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Abstract

We study memoryless, discrete time, matrix channels with additive white Gaussian
noise and input power constraints of the form Yi =

∑

jHijXj + Zi, where Yi ,Xj and Zi

are complex, i = 1..m, j = 1..n, and H is a complex m × n matrix with some degree of
randomness in its entries. The additive Gaussian noise vector is assumed to have uncor-
related entries. Let H be a full matrix (non-sparse) with pairwise correlations between
matrix entries of the form E[HikH

∗
jl] =

1
n
CijDkl, where C,D are positive definite Hermi-

tian matrices. Simplicities arise in the limit of large matrix sizes (the so called large-n
limit) which allow us to obtain several exact expressions relating to the channel capacity.
We study the probability distribution of the quantity f(H) = log det(1 + PH†SH). S is
non-negative definite and hermitian, with TrS = n. Note that the expectation E[f(H)],
maximised over S, gives the capacity of the above channel with an input power constraint
in the case H is known at the receiver but not at the transmitter. For arbitrary C,D exact
expressions are obtained for the expectation and variance of f(H) in the large matrix size
limit. For C = D = I, where I is the identity matrix, expressions are in addition obtained
for the full moment generating function for arbitrary (finite) matrix size in the large signal
to noise limit. Finally, we obtain the channel capacity where the channel matrix is partly
known and partly unknown and of the form αI + βH, α, β being known constants and
entries of H i.i.d. Gaussian with variance 1/n. Channels of the form described above are
of interest for wireless transmission with multiple antennae and receivers.
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1 Introduction

Channels with multiplicative noise are in general difficult to treat and not many analytical
results are known for the channel capacity and optimal input distributions. We borrow
techniques from random matrix theory [1] and associated saddle point integration meth-
ods in the large matrix size limit to obtain several analytical results for the memoryless
discrete-time matrix channel with additive Gaussian noise. Apart from the intrinsic in-
terest in multiplicative noise, these results are relevant to the study of wireless channels
with multiple antennae and/or receivers [2, 3, 4].

The channel input-output relationship is defined as

Yi =
n
∑

j=1

HijXj + Zi (1)

where all the quantities are in general complex, and i = 1...m, j = 1...n. Zi are Gaussian
distributed with zero mean and a unity covariance matrix, E[ZiZ

∗
j ] = δij . Note that this

fixes the units for measuring signal power. For most of the paper we employ an overall
power constraint

n
∑

j=1

E[|Xj |2] = nP (2)

except in one case where we are able to employ an amplitude (or peak power) constraint.
The entries of the matrix Hij are assumed to be chosen from a zero mean Gaussian
distribution with covariance matrix

E[HikH
∗
jl] =

1

n
CijDkl (3)

Here C,D are positive definite Hermitian matrices. Note that although we assume
the distribution of H to be Gaussian, this assumption can be somewhat relaxed without
substantially affecting some of the large n results. This kind of universality is expected
from known results in random matrix theory [1]. However, for simplicity we do not enter
into the related arguments.

We consider the case where C,D are arbitrary positive definite hermitian matrices,
as well as the special case where C,D are identity matrices. In either case, one needs to
consider the scale of H. Since H multiplies X, we absorb the scale of H into P . The
formulae derived in the paper can be converted into more explicit ones exhibiting the scale
of H (say h) and the noise variance σ by the simple substitution P → Ph2/σ2.

A note about our choice of convention regarding scaling with n: We chose to scale
the elements of the matrix Hij to be order 1/

√
n and let each signal element Xj be order

1. In the multi-antenna wireless literature, it is common to do the scaling the other way
round. In these papers [2, 3], Xj ’s are scaled as 1/

√
n but keeping Hij’s are kept order 1

so that the average total power is P . Our choice of convention is motivated by the fact
that we want to treat the systems with channel known at receiver and those with partially
unknown channel within the same framework. For reasons that will become clear later, it
is convenient for us to keep the scaling of the input space and the output space to be the
same, i. e. to keep Yi, Xj and Zi all to be order 1 and to scale down Hij to be order 1/

√
n.
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The advantage of this is that the singular values of H happens to be order 1. For the
results in the last section, it is convenient that the fluctuating part of the matrix scales
this way, in order to have a meaningful result . The final answer for capacity is obviously
the same in either convention. While using our results in the context of multiantenna
wireless, we just have to remember that the total power, in physical units, is P , and not
nP .

