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Abstract

Much of the genome is expressed in the vertebrate brain with individual genes exhibit-
ing different spatially-varying patterns of expression. These variations are not independent,
with pairs of genes exhibiting complex patterns of co-expression, such that two genes may
be similarly expressed in one region, but differentially expressed in other regions. These
correlations have been previously studied quantitatively, particularly for the gene expression
atlas of the mouse brain, but the biological meaning of the co-expression patterns remains
obscure. We propose a simple model of the co-expression patterns in terms of spatial distri-
butions of underlying cell types. We establish the plausibility of the model in terms of a test
set of cell types for which both the gene expression profiles and the spatial distributions are
known.
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1 The Allen Gene Expression Atlas

1.1 Gene-expression energies

The gene expression energies we analyzed were obtained from ISH images of thousands of genes
in the Allen Gene Expression Atlas [1, 2]. For each of the genes, an eight-week old C57Bl/6J
male mouse brain was prepared as unfixed, fresh-frozen tissue. The following steps were taken
in an automatized pipeline1:

• Colorimetric in situ hybridization;

• Automatic processing of the resulting images. Find tissue area eliminating arti-
facts, look for cell-shaped objects of size ≃ 10 − 30 microns to minimize artefacts;

1For more details on the processing of the ISH image series, see the NeuroBlast User Guide,
http://mouse.brain-map.org/documentation/index.html
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• Aggregation of the raw pixel data into a grid. The mouse brain is partitioned into
V = 49, 742 cubic voxels of side 200 microns. For every voxel v, the expression energy
of the gene g is defined as a weighted sum of the greyscale-value intensities of pixels p
intersecting the voxel:

E(v, g) :=

∑

p∈v M(p)I(p)
∑

p∈v 1
,

where M(p) is a Boolean mask worked out by step 2 with value 1 if the pixel is expressing
and 0 if it is non-expressing.

The present analysis is focused on 4104 genes for which sagittal and coronal data are available.
We computed the correlation coefficients between sagittal and coronal data and selected the
genes in the top-three quartiles of correlation (3041 genes) for further analysis.

1.2 Classical neuroanatomy: systems of annotation

Partitions of the brain (or of the left hemisphere) into regions, at the same resolution (200
microns) as the gene-expression data, are available from the Allen Reference Atlas [6]. The
Allen reference Atlas was obtained using the same mouse strain and methodology as for the the
gene-expression data. Each voxel in the mouse brain therefore comes with a label containing
the name of the brain region to which it belongs.

As separable parts of the brain (connected components of the gene-expression data in gene
space) are of special interest to us, we will make use of two non-hierarchical systems of annota-
tion, available for the left hemisphere. We will refer to them as:
- ’Big 12’,consisting of the 12 regions of the left hemisphere (together with a more patchy group
of voxels termed ’basic cell groups of regions’) whose names, sizes and shapes are shown in Table
1;
- ’Fine’, a refinement of ’Big 12’ into 94 regions.

2 The Allen Gene Expression Atlas and cell types

2.1 Gene expression energies and cell-types

A major challenge for neurobiology in this era of complete genomes is to map gene expression
patterns with cellular resolution in the brain. The Allen Gene Expression Atlas takes a gene-
by-gene approach to this problem, obtaining a brainwide expression profile for each gene. Co-
expression patterns of genes can then be studied by comparing those maps. A complementary
approach uses microarray experiments to study co-expression patterns in a small set of neurons
of the same type. We studied two datasets using these two approaches, each of which boils down
to a matrix of positive numbers estimating numbers of mRNAs:

• Allen Gene Expression Atlas (co-registered ISH data in the whole brain). As
explained in the first section, the mouse brain is partitioned into V = 49, 742 cubic voxels
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Name of region Percentage of hemisphere Profile of region
(maximal-intensity pro-
jection)

Basic cell groups and regions 4.6  

 

0

0.5

1

Sagittal Coronal Axial

Cerebral cortex 29.5  

 

0

1

2

3

Sagittal Coronal Axial

Olfactory areas 9.2  

 

0

2

4

6

8

Sagittal Coronal Axial

Hippocampal region 4.3  

 

5

10

15

20

25

Sagittal Coronal Axial

Retrohippocampal region 4  

 

0

10

20

30

Sagittal Coronal Axial

Striatum 8.6  

 

0

10

20

30

Sagittal Coronal Axial

Pallidum 1.9  

 

0

10

20

30

40

Sagittal Coronal Axial

Thalamus 4.3  

 

20

40

60

Sagittal Coronal Axial

Hypothalamus 3.5  

 

20

40

60

80

100

Sagittal Coronal Axial

Midbrain 7.8  

 

0

50

100

Sagittal Coronal Axial

Pons 4.6  

 

0

50

100

150

Sagittal Coronal Axial

Medulla 6.2  

 

0

50

100

150

Sagittal Coronal Axial

Cerebellum 11.5  

 

0

50

100

150

200

Sagittal Coronal Axial

Table 1: Brain regions in the coarsest annotation of the left hemisphere in the Allen Reference
Atlas, with the relative volume of the hemisphere they occupy, and maximal-intensity projections
of their three-dimensional profiles.
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of side 200 microns. For a given gene g and a given voxel v, the AGEA provides the
expression energy of g at voxel v, or E(v, g), defined as the average intensity of pixels in
the set of ISH images that intersect v. It is an estimator of the number of mRNAs for
gene g in voxel v. We focus on about GA = 3041 genes that have the best correlation of
signals between sagittal and coronal sections.

• Cell-type specific microarray data. We analyzed microarray data for T = 64 different
cell types [8–12]. Each of these cell types is characterized by expression of GT = 14580
genes. These data can be arranged in a T by GT matrix C, where C(t, g) is the expression
level of gene g in type t.

Studying these two datasets together can help us gain some insight into brainwide co-expression
patterns in terms of neuronal types.

We worked out the intersection of the two sets of genes for corresponding to the two datasets.
We picked the columns of both matrices corresponding to genes that are in both datasets (let
G = 2131 denote the number of such genes), and rearranged them in the same order. From now
on, E is assumed to be a V times G matrix, and C to be a T times G matrix, with columns
of both matrices corresponding to the same set of genes, ordered in the same way. The quan-
titative techniques used in this section do not depend on the precise value of G, V and T , and
the computations can be repeated with richer datasets involving more genes (larger G), higher
resolution (larger V ), and/or larger numbers of cell types (larger T ).

