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Abstract

Quantitative criteria are proposed to identify genes (and sets of genes) whose expression marks a specific
brain region (or a set of brain regions). Gene-expression energies, obtained for thousands of mouse
genes by numerization of in situ hybridization images in the Allen Gene Expression Atlas, are used to
test these methods in the mouse brain. Individual genes are ranked using integrals of their expression
energies across brain regions. The ranking is generalized to sets of genes and the problem of optimal
markers of a classical region receives a linear-algebraic solution. Moreover, the goodness of the fitting
of the expression profile of a gene to the profile of a brain region is closely related to the co-expression
of genes. The geometric interpretation of this fact leads to a quantitative criterion to detect markers of
pairs of brain regions. Local properties of the gene-expression profiles are also used to detect genes that
separate a given grain region from its environment.
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1 Introduction

Neuroanatomy is experiencing a renaissance under the influence of molecular biology and computational
methods. Brain regions can be delineated on stained sections of brain tissue. The set of boundaries
between brain regions defined on sections can be registered in order to obtain a three-dimensional at-
las. Conflicts exist between the various nomenclatures of brain regions. The present paper will consider
brain regions defined by classical anatomy as in the Allen Reference Atlas [1]. Gene-expression ener-
gies are positive quantities defined at every point in the brain (or rather at every cubic voxel of side
equal to the resolution, which is 200 microns in the present paper). With contemporary techniques of in
situ hybridization, such data were produced by the Allen Institute for thousands of genes in the mouse
brain [2, 3]. This makes the ISH data much higher-dimensional than classical neuroanatomy. Given an
anatomical atlas, it is therefore natural to ask if the patterns formed by the expression energy of single
genes and/or sets of genes can delineate and/or separate brain regions.

The structure of the paper is as follows. We will first formalize the notion of marker genes by defining
quantitative criteria that allow to rank individual genes by computing scores. The localization score
measures how much of the expression energy of a gene is contained in the region of interest. The fitting
score measures how close the expression-energy profile is to the characteristic function of the region.
The associated rankings of genes are computed. The genes ranked as the top few markers make sense
optically, but there are conflicts between the two rankings. The two criteria are then used to rank sets of
genes as markers of brain regions. The localization score gives rise to a generalized eigenvalue problem,
and the solutions can have much higher localization scores than individual genes, but they are difficult to
interpret because the sets of genes are very large and weighted by coefficients of alternating signs. The
fitting score of sets of genes gives rise to sparse sets of markers. These two scores are easy to compute
and to generalize, but they are both global in nature and they penalize genes that fit well the centermost
part of a brain region, have low expression around the region, and high expression in remote parts of the
brain. But such genes are interesting to detect, as they separate brain regions from their environment. A
local fitting criterion is proposed, using the eikonal function in order to formalize the situation described
above. Markers of pairs of regions are also investigated. They may be of special interest to evolution,
especially for pairs of regions that are not equally well-identified in other species.

2 Methods and models

2.1 Gene expression energies and classical neuroanatomy

The gene expression energies we analyzed were drawn from the Allen Gene Expression Atlas [2]. The
steps taken in an automatized pipeline to produce those data for each gene can be summarized as follows:
1. Colorimetric in situ hybridization;
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2. Automatic processing of the resulting images. Find tissue area eliminating artifacts, look for cell-
shaped objects of size ≃ 10− 30 microns to minimize artefacts;
3. Aggregation of the raw pixel data into a grid.

The mouse brain is partitioned into cubic voxels of side 200 microns (the whole brain consists of
≃ 50, 000 voxels). For every voxel v, the expression energy of the gene g is defined as a weighted sum of
the greyscale-value intensities I evaluated at the pixels p intersecting the voxel:

E(v, g) :=

∑

p∈v M(p)I(p)
∑

p∈v 1
,

where M(p) is a Boolean mask worked out at step 2 with value 1 if the pixel is expressing and 0 if it is
non-expressing.
Partitions of the brain (or of the left-hemisphere) of various degrees of coraseness in terms of classically-
defined neuroanatomical regions were also published in the Allen Reference Atlas ( [1], see also the white
paper http://mouse.brain-map.org/documentation/index.html for the definition of expression ener-
gies).