In this paper, we discuss two classes of problems. The first class consists of cases
where H is known to the receiver but not to the transmitter.H being known to neither
corresponds to problems of the second class. The case where H is known to both could
be solved by a combination of random matrix techniques used in this paper and the
water-filling solution [2].

As for the first class of problems, we need to maximise the mutual information I(X, (H,Y ))
over the probability distribution of X subject to the power constraint. Following Telatar’s
argument [2], one can show that it is enough to maximise over Gaussian distributions of
X, with E(X) = 0. Let E(X∗

i Xj) = PSij. TrS = n so that the power constraint is
satisfied. S has to be chosen so that E(I(X,Y |H)), i. e. mutual information of X,Y for
given H, averaged over different realisations of H, is maximum.

Most of the paper deals with the statistical properties of the quantity

f(H) = log det(1 + PH†SH) =

rank(H)
∑

i=1

log(1 + Pµi) (4)

where µi are the squares of the singular values of the matrix S
1
2H.

The conditions for optimisation over S are as follows: Let

E(H(1 + PH†SH)−1H†) = Λ (5)

Λ is a nonnegative definite matrix. Then

• S and Λ are simultaneously diagonalizable.

• In the simultaneously diagonalizing basis, let the diagonal elements Sii = si and
Λii = λi. Then for all i, such that si > 0, λi = λ.

• For i such that si = 0, λi < λ.

The derivation of these conditions are provided in Appendix A.

2 Channel known at the receiver: arbitrary ma-

trix size, uncorrelated entries

We start with the simplest case, in which the matrix entries are i.i.d. Gaussian, corre-
sponding to C = I,D = I. In this case, one obtains S = I for the capacity achieving
distribution [2]. In this case, the joint probability density of the singular values of H is
explicitly known to be given by [1]

P (µ1, . . . , µmin(m,n)) =
1

Z
∏

i<j

(µi − µj)
2
∏

i

µ
|m−n|
i e−n

∑

i
µi (6)
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where the normalisation constant can be obtained as a consequence of the Selberg integral
formula ([1], Pg.354, Eq.17.6.5)

Z =

min(n,m)
∏

j=1

Γ(j)Γ(|m − n|+ j) (7)

In the following, we assume (without loss of generality) min(n,m) = n.
This form has been utilised before to obtain the expectation of f(H) in terms of inte-

grals over Laguerre polynomials [2]. However, it is also fairly straightforward to obtain the
full moment generating function (and hence the probability density) of f(H), particularly
at large P . Consider the moment generating function F (α) of the random variable f(H),
given by

F (α) = E[exp(αf(H))] = E[
∏

i

(1 + Pµi)
α] (8)

2.1 Large P limit

In the limit of large P , the expectation can be simply computed as an application of the
integral formula stated above. Note that the large P limit is obtained when P is much
larger than the inverse of the typical smallest eigenvalue. For the case m = n, this would
require that P >> n, whereas if m/n = β > 1, then we require P >> (

√
β−1)−1. Taking

the large P limit, we obtain

F (α) ≈ (P )αnE[
∏

i

µαi ] (9)

E[
∏

i

µαi ] =
n
∏

j=1

Γ(α+ |m− n|+ j)

Γ(|m− n|+ j)
(10)

In this limit, it follows that

E[f(H)] ≈ n log(P ) +
n
∑

j=1

ψ(m− n+ j)− n log(n) (11)

V [f(H)] ≈
n
∑

j=1

ψ′(|m− n|+ j) (12)

where ψ(j) = Γ′(j)/Γ(j). Setting m/n = β and for large n, we get

E[f(H)] ≈ n log(βP/e) (13)

For β > 1 and large n,

V [f(H)] ≈ log(
m

m− n
) = log(

β

β − 1
) (14)

For β = 1 and large m(= n),

V [f(H)] ≈ log(m) + 1 + γ (15)
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where γ is the Euler-Mascheroni constant.
Laplace transforming the moment generating function, one obtains the probability

density of C = f(H). In the large P limit, the probability density is therefore given by
p(C − n log(P/e)) where p(x) is given by

p(x) =
1

2π

∫ ∞

−∞
dαe−iαn(log(n)−1)−ixα

n
∏

j=1

Γ(iα+ |m− n|+ j)

Γ(|m− n|+ j)
(16)

An example of p(x) is presented in Fig.1 for m = n = 4.