2.2 Correlation between gene-expression data for cell-types and the AGEA

We first studied the correlations between the AGEA and cell-type data. For each cell-type t, we
have a vector in gene-space with components Ct(g) = C(t, g), 1 ≤ g ≤ G from microarray data.
We also have a vector in gene space at every voxel v from the AGEA, with components E(g, v),
1 ≤ g ≤ G. We can compute the correlation coefficient between cell-type t and voxel v as the
cosine of the angle between the deviation from the average cell-type data and from the average
voxel, in gene space:

Corr(t, v) =

∑G
g=1(C(t, g) − C̄(g))(E(v, g) − Ē(g))

√

∑G
g=1(C(t, g) − C̄(g))2

√

∑G
g=1(E(v, g) − Ē(g))2

, (1)

C̄(g) =
1

T

T
∑

t=1

C(t, g), (2)

Ē(g) =
1

V

V
∑

v=1

E(v, g). (3)

For a fixed type t, the correlations with all the voxels v can be rearranged into the volume of
the brain, and plotted (see the second column of the tables in section 5).
It is quite encouraging to observe that correlation patterns for some cell types exhibit striking
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resemblance with neuroanatomical patterns: for instance correlations between the AGEA and
the microarray data for medium spiny neurons are highest in the striatum (see Figure 6).

2.3 Fitting a linear combination of cell types to the AGEA

The maps from genes to the whole brain given by the expression energies obtained gene by gene
in the AGEA must come from the gene-expression activity of the brain cells. Their co-expression
properties must come from the co-expression of genes in given cell types, and from the spatial
variation of the abundance of cell types.

We would like to decompose the signal in the AGEA into its cell-type specific components.
Let us introduce the quantity ρt(v) denoting the contribution of cell type t at voxel v, and
propose the following linear model:

E(v, g) =
T
∑

t=1

ρt(v)Ct(g) + Err(v, g). (4)

Both sides are estimators of the number of mRNAs for gene g at voxel v. The quantity denoted
by Err is an error term (reflecting noise in the measurements, reproducibility issues, the non-
linearity of the relations between numbers of mRNAs, expression energies and microarray data,
and the fact that T = 64 types are not enough to sample the whole diversity of cell types in the
mouse brain).

In order to find the best fit of the model to the AGEA, we have to solve the following
minimization problem under positivity constraints, that corresponds to the least squares of the
error function:

(ρt(v))1≤t≤T,1≤v≤V = argminφ∈RT
+×RV

+
EE,C(φ),

where T is the total number of types available from the microarray data, V is the total number
of voxels in the brain at a resolution of 200 microns, and the function EE,C is taken to be the
sum of squares of the duifferences between the expresison energies and the superposition of cell
types weighted by the positive coefficients of the matrix φ:

EE,C(φ) =
V
∑

v=1





G
∑

g=1

(

E(v, g) −
T
∑

t=1

φ(t, v)Ct(g)

)2


 .

As the terms of the sum over voxels that contain coefficients of a fixed line voxel v of the matrix
E, involve only terms of the test function that with the same voxel index v, the problem can be
solved voxel by voxel. At each voxel one has to minimize a quadratic function of a vector with
T positive components. As the function is quadratic and the domain of the unknown is convex,
the problem at each voxel is a convex optimization problem, which admits a global minimum:

∀v ∈ [1..V ], (ρt(v))1≤t≤T = argminν∈RT
+

G
∑

g=1

(

E(v, g) −
T
∑

t=1

ν(t)Ct(g)

)2

.
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For each cell-type index t, a heat map of the maximal-intensity projections of (ρt(v))1≤v≤V is
shown in the rightmost column of the tables of section 5 (N/A indicates that the optimization
returned a zero at all voxels for the corresponding type).

2.4 Results

The maximal-intensity projections of correlations and fittings are presented in the tables of sec-
tion 5 for all cell types in our study. Some striking neuroanatomical patterns appear in the
results, both in correlations and in fittings. We only made use of the microarray data and of
the AGEA in the above analysis. We compared the results of the computations to the Allen
Reference Atlas, and found out that some major cell-types have strongly inhomogeneous correla-
tions and fittings across the brain. So it is interesting to compare the observed neuroanatomical
patterns to the metadata available from [8–12], specifying from which regions of the brain the
cell samples were taken.

2.4.1 Consistent neuroanatonical patterns

The inspection of the tables of results in section 5 yields several classes of patterns, both in
correlations and fittings, that exhibit similarity with neuroanatomical structures, such as cerebral
cortex (and subregions thereof), cerebellum, hippocampus, striatum thalamus, and white matter
(including arbor vitae). We studied a few examples in more details, using sections in addition
to maximal-intensity projections.

• Cortical patterns. See Figure 1 for a layer-specific class of pyramidal neurons in the
cortex [8], and Figure 2 for a class of pyramidal neurons taken from the amygdala and
whose fitting coefficients indeed exhibit a pattern similar to the amygdala. The patterns
of fitting coefficients are much sparser than those of correlations.

• Cerebellar patterns. See Figure 3 for a class of Purkinje cells [8] and Figure 4 for a class
of mature oligodendrocytes [11], both extracted from the cerebellum. Their correlation
and fitting coefficients are indeed mostly localized in cerebellum.

• Hippocampal pattern. See Figure 5 for a class of pyramidal neurons [8] extracted from
the hippocampus. Its correlation pattern is highest in the hippocampal region and fitting
coefficients are mostly localized in the hippocampal region.

• Striatal pattern. See Figure 6 for a class of medium spiny neurons [11] extracted from
the striatum. Its correlation and fitting coefficients are indeed mostly localized in the
striatum.

• White-matter pattern. See Figure 7 for a class of astrocytes [10] extracted from the
cortex. Its correlation and fitting coefficients look exhibit a singular pattern that looks
like white matter, with the most caudal component corresponding to the arbor vitae.

These examples of agreement between the support of the fitting coefficients and the meta-
data establish the plausibility of the linear model we proposed in Equation 4. Some of the fitting
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(a) Maximal-intensity projection of correlations.
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(b) Maximal-intensity projection of the linear fitting.
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Cerebral cortex
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(c) A section of correlations, with atlas boundaries
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(d) A section of fitting coefficients, with atlas boundaries

Figure 1: Correlations and fitting coefficients between the AGEA and pyramidal neurons taken
from primary somatosensory area, layer 5 [8].
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(a) Maximal-intensity projection of correlations.
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(b) Maximal-intensity projection of the linear fitting.
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2600 microns left from bregma
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(c) A section of correlations, with atlas boundaries

Section of linear fittings to the AGEA
2600 microns left from bregma
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(d) A section of fitting coefficients, with atlas boundaries

Figure 2: Correlations and fitting coefficients between the AGEA and pyramidal neurons taken
from the amygdala (which falls into the cerebral cortex, layer 6B in the Allen Reference Atlas) [8].
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(a) Maximal-intensity projection of correlations.
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(b) Maximal-intensity projection of the linear fitting.
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(c) A section of correlations, with atlas boundaries

Section of linear fittings to the AGEA
0 microns left from bregma

 

 

0

0.1

0.2

0.3

0.4

0.5

Basic cell groups and regions
Cerebral cortex
Olfactory areas
Hippocampal region
Striatum
Pallidum
Thalamus
Hypothalamus
Midbrain
Pons
Medulla
Cerebellum

(d) A section of fitting coefficients, with atlas boundaries

Figure 3: Correlations and fitting coefficients between the AGEA and Purkinje cells [9] (index
1 in the table of cell-type results).



