gyrus (AnG)], which spanned
the rostral to caudal (anterior to posterior in
many mammals) extent of the cortical sheet,
and represented major variations in cortical
cytoarchitecture (Fig. 1A) (20). Cortical areas
were identified across tissue donors using a
combination of surface anatomical landmarks
and histological verification of cytoarchitecture
(Methods). Human postmortem brain samples
were collected from 5 individuals (3 males,
2 females, table S2). Tissue photographs taken
at the time of autopsy and tissue dissection
were used to manually align tissue samples
to three-dimensional (3D) reference atlases
[Allen Human Reference Atlas 3D https://
github.com/BICCN/cell-locator; Julich-Brain

v2.9 parcellation, DOI:10.25493/VSMK-H94
(21)] and a 2D plate-based reference (Allen
Human Reference Atlas http://atlas.brain-map.
org/). The best matching structure in each ref-
erence atlas is reported (table S2, Methods)
and secondary structures are reported when
more than one cortical area is predicted ac-
cording to the mapping results (table S2).
Most tissue samples map to a single area in the
Allen Human Reference Atlas but MTG sam-
ples included both the intermediate and caudal
subdivisions of A21. Mapping to the probabi-
listic Julich Brain Atlas suggests that several
areas may have been sampled for ACC (area 33
and area p24ab) and A1 (area TE 1.0 and area
TE 1.1), and variation in the precise location of
sampling might result in increased variability
in the cellular compositions of these areas.
Three snRNA-seq datasets were generated: a

10x Chromium v3 (Cv3) dataset with >924,000
nuclei sampled from all cortical layers, a Cv3
dataset of >231,000 nuclei captured by micro-
dissection of layer 5 to enrich for rare layer 5
extratelencephalic projecting (L5 ET) neu-
rons (for all areas except AnG and M1), and a
SMART-seqv4 (SSv4) dataset of over 60,000 nu-
clei sampled from individual cortical layers to
provide laminar selectivity for all clusters. For
AnG, only a Cv3 dataset of all cortical layers
was generated (Fig. 1B).
Nuclei were assigned to one of 24 cell sub-

classes based on transcriptomic similarity to
a reference taxonomy for human M1 (12, 13),
and subclasses were grouped into five neigh-
borhoods (Fig. 1, C and D). For each area and
neighborhood, nuclei profiled with Cv3 and
SSv4 were integrated based on shared coex-
pression and clustered to identify transcrip-
tomically distinct cell types. Neighborhood
clusters were aggregated and organized into
within-area taxonomies ranging between 120
and 142 cell types (Fig. 1C and figs. S1 to S8)
with distinct marker expression (table S3). Cel-
lular variation within subclasses was quanti-
fied as the average entropy of variably expressed
genes. Entropy was higher for all neuronal than
non-neuronal subclasses and did not differ
between excitatory and inhibitory subclasses
or across areas based on a two-way analysis
of variance (ANOVA) followed by post-hoc
Tukey HSD tests (Fig. 1E). The number of dis-
tinct cell types within a subclass was similar
across areas for inhibitory and non-neuronal
subclasses but varied for excitatory neuron
subclasses (Fig. 1F). This within-subclass var-
iation was not driven by differential sampling
of nuclei across areas (Fig. 1, G and H). In V1,
there were more layer (L)4 intratelencephalic
projecting (IT) types, consistent with expan-
sion and specialization of the thalamorecipient
L4 in V1, and more L5 IT types. L6 IT Car3 neu-
rons were more diverse in MTG, A1, and AnG
compared with other areas. L5 ET neurons were
least diverse in the rostral area ACC and in the
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Fig. 1. Transcriptomic cell type diversity across human cortical areas.
(A) Eight areas of the neocortex were sampled from four lobes of the adult
human brain. (B) snRNA-seq sampling across areas grouped by RNA-seq
platform, layer dissection strategy, and number of male and female donors.
(C) Schematic of snRNA-seq clustering to generate cell-type taxonomies for each
area. (D) UMAPs of single nuclei from each area based on variable gene
expression and colored by cell subclass as in (J). (E) Distributions of subclass
transcriptomic entropy differ between neuronal (Exc and Inh) and non-neuronal

(NN) classes and not between areas. (F, G, and H) Summary of within-area
taxonomies showing the number of nuclei sampled from each subclass and the
number of distinct clusters (cell types) identified for excitatory (F) and inhibitory
(G) neurons and non-neuronal cells (H). (I) Number of subclass markers in
each area (box plots) and shared across areas (blue points). Box plots show median,
interquartile range (IQR), up to 1.5*IQR (whiskers), and outliers (points).
(J) Heatmaps of conserved marker expression for 50 random nuclei sampled from each
area for chandelier interneurons and horizontally compressed for all subclasses.
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most caudal area V1, whereas L6 corticothalamic-
projecting (L6 CT) neurons were most diverse
in M1, S1, MTG, and V1. Individual subclasses
had hundreds of distinct markers in each area
(table S4), and 20 to 70% of markers were
conserved across areas (Fig. 1I). For example,
Fig. 1J plots expression of a set of chandelier
cell markers that were common across areas
(left), and a set of common markers for all
subclasses (right). Excitatory subclasses had
the smallest fraction of conserved markers,
pointing to more variable expression of excit-
atory neuron gene expression across the cortex
as reported in mice (15).

Cross-areal abundance changes reveal
areal specification

The areas analyzed have distinct cytoarchitec-
ture based on Nissl staining that shows varia-
tion in cell size, shape, and laminar organization
(Fig. 2A), and spanned the rostrocaudal axis of

the cortical sheet (Fig. 2B). Relative propor-
tions of transcriptionally defined neuronal sub-
classes varied across areas (Fig. 2C and table S5).
Excitatory neuron subclasses had the greatest
differences in proportions across areas and
often reflected known differences in cellular
architecture. Agranular M1 and ACC (Fig. 2A)
had L4 IT neurons but at lower proportions
than other areas (12), with the lowest proportion
observed in ACC. By contrast, in V1 where L4
is visibly enlarged, L4 IT neuron proportionwas
increased. As described previously in mouse
cortex (15) and between human M1 and MTG
(12), inhibitory neuron subclasses were similar
across areas except for a marked increase of
medial ganglionic eminence (MGE)-derived
PVALB neurons and fewer caudal ganglionic
eminence (CGE)-derived interneurons (LAMP5
LHX6, LAMP5, SNCG, VIP, PAX6) in V1. These
proportion differences in excitatory and inhib-
itory neurons were validated in situ by label-

ing of neuronal subclasses inMTG andV1 using
MERFISH spatial transcriptomics (Fig. 2C,
right panels, and table S5), demonstrating that
they were not an artifact of nuclear isolation
or snRNA-seq processing.
Subclass proportions were highly consistent

across donors despite variation in the precise
location sampled for areas such as MTG (Fig.
2D). Examined from a subclass perspective, the
most obvious proportion differences were seen
in L4 IT (range 10-fold, from 3 to 30% of ex-
citatory neurons), and in the much sparser L5
ET neurons (range 50-fold, from 0.1 to 5%).
Many of these proportion differences varied in
a graded fashion generally along the rostro-
caudal (R-C) axis. Pairwise correlations in excit-
atory neuron proportions revealed correlated
R-C decreases in L5 ET, L6B, L6 IT, and L5/6
near-projecting neurons (L5/6 NP), with an
anticorrelated R-C increase in L4 IT (Fig. 2E).
Among inhibitory subclasses, the rarest types
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Fig. 2. Cell subclass composition reflects cytoarchitecture and varies
systematically along the R-C axis. (A) Images of Nissl-stained sections of
cortical areas are labeled with approximate layer boundaries and show distinct
cytoarchitecture. Areas are ordered by position along the R-C axis of the cortex.
(B) Representative cortical gyral locations of sampled tissue. (C) Relative
proportions of neuronal subclasses as a fraction of all excitatory or inhibitory
neurons in each area and estimated based on snRNA-seq profiling or in situ

labeling using MERFISH. Arrowhead directions indicate subclasses that
significantly increase (pointing up) or decrease (pointing down) across areas
based on scCODA analysis (D) For each donor, subclass proportions were
calculated as a fraction of all neurons in the same class (excitatory or inhibitory)
and grouped by neighborhood (*nominal P < 0.05; **Bonferroni-corrected
P < 0.05). (E) Spearman correlations of excitatory and inhibitory subclass
proportions across areas. Scale bar on (A) is 200 μm.
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(SNCG, PAX6, and SST CHODL) had the most
correlated changes in proportions with a de-
creasing R-C gradient.
Smaller-scale areal specializations in pro-

portions were overlaid on these broad trends
of conservation or R-C gradients and many
subclasses showed a particularly large differ-
ence in V1 (L5/6 NP, L6B, PAX6). Chandelier
inhibitory neuron proportions were lowest
in MTG and AnG and highest in S1 (Fig. 2, C
and D). There were more L4 IT neurons and
fewer L5 ET neurons in DFC, more L6 IT neu-
rons in M1, and fewer L6 IT Car3 neurons in

ACC than expected based on the broad trends.
In summary, cell subclass proportions define a
quantitative cytoarchitecture that is canonical
in having all 24 subclasses in all areas, with
varying proportions and gradient properties
that likely reflect developmental gradients and
specializations driven by the circuit require-
ments of functionally distinct cortical areas.