2.2 Arbitrary P

For arbitrary P , F (α) does not simplify as above, but can nevertheless be written in terms
of an n× n determinant as follows:

F (α) =
detM(α)

detM(0)
(17)

where the entries of the complex matrix M are given by (i, j = 1...n)

Mij(α) =

∫ ∞

0
dµ(1 + Pµ)αµi+j+|m−n|−2e−nµ (18)

To obtain this expression for F (α), one has to simply express the quantity
∏

i 6=j(µi−µj)
as a Vandermonde determinant and perform the integrals in the resultant sum. The in-
tegral can be expressed in terms of a Whittaker function (related to degenerate Hyper-
geometric functions), and can be evaluated rapidly, so that for small values of m,n this
provides a reasonable procedure for numerical evaluation of the probability distribution
of f(H).

3 Channel known at the receiver: large matrix

size, correlated entries.

For the more general case of correlations between matrix entries as in Eq.3, the matrix
ensemble is no longer invariant under rotations of H, so that the eigenvalue distribution
used in the earlier section is no longer valid. However, by using saddle point integration
[5], it is still possible to compute the expectation and variance of f(H) in the limit of large
matrix sizes. In this section, we simply state the results for the expectation and variance,
and explore the consequences of the formulae obtained. The saddle point method used to
obtain these results was used in an earlier paper to obtain the singular value density of
random matrices [5] and is described in Appendix B .

The expectation and variance of f(H) are given in terms of the following equations:

E[f(H)] =
m
∑

i=1

log(w + ξir) +
n
∑

j=1

log(w + ηjq)− nqr − (m+ n) log(w) (19)

V [f(H)] = −2 log |1− g(r, q)| (20)
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where

w2 =
1

P
(21)

g(r, q) = [
1

n

n
∑

j=1

(
ηj

w + ηjq
)2][

1

n

m
∑

j=1

(
ξj

w + ξjr
)2] (22)

In the above equations, ξ, η denote the eigenvalues of the matrices C̃ = S
1
2CS

1
2 ,D

respectively. The numbers r, q are determined by the equations

r =
1

n

n
∑

j=1

ηj
w + ηjq

(23)

q =
1

n

m
∑

j=1

ξj
w + ξjr

(24)

These equations are expected to be valid in the limit of largem,n assuming that a sufficient
number of the eigenvalues ξ, η remain nonzero. These equations could be used to design
optimal multi-antenna systems [6].

4 Calculating Capacity

In this section we provide the step by step procedure for calculating capacity using the
results from the previous sections. We found that the optimal covariance matrix S and the
matrix C could be diagonalized together. Let us work in the diagonalizing basis. Define C̃
as before. This is a diagonal matrix in this basis, with diagonal elements ξi = cisi, where
ci, si are the diagonal elements of C,S respectively. We assume that ci’s are sorted in
decreasing order. That is, c1 > c2 > · · · > cm. The optimality condition, Eq.5, becomes:

cir

w + cisir
= λ, for i = 1, ..., p. (25)

p is the number for nonzero si’s. One way to see this is as follows: Take the expression in
Eq.19, replace ξ by cisi and take its derivative with respect to non-zero si’s. Note that q, r
changes a ξi changes. However, this expression is evaluated at a point which is stationary
with respect to variation in q and r. Hence, to first order, changes of q, r due to changes
in ξ do not have a contribution. We just change ξ keeping q, r fixed. Since ∂ξi/∂si = ci,
we got the expression in Eq.25.

Eq.25, along with Eq.23 and Eq.24, provide p + 2 equations for p + 3 unknowns,
namely r, q and si, i = 1, .., p. The additional condition comes from total power constraint
∑

i si = P . Once we find such a solution, we could check whether the conditions si > 0
and λi = cir/w < λ is satisfied for all i > p. If any of them is not satisfied, we need
to change p, the number of non-zero eigenvalues of S. After getting a consistent set of
solutions we use Eq.19 to calculate capacity.

Schematically, the algorithm is as follows:

1. Diagonalize C and arrange eigenvalues in the decreasing order along the diagonal.
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2. Start with p=1.