The present analysis is focused on a subset of the genes for which sagittal and coronal data are avail-
able from the Allen data. We computed the correlation coefficients between sagittal and coronal data
and selected the genes in the top-three quartiles of correlation (this makes for 3041 genes) for further
analysis. Of course the quantitative methods can be tested against larger datasets or different reference
atlases, but the genes we selected are already numerous enough to motivate the use of computational
methods to detect markers.

2.2 Individual genes: localization scores

Given a brain region of interest, say the cerebral cortex (call it ω), define the localization score of a gene
g as the fraction of the L2 norm of its expression energy contained in the region:

λω(g) =

∫

ω
E(v, g)2dv

∫

Ω
E(v, g)2dv

,

where Ω is the whole brain.

We computed the localization score of every gene in every region, for a given annotation of the brain.
These numbers induce a ranking of genes as markers of each region of the brain, the better markers
having higher localization scores. A perfect marker of ω according to this criterion would have a score
of 1. Going from a region to another region, one has to be careful when comparing the values of the
localization scores: as the volumes of the brain regions vary across the annotation, the localization score
is biased by the sizes of the region. We need a reference in order to estimate how good a localization
score is compared to what could be expected for a given brain region. We can use two references:
• Uniform reference. Consider an indifferent marker that would be expressed uniformly across the
brain. Its localization score in region ω is simply the relative volume of the region:

λunif
ω =

∫

ω
dv

∫

Ω
dv

=
Vol ω

Vol Ω
.

A gene is a better marker of ω than expected from a uniform expression if its score λω(g) is larger than
λunif
ω .
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• Average (data-driven) reference. A more realistic reference is given by the gene-expression profile
averaged across all the genes:

Eaverage(v) =
1

G

G
∑

g=1

E(v, g).

The corresponding localization score in a given region ω is:

λaverage
ω =

∫

ω
Eaverage(v)2dv

∫

Ω
Eaverage(v)2dv

.

A gene is a better marker of ω than expected from an average expression if its score λω(g) is larger than
λaverage
ω .

The values of these references, and the rankings of genes for ω taken from the list of 12 largest regions
in the left hemisphere, are presented in the results section and in appendices.

2.3 Individual genes: fitting scores

The criterion defined above does not take into account the repartition of the signal inside the region of
interest: the localization score for a given gene in region ω is invariant under a transformation that moves
the whole expression energy into a single voxel within ω, leaving all other voxels in ω with a zero signal.
It is therefore desirable to have another ranking of genes as markers, that compares the gene-expression
profiles to characteristic functions of brain regions.

This criterion compares the shape of the expression energy profile of a gene and the shape of the
region of interest. The fitting score φω(g) of gene g in region ω is defined as follows:

φω(g) = 1−
1

2

∫

ω

(

Ẽnorm(v, g)
2 − χω(v)

)2

dv =

∫

ω

Ẽnorm(v, g)χω(v)dv.

where χω is the characteristic function of ω normalized in the L2 sense, and Ẽnorm is a normalized version
of the expression energy (the columns of the matrix Ẽnorm are the columns of the matrix E, normalized
in the L2 sense):

Ẽnorm(v, g) =
E(v, g)

√

∫

Ω
E(v, g)2dv

, χω =
1ω

√

Vol(ω)
.

A perfect marker of the region ω would be a gene with fitting score equal to 1. The geometric interpreta-
tion of this coefficient is as the cosine of the angle between the unitary vectors Ẽg and χω in voxel space.
A perfect marker of region ω is a gene whose expression profile is colinear with the characteristic function
of region ω. Again, this error function can be evaluated for all the genes in the dataset, and induces a
ranking of genes (see the results section and appendices).