Excitatory to inhibitory neuron ratio varies
across cortical areas and layers

In addition to areal specializations in neuronal
subclass proportions, we found differences in

relative proportions of excitatory and inhibitory
neurons (E:I ratio) (table S5). As previously re-
ported forM1 (12), the E:I ratio was 2:1 for most
cortical areas, in contrast to the reported E:I
ratio of 5:1 inmice. However, the E:I ratio in V1
(4.5:1) was much higher (Fig. 3A) and compa-
rable to that of rodents. MERFISH analysis in
MTG and V1 confirmed these values and areal
differences (table S5).
Layer-specific dissections of nuclei from 7 re-

gions (excluding AnG) allowed a deeper ex-
ploration of E:I ratio variation. E:I ratios varied
by area and layer and were consistent across
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Fig. 3. E:I ratio variation across cortical areas and layers. (A) Relative
number of excitatory neurons to inhibitory neurons (E:I ratio) in each area. Bar
plots indicate average and standard deviation across donors. (B) E:I ratios
estimated for a common set of layers dissected from each area. Box plots show
median, interquartile range (IQR), up to 1.5*IQR (whiskers), and outliers (points)
across multiple donors. (C) Validation of increased E:I ratios in all cortical
layers in V1 compared with MTG based on MERFISH experiments. Bar plots and

whiskers indicate average and standard deviation of E:I ratios across donors,
respectively. (D) E:I ratios estimated for all layers dissected from each area.
(E) Laminar distributions of interneurons were conserved (SNCG) or divergent
(LAMP5 LHX6) across areas based on counts of layer-dissected nuclei. Note
that primary sensory areas (S1, A1, and V1) have a distinct distribution of LAMP5
LHX6 neurons. (F) MERFISH in situ labeling of LAMP5 LHX6 cells shows a
decreased proportion of cells in layer 6 of V1 compared with MTG.
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donors (Fig. 3B). However, increased variability
was seen in MTG perhaps due to sampling of
both the intermediate and caudal subdivisions
of A21. V1 had the highest E:I ratio across all
layers, not just in L4 (7:1) but also in L5 and
L6, where the highest E:I ratio of 10:1 was seen.
Moreover, there was a monotonic increase in
the E:I ratio of other areas along a R-C gradi-
ent, which was most apparent in L2/3. E:I
ratios were more variable in L4 and L5, masking
the trend in overall E:I ratios (Fig. 3A). In situ
cell counts in MTG and V1 using MERFISH
confirmed a higher E:I ratio in all layers of V1
(Fig. 3C). From a within-area perspective, E:I
ratios increased with cortical depth, with the
highest ratios in L6 for all areas (Fig. 3D).
Furthermore, the E:I ratio in L4 was distinctly
elevated in V1 relative to L2, L3, and L5, high-
lighting specialization of visual processing com-
pared with other sensory modalities. Finally,
laminar distributions of excitatory and inhib-
itory neurons were relatively consistent across
cortical areas (fig. S9), such as SNCG in L1 (Fig.
3E), but some areal and laminar variation was
apparent, such as LAMP5 LHX6 proportions
in L6 (Fig. 3, E and F). Taken together, E:I
ratios vary extensively both by layer and area,
with markedly different ratios in V1 and areal
variation that is masked by averaging across
cortical layers.

Transcriptomic cellular topography

To characterize the transcriptomic landscape of
neuronal subclass cortical areas, neuronal nu-
clei were integrated by donor for each of four
neighborhoods [IT-projecting excitatory, deep
layer (non-IT) excitatory, MGE-derived GABAergic
and CGE-derived GABAergic] and visualized as
UMAPs colored by subclass (Fig. 4A) and area
(Fig. 4B). Three organizational principles were
apparent. First, excitatory neurons had strong
areal signatures, visualized as clear banding by
area, whereas inhibitory neurons were mostly
intermixed across areas similar to reports in
the mouse cortex (15). Second, there were visi-
ble V1 specializations including substantial ex-
pansion of L4 IT neurons and distinct islands
in the UMAPs for most IT-projecting subclasses
and L6 CT neurons. Distinct V1 islands were
also seen for parts of the PVALB and SST sub-
classes (arrows in MGE-derived UMAPs). Third,
the areal similarity of excitatory neurons ap-
peared to vary in a R-C topographic order for
many subclasses, similar to prior reports of
gene expression similarity across the human
cortex (22). Neighboring areas were similar and
intermixed despite known functional distinc-
tiveness; for example, nuclei from M1 and S1
intermingled despite their specificity for mo-
tor and somatosensory functions, respectively.
Areal variation in gene expression mirrored

the UMAP trends. The number of differentially
expressed genes (DEGs, table S6) across areas
was largest for excitatory neurons (Fig. 4C), and

highest for L4 IT and L5 ET subclasses (over
1000 DEGs). DEGs for inhibitory neuron sub-
classes varied widely, from over 100 DEGs for
SST and PVALB interneurons to fewer than
10 DEGs for SNCG and SST CHODL and a
single DEG (ADAMTS9-AS2) for PAX6. Non-
neuronal cell subclasses similarly displayed
few areal DEGs. We next used a previously de-
fined tau score (23) to identify area-specificmark-
ers (table S7), which were much less common.
Excitatory neurons expressed the most areal
markers and ACC and V1 were the most distinct
areas (Fig. 4Dand fig. S10, A andB). IT-projecting
neurons were specialized in both ACC and V1
whereas Non-IT L6 CT and L5 ET neurons
were specialized mostly in V1.
The topographic ordering of the excitatory

neuron subclasses above suggested graded
changes as a function of distance, similar to
bulk tissue profiling studies reporting gradual
changes in gene expression across the cortical
sheet (22). We therefore calculated transcrip-
tomic similarities of excitatory subclasses as a
function of the approximate physical distance
between pairs of areas on an unfolded cortical
sheet (Fig. 4E and table S2). Because V1 was so
distinct (Fig. 4A), we fit two linear models of
subclass similarity versus areal distance, one
that included pairwise comparisons to V1 and
one that did not (Fig. 4E). All excitatory neuron
subclasses showed the same monotonic de-
crease of similarity with distance but had differ-
ent amounts of transcriptomic specialization
in V1 (intercepts, but not slopes, are different
in Fig. 4E). Interneuron similarity also decreased
with distance at the same rate for all subclasses,
albeit at about 40% the rate of excitatory neu-
rons, and with much less specialization in V1
(fig. S10C). By contrast, non-neuronal expres-
sion did not change systematically with inter-
areal distance and was not more specialized
in V1 (fig. S10D).
To determine how gene expression varied

across the cortical sheet, we performed a var-
iance partitioning analysis for each subclass
(fig. S10E and table S8). Expression of hun-
dreds of genes was explained by area identity
and spatial gradients for excitatory neurons
compared with a few genes for inhibitory neu-
rons and non-neuronal cells. These genes had
a similar proportion of expression variation
explained by area or gradients (median 5 to
10%) in all subclasses (fig. S10F). Therefore,
the observed differences in transcriptomic to-
pography (Fig. 4E) were mainly due to the
number of genes with areal variation and not
to the strength of that variation. Among IT-
projecting neurons, some genes showed distinct
patterning in a single subclass whereas other
genes were topographically patterned in all
IT subclasses (fig. S10G). We calculated the
expression variance explained by gradients
along three axes: rostrocaudal (R-C), midline-
surface (M-S, anatomical left to right), and

dorsoventral (D-V). The relative position of each
cortical area along these axes was calculated
using the voxel coordinates corresponding
to the approximate center of each area in the
Allen Human 3D Reference Atlas (table S2).
For genes with at least 5% of expression var-
iance explained by any gradient, we quantified
the relative strength of gradients based on the
relative proportion of expression variance that
was explained (fig. S10H). Formost subclasses,
R-C gradients were dominant but non-IT sub-
classes also expressed many genes with M-S
and D-V gradients (Fig. 4F and fig. S10H).
A set of R-C genes was defined for each sub-

class by requiring a Spearman correlation >0.7
between expression and areal position along
the R-C axis and a correlation >0.5 after ex-
cluding V1 and ACC as these are transcrip-
tionally distinct regions that might bias the
identification of gradients. For the most vary-
ing L4 IT and L5 ET neurons, roughly equal
numbers of genes increased and decreased ex-
pression rostrocaudally (Fig. 4G). For other
subclasses, many more genes increased rather
than decreased expression along the R-C axis.
The correlations of R-C geneswere greater than
correlations to a randomly shuffled ordering
of areas for most neuronal subclasses (fig. S10I).
Genes with a R-C gradient in one subclass fre-
quently had a gradient in the same direction
in other subclasses that expressed the gene
(fig. S10J), such as CBLN2 in L2/3 IT and L4 IT
neurons (Fig. 4H), which is expressed in a
similar gradient in maturing cortical neurons
during humanprenatal development (24). How-
ever, some genes such as DCC had opposing
gradients in different subclasses (L5/6 NP and
VIP), and some functionally related genes had
opposing gradients in the same subclass, such
as the cell adhesionmolecules Contactin 5 and
6 (CNTN5 and CNTN6) in L5 IT neurons (Fig.
4H). Based on gene ontology (GO) analysis,
genes with strong areal enrichment or R-C
gradients included voltage-gated potassium
and calcium channels (table S7). Notably, only
R-C genes were associated with axon guidance
pathways including SLIT/ROBO, ephrin, and
semaphorin signaling molecules (table S7),
likely reflecting developmental patterning of
connectivity.