3. Solve equations 25,23,24 along with the power constraint.

4. Check whether si > 0 for i = 1, .., p, and, cp+1r/w < λ.

5. If any of the previous conditions are not satisfied, go back to step 3 with p incre-
mented by 1. Otherwise, proceed to next step.

6. Calculate capacity using Eq.19.

5 Channel known at the receiver: large matrix

size, uncorrelated entries

The results of the previous section simplify if we assume that the matrix entries are
uncorrelated with unit variance. In this case, the equations become

E[f(H)] = m log(w + r) + n log(w + q)− nqr − (m+ n) log(w) (26)

V [f(H)] = −2 log |1− 1

(w + q)2
β

(w + r)2
| (27)

r =
1

w + q
(28)

q =
β

w + r
(29)

First, consider the special case where m = n. In this case, we obtain

E[f(H)] = n[ log
(P

e

)

+ log
(

1 +
1

x

)

+
x

P
] (30)

V [f(H)] = 2 log
( (1 + x)2

(2x+ 1)

)

(31)

where x2+x = P (x positive). For large P , the expectation and variance tend to n log(P/e)
and log(P ) respectively. Note that the variance grows logarithmically with power, but
does not depend on the number of channels.

For m,n not equal, one obtains expressions which are analogous by solving the simul-
taneous equations above for q and r (which lead to quadratic equations for either q or r
by elimination of the other variable):

r(w) =
−(w2 +m− n) + ∆

2w
(32)

q(w) =
−(w2 −m+ n) + ∆

2w
(33)

∆ =
√

(w2 +m+ n)2 − 4mn (34)

Substituting these formulae in Eq.26 and Eq.27 gives the desired expressions for the
expectation and variance of the capacity f(H).
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6 H unknown at both receiver, transmitter: large

matrix size, uncorrelated entries

The case where H is unknown both to the transmitter and receiver is in general hard [4].
For example, analytical formulae for the capacity are not available even in the scalar case.
However, in the case that the matrix entries are uncorrelated, the problem reduces to an
effective scalar problem which exhibits simple behaviour at large m. To proceed, one first
obtains the conditional distribution p(~Y | ~X). This can be done by noting that for fixed
~X, ~Y is a linear superposition of zero mean Gaussian variables and is itself Gaussian with
zero mean and variance given by

E[YiY
∗
j ] = (1 +

1

n

∑

k

|Xk|2)δij (35)

Note that only the magnitude of the vector ~X enters into the equation, and the dis-
tribution of ~Y is isotropic. Effectively, since the transfer matrix is unknown both at the
transmitter and receiver, only magnitude information and no angular information can be
transmitted. Since we are free to choose the input distribution of x = | ~X |/√n, we can
henceforth regard x as a positive scalar variable. As for y = |~Y |/√m (

√
m is just to ar-

range the right scaling),we still have to keep track of the phase space factor y2m−1 which
comes from transforming to 2m dimensional polar coordinates. Note that we need 2m
dimensions since ~Y is a complex vector. Thus, the problem can be treated as if it were a
scalar channel, keeping track only of the magnitudes y and x, except that the measure for
integration over y should be dµ(y) = Ω2my

2m−1dy where Ω2m is from the angular integral.
The conditional probability p(y|x) is given by

p(y|x) =
[

m

π(1 + x2)

]m

exp(− my2

2(1 + x2)
) (36)

The conditional entropy of y given x is easy to compute from the original obervation
that the conditional distribution is Gaussian, and is given by

H(y|x) = mEx

[

log

(

πe

m
(1 + x2)

)]

(37)

The entropy of the output is

H(y) = −Ex

∫

dµ(y)p(y|x) log(Ex′p(y|x′)) (38)

Thus, the mutual information between input and output is given by subtracting the two
expressions above and rearranging terms:

I = −Ex

∫

dµ(y)p(y|x) log(Ex′ [(
1 + x2

1 + x′2
)m exp(− my2

(1 + x′2)
+m)]) (39)

The y integral contains the factor

y2m−1 exp(− my2

(1 + x2)
) (40)

8



which is sharply peaked around y2 = (1 + x2) for m large. Thus, the y integral can be
evaluated using Laplace’s method to obtain (for m large)

I ≈ −Ex logEx′ [(
1 + x2

1 + x′2
)m exp(−m (1 + x2)