2.4 Sets of genes: optimal localization scores as a generalized eigenvalue

problem

Consider the problem of optimizing the localization score of a set of genes, whose collective expression
energy is taken to be a linear combination of the expression energies in our dataset:

Eα(v) :=

G
∑

g=1

αgE(v, g).
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where G = 3041 is the number of genes in our dataset. The previous analysis corresponded to vectors α
with only one non-zero coordinate.
The localization score in the brain region ω of a set of genes is naturally written as

λω(α) =

∫

ω

(

∑

g αgE(v, g)
)2

dv

∫

Ω

(

∑

g αgE(v, g)
)2

dv
=

αtJωα

αtJΩα
,

where the quadratic forms Jω and JΩ have coefficients given by scalar products of gene expression profiles
across ω and the whole brain:

Jω
g,h =

∫

ω

E(v, g)E(v, h)dv, JΩ
g,h =

∫

Ω

E(v, g)E(v, h)dv.

We can fix an overall dilation invariance by fixing the value of the quadratic form in the denominator,
and maximizing the localization factor boils down to a maximization of one quadratic form under a
quadratic constraint.

maxα∈RGλω(α) = maxα∈RG,αtJΩα=1α
tJωα.

Introducing the Lagrange multiplier χ associated to the constraint, we are led to maximizing the following
quantity under α:

Lω,σ(α) = αtJωα− σ(αtJΩα− 1).

The stationarity condition reads as a generalized eigenvalue problem,

Jωα = σJΩα,

and the Lagrange multiplier is the largest generalized eigenvalue. Maximizing the generalized localization
score is therefore equivalent to finding the largest generalized eigenvalue corresponding to the quadratic
forms Jω and JΩ.

Of course the alternating signs of the coefficients make these sets difficult to interpret. But these
algebraic sums provide absolute bests that one could not beat by taking combinations of genes with
positive coefficients. The negative coefficients allow to offset the contribution of some genes outside the
region of interest.

2.5 Sets of genes: optimized fitting scores for sparse sets of genes

As the optimal set of of markers is very hard to interpret due to alternating signs of components, we
can take advantage of the simple quadratic structure of the error function used to compute fitting scores
in order to obtain sets of markers with positive coefficients. Optimization of a quadratic form under
positivity constraint is all we need to compute the optimal sets of markers. Let us write down the fitting
error function for a set of genes and expand it in powers of the coefficients:

ErrFitω(c) =

∫

Ω

(

∑

g

cgEg(v)− χω(v)

)2

dv (1)

=
∑

g,h

cgchJgh − 2
∑

g

cgfg + 1, (2)
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where ω and Ω respectively denote the brain region of interest and the whole brain. The problem of finding
thje best-fitting set of genes therefore boils down to the following quadratic programming problem under
positivity constraints:

copt = argminc∈RG

+
ErrFitω(c) = argminc∈RG

+

(

1

2
ctJc− f tc

)

,

with the following notations for the quadratic form J and the vector f :

Jgh =

∫

Ω

E(v, g)E(v, h)dv,

fg =

∫

Ω

E(v, g)χω(v)dv.

The set of genes with strictly positive coefficients corresponds to the set of inactive constraints. It hap-
pens to be much sparser than the vector encoding the generalized eigenvector for the cortex localization
problem (see figure (11)).

However, lots of secondary minima are guaranteed to exist when larger and larger sets of genes are
taken into account, and coefficients c of very different norms can be hard to use to construct markers out
of digitized data, as the absolute intensity of genes is quite heterogeneous, and a gene with low absolute
intensity can happen to be weighted by a large coefficient, thus amplifying noise rather than contributing
to a realistic marker.
But we can take advantage of the expression of the fitting score in terms of the scalar product between
the gene expression profile and the characteristic function of the brain region:

ErrFitω(c) = 2

(

1−

∫

Ω

∑

g

cgEg(v)χω(v)dv

)

,

copt = argmaxc∈{0,1}G

∫

Ω

∑

g

cgEg(v)χω(v)dv.

Another approach to the optimization problem consists in looking for sets of genes such that the co-
expression between the sum of the expression energies of those genes and the characteristic function is
larger than that of any individual genes. This can happen, for instance if the characteristic function in
voxel space equals the sum of two genes, whose expression energies are two independent vectors in voxel
space: the cosine of the angle between any of these two vectors with the characteristic function is strictly
smaller than one, but the cosine of the angle between the sum and the characteristic function equals one.

This is a finite problem, even though the number of subsets is extremely large. We impose a maximum
Gmax on the number of genes we want to accept, and adopt a bootstrapping approach: we repeatedly
draw random subsets of size Gmax from our set of genes, and keep the subsets that beat the record fitting
score (this record is initialized at the highest fitting score for an individual gene).