Cross-areal consensus taxonomy

Next, we sought to understand finer cell-type
areal variation by clustering integrated cell
neighborhoods (Fig. 4) to identify a set of cell
types either common to or varying across cor-
tical areas (Fig. 5A). We defined and organized
153 cell types by transcriptomic similarity into
a consensus taxonomy (Fig. 5B). Consensus
cell types had consistent markers across areas
(table S9), were represented in all donors (Fig.
5C), and ranged from 0.01 to 20% of excitatory
and inhibitory neurons and from 0.1 to 30% of
non-neuronal cells (Fig. 5D). Most types were
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found in all areas, with generally uniform rep-
resentation across areas for inhibitory neu-
ron types and non-neuronal cells (Fig. 5E).
However, we also identified area-enriched or
area-specific cell types, particularly in V1 (dark

blue). V1-enriched clusters were seen in most
excitatory subclasses, particularly L4 IT, as
well as SST and several PVALB and VIP types.
There was also one ACC-selective VIP type. Sim-
ilarity by proximity was evidenced by cross-

areal excitatory cell types common to neigh-
boring regions (M1 and S1, MTG and AnG).
To study changes in the relative abundances

of cell types while accounting for the composi-
tional nature of the snRNA-seq data, we applied
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Fig. 4. Transcriptional topography across cortical areas. (A and B) UMAPs
showing transcriptomic similarities of single nuclei dissected from eight cortical
areas and colored by neuronal subclass (A) and area (B) for excitatory and
inhibitory neuron neighborhoods. Arrows indicate V1-specialized neurons. Curved
arrows illustrate R-C ordering of areas on the cortical sheet. (C) The number of
genes that are significantly differentially expressed across areas for each
subclass grouped by neighborhood. Subclasses with 0 or 1 DEG are labeled. See
table S6 for all DEGs. (D) The number of genes that have highly enriched
expression in a single area for each subclass. (E) Spearman correlations of
expression similarity between pairs of areas as a function of the approximate
physical distance along an unfolded neocortical sheet. Pairwise comparisons that
include V1 (blue points) or do not include V1 (red) are grouped separately

because V1 is so transcriptomically distinct. (F) Ternary plot summarizing the
relative proportion of variance explained by expression gradients across areas
along R-C, M-S (anatomical left to right), and D-V axes for each subclass.
Point size indicates the number of genes with >5% of variance explained by at
least one gradient, and point location shows the weighted mean proportion
across all genes (shown in fig. S10H). Points are colored by cell neighborhood.
(G) For each subclass, the number of genes with expression that increases
(R-C) or decreases (C-R) in areas ordered by their position along the R-C axis.
(H) Examples of genes with R-C gradient expression that have been previously
described in development (CBLN2) (32), have opposing gradients in different
subclasses for the same gene (DCC), or for two related genes (CNTN5 and
CNTN6) involved in neuronal connectivity for the same subclass.
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a Bayesian model (scCODA) (25). Nuclei were
grouped by consensus types and iteratively
tested for consistent differences using each
type as the “unchanged” reference population.
All subclasses included consensus types with
both increased and decreased proportions (table
S10), except for PAX6 inhibitory type abun-
dances that were uniformly decreased in V1. V1
had the most consensus types with abundance
changes (92 of 153, 60%), including two types
with the largest changes (L4 IT_5 and L2/3
IT_2). Excitatory neurons were the most spe-
cialized in V1, but several SST, PVALB, andVIP
consensus types were also specific to V1. Spe-
cialized types were also found in other areas,
including L2/3 IT and L5/6 NP excitatory
types (L2/3 IT_3, L2/3 IT_4, L5/6 NP_3 and
L5/6 NP_6) in M1 and S1, SST types (SST_4
and SST_10) in ACC, and distinct L5 ET types
across the R-C axis. These substantial changes,
along with more subtle abundance changes
(median = 17 consensus types affected in each
area), are likely important determinants of the
functional role of each area.

V1 specializations

The distinctiveness of V1 was reflected in the
transcriptomic data for specific cell types. Con-

sidering cell types with >60%membership in V1
compared with other areas to be V1-specialized,
we identified specialized cell types in every
excitatory subclass except L5/6 NP, with the
greatest number of V1-specialized types in
the L2/3 IT and L4 IT subclasses (Fig. 6A and
table S11). Unexpectedly, given prior reports of
common GABAergic neurons across the mouse
neocortex (15, 17), V1 had a number of special-
ized CGE- and MGE-derived types.
MERFISH analysis of V1 demonstrated the

spatial organization of all cell types (fig. S11, A
andB). L2/3 IT types had distinctmarkers (table
S12), sublaminar distributions, and relative pro-
portions (Fig. 6B). L2/3 IT5 andL2/3 IT2 clearly
delineated L2 and L3 from one another, re-
spectively. Other L2/3 IT types were more
sparsely distributed in L2 (L2/3 IT4), L3 (L2/3
IT3), or both (L2/3 IT1 and 6). L2/3 IT types
were also found in layer 4A (L2/3 IT2) and the
superficial part of layer 4B (L2/3 IT3), and
these types were V1-specialized. Conversely,
several L4 IT typeswere found in L4A andL4B
and into the deep part of L3 (L4 IT1 and 3, Fig.
6D). Thus, the specialized L4A and L4B con-
tain not only L4 IT-type neurons, but also L2/3
IT-type neurons. This findingmay help resolve
ongoing questions about primate V1 L4A and

L4B, which contain both stellate (L4 IT-like)
and pyramidal corticocortical projection neu-
rons (L2/3 IT-like) (26).
L4 inV1 is highly distinctive even inunlabeled

tissues as a result of the band of myelinated
thalamocortical axons entering L4 that form
the stria of Gennari. This distinctiveness was
also seen at the level of L4 IT neuron types, all
but one of which were V1-specialized (Fig. 6, C
and D). L4 IT types had specificmarkers (table
S12) and sublaminar distributions, from dense
pan-L4 (L4 IT3) to sublayer-specific distribu-
tions. Layers 4Ca and 4Cb receive selective in-
puts from magnocellular and parvocellular
layers of the thalamic lateral geniculate nu-
cleus, respectively (27), and MERFISH revealed
localization of specific types to each sublayer.
L4 IT5 was selectively localized in 4Cb, where-
as L4 IT2 was enriched in 4Ca but extended
into L4B, consistent with the fuzzy boundary
between 4Ca and 4B described in other hu-
man studies (28). Sparser L4 IT types were
scattered across layers. Together, these results
illustrate the cellular specialization of the dis-
tinctive input layer of V1 and reveal a com-
plexity of putative thalamorecipient stellate
neurons that offers many avenues for future
exploration.
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Fig. 5. Cross-areal consensus taxonomy. (A) Schematic of data integration
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of neurons and non-neuronal cells using scCODA. Larger magnitude changes
are indicated by darker colors. See table S10 for proportion effect sizes.
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L6 CT neurons that send reciprocal projec-
tions to the LGN were also highly specialized
in V1 (Fig. 6A), with two distinct types that
expressed many V1-enriched genes (fig. S11C).
Gene set enrichment analysis showed enrich-
ment for calcium signaling, axon guidance, and
axonal and synaptic compartments, including
axon guidance molecules CDH7, EPHA6, and
SEMA6A (fig. S11D).Various ion channels (KCNT2
and SCN1B) and synaptic genes (SYT6), as well
as calciumand calmodulin signaling–associated
genes (PCP4,NPY2R), were similarly enriched,
and several of these have conserved V1 enrich-
ment in monkeys (29). Myelin basic protein
(MBP), normally described in oligodendrocytes
but known to function in certain neurons as
part of a Golli-MBP complex (30), was also en-
riched in V1 L6 CT neurons.
V1 also contained specialized GABAergic in-

terneuron types. Most were SST types (Fig. 6,
E and F, and table S12), as well as one PVALB
and two VIP types (fig. S11A). The SST types
common across V1 and other cortical areas
were concentrated in L2 with sparser repre-
sentation in other layers. By contrast, the V1-
specialized SST types were concentrated in L4
near the V1-specialized L4 IT types, suggestive
of a relationship between these specialized
excitatory and inhibitory types.