11

 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial

(a) Maximal-intensity projection of correlations.
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(b) Maximal-intensity projection of the linear fitting.
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(d) A section of fitting coefficients, with atlas boundaries

Figure 4: Correlations and fitting coefficients between the AGEA and mature oligodendrocytes
extracted from the cerebellum [11] (index 21 in the table of cell-type results).
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(a) Maximal-intensity projection of correlations.
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(b) Maximal-intensity projection of the linear fitting.
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(d) A section of fitting coefficients, with atlas boundaries

Figure 5: Correlations and fitting coefficients between the AGEA and pyramidal neurons taken
from the hippocampus (Ammon’s horn) [8] (index 49 in the table of cell-type results).
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(a) Maximal-intensity projection of correlations.
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(b) Maximal-intensity projection of the linear fitting.
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(d) A section of fitting coefficients, with atlas boundaries

Figure 6: Correlations and fitting coefficients between the AGEA and Drd2 medium spiny
neurons taken from the striatum [11], index 16 in the table of cell types.
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(a) Maximal-intensity projection of correlations.
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(b) Maximal-intensity projection of the linear fitting.
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(d) A section of fitting coefficients, with atlas boundaries

Figure 7: Correlations and fitting coefficients between the AGEA and astrocytes taken from the
cerebral cortex (Ammon’s horn) [10] (index 31 in the table of cell-types).
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profiles indeed have a considerably cleaner profile than the correlation, and are able to reveal
fine neuroanatomical details The microarray dataset was rich enough to distinguish each of the
regions described in the patterns above from the rest of the brain. It is interesting to note
that four of the non-cortical patterns described above emerge from bi-clustering of the data at
seven biclusters (see section 3 on clustering analysis), if the list of genes is restricted to the most
localized genes in the sense of the Kullback–Leibler distance. So the diversity of cell-types found
in the microarray dataset reveals partitions of the brains by sets of genes that can be obtained
from (a special subset of ) the AGEA without using extra data. The major patterns listed above
are therefore not a mere accident of the microarray dataset, but reflect a reasonable first list of
data-driven neuroanatomical structures.

2.4.2 Unexpected fitting patterns

The results of the model contain some surprises that can be linked to the relative paucity of
cell types in the study, compared to the whole diversity of cells in the mouse brain, and to the
fact that the cell samples are not distributed uniformly across the brain. Two of the anatom-
ical patterns (thalamus and olfactory areas) that emerge from biclustering of localized genes
(see section 3 on clustering analysis) are not as convincingly illustrated by the results of our
analysis. A class of Gabaergic Interneurons (index 55, [8]) has fitting coefficients well-localized
in the olfactory areas, but the cells were extracted from the somatosensory cortex (primary
somatosensory area in the Allen reference Atlas). As the olfactory areas are not represented in
our microarray dataset, this gives an indication of the cell types in the dataset that are closest in
terms of gene expression to cell-types represented in the olfactory areas. As for the thalamus, it
is represented by only one cell type in our microarray dataset (GABAergic interneurons, PV+,
index 60, [8]). The cells were extracted from the lateral geniculate complex, and the fitting
coefficients are positive in the olfactory areas and in midbrain as well as in the thalamus. Again
clustering suggests that some cell types are specific to thalamus, and a richer microarray dataset
with better sampling of the thalamus will move some of the fitting coefficients to these cell types.

A few cell-types have surprising fitting coefficients, some of which may be traced to devel-
opmental properties.

• A class of Purkinje cells does not fit to the cerebellum. See Figure 8 for a class
of Purkinje cells (index 52, unpublished) that correlate best with the AGEA both in the
thalamus and in the cerebellum, but that fits only in the thalamus. This indicates that
thalamus must contain cell types whose gene expression profile is closest to Purkinje cells in
the present dataset, but that thalamus is not sampled in enough detail by our microarray
dataset for these cell types to be distinguished from this class of Purkinje cells.

• Some pyramidal neurons, including corticospinal, fit poorly to the AGEA. Some
pyramidal neurons, extracted from the cortex, have very sparse fitting coefficients, even
though their correlation profiles with the AGEA have a maximal-intensity projection that
looks like the cerebral cortex (see indices 38, 39, 41, 42, 43). It could be that the different
non-linearities between numbers of mRNAs, ISH data and microarray data, prevent these
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(a) Maximal-intensity projection of correlations.
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(b) Maximal-intensity projection of the linear fitting.
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(d) A section of fitting coefficients, with atlas boundaries

Figure 8: Correlations and fitting coefficients between the AGEA and a class of Purkinje cells
extracted from the cerebellum (index 52 in the table of cell-type results). The correlation profile
is high both in the cerebellum and in the thalamus, but the fitting coefficients are localized in
thalamus



17

cell types to be correctly detected by our linear model. However, one can notice that
the ages of the mice are P3, P6, P14 for these classes of pyramidal neurons. The poor
fitting to the AGEA could therefore come from a developmental effect, with corticospinal
pyramidal neurons and callosally-projecting pyramidal neurons maturing late, while the
AGEA corresponds to the adult mouse brain.

3 Clustering analysis

3.1 Biclustering of genes and voxels

Some of the cell types for which we have microarray data are predicted by the linear model 4
to be very localized in the brain. However, the validity model is limited by the number of cell
types in the study. The T different cell types only span a T -dimensional subspace of gene space,
while the AGEA contains data for thousands of genes. However, in the absence of microarray
data for more cell types, we can still ask if the Allen Gene Expression Atlas has some sets of
genes whose expression is strongly localized in some sets of voxels. The sets of voxels would be
the brain regions in which some cell types are expected to be localized, and the sets of genes
would be the genes whose expression is highest in those cell types.

Mathematically, this problem is a biclustering problem: we need to partition the set of voxels
and the set of genes in the AGEA in an optimal way given the gene expression energies. Gene
expression energies can be used to turn voxels and genes into a bipartite graph, and this graph
can be partitioned using a biclustering algorithm.