(1 + x′2)
+m)] (41)

Applying Laplace’s method again to perform the integral inside the logarithm, as-
suming that the distribution over x is given by a continuous function p(x), we finally
obtain

I =
1

2
log(

2m

π
) +

∫

dxp(x) log[
x

1 + x2
1

p(x)
] (42)

The capacity and optimal input distribution is straightforwardly obtained by max-
imising the above. It is easier to treat the case where a peak power constraint is used,
namely x ≤

√
P . In this case, the optimal input distribution is (x ∈ [0,

√
P ])

p(x) =
1

log(1 + P )

2x

1 + x2
(43)

and the channel capacity is

C =
1

2
log(

m

2π
) + log(log(1 + P )) (44)

Notice that the capacity still grows with m, which is somewhat surprising, but this
growth is only logarithmic. Secondly, the dependence on the peak power is through a
double logarithm.

With an average power constraint
∫

x2dxp(x) = P the optimal input distribution is
given by

p(x) = a
2x

1 + x2
e
− x2

a(1+P ) (45)

where a is a constraint determined by the normalisation condition, which yields the equa-
tion

a =

∫ ∞

0

dy

1 + y
e
− y

a(1+P ) (46)

The capacity is given by

C =
1

2
log(

m

2π
) + log(a) +

P

1 + P

1

a
(47)

For large P , a ≈ log(1 + P ), thus recovering the double logarithm behaviour.

7 Information loss due to multiplicative noise

We could generalize the calculation in the previous section to a problem which interpolates
smoothly between usual additive noise channel and the case considered above. This is a
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problem with same number of transmitters and receivers (m = n) and is defined by

Yi =
n
∑

j=1

(αδij + βHij)Xj + Zi (48)

β = 0 is the usual channel with additive gaussian noise. α = 0 corresponds the problem
we have just discussed. In the first case, capacity increases logarithmically with input
power, whereas in the second case it has a much slower (double logarithmic) dependence
on input power. Apart from the theoretical interest in studying the crossover between
these two kinds of behavior, this problem has much practical importance [7].

The easy thing to calculate is c = limn→∞ C/n. Notice that this quantity is zero in
the limit α → 0, capacity being logarithmic in n in that limit. For simplicity, we choose
the input power constraint

∑

i |Xi|2 ≤ nP . We relegate the details of the saddle point
calculation to Appendix C. The result is

c = log

[

1 +
α2P

1 + β2P

]

(49)

The result tells us that, in the large N limit, the effect of multiplicative noise is similar
to that if an additive noise whose strength increases with the input power.

It is of particular interest to note that there exists a lower bound to the channel
capacity, which is given by the capacity of a fictitious additive gaussian channel with the
same covariance matrix for ( ~X, ~Y ) as the channel in question. Remarkably, this bound
coincides with the saddle point answer.

8 Appendix A

The condition of optimality with respect to S is

E[Tr{(1 + PH†SH)−1H†δSH}] = Tr(ΛδS) ≤ 0 (50)

for all allowed small δS. δS has to satisfy two conditions: that S + δS is non-negative
definite and that Tr(δS) = 0. The matrix Λ has been defined in the first section. It is a
non-negative definite hermitian matrix.

If S has only positive eigenvalues then adding a small enough hermitian δS to it
does not make any of the eigenvalues zero or negative. Then only way the optimisation
condition can be satisfied is by choosing Λ to be proportional to the Identity matrix. This
can be seen as follows: for Λ = λI, T rΛδS = λTrδS = 0. If Λ 6= λI, then, in general,
TrΛδS 6= 0 even though δS = 0, and can therefore be chosen to be positive.

What if S has few zero eigenvalues? Let us choose a basis so that S is diagonal. The
eigenvalue of S si are ordered so that s1, . . . , sk are positive and si = 0 for i > k. We
could choose δSij to be non zero only for 1 ≤ i, j ≤ k and repeating the argument of the
last paragraph, Λij = λδij , for 1 ≤ i, j ≤ k. In fact, even if we choose δSij to be nonzero
for i ≤ k < j, and j ≤ k < i we do not violate, to first order in δS, non negativity of
eigenvalues of S+δS. This would give us Λij = 0 for i ≤ k < j and j ≤ k < i. Hence Λ is of
block-diagonal form. The k×k block is already constrained to be proportional to Identity
matrix. We would now constrain the other block of Λ which is of size (n− k)× (n− k).