L5 ET neuron diversity
Neocortical L5 ET neurons are sparse and cap-
turing them required additional L5-specific
sampling. L5 ET neurons were most abun-
dant in ACC and their abundance generally
decreased along the R-C axis (Fig. 2D). V1 had
the lowest proportion of L5 ETneurons (~0.1%
of excitatory neurons), consistent with data
from macaque monkeys demonstrating pro-
jections to subcortical targets such as the su-
perior colliculus from large, very sparse neurons
(Meynert cells) localized to deep layers in V1
(fig. S12A) (31–33).
We identified 4 consensus L5 ET types (Fig. 5

and Fig. 7A), several of which were dominated
by nuclei derived from cortical areas near each
other. M1 and S1 predominantly contributed
to L5 ET 1, whereas L5 ET 3 was largely com-
posed of nuclei from MTG and A1 (and to a
lesser extent AnG), again suggesting similarity
based on topographic position. V1 specializa-
tion was also apparent in L5 ET types, with
only a single type (L5 ET 4) consisting of nuclei
predominantly fromV1 (Fig. 7, A and B). L5 ET
neurons could be divided into at least two
transcriptomically distinct subtypes in most
regions (Fig. 7B). M1 had 3 distinct subtypes
and we showed previously (12) that at least
two L5 ET M1 subtypes included Betz cells.

Notably, despite having the highest propor-
tion of L5 ET neurons of all areas, only one
subtype was identified in ACC, implying that
VENs in ACC likely do not represent a distinct
transcriptomic cluster, consistent with our pre-
vious findings in frontoinsula (34).
L5 ET neurons had more genes with variable

expression across areas than any other cell type
(fig. S10F). Up to 32% of variation in gene ex-
pression across areas was explained by gra-
dients along theM-S (anatomical left to right),
D-V, and R-C axes (Fig. 7C). Top gradient genes
included a glutamate receptor subunit (GRID2),
a semaphorin (SEMA3D), and a neuropilin
(NRP1) that are involved in trans-synaptic sig-
naling and connectivity (Fig. 7C). Some gene
expression varied across areas but not as a
gradient, such as DGKB, which was selectively
down-regulated in primary sensory areas (A1,
S1, and V1). L5 ET neurons also expressed dis-
tinct areal markers (Fig. 7D and table S13), in-
cluding the voltage-gated potassium channel
KCNG2 in ACC, glutamate receptor subunit
GRIK1 in MTG and AnG, and ANK1 in V1, a
gene that encodes for the scaffolding protein
Ankyrin 1 (35). Applying GO enrichment anal-
ysis to L5 ET arealmarkers identified enriched
pathways associated with synaptic signal-
ing, connectivity, and intrinsic neuronal firing
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properties (Fig. 7E), consistent with known
areal variation in firing properties.

Glial specialization

Non-neuronal cells comprised at least 40 to
65% of cortical cells across areas based on flow
cytometric analysis of dissociated nuclei la-
beled with the neuronal marker NeuN and
gated based on NeuN fluorescence intensity
(fig. S12A). However, these proportions under-

estimate the total non-neuronal population
because vascular cells, including endothelial
cells and VLMCs, are difficult to dissociate
(36) and are under sampled in the snRNA-seq
dataset based on in situ labeling with MER-
FISH (fig. S12B) (37). M1 and S1 had a higher
proportion of non-neuronal (NeuN-negative)
cells than other areas, and snRNA-seq data
showed that this was driven by an expansion
of oligodendrocytes relative to OPCs, astro-

cytes, and microglia (fig. S12, B, C, and D), con-
sistent with neuroimaging studies showing
that these areas are the most heavily myeli-
nated in the cortex (38, 39). By contrast, areas
described to be among the most lightly mye-
linated in the cortex (ACC and DFC) (38) had
the lowest proportion of oligodendrocytes (fig.
S12, B and C).
Non-neuronal cells were grouped into ma-

jor subclasses based on conserved marker
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Fig. 7. L5 ET-projecting neuronal diversity. (A) UMAPs of L5 ET neurons
labeled by area and cross-area consensus type. (B) Within-area L5 ET
subtypes for each area shown in the same UMAP space as (A). (C) Bar plots
summarizing the expression variance explained by human donor, L5 ET subtype,
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For the four types of areal variation, the distribution of expression across
areas is shown for one of the top five genes. (D) Examples of genes with L5 ET
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the top 10 significantly enriched terms from gene ontology (GO) analyses
(biological process, BP; cellular component, CC; molecular function, MF) of L5 ET
areal markers (table S13).
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expression (fig. S12F), and many subclasses
could be further divided into distinct subtypes.
Astrocytes were subdivided into previously de-
scribed protoplasmic, interlaminar (ILM), and
fibrous types, which also had robust markers
across areas (fig. S12G). Consistent with pre-
vious reports of shared non-neuronal types
across the cortex (15, 17), there was little areal
expression signature for most non-neuronal
cell types (Fig. 8A and fig. S12E). However,
areal variation in protoplasmic—but not ILM
or fibrous astrocytes—was apparent, consistent
with previous descriptions of brain-wide as-
trocyte heterogeneity (40, 41) and variation
in astrocytes across cortical and hippocampal
areas in mice (42). Protoplasmic astrocytes
fromACC showed clear banding on theUMAP
(Fig. 8A) and distinct areal marker gene ex-
pression (Fig. 8B).
Laminar distributions varied across areas

for all glial subclasses (Fig. 8C and fig. S12H).
There was a notable depletion of astrocytes in
L4A and L4B of V1 but not in L4 of other sen-
sory or granular cortices (Fig. 8C). To validate
this finding, we compared in situ expression of
the astrocyte marker GFAP in V1 and DFC.
GFAP protein and gene expression was re-
duced in L4B of V1 (Fig. 8D), and only protein
expressionwas reduced in L4 of DFC (fig. S12I)

based on immunofluorescence (IF) and in situ
hybridization (ISH) labeling of adult human
tissue. In V1, a band of dense GFAP labeling
was apparent in L6A and L6B, which tapered
off in the underlying white matter. GFAP IF in
V1 revealed a population of astrocytes that ex-
tended long processes away from the white
matter and into L5, similar to descriptions of
varicose projection astrocytes (VPA) that are
distinctive to humans and great apes and not
found in the cortex of other anthropoid pri-
mates (43, 44) (Fig. 8D and S12I). Deep-layer
astrocytes in DFC did not extend long pro-
cesses and had morphologies typical of proto-
plasmic and fibrous astrocytes (fig. S12I).
The spatial organization of astrocytes in V1

was further investigated using MERFISH (fig.
S8). Based on laminar distributions (Fig. 8E)
and marker gene expression (Fig. 8F), there
were two subtypes of protoplasmic (Astro_1
and Astro_3) and ILM (Astro_2 and Astro_5)
astrocytes and one fibrous subtype (Astro_4).
In contrast to prior descriptions of protoplas-
mic astrocytes as relatively homogenous cells,
protoplasmic subtypes in V1 displayed dis-
tinct laminar patterns with Astro_1 localized
to the sublayers of L4 and Astro_3 spread
across L2-6 but absent in L1, L6B, and white
matter. Astro_1 markers were related to en-

ergymetabolism, includingmitochondrial genes
COX1 (Fig. 8F), COX2, and COX3, and Astro_1
cells may represent highly active protoplasmic
astrocytes (an Astro_3 cell state) rather than a
developmentally distinct type. Astro_5 cells
were mostly restricted to the L1-pial border,
whereas Astro_2 cells were enriched in the
deeper part of L1. These subtypes likely rep-
resent pial and subpial ILMs (45, 46), respec-
tively. The putative subpial ILM type (Astro_2)
included a small number of cells localized to
deep L6. Because ILMs and VPAs have previ-
ously been shown to express shared marker
genes (AQP4 and CRYAB, Fig. 8F) and have
similarmorphologies (44, 45), these deep-layer
Astro_2 cells may represent a type of VPA.
However, further work will be needed to fully
characterize the diversity of astrocyte mor-
phologies across the cortex and their relation-
ships to transcriptomic astrocyte types.

Discussion

The cellular complexity of the cortex has chal-
lenged generations of neuroscientists aiming
to understand the structural basis of cogni-
tive function. The BRAIN Initiative Cell Census
Network established a paradigm for mapping
cortical cellular diversity, developed methods
to work across species, and established the

L1
L2/3
L5A
L5B
L6

L1
L2
L3
L4
L5
L6

L1
L2
L3
L5
L6

L1
L2
L3
L4
L5

L6A
L6B

L1
L2
L3
L4
L5
L6

L1
L2
L3
L4
L5

L6A
L6B
WM

L1
L2
L3

L4AB
L4C
L5

L6A
L6B

0.1
0.2
0.3

Layer prop.