3.1.1 From the AGEA to a bipartite graph

The AGEA can be mapped to a weighted bipartite graph in the following way:

• the first set of vertices consists of voxels, numbered from 1 to V ,

• the second set of vertices consists of genes, numbered from 1 to G,

• each of the edges connect one voxel to one gene, and has a weight given by the expression
energy of the gene at the voxel. If the expression energy E(v, g) is zero, there is no edge
between voxel v and gene g.

We looked for partitions of this weighted bipartite graph into subgraphs such that the weights
of the internal edges of the subgraphs are strong compared to the weights of the edges between
the subgraphs. This is the isoperimetric problem addressed by the algorithm of [23] (the graph
need not be bipartite to apply this algorithm).

Given a weighted graph, the algorithm cuts some of the links, thus partitioning the graph
into a subset S and its complementary S̄, such that the sum of weights (in this case expression
energies) in the set of cut edges is minimized relative to the total weight of internal edges in
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S. The sum of weights in the set of cut edges is analogous to a boundary term, while the
total weight of internal edges is analogous to a volume term. In that sense the problem is an
isoperimetric optimization problem, and the optimal set S minimizes the isoperimetric ratio ρ
over all the possible subgraphs:

S = argminVol(s)≤Vol(s̄) ρ(s), (5)

ρ(s) :=
|∂s|

Vol(s)
, (6)

|∂s| =
∑

i∈s,j∈s̄

Wij , (7)

Vol(s) =
∑

i∈s,j∈s

Wij , (8)

where the quantity Wij is the weight of the link between vertex i and vertex j. Once S has
been worked out, the algorithm can be applied to S and its complementary S̄. This recursive
application goes on until the isoperimetric ratio reaches a stopping ratio, representing the highest
allowed isoperimetric ratio. This value is a parameter of the algorithm. Rising it results in a
higher number of clusters, as it rises the number of acceptable cuts.

3.1.2 Restriction of the Allen Atlas to the most localized genes

We studied the localization properties of the genes in the Allen Gene Expression Atlas by
comparing their expression energies to a uniform function over the brain. We computed the
Kullback-Leibler divergence of each gene from a uniform distribution:

KL(g) = −
V
∑

v=1

1

V
log (V Eprob(v, g)) , (9)

Eprob(v, g) =
E(v, g)

∑V
v=1 E(v, g).

(10)

where V is the total number of voxels in the brain and Eprob is a normalized version of E such
that the expression energy of each gene is a probability density over the volume of the brain.

We took the highest 5 percentiles of genes by KL-divergence, and thresholded the expression
energies, thus reducing the number of voxels. These are the most localized genes by that measure,
so solving the ispoerimetric problem on the graph constructed with those genes only will be more
likely to produce the localized biclusters we are looking for. Thresholding the expression value
gets rid of many voxels with low expression that would be (uninteresting) optimal subgraphs of
their own because they are hardly connected to any genes.
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Figure 9: A histogram of the occurence of Kullback–Leibler divergences from a uniform expres-
sion across 3041 genes. The top 5 percentiles of KL divergences are highlighted in red. They
consist of the genes selected for biclustering analysis. The names of those genes appear in the
tables describing each of the biclusters.
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3.2 Results

We illustrate biclusters corresponding to the plateau at B = 7 biclusters in the number of bi-
cluster as a function of the stopping ratio.

For each of the biclusters, the algorithm returns a set of voxels and a set of genes. Let is call
the set of voxels Vb and the set of genes Gb. For each of the biclusters, we plotted:

• the voxel profile of the bicluster: the maximal-intensity projections of the set of voxels Vb

in the bicluster;

• the expression profile of the bicluster: the maximal-intensity projection of the the sum of
the expression energies of the set of genes Gb in the bicluster.

The expression profiles follow the shapes of the sets of voxels quite nicely. For each gene, we
computed the fraction of the total expression of the bicluster that it represents.
Moreover, we noticed many of the biclusters look similar to brain regions defined in the ’Big 12’
partition of the left hemisphere in the Allen Reference Atlas [6], illustrated on Table 1. In
order to assess this resemblance quantitatively, we took the Allen Reference Atlas of the left
hemisphere and for each region R, we computed the fraction of the voxels in Vb , and the fraction
of the expression energy that is contained in the region. These quantities are expressed as:

Fraction of voxels(R, b) =
|Vb ∩R|

|R| , for brain region R and bicluster b, (11)

Fraction of expression(R, b) =

∑

v∈Vb∩R

∑

g∈Gb
E(v, g)

∑

v∈Vb

∑

g∈Gb
E(v, g)

, for brain region R and bicluster b.

(12)
Only regions that have non-zero overlap with the biclusters are shown in tables. These regions
are ordered by decreasing value of the fraction of voxels. The biclusters are described by the
following figures:

• Bicluster 1: ’cerebellum-like’, see Figure 10.

• Bicluster 2: ’white-matter like’, see Figure 11.

• Bicluster 3: ’hippocampus-like’, see Figure 12.

• Bicluster 4: ’olfactory-like’, see Figure 13.

• Bicluster 5: a disconnected bunch with medulla and other regions, see Figure 14.

• Bicluster 6: ’thalamus-like’, see Figure 15.

• Bicluster 7: ’striatum-like’, see Figure 16.
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(a) Sum of gene-expression energies in the cerebellum-like
bicluster
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(b) The set of voxels in the cerebellum-like bicluster

GeneNames Fraction of
cluster energy
(pct)

Il16 19.04

Neurod1 17.74

Cnksr3 14.48

Slc6a5 9.35

Gng13 6.55

3110001A13Rik 6.44

Gabra6 6.19

Col18a1 3

Plxdc1 2.45

En2 2.14

AW049765 2.12

B3gnt5 2.07

2010106G01Rik 1.96

Lhx5 1.64

Htr5b 1.44

Ptprm 1.16

Slc22a3 0.72

Zfp423 0.63

Gbx2 0.33

Ghrh 0.27

Nr5a1 0.26

(c) The list of genes in the cerebellum-like biclus-
ter, ordered by decreasing expression

Brain region Percentage of cluster

Cerebellum 96.58

Medulla 2.87

Basic cell groups and regions 0.56

(d) The set of voxels in the cerebellum-like bicluster

Figure 10: Bicluster 1: ’cerebellum-like’.
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(a) Sum of gene-expression energies in bicluster 2
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(b) The set of voxels in bicluster 2

GeneNames Fraction of
cluster energy
(pct)