2.6 Separation properties

The methods described so far are global in nature in the sense that the error functions involve sums of
expression energies over the whole brain. This corresponds to evaluating how a brain region is singled out
with respect to the rest of the brain. No attention is paid to the position of the voxels that contribute to
the error functions: a voxel with high expression in the cerebellum will penalize a gene as a merker of the
striatum, no more but but no less than if it was in the ventral pallidum. However it may be interesting
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to detect genes that separate some brain region from its environment, without necessarily highlighting
these brain regions in an exclusive way. The description of such a situation implies a more local error
function.

However, when looking at the expression profile of a gene in the neighbourhood of a particular brain
regions, one can sometimes notice that the region is well-separated from the rest of the brain, because the
expression is high in voxels close to the center of the region, and locally declines around the center. At
large distances from the center, the details of the gene-expression profile matter much less, as long as this
pattern of decreasing expression from center to boundary is detected. Such genes have good separation
properties.

The separation property we described above corresponds to the situation where the gene-expression
pattern looks like a plateau around the center of the region ω, and gradually fades away when the
boundary of the region is crossed. Of course the notion of center of a brain region needs to be defined
more precisely. So does the notion of distance to a brain region. The eikonal distance to the boundary
of the region is a geometric quantity that is well adapted to this problem, as it measures the minimal
distance traveled by light emitted from the boundary of the region [5]. In order to control how far from
the center of a region a voxel is, one can therefore solve the eikonal equation with boundary conditions
on the boundary of the region:

|∇hω| = 1,

hω|∂ω = 0.

The eikonal distance has been used used to place injections in the brain in a way that preserves the bound-
aries of regions defined by the Allen Atlas [6,7,9]. It is also a useful tool to evaluate the misalignment of
skulls and skull variability in stereotactic protocols [8]. The equation is solved using level-set methods [4].

We define a model function ξω that detects the most central part of the region ω, using the eikonal
function as a measure of centrality. The function is positive It is a plateau in the central part of ω, and
fades away across voxels that are more peripheric to ω. More specifically, let us define the eikonal radius
ρω of the region ω as the maximum value of the eikonal function inside the region:

ρω := maxv∈ωhω(v).

Let us first apply a mask to the eikonal function, with negative signs outside the region and positive signs
inside:

hsigned
ω (v) := hω(v) × (1(v ∈ ω)− 1(v /∈ ω)) .

Our model function ξω equals one around the center of the region, where hsigned
ω is positive and larger

than a specified fraction of the eikonal radius, given by a certain fraction ι of the eikonal radius. It equals
zero where hsigned

ω is negative and larger in absolute value than another specified fraction of the eikonal ra-
dius. The values are interpolated between these two regions according to the values of the eikonal function.

Having defined this local characteristic function ξω around the brain region of interest, one can treat
the support of ξω as we treated the whole brain Ω in the previous computations, and adapt the various
quantitative criteria by making the following substitution:

Global←→ Local,

Ω = whole brain←→ Ω = Suppξω,

χω ←→ ξω,
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E(v, g)←→ E(v, g)1(v ∈ Suppξω).

This substitution expresses the fact that the expression energy outside the support of the local charac-
teristic function of ω can be very singular of very intense without affecting the separation properties.

2.7 Co-markers for pairs of brain regions

The various quantitative criteria can be repeated for reunions of brain regions. For instance one can look
for a marker of the two brain regions ωA and ωB. Ideally one would like the expression profile of a marker
gene to look like the sum of the two characteristic functions of regions A and B, normalized in the L2

sense1. But it may be interesting to allow the two characteristic functions to be weighted by coefficients,
in order to detect genes whose expression looks like two bumps, one centered around A, one centered
around B, with possibly different intensities.