Astro
ACC DFC M1 S1 MTG A1 V1

ACC
DFC
M1
S1
ANG
A1
MTG
V1

Astro

VLMC

OPC

Endo

Micro/PVM

Oligo

ACC

N
eu

N
 N

is
sl

 G
FA

P 
IF

 

0
1
2
3

NRP2

GFAP ISH

NisslGFAP

V1
FibrousInterlaminarProtoplasmic

Astrocyte_1 Astrocyte_3 Astrocyte_2 Astrocyte_5 Astrocyte_4

1
2

3
4A
4B

6A
6B

WM

5

0
1
2
3

NR4A3

0
1
2
3

LGR6

Fibrous

Interlaminar

Protoplasmic

0 1 2 3 40 1 2 3 4 50 1 2 3 4 0 1 2 3 40 2 4 0 1 2 3 0 1 2 3 0 1 2 3

Astro_1
Astro_3
Astro_2
Astro_5
Astro_4

GFAP CRYABSLC1A3 AQP4 CABLES1 COX1 OAF FAM19A1 CFAP47 ADAMTSL3AQP1NLGN1

0 1 2 30 1 2 3 40 1 2 30 1 2 3 4

ILM

Protoplasmic

Fibrous

ILM

Protoplasmic

Fibrous

A CB

D
E

F

Fig. 8. Areal specialization of astrocytes. (A) UMAP of non-neuronal cells
labeled by cortical area. (B) UMAPs of astrocyte expression for genes with areal
enrichment. Arrows in (A and B) shows grouping of nuclei from ACC on the UMAP.
(C) Laminar distributions of astrocytes vary across areas and are depleted in V1 L4A
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Single channel IF images were inverted to increase visibility of GFAP IF. Scale
bars: IF columns (100 μm), GFAP tracing images (15 μm), ISH (200 μm).
(E) Laminar distributions of astrocyte subtypes in V1 based on MERFISH in situ
labeling experiments. (F) Pan-astrocyte and subtype marker expression.
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concordance of a transcriptomic cellular clas-
sification with other cellular properties in a
way that integrates prior literature while iden-
tifying greater cellular diversity than previous-
ly appreciated (12, 13, 16, 18, 19, 47). We used
these principles to analyze a series of human
cortical areas, building on our highly anno-
tated M1 taxonomy (12). Because the cortex
has a common organization as well as graded
changes and areal specializations, we applied
two complementary strategies to define cell
types. First, each area was analyzed indepen-
dently, transferring labels from the M1 taxon-
omy to other areas, which provides the highest
resolution clustering in each area and identi-
fies a common cell subclass organization. Next,
data from all areas was analyzed jointly, iden-
tifying a set of consensus clusters present in
multiple areaswhile also capturing specialized
cell types distinct to a single area. Similar joint
analysis strategies have been used on mouse
cortex with comparable results (17).
A key finding of this study is that all 24 sub-

classes first identified in M1 are found in all
cortical areas analyzed here, substantiating the
idea that there is a common cellular organiza-
tion across the cortex. This was true even for L4
IT neurons, which were present in agranular
ACC and M1 (12, 48–50). Each cortical area
analyzed could be defined as a distinct propor-
tional makeup of cell subclasses. Proportional
differences were mostly due to variation in
excitatory neuron subclasses, which could be
large (10- to 50-fold). Finer cell-type analysis
demonstrated substantial areal variationwhere
distant areas had distinct gene expression and
some cell types clustered separately. Thus, both
a canonical and a noncanonical architecture
were apparent, depending on the granularity
of cellular detail analyzed.
Topographic variation as a function of R-C

positionwas a clear organizational feature. Prior
microarray-based analysis of human (22) and
macaque (29) cortex showed that molecular
similarity varies as a function of distance on
the cortical sheet that likely mirrors early de-
velopmental gradients (51, 52). Here we see
comparable variation by R-C position and
similarity as a function of distance, predomi-
nantly in select cell types. As in themouse cortex
(15), areal variation was mostly in excitatory
and not inhibitory neurons (except in V1). These
results are consistent with the fact that most
inhibitory neurons migrate from the gangli-
onic eminences and are relatively homoge-
neous across the cortex, whereas excitatory
neurons are generated from progenitor cells
with developmental gradients that are main-
tained in postmitotic neurons. R-C variation
was seen not just in gene expression but also in
excitatory neuron proportions. L4 IT neuron
proportions increased from rostral to caudal,
whereas L5 ET neurons proportions showed
negative correlation, suggesting that develop-

mental gradients likely sculpt the cortical cel-
lular makeup. Similar R-C variation in cellular
morphology in macaque monkeys supports
this idea (53).
The molecular and cell-type distinctiveness

of V1 in the present study mirrors the special-
ized cytoarchitecture ofV1 inhumans, primates,
and other binocular mammals, unlike in mice
inwhichV1 is similar to other cortical areas (17).
V1 wasmoremolecularly distinct than expected
by topographic position, consistent with previ-
ous bulk microarray analysis (22) and expan-
sion of thalamorecipient L4 was reflected in
increased L4 IT proportions. There has been a
long-standing debate about the cellular make-
up of L4A and L4B in V1, which have alter-
natively been called 3BP and 3C, respectively
(26, 54). Our results show that L4A and L4B
contain both L2/3 IT and L4 IT neuron types,
providing a potential explanation for this con-
fusion. Additional cellular diversity that does
not strictly obey laminar boundaries compli-
cates this organization, similar to previous
work showing lack of strict laminar organi-
zation in human MTG (11).
The balance of excitation and inhibition is

thought to be critical to proper balance of neu-
ronal circuitry (55). E:I ratios of ~4:1 in the
human frontal cortex (56) and 4:1 in monkey
V1 (57, 58) have been reported based on GABA
immunohistochemistry. Transcriptomic quan-
tification of cell proportions indicates a 5:1 E:I
ratio in mouse cortex (12) versus a 2:1 ratio in
humanMTG andM1, which was confirmed by
MERFISH here and in (37), and by electron
microscopy analysis of mouse and human L2
(59). We find that the human E:I ratio of 2:1 is
consistent across all areas except V1 in which
the ratio is 4.5:1, likely as a result of increased
L4 IT neurons in V1. However, the E:I ratio
varies substantially by layer and is as high as
10:1 in L6 of V1. Whether this variation can be
compensated by homeostatic processes re-
mains to be studied, but these results indicate
that the E:I ratio can vary substantially in the
human cortex.
The current results illustrate the potential of

single cell transcriptomics to provide a com-
prehensive cellular map of the cortex that can
be thought of as a form of quantitative cyto-
architectonics based on the genes that give the
cell types their properties. These analyses place
a cellular lens on thinking about cortical areal
variation as variation in the proportions and
properties of the component cell types that de-
fine the input-output properties of those areas.
Recent studies have shown that morphological
and anatomical characteristics are correlated
with transcriptomic identity (13, 47, 60), indi-
cating that transcriptomic maps can also be
highly predictive of cell phenotype variation.
The present study sampled a small number of
human tissue donors and further work will be
required to understand variation of cortical

gene expression and cell types across diverse
individuals. Another future challenge will be
creation of a multimodal map inclusive of the
entire human neocortex where areal sampling
is guided by detailed anatomical and func-
tional parcellations that will reveal graded fea-
tures versus discrete boundaries and enable
direct linkage between the cellular and func-
tional architecture of the cortex.

Materials and Methods
Postmortem tissue donors

Males and females 18 to 68 years of age with
no known history of neuropsychiatric or neu-
rological conditions, evidence of head trauma,
intubation, or neuropathology were consid-
ered for inclusion in this study. De-identified
postmortem human brain tissue was collected
after obtaining permission from the decedent’s
legal next-of-kin. Tissue collection was per-
formed in accordance with the provisions of
the US Uniform Anatomical Gift Act of 2006
described in the California Health and Safety
Code section 7150 (effective 1/1/2008) and
other applicable state and federal laws and
regulations. The Western Institutional Review
Board (WIRB) reviewed the use of de-identified
postmortem brain tissue for research purposes
and determined that, in accordance with fed-
eral regulation 45 CFR 46 and associated guid-
ance, the use of de-identified specimens from
deceased individuals did not constitute human
subjects research requiring IRB review. Rou-
tine serological screening for infectious disease
(HIV, Hepatitis B, and Hepatitis C) was con-
ducted where possible using donor blood sam-
ples and donors negative for these infectious
diseases were considered for inclusion in the
study. Tissue RNA quality was assessed using
samples of total RNA derived from the frontal
and occipital poles of each donor brain which
were processed on an Agilent 2100 Bioanalyzer
using the RNA 6000 Nano kit to generate RNA
Integrity Number (RIN) scores for each sam-
ple. Specimens with average RIN values ≥7.0
were considered for inclusion in the study.
Tissue samples from five individuals (3 males,
2 females, mean postmortem interval 12.8 hours,
mean age 47 years, table S2) were used for
snRNA-seq data generation. Tissue samples
from 3 individuals (3 males, table S2) were used
for MERFISH data generation.

Processing of postmortem brain specimens

Postmortem brain specimens were trans-
ported to the Allen Institute or the University
of Washington on ice and processed as pre-
viously described (https://dx.doi.org/10.17504/
protocols.io.bf4ajqse). Briefly, brain specimens
were bisected through the midline and indi-
vidual hemispheres were embedded in Cavex
Impressional Alginate for slabbing. Coronal
brain slabs were cut at 1 cm intervals for all
donors except H20.30.002 (table S2), which
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was processed at a slab interval of 4mm. Tis-
sue photographs were acquired for all slabs
prior to freezing. Individual slabs were frozen
in a slurry of dry ice and isopentane. Frozen
slabs were vacuum sealed and stored at −80°C
until the time of use.