Kl 11.22

Clic6 9.24

Ace 8.33

Cab39l 6.34

F5 5.99

Tgfb2 5.88

Rdh5 5.4

Prlr 4.69

AI987712 4.58

Acaa2 4.37

E030013G06Rik 4.31

Tcn2 3.96

Gm967 2.44

Frmpd2 2.36

Trpv4 2.34

Cd59a 2.2

LOC436099 2.14

Vil2 2.12

Sntb1 2.07

Fzd4 2.06

6820408C15Rik 1.92

D9Ertd280e 1.71

Thbs4 1.68

B3gat2 1.45

Itpkb 1.2

(c) The list of genes in bicluster 2 ordered by de-
creasing expression

Brain region Percentage of cluster

Basic cell groups and regions 36.85

Medulla 15.61

Hippocampal region 12.86

Cerebral cortex 12.43

Striatum 9.39

Cerebellum 6.79

Thalamus 5.49

Midbrain 0.29

Pons 0.29

(d) The set of voxels in bicluster 2

Figure 11: Bicluster 2: ’white-matter like’. The pattern is disconnected and looks like white
matter, with the most caudal component coinciding with the arbor vitae. Some of the white
matter is annotated by the Allen reference Atlas as ’Basic cell groups and regions’.
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(a) Sum of gene-expression energies in bicluster 3
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(b) The set of voxels in bicluster 3

GeneNames Fraction of
cluster energy
(pct)

C1ql2 11.64

TC1412430 7.35

Zbtb20 6.48

Sipa1l2 6.27

C630041L24Rik 5.79

Dsp 5.48

Crlf1 5.46

A330019N05Rik 5.25

Slc39a6 5.12

C78409 5.07

Tnfrsf25 4.71

Cyp7b1 4.36

Lct 3.71

Klk8 3.31

Gpc4 2.94

Prox1 2.66

Nr3c2 2.47

Pkp2 2.47

Arl15 2.16

Itga7 1.82

Fat4 1.49

Sema5a 1.47

Csf2rb2 1.37

Rnf19 1.14

(c) The list of genes in bicluster 3 ordered by de-
creasing expression

Brain region Percentage of cluster

Hippocampal region 80.39

Thalamus 9.48

Midbrain 3.59

Basic cell groups and regions 2.94

Medulla 1.8

Cerebral cortex 1.47

Retrohippocampal region 0.16

Hypothalamus 0.16

(d) The set of voxels in bicluster 3

Figure 12: Bicluster 3: ’hippocampus-like’.
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(a) Sum of gene-expression energies in bicluster 4
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(b) The set of voxels in bicluster 4

GeneNames Fraction of
cluster energy
(pct)

Lrrc55 10.29

Stard8 8.21

9830123M21Rik 6.79

Nmb 6.6

C230040D10Rik 5.89

Kcnb2 5.84

4930589M24Rik 5.45

Adamts19 5.26

Raver2 4.46

Syt6 4.35

Chrna3 3.45

Cdh23 3.01

Sp8 3

B930011P16Rik 2.75

Nmbr 2.62

A230065H16Rik 2.31

Vipr2 2.17

Jam2 2.12

Eomes 1.95

B430201A12Rik 1.89

mCG1049722.1 1.66

Atp6v1c2 1.61

Rgnef 1.42

Atp10a 1.4

Dnahc11 1.19

Scube2 1.17

AW456874 1.08

Tmem16a 1.05

Lhx8 1.02

(c) The list of genes in bicluster 4 ordered by de-
creasing expression

Brain region Percentage of cluster

Olfactory areas 86.68

Cerebral cortex 7.38

Thalamus 3.48

Basic cell groups and regions 1.64

Striatum 0.61

Medulla 0.2

(d) The set of voxels in bicluster 4

Figure 13: Bicluster 4: ’olfactory-like’
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(a) Sum of gene-expression energies in bicluster 5
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(b) The set of voxels in bicluster 5

GeneNames Fraction of clus-
ter energy (pct)

Glra1 22.11
Slc18a3 5.75
Slc18a2 4.86
Slc5a7 4.78
Ddc 4.39
Slc6a3 3.79
1810023C24Rik* 3.48
Chrna6 3.24
Pou4f1 3.09
LOC244958 2.36
Chrnb4 2.26
Gpr151 2.24
Tph2 2.24
Avp 2.23
Calca 2.19
Anxa2 2.07
Frmd6 2.05
C130034I18Rik 1.98
Slc6a4 1.85
Epha1 1.79
Postn 1.69
Stk24 1.66
Il13ra1 1.64
C130021I20Rik 1.63
Calcb 1.61
A330102H22Rik 1.51
Dbh 1.27
Ppap2a 1.26
Gpr3 1.22
Hspb1 1.15
Tal1 0.98
Layn 0.97
Cdh6 0.95
Tspan12 0.93
Wif1 0.86
Scml2 0.72
Pscdbp 0.48
Gucy2c 0.41
Ntsr1 0.3

(c) The list of genes in bicluster 5 ordered by de-
creasing expression

Brain region Percentage of cluster

Medulla 47.11

Midbrain 16.33

Pons 14.46

Cerebral cortex 8.5

Olfactory areas 6.8

Basic cell groups and regions 4.08

Thalamus 1.53

Striatum 0.51

Cerebellum 0.51

Hypothalamus 0.17

(d) The set of voxels in bicluster 5

Figure 14: Bicluster 5: a disconnected bunch with medulla and other regions.
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(a) Sum of gene-expression energies in bicluster 6
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(b) The set of voxels in bicluster 6

GeneNames Fraction of
cluster energy
(pct)

Plekhg1 26.95

1110069I04Rik* 22.71

Tnnt1 16.72

Lef1 14.68

Rab37 14.08

Slitrk6 4.86

(c) The list of genes in bicluster 6 ordered by de-
creasing expression

Brain region Percentage of cluster

Thalamus 98.4

Basic cell groups and regions 0.53

Hippocampal region 0.53

Hypothalamus 0.53

(d) The set of voxels in bicluster 6

Figure 15: Bicluster 6: ’thalamus-like’.

4 Dimensionality estimates of brain regions in gene space

4.1 Scaling argument and algorithm

Due to the large number of genes that are analyzed in the AGEA atlases, our data live in
very high-dimensional space. On the other hand, many genes have non-zero expression in the
gene-expression profiles of cell-types. So the multiplicity of genes expressed may not reflect the
complexity of the underlying biological objects.

A fixed cell-type is just a one-dimensional subspace of gene space. From the inspection of
the projection of the SVD of gene-expression energies onto the subspace spanned by the first
three singular vector in gene space, there seems to be clouds of voxels that are localized on low-
dimensional subspaces. How can we detect such localization properties? The following scaling
argument has been used to discover the intrinsic dimension of datasets that are only known by
their pairwise dissimilarities [25].
If the points are drawn from an underlying submanifold of the ambient space, of dimension d,
then a cone with tip at the center of the cloud of points and an opening of 90 degrees should
intercept a fraction of the points that decreases exponentially with the dimension d. This is
illustrated on Figure (17) for a disc embedded into three dimensions.