Consider the two characteristic functions χA and χB, normalized in the L2 sense, and a linear com-
bination thereof with positive coefficients, normalized in the same way. The coefficients of the linear
coimbination can be interpreted geometrically in terms of a single parameter, which is an angle between
0 and π/2. Let us denote it by θ:

∫

Ω

χA(v)
2dv = 1, SuppχA = ωA,

∫

Ω

χB(v)
2dv = 1, SuppχB = ωB,

χ := αχA + βχB, α ≥ 0, β ≥ 0,

∫

Ω

χ2 = α2 + β2 = 1,

α = cos θ, β = sin θ, 0 ≤ θ ≤
π

2
,

where we have used the fact that the functions χA and χB are orthogonal, because they have disjoint
supporty. Geometrically, the function χ we are trying to fit is the sum of two unit orthogonal vectors
in voxel space, that sits on the intersection of the unit circle and the first quadrant in the two-plane
spanned by these two vectors. We can compute the fitting error for each gene at fixed angle θ, but it can
be optimized wrt the angle:

ErrFitA,B(g, θ) =

∫

Ω

(E(v, g)− (cos θχA(v) + sin θχB(v)))
2
dv (3)

= 2

(

1− cos θ

∫

Ω

E(v, g)χA(v)dv − sin θ

∫

Ω

E(v, g)χB(v)dv

)

. (4)

This optimization step corresponds to the fact that the angle between a fixed vector in voxel space
(corresponding to a gene), can have a lower angle with a two-plane than with any of the vectors of an
orthonormal basis of the two-plane. The optimal angle θ∗ is given by the equation:

∂

∂θ
ErrFitA,B(g, θ

∗) = 0,

i.e. − sin θ∗
∫

Ω

E(v, g)χA(v)dv + cos θ∗
∫

Ω

E(v, g)χB(v)dv = 0,

1One can as well look for genes that separate regions A and B from their respective environments, by considering the

local characteristice functions worked out using the eikonal functions with boundary conditions at the boundaries of A and

B, rather than the characteristic functions.
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i.e. θ∗ = arctan

(

∫

Ω
E(v, g)χB(v)

∫

Ω
E(v, g)χA(v)

)

.

The value of the error function at the optimal angle (meaning the linear combination of the two
characteristic function with positive coefficients that is best fit by gene g) is then evaluated in terms of
the scalar product between the gene expression and the two characteristic function χA and χB :

cos θ∗ =

∫

Ω
E(v, g)χA(v)dv

√

(∫

Ω
E(v, g)χA(v)dv

)2
+
(∫

Ω
E(v, g)χB(v)dv

)2
,

sin θ∗ =

∫

Ω
E(v, g)χB(v)dv

√

(∫

Ω
E(v, g)χA(v)dv

)2
+
(∫

Ω
E(v, g)χB(v)dv

)2
,

so that

φA,B(g, θ) = 1−
1

2
ErrFitA,B(g, θ

∗) =

√

(
∫

Ω

E(v, g)χA(v)dv

)2

+

(
∫

Ω

E(v, g)χB(v)dv

)2

.

This score is comprised between 0 and 1, as the fitting score evaluated for the fitting of a single region by
a gene. So, given a non-hierarchical atlas A, one can find better fittings for pairs of regions in the atlas
than for single regions.
These scores can be computed for all pairs of regions in a given non-hierarchical atlas. Of course there is
no reason why the top co-marker of regions A and B should be especially more impressive than the best
marker of A or B. By the look of the expressions of the coefficients cos θ∗ and sin θ∗, it is clear that in the
case where

∫

Ω
E(v, g)χB(v)dv is much smaller than

∫

Ω
E(v, g)χA(v)dv, its score as a co-marker of regions

A and B is slightly larger than its score as a marker of A, but most of the expression will of course be
in the A. The value of tan θ∗ controls the balance between the expression energies in the two regions.
The closer it is to 1, the better co-marker we have. Asking for a value of exactly one would amount to
trying to fit the sum of the characteristic functions of regions A and B without Once the genes have been
ranked as co-markers of A and B, one can filter out the genes for which tan θ∗ is out of a tolerance zone
around 1. This is a balance constraint. The genes at the top of the ranking that do not satisfy it are
rather markers of the region (A or B) that has the highest coefficient. The genes that satisfy it are the
co-markers we are after, and they are penalized by the localization and fitting criteria, both for region A
and for region B:

Balance constraintτ ≡ | tan θ
∗ − 1| ≤ τ.