10



Since the last n − k eigenvectors of S correspond to zero eigenvalues, we are free to
rotate them among each other. Using this freedom, we diagonalise the lower (n−k)×(n−k)
block of Λ. Choosing diagonal δSij with with negative values for i = j ≤ k but positive
values i = j > k, and satisfying Tr(δS) = 0, we can show that the last n− k eigenvalues
of Λ are smaller than or equal to λ.

9 Appendix B

In this section, it is assumed without loss of generality that m ≥ n. We consider first the
case S = I, but derive the results for arbitrary C,D. It is easy to recover the results for
general S by making the transformation H → S

1
2H and C → S

1
2CS

1
2 .

We start from the identity

det([w iH ; −iH† w])−α =

∫

dµ(X)dµ(Y ) exp(−1

2

α
∑

a=1

[w(Y †
a Ya+X

†
aXa)+i(Y

†
aHXa−X†

aH
†Ya)])

(51)
where

dµ(X) =
n
∏

i=1

α
∏

a=1

dXR
iadX

I
ia

2π
(52)

with R, I denoting real and imaginary parts respectively. dµ(Y ) is defined analogously.
The introduction of multiple copies of the Gaussian integration is the well known ‘replica
trick’. This allows us to compute f(H), since it is easily verified that

det([w iH ; − iH† w])−α = w−(m+n)αe−αf(H) (53)

where we have set w2 = n/P . The moment generating function of f(H) can be obtained
by studying the expectation of the determinant above with respect to the probability
distribution of H. We therefore obtain for the moment generating function

F (−α) = w(m+n)α
∫

dµ(X)dµ(Y ) exp(−1

2
[w

α
∑

a=1

(Y †
a Ya+X

†
aXa)+

1

2n

α
∑

a,b=1

(Y †
aCYbX

†
bDXa)])

(54)
The last term in the exponent can be decoupled by introducing the α × α complex

matrices P,Q with contour integrals over the matrix entries in the complex plane to obtain

F (−α) = w(m+n)α
∫

dµ(X)dµ(Y )dµ(R)dµ(Q) exp(−1

2
S) (55)

where

S = w
α
∑

a=1

(Y †
a Y +X†

aX) +
α
∑

a,b=1

(Y †
aCYbRab +QabX

†
aDXb − nRabQba) (56)

dµ(R)dµ(Q) =
α
∏

a,b=1

dRabdQab

2π
(57)
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The R,Q integrals, in contrast with the X,Y integrals, are complex integrals along
appropriate contours in the complex plain. For example, if the Qij integrals are along
the imaginary axis, so that the Q integrals give rise to delta functions which can then
be integrated over R to obtain the above equation. The integrals over X,Y can now be
performed to obtain

F (−α) = w(m+n)α
∫

dµ(R)dµ(Q) exp(− log(det(w+CR))−log(det(w+DQ))+nTr(RQ))

(58)
where CR and DQ are understood to be outer products of the matrices. Introducing the
eigenvalues ξ, η of C,D the exponent may be written as

m
∑

i=1

log(det(w + ξiR)) +
n
∑

j=1

log(det(w + ηjQ))− nTr(RQ) (59)

If m,n become large and the number of non-zero ξi, ηi grow linearly with m,n, then
we can perform the R,Q integrals using saddle point methods. If we assume that at the
saddle point the matrices R,Q do not break the replica symmetry , i.e R = rI, Q = qI
where I is the identity matrix, then the saddle point equations are ∂C/∂r = ∂C/∂q = 0,
where C is defined below, leading to

r =
1

n

n
∑

j=1

ηj
w + ηjq

(60)

q =
1

n

m
∑

j=1

ξj
w + ξjr

(61)

Expanding the exponent upto quadratic order around the saddle point and performing
the resulting Gaussian integral, we obtain

F (α) = exp(αC(r, q) + α2

2
V(r, q)) (62)

C(r, q) =
m
∑

i=1

log(w + ξir) +
n
∑

j=1

log(w + ηjq)− nqr − (m+ n) log(w) (63)

V(r, q) = −2 log |1− g(r, q)| (64)

g(r, q) = [
1

n

n
∑

j=1

(
ηj

w + ηjq
)2][

1

n

m
∑

j=1

(
ξj

w + ξjr
)2] (65)