For a given region Rr, the dimension of the underlying subspace of gene space is estimated
by the following procedure:
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(a) Sum of gene-expression energies in bicluster 7
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(b) The set of voxels in bicluster 7

GeneNames Fraction of
cluster energy
(pct)

Rgs9 25.68

Pde1b 20.98

Adora2a 15.7

Rarb 12.92

Gprin3 8.32

Gpr6 8

Serpina9 5.72

Cd4 2.69

(c) The list of genes in bicluster 7 ordered by de-
creasing expression

Brain region Percentage of cluster

Striatum 95.23

Basic cell groups and regions 1.87

Cerebral cortex 1.73

Pallidum 1.18

(d) The set of voxels in bicluster 7

Figure 16: Bicluster 7: ’striatum-like’.
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Figure 17: A disc sampled by 2000 random points with uniform probability, em-
bedded into a three-dimensional space. A cone with tip at the center of the disc (shown
in magenta), with an opening of 90 degrees, intercepts roughly a quarter of the points. This
fraction would be the same if the disc was embedded into a higher-dimensional space.
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1. Compute the pairwise distances in the region. Compute the pairwise distances
between the voxels (vi)1,≤r≤Vr belonging to region Rr (these are the relevant lines of the data
matrix D):

∀i ∈ [1..Vr ], vi := (Dig)1≤g≤G ∈ RG,

∀i, j ∈ [1..Vr], dij := ||vi − vj ||L2 .

2. Find the center of the region. Find out the center C of this cloud defined as the
point in the set which minimizes the dispersion of points around itself. This is as close to the
average as we get, within the set (this is to pathologies with very hollow, non-convex regions,
where the ordinary mean may be far from all the voxels). Let us call c the index of the center,
meaning C = vc with:

c = argmin
∑

j

d2cj .

This is a Fréchet mean with uniform weight in the image of the region Rr under D.

3. Define a typical cone in the region. Pick a point P (with index p, or P = vp) in the
region, which is at one standard deviation away from the center (or as close to it as you can get
while staying within the region):

p = argmin
(

d2cp − σ2
d

)

,

σ2
d =

∑

j

d2cj .

Consider the cone whose tip is at C, whose axis points towards P , and whose opening angle is
π/2.

3. Compute the number of voxels in the region that fall within the cone. For a
point M with index m, the property of being inside the cone is defined in terms of its distances
to C and P , as the critical distance from P is attained 2 when the angle P̂CM equals π/4:

dmp <
√

d2pc + d2mc −
√
2dpcdmc.

We can compute the fraction of points in the cloud that is inside the cone:

fC,P =
1

V

∣

∣

∣

∣

{

m ∈ [1..V ], dmp <
√

d2pc + d2mc −
√
2dpcdmc

}∣

∣

∣

∣

.

4. The fraction of points intercepted by the cone scales exponentially with
the dimension of the underlying subspace. If the points are taken from a δ-dimensional
manifold which is not too anisotropic (see below for a quantitative study of the dispersion of the

2This is obtained by Pythagoras’ theorem in the triangle CMP : the angle P̂CM is smaller than a chosen angle
β (here β = π/4), if its cosine is larger than cos β. Pythagoras’ theorem applied to the triangle PCM expresses

this condition as
d2
pc

+d2
mc

−d2
mp

2dpcdmc

< cosβ, i.e. dmp <
√

d2pc + d2mc − 2 cos βdpcdmc
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values that are returned by this algorithm for different choices of cones), this fraction should
scale as

fC,P ≃ 2−δ,

which gives a global estimate of the dimension of the (putative) manifold underlying the cloud
of points:

δP = − log fC,P

log 2
.

The results are quite small (typically below ten) for all the structures in the ’Fine’ annotation
of the Allen Reference Atlas [6], but should not be compared directly to G, as the output of
the calculation described above is constrained by the sample size, and many regions have quite
small size.

4. Probabilistic interpretation of the dimensions. Repeat the above computation for
all points P distinct from the center C. This induces a distribution of estimates of the dimension
for the cloud of points, with a value of δP associated to each point P . The more peaked this
distribution is, the better the cloud of point is localized on a manifold. The value of the peak
estimates the dimension of this manifold.

Prob(δ = δ0) = Prob(fC,P = 2−δ0V ) =
1

V − 1

∣

∣

∣

{

P, fC,P = 2−δ0V
}∣

∣

∣
. (13)

The values of the dimension are binned into integer values. If the brain structure considered is
1) well-localized and 2) reasonably homogeneous, the plot of the probability distribution should
be 1) well-separated from a Dirac mass placed at the critical dimension of the structure, and 2)
be peaked. Results for caudoputamen are shown on Figure 18.

4.2 Results and limitations

What is the maximal value of the dimension that can be found using the conical trick described
above? This value, which we will call critical dimension is attained in situations where the cloud
of points is so dilute that the cone is essentially empty: it intercepts no point in the region apart
from its tip C and the point P that defines the orientation of the cone. This critical dimension,
or δcrit, is therefore defined by

2−δcrit =
2

V
,

hence

δcrit =
log V

log 2
− 1.

When a cloud of V points has critical dimension, it must therefore be considered to be a genuine
cloud of points, living in high dimension, rather than a sample taken from a lower-dimensional
space.

Of course, the critical dimension is a decreasing function of the sample size, and at the
resolution of 200 microns we are working with, the critical dimensions of the brain structures
are all orders of magnitude below the total number of genes G = 3041, which is a big threat to
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Figure 18: Distribution of the dimension estimates for the voxels belonging to caudoputamen.
At a resolution of 200 microns, caudoputamen consists of 1248 voxels, which induces a value of
9.28 for the critical dimension, the maximal dimension that can be returned by the algorithm.
80 percent of the voxels correspond to an underlying dimension of 5, and the probablity of the
critical dimension is zero.

our method: as the value of δ fluctuates with the orientation of the cone, it may well be that
cones that are close in terms of Euclidean distances induce fluctuation in the dimension so big
that they saturate the critical dimension. In what follows, the distribution of dimensions across
all possible orientations of the cone is studied.

Can we trust this estimate? If the manifold from which the voxels are taken had dimension
larger than the log2 of the number of voxels for structure, we would not be able to detect it. So
for the many small structures in the fine annotation, the value of the dimension is much limited
by the resolution scale. But this is an inherent characteristic of dimension for physical object
defined through observations of clouds of points: dimension is not a well-defined quantity and
depends on scale.
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4.3 What distribution of dimensions would be expected by chance?