3 Results and discussion

3.1 Rankings of genes

A plot of the sorted localization scores of individual genes is shown on figure 1 for the cerebral cortex, as
well as a table of the best few marker genes. Tables for all the other brain regions in the coarsest Allen
Reference Atlas are included in an appendix. The maximum-intensity projections of the best marker of
the cerebral cortex in the left hemisphere, and compared to those of the characteristic function of the
cerebral cortex are shown on figure 2. The sorted fitting scores and the list of top genes for the cerebral
cortex are shown on figure (3). A coronal section of the ISH data for Satb2 is shown on figure (5). The
cerebral cortex indeed appears strikingly on the section. However, Satb2 is not the absolute best gene
according to the localization criterion, which is Pak7, but it is still among the best 10 genes by localization
scores. A coronal of the ISH data for Pak7 is shown on figure (6). Maximal-intensity projections of the
registered 3D data on figures (2) and (4) show indeed that the expression energy of Satb2 is more evenly
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Sorted localization scores for
Cerebral cortex

uniform reference in green, average reference in blue

Cerebral cortex
Pak7 0.97
Myl4 0.97
Sytl2 0.97
Tnnc1 0.96
Gtdc1 0.96
2310026E23Rik 0.95
Dact2 0.95
Satb2 0.94
Ier5 0.93
D830014K04Rik* 0.93
Baalc 0.92
1810023C24Rik* 0.92
Ddit4l 0.92
LOC433228 0.91
Rorb 0.91
Gnb4 0.9
A930001M12Rik 0.89
LOC433698 0.89
E430002G05Rik 0.89
TC1460681 0.89
Tox 0.89

Figure 1. Plot of sorted localization scores in the cerebral cortex (left), with the list of the first few
genes with highest localization scores in the cerebral cortex (right).
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Figure 2. Heat map of the maximum-intensity projection of Pak7 (left), the best marker of the cortex
in the sense of localization scores, compared to the characterictic function of the cerebral cortex (right).
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Figure 3. Plot of sorted fitting scores in the cerebral cortex (left), with the list of the first few genes
with highest fitting scores in the cerebral cortex (right).
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Figure 4. Heat map of the maximum-intensity projection of Satb2 (left), best marker of the cortex in
the sense of fitting scores, compared to the characterictic function of the cerebral cortex (right).
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Figure 5. A coronal section of the ISH of Satb2. Satb2 has the highest localization score in the
cerebral cortex. The concentration of blue precipitate in the region is manifest.

distributed across cortex than the one on Pak7, which makes Satb2 closer to the characteristic function
of the cerebral cortex.

3.2 Rankings of regions

For each region ω, we can count the number of markers as the number of genes whose localization score
in the region is larger than the fraction of the brain occupied by the region, as defined by the uniform of
average references. The results are illustrated on figure (7).
Moreover, the two reference values defined above using either the volumes of the brain regions or the

average of the expression of all genes in the dataset show important distorsions, as can be seen from
the table (18). In particular, the gene-expression profiles are biased towards the cerebral cortex and the
hippocampal region, as the value of λaverage

cerebralcortex is higher than 47 percent, while the value of λuniform
cerebralcortex

is lower than 30 percent. This distorsion is manifest of the maximal-intensity projection of the sum of
all expression-energy profiles across the dataset, shown on figure (8).

The highest scores across all genes and brain regions are for the cerebellum, both by localization
and by fitting. This comparison across all regions and genes makes more sense for fitting scores than
for localization scores, as the fitting scores is not biased by the volume of the region. Both genes make
good sense optically as markers of the cerebellum. The best-localized gene is Gabra6, at 98 percent
localization score (see figure (9)). It is the 73rd best-fitted gene to the cerebellum. The best-fitted
gene is 3110001A13Rik, at 89 percent fitting score (see figure (10)). It is the 2nd best-fitted gene to the
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Figure 6. A coronal section of the ISH of Pak7. Pak7 has the highest fitting score in the cerebral
cortex. The concentration of blue precipitate in the region is manifest.