Tissue mapping and dissection

Cortical areas of interest were identified on
tissue slab photographs taken at the time of
autopsy and at the time of dissection. Tissue
samples used for Cv3 and SSv4 data genera-
tionwere on average 3mmwide, encompassed
the full height of the cortical depth from pia to
whitematter of the sampled area (~5mm), and
were 1cm in thickness. Tissue photographswere
used to map the tissue blocks sampled for Cv3
data generation across donors and areas to
several reference atlases (table S2). First, sam-
ples were pinned to the Allen Human Refer-
ence Atlas 3D in MNI volume space, which
includes labeling of 141 brain structures drawn
on the ICBM 152 2009b Nonlinear Symmetric
reference volume, using the publicly available
BICCN Cell Locator tool (https://github.com/
BICCN/cell-locator). Table S2 lists the coor-
dinates and structure name corresponding to
the approximate center of each cortical area
pinned using the Cell Locator tool. As the
Allen Human 3D Reference makes use of a
gyral structural ontology the best matching
structure in the Allen Human Reference plate-
based 2D and associated Modified Brodmann
structural ontology (see documentation at
http://atlas.brain-map.org/) wasalsodetermined
(table S2). Additionally, samples were mapped
to the Julich Brain Maximum Probability Maps
in MNI ICBM 152 2009c Nonlinear Asym-
metric reference space (DOI: 10.25493/TAKY-64D)
using Connectome Workbench (https://www.
humanconnectome.org/software/connectome-
workbench) for file viewing and annotation
and mapped structures were cross-referenced
to the publicly available Julich-Brain v2.9 par-
cellation (DOI: 10.25493/VSMK-H94) in the
same 3D reference volumeusing the EBRAINS
Siibra Explorer (https://atlases.ebrains.eu/
viewer/#/). Table S2 lists the best matching
(primary) brain structure from the Julich-Brain
v2.9 parcellation and, for cases where the Julich
Maximum Probability Maps predict more than
one cortical area at the reference coordinates
corresponding to amapped sample, a secondary
structure term is listed. In the Allen Institute
Modified Brodmann ontology, dissections of
DFC mapped to the superior frontal gyrus
corresponding to the lateral subdivision of
Brodmann Area (A) 9 (A9l). Dissections of ACC
corresponded to A24 in the rostral (anterior)
cingulate gyrus. A1 was localized in the trans-
verse temporal gyrus (Heschl’s gyrus) corre-
sponding to A41.MTGdissectionsweremostly
targeted to the caudal subdivision of A21 (A21c),
but some dissections mapped to the interme-

diate subdivision of A21 (A21i). M1, S1, and V1
dissections mapped to the primary sensory
regionsM1C, S1C, and V1C, respectively. Local-
ization of V1 was also confirmed by identi-
fication of the Stria of Gennari on tissue slab
photographs. For SSv4 data generation, M1
and S1 dissections targeted the putative hand
and trunk-lower limb sub-regions of each cor-
tical area. Confirmation of the localization of
tissue blocks inM1 and S1 was also carried out
by processing one block from each donor for
cryosectioning and fluorescent Nissl staining
(Neurotrace 500/525, ThermoFisher Scien-
tific). Nissl-stained sections were screened for
histological hallmarks of each cortical area
(such as the presence of Betz cells in L5 of M1)
to verify that dissected regions were appropri-
ately localized to either M1 or S1. AnG dissec-
tions targeted the caudal subdivision of A39
(A39c). All tissue dissections from parent tis-
sue slabs were carried out using a custom cold
table maintained at -20°C for the duration of
dissection.

Nuclear isolation and capture

For SMART-seqv4 (SSv4) and Cv3 with layer 5
microdissection, tissue blocks were placed in
ice-cold 1X PBS supplementedwith 10mMDL-
Dithiothreitol (DTT, Sigma Aldrich) andmounted
on a vibratome (Leica) for sectioning at 500 mm
in the coronal plane. Sections were placed in
fluorescent Nissl staining solution (Neurotrace
500/525, ThermoFisher Scientific) prepared in
1X PBS with 10mM DTT and 0.5% RNasin Plus
RNase inhibitor (Promega) and stained for 5min
on ice. After staining, sections were visualized
on a fluorescence dissectingmicroscope (Leica)
and cortical layers were individually microdis-
sected using a needle blade micro-knife (Fine
Science Tools) as previously described (https://
dx.doi.org/10.17504/protocols.io.bq6ymzfw).
Nuclear suspensions were prepared from mi-
crodissected tissue pieces as described (https://
dx.doi.org/10.17504/protocols.io.ewov149p7vr2/
v2). Dissected L5 tissue pieces for Cv3 process-
ing were pooled across multiple sections per
tissue block to ensure adequate sample for Cv3
chip loading. For Cv3 processing of tissue blocks
encompassing all cortical layers, samples were
placed directly into a Dounce homogenizer
after removal from the −80°C freezer and pro-
cessed as described (https://dx.doi.org/10.17504/
protocols.io.bq64mzgw).
All samples were immunostained for fluo-

rescence activated nuclear sorting (FANS)
withmouse anti-NeuN conjugated to PE (EMD
Millipore, FCMAB317PE) at a dilution of 1:500
with incubation for 30 min at 4°C. Control
samples were incubated with mouse IgG1,k-PE
Isotype control (BD Pharmingen). A subset of
SSv4 samples was immunostained with rab-
bit anti-SATB2 conjugated to Alexa Fluor 647
(Abcam, ab196536) at a dilution of 1:500 to
discriminate excitatory (SATB2+/NeuN+) and

inhibitory (SATB2-/NeuN+) nuclei. After im-
munostaining, samples were centrifuged to
concentrate nuclei and were resuspended in
1X PBS, 1% BSA, and 0.5% RNasin Plus for
FACS. DAPI (4′, 6-diamidino-2-phenylindole,
ThermoFisher Scientific) was applied to sam-
ples at a concentration of 0.1 mg/ml. Single
nucleus sorting was carried out on either a BD
FACSAria II SORP or BD FACSAria Fusion in-
strument (BD Biosciences) using a 130 mmnoz-
zle. A standard gating strategy was applied to
all samples as previously described (11). Briefly,
nuclei were gated on their size and scatter
properties and then on DAPI signal. Doublet
discrimination gates were applied to exclude
multiplets. Lastly, samples were gated on NeuN
signal (PE) and SATB2 (Alexa Fluor 647) signal
where applicable. For Cv3 experiments, NeuN+
and NeuN- nuclei were sorted into separate
tubes and combined at adefined ratio of neurons
and non-neurons (80% NeuN+, 20% NeuN-),
except for L5 dissected samples where only
neuronal (NeuN+) nuclei were captured. Sam-
ples were then centrifuged and resuspended
in 1XPBS, 1% BSA, 0.5% RNasin Plus, and 5 to
10% DMSO and frozen at −80°C until the time
of chip loading. Samples were processed ac-
cording to the following protocol for chip
loading (https://dx.doi.org/10.17504/protocols.
io.774hrqw). For SSv4, single nucleiwere sorted
into 8-well strip tubes containing 11.5 ml of
SMART-seq v4 collection buffer (Takara) sup-
plementedwith ERCCMIX1 spike-in synthetic
RNAs at a final dilution of 1×10-8 (Ambion).
Strip tubes containing sorted nuclei were
briefly centrifuged and stored at −80°C until
the time of further processing.

SMART-seqv4 RNA-sequencing

We used the SMART-Seq v4 Ultra Low Input
RNA Kit for Sequencing (Takara #634894)
per the manufacturer’s instructions for reverse
transcription of RNA and subsequent cDNA
amplification as described (https://dx.doi.org/
10.17504/protocols.io.8epv517xdl1b/v2). Standard
controls were processed alongside each batch
of experimental samples. Control strips in-
cluded: 2 wells without cells, 2 wells without
cells or ERCCs (i.e., no template controls), and
either 4 wells of 10 pg of Human Universal
Reference Total RNA (Takara 636538) or 2
wells of 10 pg of Human Universal Reference
and 2 wells of 10 pg Control RNA provided in
the Clontech kit. cDNA was amplified with 21
PCR cycles after the reverse transcription step.
cDNA libraries were examined on either an
Agilent Bioanalyzer 2100 using High Sensi-
tivity DNA chips or an Advanced Analytics
Fragment Analyzer (96) using the High Sen-
sitivity NGS Fragment Analysis Kit (1bp to
6000bp). Purified cDNA was stored in 96-well
plates at −20°C until library preparation.
The NexteraXT DNA Library Preparation

(Illumina FC-131-1096) kit with NexteraXT
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Index Kit V2 Sets A to D (FC-131-2001, 2002,
2003, or 2004) was used for sequencing library
preparation as described (11). NexteraXT DNA
Library prep was done at either 0.5x volume
manually or 0.4x volume on the Mantis in-
strument (Formulatrix, https://dx.doi.org/
10.17504/protocols.io.brdjm24n). Samples were
quantitated using PicoGreen on a Molecular
Bynamics M2 SpectraMax instrument. Se-
quencing libraries were assessed using either
an Agilent Bioanalyzer 2100 with High Sen-
sitivity DNA chips or an Advanced Analytics
Fragment Analyzer with the High Sensitivity
NGS Fragment Analysis Kit for sizing. Molarity
was calculated for each sample using average
size as reported by Bioanalyzer or Fragment
Analyzer and pg/ml concentration as determined
by PicoGreen. Samples were normalized to 2
to 10 nM with Nuclease-free Water (Ambion).
Libraries weremultiplexed at 96 samples/lane
and sequenced on an Illumina HiSeq 2500
instrument using Illumina High Output V4
chemistry.