The center and shape of this probability distribution have to be compared to the ones that
would be obtained by drawing a set of random points in G dimensions, with the same sample
size. Consider a fixed center C and a second point P defining a reference quadrant. The G-
dimensional ambient space is partitioned into 2G quadrants by completing the axis [CP ) into
an orthogonal basis. When drawing V − 2 points randomly, we draw each of them from one of
those quadrant, with equal probability

p =
1

2G
.

For a given quadrant, the number of drawn points that falls into it follows a binomial law of
parameters V − 2 (as two points are used to define the quadrant) and p. The dimension δV,G
of the set of drawn points is therefore distributed as the (opposite of) the log2 of a binomial
variable:

dV,G =
1

log 2
(log V − log(NV,G + 2)) , NV,G ∼ B(V − 2, 2−G),

P (dV,G = D) = P (NV,G = 2−D(V − 2)),

i.e. P (dV,G = D) =
V ′!

(2−DV ′)!(V ′ − 2−DV ′)!
p2

−DV ′

(1− p)V
′−2−DV ′

, V ′ = V − 2.

Any sample of the size of those we are dealing with (V up to a few thousands of points, with
fixed G = 3041) is insufficient to parse a given dimension: the probability distribution of NV,G

is extremely peaked at zero: dV,G is therefore extremely peaked at the critical dimension:

P (NV,G = 0) = (1− p)V−2 = 1− (V − 2)× p+ o(p).

So, in order to have one percent of the probability away from the critical dimension put the
following lower bound V pc

min on the sample size:

P (NV,G = 0) < 0.99 ⇒ V > V pc
min =

0.01

p
+ 2 ≃ 23039,

which is hopeless, as the whole brain has V = 49742 ≃ 215.6 voxels, so the voxel size would
have to be 2(3039−15.6)/3 ≃ 21008 times smaller, way out of bounds of the size of known physical
objects. Anther way of putting one percent of the probability away from the critical dimension
is to lower the number of genes:

G < Gmax
1

log(2)
× (log(V − 2)− log(0.01)) ≃ 16,

which is a very low bound on the dimension of gene space, compared to the size of our data.
So our null hypothesis of points drawn binomially into a flat gene space is not anywhere near

the actual distribution of gene expression energies, even if we processed the data at a resolution
of one micron. So even if the distribution of dimensions for brain structures in gene space is
not very sharply peaked because of noise or anisotropy or underlying disconnected components,
the very fact that the probability is concentrated away from the critical dimension makes the
gene expression data extremely packed in gene space, with a number of independent degrees of
freedom much lower than the total number of genes in our data.
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5 Tables of correlations and fittings between cell-types and gene-

expression energies

index Cell type Heat map of correlations Heat map of weight

1 Purkinje Cells
 

 

0.1

0.2

0.3

0.4

Sagittal Coronal Axial  

 

0

0.2

0.4

0.6

Sagittal Coronal Axial

2 Pyramidal Neurons
 

 

0

0.05

0.1

0.15

Sagittal Coronal Axial  

 

0

1

2

x 10
−3

Sagittal Coronal Axial

3 Pyramidal Neurons
 

 

0

0.05

0.1

0.15

Sagittal Coronal Axial  

 

0

1

2

3

4
x 10

−3

Sagittal Coronal Axial

4 A9 Dopaminergic Neurons
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

0.05

0.1

0.15

Sagittal Coronal Axial

5 A10 Dopaminergic Neurons
 

 

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

0.05

0.1

0.15

Sagittal Coronal Axial

6 Pyramidal Neurons
 

 

0.05

0.1

0.15

0.2

Sagittal Coronal Axial  

 

0

0.1

0.2

0.3

0.4

Sagittal Coronal Axial

7 Pyramidal Neurons
 

 

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0.1

0.2

0.3

Sagittal Coronal Axial

8 Pyramidal Neurons
 

 

0

0.1

0.2

Sagittal Coronal Axial  

 

0

0.05

0.1

0.15

0.2

Sagittal Coronal Axial

9 Mixed Neurons
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

1

2

3

x 10
−3

Sagittal Coronal Axial

10 Motor Neurons, Midbrain Cholinergic Neurons
 

 

0

0.2

0.4

Sagittal Coronal Axial  

 

0

0.1

0.2

0.3

0.4

Sagittal Coronal Axial

11 Cholinergic Projection Neurons
 

 

0

0.1

0.2

Sagittal Coronal Axial  

 

5

10

15
x 10

−6

Sagittal Coronal Axial

12 Motor Neurons, Cholinergic Interneurons
 

 

0

0.2

0.4

Sagittal Coronal Axial  

 

0.2

0.4

0.6

Sagittal Coronal Axial
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index Cell type Heat map of correlations Heat map of weight

13 Cholinergic Neurons
 

 

0

0.1

0.2

Sagittal Coronal Axial  

 

0.05

0.1

0.15

Sagittal Coronal Axial

14 Interneurons
 

 

0.05

0.1

0.15

0.2

Sagittal Coronal Axial  

 

0.5

1

1.5

2

x 10
−3

Sagittal Coronal Axial

15 Drd1+ Medium Spiny Neurons
 

 

0

0.1

0.2

0.3

0.4

Sagittal Coronal Axial  

 

0.1

0.2

0.3

0.4

Sagittal Coronal Axial

16 Drd2+ Medium Spiny Neurons
 

 

0.1

0.2

0.3

0.4

0.5

Sagittal Coronal Axial  

 

0

0.2

0.4

0.6

0.8

Sagittal Coronal Axial

17 Golgi Cells
 

 

0.05

0.1

0.15

0.2

Sagittal Coronal Axial  

 

1

2

3

4

5
x 10

−3

Sagittal Coronal Axial

18 Unipolar Brush cells (some Bergman Glia)
 

 

0

0.1

0.2

Sagittal Coronal Axial  

 

0

0.1

0.2

Sagittal Coronal Axial

19 Stellate Basket Cells
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

0.1

0.2

0.3

Sagittal Coronal Axial

20 Granule Cells
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

0.5

1

Sagittal Coronal Axial

21 Mature Oligodendrocytes
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

0.1

0.2

0.3

Sagittal Coronal Axial

22 Mature Oligodendrocytes
 

 

0.05

0.1

0.15

0.2

0.25

Sagittal Coronal Axial  

 

0

0.1

0.2

Sagittal Coronal Axial

23 Mixed Oligodendrocytes
 

 

0.1

0.2

0.3

Sagittal Coronal Axial N/A

24 Mixed Oligodendrocytes
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

5

10

x 10
−4

Sagittal Coronal Axial



36

index Cell type Heat map of correlations Heat map of weight

25 Purkinje Cells
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

1

2

x 10
−4

Sagittal Coronal Axial

26 Neurons
 

 