Region name Nb of genes above average ref. Nb of genes above volume ref.
Basic cell groups and regions 3041 3041
Medulla 1418 920
Pons 1315 600
Cerebellum 1230 675
Olfactory areas 1210 1241
Thalamus 1144 614
Midbrain 1126 381
Hippocampal region 1055 1544
Pallidum 1038 276
Hypothalamus 1007 456
Retrohippocampal region 998 1626
Striatum 855 479
Cerebral cortex 782 1791

Figure 7. Ranking of regions by decreasing number of genes with localization score above average
reference.
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Figure 8. Heat map of the maximal-intensity projections of the sum of the expression energies across
all genes in the dataset. The cerebral cortex and the hippocampal region are clearly visible.
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Figure 9. Absolute best localization across all genes and regions. Heat map of the
maximal-intensity projections of the expression energy of Gabra6.

cerebellum. The distorsion is much larger for Gabra6 because its expression profile shows inhomogeneities
inside the cerebellum. For 3110001A13Rik, the localization is optically extremely good.

3.3 Sets of genes

Sorting the coefficients of the generalized eigenvector associated to the largest generalized eigenvalue for
the cerebral cortex yields a profile (illustrated in figure (11) ), which has coefficients of both signs (as
above ω is chosen to be the cerebral cortex), with a localization score of 0.979 (higher than the optimum
for single genes, as it should be).
It is interesting to note that in some regions the gene-expression profile correponding to the generalized
eigenvector looks much more coherent as a marker than the best-localized gene. More examples can be
found in figure (22). Taking combinations of genes therefore enables one to get closer to the characteirstic
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Figure 10. Absolute best fitting across all genes and regions. Heat map of the
maximal-intensity projections of the expression energy of 3110001A13Rik.
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Figure 11. Optimal set of marker genes in the sense of generalized localization scores. Sorted
components (left), heat map of the maximal-intensity projections of the expression energies of the genes
weighted by these coefficients (right).

function of the regions. It is therefore tempting to go back to the fitting scores and to adapt it to sets
of genes, with positivity constraints that would produce sparser sets of genes. Midbrain is a brain region
for which the generalized eigenvector gives a much better visual impression of the whole structure than
the best-localized gene. The generalized fitting score, in the case of midbrain, gets rid of much of the
signal outside the region but does not achieve much homogeneity inside. Generally speaking, and not too
surprisingly, the sparse sets of genes are much less impressive markers than the generalized eigenvectors,
as they rely on much fewer degrees of freedom for optimization. On the other hand, the best individual
marker returned by the global fitting criterion is much more convincing than the one returned by the
localization score.

3.4 Good separators

For every region in the coarsest annotation of the left hemisphere, we ran an algorithm with a range
of values of the internal an external paramater for the model function and for the local mask. As the
boundary of the striatum does not have too much overlap with the boundary of the brain, it is easier to
visualize than the cerebral cortex in a maximum-intensity projection and we chose it for illustration (see
figure (24) for the first 10 genes returned by the algorithm, none of which has better rank than 218 for
localization and 70).

Since the maximum-intensity projection can hide some well-sepearated regions, it is not as reliable
as sections to evaluate separation properties, but still it is instructive to see how this local criterion
can return genes that score low for localization and/or fitting but still have a distinct pattern around
striatum. Slc32a1 has a clear but inhomogeneous pattern in striatum, and a high expression in the main
olfactory bulb. Both features penalize the global fitting score, but only the second one penalizes the
global localization score, which is consistent with the fitting rank being much lower than the localization
rank. Ptpn5 exhibits a less contrasted but more homogeneous pattern in the striatum (it rather follows
the caudoputamen than the striatum), but the expression in also quite high in the cerebral cortex.
Caudoputamen is still striking and the gene was rescued by the local algorithm, even though the expression
in the cerebral cortex severely penalizes Ptpn5 both for glocal localization (according to which it is ranked
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Fitting rank Fitting scores, score of set 0.89656
Satb2 1 0.89
Ephb6 3 0.84
Igfbp6 18 0.81
Map3k5 38 0.79
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Figure 12. Optimal set of marker genes in the sense of generalized fitting scores. Heat map of the
maximal-intensity projections of the (normalized) sum of the expression energies of the genes.
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Figure 13. Best separator of striatum. Heat map of the maximal-intensity projection of Slc32a1.