Since F (α) is the moment generating function for f(H), the expressions for C,V give the
expressions for the expectation and variance of f(H), as presented in section (3).
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10 Appendix C

In this case,

P (~Y | ~X) =
1

[π(1 + β2|X|2)]n e
− |~Y −α ~X|2

(1+β2|X|2/n) (66)

Let us redefine ~x = ~X and ~y = ~Y /
√
n. The optimal probability distribution of ~x depends

only on its norm x = |~x|/√n. Let q(x) to be the probability distribution of x.
Once more,

H(~y|~x) = E~x

[

n log
(

πe(1 + β2x2)/n
)]

= n

∫

dxq(x) log

[

πe

n
(1 + β2x2)

]

(67)

However,

p(~y) = E~x [p(~y|~x)] ≈
∫

dxq(x)
nn

[π(1 + β2x2)]n
e
−n(y2+α2x2)

(1+β2x2)
+2nφ

(

αxy

1+β2x2

)

(68)

where

φ(a) = lim
d→∞

1

d
log

[

∫ π
0 dθ sin

d−2(θ)eda cos(θ)

∫ π
0 dθ sin

d−2(θ)

]

(69)

Saddle point evaluation of φ(a) (which is equivalent to doing an expansion of the Bessel
functions Iν(z) with large order ν and large argument z, but the ratio z/ν held fixed)
gives

φ(a) = a cos θ(a) + log sin θ(a) (70)

cos θ(a) = a sin2 θ(a) (71)

In fact we would need dφ(a)/da.

dφ(a)

da
= cos θ(a) =

√
1 + 4a2 − 1

2a
(72)

Variation of H(~y) =
∫

d~yp(~y) log 1
p(~y) with respect to q(x) produces

δH(~y)

δq(x)
= −

∫

d~yp(~y|x)(1 + log p(~y)) (73)

where

p(~y|x) =
[

n

π(1 + β2x2)

]n

exp(−nf(x, y)) = p(y|x) (74)

and

f(y, x) =
y2 + α2x2

(1 + β2x2)
− 2φ(

αxy

1 + β2x2
) (75)

Now we can do the ~y integral in Eq.73 by the saddle point method. After going over to
polar coordinates and doing some straightforward calculations, we find that the integral
peaks at y = y(x) given by

y(x)2 = (1 + (α2 + β2)x2) (76)
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This is expected, as variance of ~y given a uniform angular distribution of ~x with a fixed
norm x is the right hand side of (76). On the other hand, the variance is y(x)2 in the
saddle point approximation.

Thus finally, we have the condition for the stationarity of the mutual information,

− C = log

∫

dx′q(x′)p(y(x)|x′) + n log

[

πe

n
(1 + β2x2)

]

(77)

where C is a constant, which turns out to be the channel capacity. The constant is fixed
by the condition that q(x) is a normalised probability distribution. This condition, along
with the fact

∫

d~yp(y|x) = Ω2n
∫

dyy2n−1p(y|x) = 1, Ω2n = 2πn/Γ(n), can be used to
determine C.

1 = Ω2n

∫

dxy′(x)y(x)2n−1
∫

dx′q(x′)p(y(x)|x′) (78)

= e−CΩ2n

∫

√
P

0
dx

[

n

πe(1 + β2x2)

]n y′(x)
y(x)

y(x)2n (79)

≈ e−C
√

2n

π

∫

√
P

0
dx
y′(x)
y(x)

[

y(x)2

(1 + β2x2)

]n

(80)

For any α > 0,

f(x) = log

[

y(x)2

(1 + β2x2)

]

= log

[

1 + (α2 + β2)x2

1 + β2x2

]

(81)

is a monotonically increasing function of x, for positive x. Hence the last integral is
dominated by the contribution from the region near the upper limit. For a monotonically
increasing function f(x),

∫ z

0
g(x) exp(nf(x)) ≈ g(z) exp(nf(z))

nf ′(z)
. (82)

Using this, we get

c = lim
n→∞

C/n = log

[

1 + (α2 + β2)P

1 + β2P

]

(83)
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Figure Captions

Figure 1. The probability density function of f(H) is given for m = n = 4 in the limit
of large P . The origin is shifted to the value 4 log(P/e).
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