0

0.05

0.1

Sagittal Coronal Axial  

 

0

0.005

0.01

Sagittal Coronal Axial

27 Bergman Glia
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0.01

0.02

0.03

0.04

0.05

Sagittal Coronal Axial

28 Astroglia
 

 

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

0.2

0.4

Sagittal Coronal Axial

29 Astroglia
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0.02
0.04
0.06
0.08
0.1
0.12

Sagittal Coronal Axial

30 Astrocytes
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

0.1

0.2

Sagittal Coronal Axial

31 Astrocytes
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0.1

0.2

0.3

0.4

0.5

Sagittal Coronal Axial

32 Astrocytes
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

0.1

0.2

0.3

0.4

Sagittal Coronal Axial

33 Mixed Neurons
 

 

0

0.05

0.1

0.15

0.2

Sagittal Coronal Axial  

 

0.05

0.1

0.15

Sagittal Coronal Axial

34 Mixed Neurons
 

 

0

0.05

0.1

0.15

Sagittal Coronal Axial  

 

0

0.05

0.1

0.15

0.2

Sagittal Coronal Axial

35 Mature Oligodendrocytes
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

0.1

0.2

0.3

Sagittal Coronal Axial

36 Oligodendrocytes
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0.02
0.04
0.06
0.08
0.1
0.12
0.14

Sagittal Coronal Axial
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index Cell type Heat map of correlations Heat map of weight

37 Oligodendrocyte Precursors
 

 

0

0.05

0.1

0.15

0.2

Sagittal Coronal Axial  

 

0.05

0.1

0.15

Sagittal Coronal Axial

38 Pyramidal Neurons, Callosally projecting, P3
 

 

0.05

0.1

0.15

Sagittal Coronal Axial  

 

0.1

0.2

0.3

Sagittal Coronal Axial

39 Pyramidal Neurons, Callosally projecting, P6
 

 

0

0.05

0.1

0.15

0.2

Sagittal Coronal Axial  

 

0.05

0.1

0.15

0.2

Sagittal Coronal Axial

40 Pyramidal Neurons, Callosally projecting, P14
 

 

0

0.1

0.2

0.3

0.4

Sagittal Coronal Axial  

 

0

0.5

1

Sagittal Coronal Axial

41 Pyramidal Neurons, Corticospinal, P3
 

 

0.05

0.1

0.15

Sagittal Coronal Axial  

 

0

0.005

0.01

Sagittal Coronal Axial

42 Pyramidal Neurons, Corticospinal, P6
 

 

0

0.05

0.1

0.15

0.2

Sagittal Coronal Axial  

 

0

0.05

0.1

Sagittal Coronal Axial

43 Pyramidal Neurons, Corticospinal, P14
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

0.1

0.2

Sagittal Coronal Axial

44 Pyramidal Neurons, Corticotectal, P14
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0.2

0.4

0.6

Sagittal Coronal Axial

45 Pyramidal Neurons
 

 

0.1

0.2

0.3

0.4

Sagittal Coronal Axial  

 

0

0.5

1

Sagittal Coronal Axial

46 Pyramidal Neurons
 

 

0.1

0.2

0.3

0.4

Sagittal Coronal Axial  

 

0.2

0.4

0.6

0.8

1

Sagittal Coronal Axial

47 Pyramidal Neurons
 

 

0

0.1

0.2

0.3

0.4

Sagittal Coronal Axial  

 

0.2

0.4

0.6

0.8

1

Sagittal Coronal Axial

48 Pyramidal Neurons
 

 

0

0.1

0.2

0.3

0.4

Sagittal Coronal Axial  

 

0.2

0.4

0.6

0.8

1

Sagittal Coronal Axial
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index Cell type Heat map of correlations Heat map of weight

49 Pyramidal Neurons
 

 

0

0.1

0.2

0.3

0.4

Sagittal Coronal Axial  

 

0

0.5

1

1.5

Sagittal Coronal Axial

50 Pyramidal Neurons
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0.05

0.1

0.15

0.2

Sagittal Coronal Axial

51 Tyrosine Hydroxylase Expressing
 

 

0.1

0.2

0.3

0.4

Sagittal Coronal Axial  

 

0

0.5

1

Sagittal Coronal Axial

52 Purkinje Cells
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

0.1

0.2

Sagittal Coronal Axial

53 Glutamatergic Neuron (not well defined)
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

0.2

0.4

Sagittal Coronal Axial

54 GABAergic Interneurons, VIP+
 

 

0.05

0.1

0.15

0.2

Sagittal Coronal Axial  

 

0

0.1

0.2

0.3

Sagittal Coronal Axial

55 GABAergic Interneurons, VIP+
 

 

0

0.05

0.1

0.15

Sagittal Coronal Axial  

 

0

0.2

0.4

0.6

Sagittal Coronal Axial

56 GABAergic Interneurons, SST+
 

 

0

0.05

0.1

0.15

0.2

Sagittal Coronal Axial  

 

0.1

0.2

0.3

0.4

Sagittal Coronal Axial

57 GABAergic Interneurons, SST+
 

 

0

0.1

0.2

Sagittal Coronal Axial  

 

0

0.1

0.2

0.3

Sagittal Coronal Axial

58 GABAergic Interneurons, PV+
 

 

0.05

0.1

0.15

0.2

Sagittal Coronal Axial  

 

0.01

0.02

0.03

0.04

Sagittal Coronal Axial

59 GABAergic Interneurons, PV+
 

 

0

0.05

0.1

0.15

0.2

Sagittal Coronal Axial  

 

0.1

0.2

0.3

Sagittal Coronal Axial

60 GABAergic Interneurons, PV+, P7
 

 

0

0.05

0.1

Sagittal Coronal Axial  

 

0.05

0.1

0.15

Sagittal Coronal Axial
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index Cell type Heat map of correlations Heat map of weight

61 GABAergic Interneurons, PV+, P10
 

 

0

0.05

0.1

0.15

Sagittal Coronal Axial  

 

0

0.05

0.1

Sagittal Coronal Axial

62 GABAergic Interneurons, PV+, P13-P15
 

 

0

0.1

0.2

Sagittal Coronal Axial  

 

0

0.005

0.01

0.015

0.02

Sagittal Coronal Axial

63 GABAergic Interneurons, PV+, P25
 

 

0

0.1

0.2

Sagittal Coronal Axial  

 

0

0.1

0.2

Sagittal Coronal Axial

64 GABAergic Interneurons, PV+
 

 

0

0.1

0.2

0.3

Sagittal Coronal Axial  

 

0

0.2

0.4

0.6

0.8

Sagittal Coronal Axial
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