2056) and global fitting (according to which it is ranked 634). It would be interesting, when repeating
the experiment for the same gene, either in the same species or in different species, to see if the local
separation property is as the global properties measured by the localization and fitting scores. A sagittal
section drawn from the ISH data (figure (15)) confirms that Ptpn5 is highly expressed in the striatum,
but also in the cortex, albeit to a lesser extent. The separation between cerebral cortex and striatum
is clearly visible on the section. This is the separation property that our local criterion is supposed to
detect.

3.5 Good co-markers

A table of the best few co-markers for striatum and cerebellum (see figure(26)) can be found in an ap-
pendix. It was obtained at a value τ = 0.5 of the τ -balance constraint defined above. This value is
somewhat arbitrary and and by the look of the tangent coefficients and fitting scores for the genes, there
is no monitonicity of the value of the tangent wrt the value of the score. The user of the software can
input a higher value of τ in order to explore genes with a higher tolerance on the relative fittings. We do
not have a natural optimization criterion to propose to choose τ and therefore leave it as a parameter. It
can be noted, however, than the τ -balance constraint at τ = 0.5 for pallidum and cerebellum returns an
empty set of markers. Thus, fixing the level of the balance constraint and counting the number of marker
genes returned by the algorithm suggests an indication on the degree of solidarity between pairs of regions.

The best two co-markers of the cerebellum and the striatum are Id4 (see figure (16)) and D330017J20Rik
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Figure 14. Third best separator of striatum. Heat map of the maximal-intensity projection of
Ptpn5.

Figure 15. Ptpn5: ISH on a sagittal section for Ptpn5. Ptpn5 is detected as the third best local
marker of striatum. Digitized expression energies suggested that this gene is also highly expressed in
the cerebral cortex. The two structures are indeed visible and separable.
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Figure 16. Best co-marker of striatum and cerebellum. Heat map of the maximal-intensity
projection of Id4.
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Figure 17. Second Best co-marker of striatum and cerebellum. Heat map of the
maximal-intensity projection of D330017J20Rik.

(see figure (17)). The first one has a value of tangent very close to one, the second has a value of tan-
gent close t0 0.86. Id4 has indeed a more homogeneous expression across striatum and cerebellum, and
D330017J20Rik has a pattern of higher expression inside cerebellum, hence a tangent more remote from
one, but the two genes show a clear pattern for the pair striatum-cerebellum.
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4 Appendix: Reference values of the localization scores for the

coarsest atlas of the left hemisphere

Uniform reference Average reference Region profile
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Figure 18. Values of the uniform and average reference scores for each of the 12 main regions of the
left hemisphere.



21

5 Appendix: Best-localized genes and characteristic functions

for the 12 main regions of the left hemisphere

Brain Region Best marker Best-localized gene Region profile
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Figure 19. The best few genes by localization for each of the 12 main regions of the left hemisphere.
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6 Appendix: Best-fitted genes and characteristic functions for

the 12 main regions of the left hemisphere

Brain region Best marker Heat map of best marker Region profile
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Figure 20. The best few genes by fitting score for each of the 12 main regions of the left hemisphere.
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7 Appendix: Best sets of genes for localization in the twelve

main regions of the left hemisphere

Brain region Heat map of best generalized marker Region profile
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Figure 21. Expression profiles of the sets of genes that maximize the localization score for each of the
12 main regions of the left hemisphere.
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8 Appendix: Best sets of genes for fitting in the twelve main

regions of the left hemisphere

Brain region Heat map of best marker Region profile
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Figure 22. Expression profiles of the sums of genes that maximize the fitting score for each of the 12
main regions of the left hemisphere.
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9 Appendix: Best separators
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Figure 23. Characteristic function of the reunion of the striatum and the cerebellum.
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Figure 24. The best few separators of the striatum, with their rankings according to the global fitting
and localization criteria. It turns out that the genes were rescued from low ranks by the local
algorithms, and most of them clearly show the profile of the striatum.
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10 Appendix: Best co-markers
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Figure 25. Characteristic function of the reunion of the striatum and the cerebellum.
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Figure 26. The best few co-markers of striatum and cerebellum.
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