SMART-seqv4 RNA-seq gene
expression quantification

Rawread (fastq) fileswerealigned to theGRCh38
human genome sequence (Genome Reference
Consortium, 2011) with the RefSeq transcrip-
tome version GRCh38.p2 (current as of 4/13/
2015) and updated by removing duplicate
Entrez gene entries from the gtf reference file
for STAR processing. For alignment, Illumina
sequencing adapters were clipped from the
reads using the fastqMCF program (61). After
clipping, the paired-end reads were mapped
using Spliced Transcripts Alignment to a Ref-
erence (STAR) (62) using default settings. Reads
that did not map to the genome were then
aligned to synthetic constructs (External RNA
Controls Consortium, ERCC) and the E. coli ge-
nome (version ASM584v2). The results files in-
cluded quantification of the mapped reads (raw
exon and intron counts for the transcriptome-
mapped reads), and percentages of readsmapped
to the RefSeq transcriptome, to ERCC spike-
in controls, and to E. coli. Quantification was
performed using summerizeOverlaps from the
R package GenomicAlignments (63).
Expression was calculated as counts per mil-

lion (CPM) of exonic plus intronic reads, and
log2(CPM + 1) transformed values were used
for a subset of analyses as described below. Gene
detectionwas calculated as the number of genes
expressed in each sample with CPM > 0. CPM
values reflected absolute transcript number
and gene length. Short and abundant tran-
scripts may have the same apparent expression
as long but rarer transcripts. Intron retention
varied across genes, so no reliable estimates
of effective gene lengths were available for
expression normalization. Instead, absolute
expression was estimated as fragments per
kilobase permillion (FPKM) using only exonic

reads so that annotated transcript lengths could
be used.

10x Chromium RNA-sequencing and
expression quantification

Samples were processed using the 10x Chro-
miumSingle-Cell 3′ReagentKit v3 following the
manufacturer’s protocol as described (https://
dx.doi.org/10.17504/protocols.io.bq7cmziw).Gene
expression was quantified using the default 10x
Cell Ranger v3 (Cell Ranger, RRID:SCR_017344)
pipeline. The human reference genome used
included the modified genome annotation de-
scribed above for SMART-seq v4 quantifica-
tion. Introns were annotated as “mRNA” and
intronic reads were included in expression
quantification.

RNA-sequencing processing and clustering
Cell-type label transfer

Human M1 reference taxonomy subclass labels
(12) were transferred to nuclei in the current
MTG dataset using Seurat’s label transfer (3000
high variance genes using the ‘vst’method then
filtered through exclusion list). This was car-
ried out for each RNA-seq modality dataset;
for example, human-Cv3 and human-SSv4 were
labeled independently. Each dataset was sub-
divided into 5 neighborhoods—IT and Non-IT
excitatory neurons, CGE- and MGE-derived in-
terneurons, and non-neuronal cells—based on
marker genes and transferred subclass labels
from published studies of human and mouse
cortical cell types and cluster grouping rela-
tionships in a reduced dimensional gene ex-
pression space.

Filtering low-quality nuclei

SSv4 nuclei were included for analysis if they
passed all QC criteria:
> 30% cDNA longer than 400 base pairs
> 500,000 reads aligned to exonic or intronic

sequence
> 40% of total reads aligned
> 50% unique reads
> 0.7 TA nucleotide ratio
QCwas then performed at the neighborhood

level. Neighborhoods were integrated together
across all areas andmodality; for example, deep
excitatory neurons from human-Cv3, human-
Cv3-Layer5 and human-SSv4 datasets were
integrated using Seurat integration functions
with 2000 high variance genes. Integrated
neighborhoods were Louvain clustered into
over 100 meta cells, and Low-quality meta cells
were removed from the dataset based on rela-
tively low UMI or gene counts (included glia
and neurons with greater than 500 and 1000
genes detected, respectively), predicted dou-
blets (include nuclei with doublet scores under
0.3), and/or subclass label prediction metrics
within the neighborhood (excitatory labeled
nuclei that clustered with majority inhibitory
or non-neuronal nuclei).

RNA-seq clustering
Nuclei were normalized using SCTransform
(64), and neighborhoods were integrated to-
gether within an area and across individuals
and modalities by identifying mutual near-
est neighbor anchors and applying canonical
correlation analysis as implemented in Seurat
(65). For example, deep excitatory neurons from
human-Cv3 were split by individuals and integ-
rated with the human-SSv4 deep excitatory neu-
rons. Integrated neighborhoods were Louvain
clustered into over 100 meta cells. Meta cells
were then merged with their nearest neighbor-
ing meta cell until merging criteria were suf-
ficed, a split and merge approach that has
been previously described (12). The remain-
ing clusters underwent further QC to exclude
Low-quality and outlier populations. These ex-
clusion criteria were based on irregular group-
ings of metadata features that resided within a
cluster.

Defining cross-area consensus cell types

For each neighborhood, Cv3 nuclei were inte-
grated together across individuals. The inte-
grated latent space was Louvain clustered into
over 100meta cells.Meta cellswere thenmerged
with their nearest neighboring meta cell until
merging criteria were sufficed, a split andmerge
approach that has been previously described
(12) and was also used to define the within-
area cluster identities. The process was repeated
for each neighborhood, with an example dia-
gram of the workflow shown in Fig. 5A.

Cell-type taxonomy generation

For each area, a taxonomy was built using the
final set of clusters and was annotated using
subclass mapping scores, dendrogram relation-
ships, marker gene expression, and inferred
laminar distributions. Within-area taxonomy
dendrograms were generated using build_dend
function from scrattch_hicat R package. A
matrix of cluster median log2(cpm + 1) expres-
sion across the 3000 High-variance genes for
Cv3 nuclei from a given area were used as in-
put. The cross-area dendrogram was generated
with a similar workflow but was downsam-
pled to a maximum of 100 nuclei per cross-
area cluster per area. The 3000 High-variance
genes used for dendrogram construction were
identified from the downsampled matrix con-
taining Cv3 nuclei from all eight areas.

Cell-type comparisons across cortical areas
Differential gene expression

To identify subclass marker genes within an
area, Cv3 datasets from each area were down-
sampled to a maximum of 100 nuclei per
cluster per individual. Differentially expressed
marker genes were then identified using the
FindAllMarkers function from Seurat, using
the Wilcoxon sum rank test on log-normalized
matrices with a maximum of 500 nuclei per
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group (subclass versus. all other nuclei as
background). Statistical thresholds for mark-
ers are indicated in their respective figures. To
identify area marker genes across subclasses,
Cv3 datasets from each area were downsampled
to a maximum of 50 nuclei per cluster per in-
dividual. Downsampled counts matrices were
then grouped into pseudo-bulk replicates (area,
individual, subclass) and the counts were
summed per replicate. DESeq2 functionality
was then used to perform a differential ex-
pression analysis between area pairs (or com-
parisons of interest) for each subclass using
the Wald test statistic.

Transcriptomic entropy across areas

To quantify intercell transcriptomic hetero-
geneity across areas for each subclass we cal-
culated the transcriptomic entropy in the
observed data (structured) and compared against
entropy in permuted data (unstructured).
Transcriptomic heterogeneity is defined as
the difference between the structured and
unstructured entropy. To compute transcrip-
tomic entropy, we followed these steps: (1)
Randomly down-sample the cells within each
subclass by taking 250 cells from each cross-
area cell type. (2) Identify the highly variable
genes in each area and take the union of genes
as our set of interest. (3) Then, by following a
recently reported computational approach to
quantify transcriptomic heterogeneity (66),
we computed the per-area transcriptomic en-
tropy for each subclass.

Identifying changes in cell-type proportions
across areas

Cell-type proportions are compositional, where
the gain or loss of one population necessarily
affects the proportions of the others, so we
used scCODA (25) to determine which changes
in cell class, subclass, and cell-type proportions
across areas were statistically significant. We
analyzed neuronal and non-neuronal popula-
tions separately because nuclei were sorted
based on NeuN immunostaining to enrich for
neurons. The proportion of each cell type was
estimated using a Bayesian approach where
proportion differences across individuals were
used to estimate the posterior. All composi-
tional and categorical analyses require a ref-
erence population to describe differences
with respect to and, because we were uncer-
tain which populations should be unchanged,
we iteratively used each cell type and each
area as a reference when computing abun-
dance changes. To account for sex differences,
we included it as a covariate when testing for
abundance changes. Separately for neuronal
and non-neuronal populations, we reported
the effect size of each area for each cell type
(table S10) and used a mean inclusion prob-
ability cutoff of 0.7 for calling a population
consistently different.

Partitioning variation in gene expression
across areas
Variation partitioning analysis was performed
to prioritize the drivers of variation across
areas within each subclass. Using linear mixed-
effect models implemented in the variance-
Partitioning bioconductor package: http://bio-
conductor.org/packages/variancePartition (66) we
identify genes whose variance is best explained
along the M-S (anatomical left to right), R-C,
and D-V axes as well as by cortical area and
donor. The order of areas along these axes
was defined based on the approximate x, y,
and z coordinates of tissue samples based on
a common coordinate framework of the adult
human brain (20) (table S2). Genes were re-
moved from the analysis based on the follow-
ing criteria: (1) expressed in less than 10 cells,
(2) greater than 80% dropout rate, (3) zero
variance in expression, and (4) expression less
than 1 CPM on average. The variance parti-
tioning linear mixed-effect model was then
defined as:

Gene ~medial_lateral + rostral_caudal +
dorsal_ventral + (1|area) + (1|(donor)

and passed into the variancePartition func-
tion `fitVarPartModel()`. We determined the
amount of variation explained per covariate for
each gene from the `extractVarPart()` function.

In situ profiling of gene expression
Human postmortem frozen brain tissue was
embedded in Optimum Cutting Temperature
medium (VWR,25608-930) and sectioned on
a Leica cryostat at −17°C at 10 mm onto Vizgen
MERSCOPE coverslips (VIZGEN 2040003). These
sections were then processed for MERSCOPE
imaging according to the manufacturer’s in-
structions. Briefly: sections were allowed to ad-
here to these coverslips at room temperature
for 10 min prior to a 1 min wash in nuclease-
free phosphate buffered saline (PBS) and fix-
ation for 15 min in 4% paraformaldehyde in
PBS. Fixation was followed by 3x5 min washes
in PBS prior to a 1 min wash in 70% ethanol.
Fixed sections were then stored in 70% ethanol
at 4 C prior to use and for up to one month.
Human sections were photobleached using a
150W LED array for 72 hours at 4°C prior to
hybridization then washed in 5 ml Sample
Prep Wash Buffer (VIZGEN 20300001) in a
5 cm petri dish. Sections were then incubated
in 5 ml Formamide Wash Buffer (VIZGEN
20300002) at 37 C for 30 min. Sections were hy-
bridized by placing 50 ml of VIZGEN-supplied
Gene Panel Mix onto the section, covering
with parafilm and incubating at 37°C for 36 to
48 hours in a humidified hybridization oven.
Followinghybridization, sectionswerewashed

twice in 5 ml Formamide Wash Buffer for
30 min at 47°C. Sections were then embedded
in acrylamide by polymerizing VIZGEN Em-
bedding Premix (VIZGEN 20300004) according

to the manufacturer’s instructions. Sections
were embedded by inverting sections onto
110 ml of Embedding Premix and 10% Ammo-
nium Persulfate (Sigma A3678) and TEMED
(BioRad 161-0800) solution applied to a Gel
Slick (Lonza 50640) treated 2x3 glass slide.
The coverslips were pressed gently onto the
acrylamide solution and allowed to polymer-
ize for 1.5 hours. Following embedding, sec-
tions were cleared for 24 to 48 hours with a
mixture of VIZGENClearing Solution (VIZGEN
20300003) and Proteinase K (New England
Biolabs P8107S) according to theManufacturer’s
instructions. Following clearing, sections were
washed twice for 5 min in Sample Prep Wash
Buffer (PN20300001). VIZGENDAPI andPolyT
Stain (PN 20300021) was applied to each sec-
tion for 15 min followed by a 10 min wash in
Formamide Wash Buffer. Formamide Wash
Buffer was removed and replaced with Sam-
ple Prep Wash Buffer during MERSCOPE set
up. 100 ml of RNAse Inhibitor (New England
BioLabs M0314L) was added to 250 ml of Imag-
ing Buffer Activator (PN 203000015) and this
mixture was added through the cartridge acti-
vationport toapre-thawedandmixedMERSCOPE
Imaging cartridge (VIZGEN PN1040004). 15 ml
mineral oil (Millipore-Sigma m5904-6X500ML)
was added to the activation port and the
MERSCOPE fluidics system was primed ac-
cording toVIZGEN instructions. The flowcham-
ber was assembled with the hybridized and
cleared section coverslip according to VIZGEN
specifications and the imaging session was
initiated after collection of a 10Xmosaic DAPI
image and selection of the imaging area. For
specimens that passed the minimum count
threshold, imaging was initiated, and process-
ing completed according to VIZGEN’s pro-
prietary protocol. Following processing and
segmentation through MERSCOPE software,
cells with fewer than 50 counts, or with an area
outside the 100 to 300 mm2 range were elimi-
nated from the mapping process.
The 140 gene human cortical panel was se-

lected using a combination of manual and
algorithmic based strategies requiring a refer-
ence single cell/nucleus RNA-seq data set from
the same tissue, in this case the human MTG
snRNAseq dataset and resulting taxonomy (11).
First, an initial set of high-confidence marker
genes are selected through a combination of
literature search and analysis of the reference
data. These genes are used as input for a greedy
algorithm (detailed below). Second, the refer-
ence RNA-seq data set is filtered to only include
genes compatible with mFISH. Retained genes
need to 1) be long enough to allow probe de-
sign (> 960 base pairs); 2) be expressed high-
ly enough to be detected (FPKM >= 10), but
not so high as to overcrowd the signal of other
genes in a cell (FPKM < 500); 3) have low ex-
pression in off-target cells (FPKM < 50 in non-
neuronal cells); and 4) be differentially expressed
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between cell types (top 500 remaining genes
by marker score20). To sample each cell type
more evenly, the reference data set is also
filtered to include a maximum of 50 cells per
cluster.
The main step of gene selection uses a greedy

algorithm to iteratively add genes to the ini-
tial set. To do this, each cell in the filtered refer-
ence data set is mapped to a cell type by taking
the Pearson correlation of its expression levels
with each clustermedian using the initial gene
set of size n, and the cluster corresponding to
themaximum value is defined as the “mapped
cluster”. The “mapping distance” is then de-
fined as the average cluster distance between
themapped cluster and the originally assigned
cluster for each cell. In this case a weighted
cluster distance, defined as one minus the
Pearson correlation between cluster medians
calculated across all filtered genes, is used to
penalize cases where cells are mapped to very
different types, but an unweighted distance,
defined as the fraction of cells that do notmap
to their assigned cluster, could also be used.
This mapping step is repeated for every pos-
sible n+1 gene set in the filtered reference
data set, and the set with minimum cluster
distance is retained as the new gene set. These
steps are repeated using the new get set (of
size n+1) until a gene panel of the desired
size is attained. Code for reproducing this
gene selection strategy is available as part of
the mfishtools R library (https://github.com/
AllenInstitute/mfishtools).

Cell-type mapping of MERSCOPE data

Any genes not matched across both the MER-
SCOPE gene panel and the snRNASeq mapping
taxonomy were filtered from the snRNASeq
dataset. We calculated the mean gene expres-
sion for each gene in each snRNAseq cluster.
We assigned MERSCOPE cells to snRNAseq
clusters by finding the nearest cluster to the
mean expression vectors of the snRNASeq
clusters using the cosine distance. All scripts
and data used are available at: https://github.
com/AllenInstitute/human_cross_areal.

GFAP Immunofluorescence

Tissue blocks from cortical areas of interest
were removed from fresh-frozen tissue slabs
as described above. Immediately after dissec-
tion, tissue blocks were drop-fixed in cold 4%
paraformaldehyde overnight in a 4°C fridge.
Tissue blocks were then rinsed in multiple
washes of 1X PBS, cryoprotected in sequential
15% and 30% sucrose solutions, and embedded
in OCT. Sections were cut free floating at 30 mm
in the coronal plane on a Leica cryostat into
1X PBS and were stored at 4°C or at −20°C in
cryoprotectant solution until the time of use.
Sections were processed for immunofluores-
cence using a rabbit polyclonal anti-GFAP
antibody (Agilent, Z0334) at a dilution of 1:1000

and mouse monoclonal anti-NeuN antibody
(Millipore Sigma, MAB377) at a dilution of
1:1000. Primary antibodies were incubated
overnight at 4°C, followed by incubation in
Alexa Fluor conjugated secondary species-
specific antibodies for 2 hours at room tem-
perature. Sections were counterstained with
DAPI and Neurotrace 500 fluorescent Nissl
stain and were mounted in ProLong Gold Anti-
fade Mountant (ThermoFisher Scientific). Sec-
tions were imaged on a Nikon TiE fluorescence
microscope equipped with NIS-Elements Ad-
vanced Research imaging software (v4.20).
GFAP processes were traced using the SNT
plugin in the Fiji distribution of ImageJ.
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