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Figures 

Figure 1. Pan-genome annotation of 26 maize NAM founders using panEDTA. 
a. The panEDTA workflow. The EDTA pipeline is used to annotate each genome independently,
and the resulting individual TE libraries are filtered based on copy number and combined to
form a non-redundant pan-TE library, which is used to reannotate each genome for a consistent
pan-genome TE annotation. b. panEDTA annotation of 26 maize NAM founders. Maize lines
were grouped into stiff-stalk (yellow), non-stiff-stalk (dark blue), popcorn (pink), sweet corn (red),
admixed maize (gray), and tropical maize (green). 
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Figure 2. The landscape of transposable elements in the maize NAM founder genomes. 
a. Pan-genome TE family number and size. Rare intact TEs are those not classified by the 80-
80-80 rule and are mostly single-copy elements. b. Mean size of the 50 largest TE families in
the NAM founder genomes. All these families are LTR retrotransposons. The error bars denote
the standard deviation among the NAM founder genomes. c. Summary of the number and
percentage of pan-genome TE families in the NAM founder genomes. The order of genomes
was shuffled 1,000 times. 
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Figure 3. Family size variation between tropical and temperate maize genomes. 
a. Principal component analysis based on pan-TE family size in the NAM founder genomes. A
total of 17,473 families were included, and the size of the family was determined by the number
of base pairs in each genome. Dashed ellipses indicate tropical (pink) and temperate (blue)
genomes. b. Distribution of TE family size difference between tropical and temperate lines.
Families are divided into three categories with a cutoff of +/- 0.025 Mb difference. c. Distribution
of the top 10 TE families with the greatest size variation among the NAM founder genomes,
which are all LTR families. The size of each family was standardized to have mean = 0 and
standard deviation = 1 within NAM founder lines. Maize lines were grouped into temperate
maize [popcorn (pink), sweet corn (red), stiff-stalk (yellow), non-stiff-stalk (dark blue)] as
indicated by the blue line on top of the boxes, admixed maize (gray), and tropical maize (green,
as indicated by the pink line on top of the boxes). The box shows the median, upper, and lower
quartiles. Whiskers indicate values�≤�1.5× interquartile range. Black dots indicate outliers. d.
TE family size difference between tropical and temperate lines in TE superfamilies. Positive
values represent families that are larger in tropical genomes and negative values represent
families that are larger in temperate genomes.  
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Figure 4. Contribution of LTR amplification and removal to genome size differentiation. 
a. Classification schematic for LTR families based on solo:intact ratio and size differentiation
between tropical and temperate genomes. Numbers in Mb indicate cumulative differences in
family sizes between tropical and temperate genomes and their contribution to total TE
differences. b. LTR family classification for families that are larger in tropical genomes. c. LTR
family classification for families that are larger in temperate genomes. In both b and c, each dot
represents an LTR family, and the size of each dot scales to the absolute family size difference,
and x and y axes were log10 scaled. d. Classification schematic for age of LTR families based
on the peak frequency of insertion time. e. Age landscapes of the 50 largest LTR families in
tropical (pink) and temperate (blue) maize genomes with overlaps shown in green. Dots indicate
family classifications using the coloring scheme shown in a. f. The accumulated TE size
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differentiation contributed by different LTR superfamilies (Ty3, Copia, and unknown) in different
age groups (Young, Moderate, and Old). Each box represents the contribution of an LTR family.

Figure 5. Molecular characterization of LTR families in maize. 
a. The number of intact LTR retrotransposons (LTR-RTs) carrying unmethylated regions. Data
from tropical and temperate genomes are shown in side-by-side red and blue boxes,
respectively. The number of families represented is indicated below each column. b. The
accumulated family size difference between tropical and temperate genome for LTR families
expressed significantly higher in at least one tissue (and with consistent directionality in all
tissues with expression) in tropical genomes. a, b. The size of each box represents the number
of LTR elements or effect size of each family, and only families that are larger in tropical
genomes are shown. c. LTR insertion frequency spectrum in tropical (pink) and temperate (blue
genomes. Only sites younger than 20 kya were kept to increase accuracy of the polarization of
the spectrum. No missing data filter was applied. d. The age of intact LTR elements that were
shared or unique in tropical and temperate genomes. The y-axis was log10 scaled. Different
letters indicate significant differences in age (Tukey’s HSD, P < 0.05). The box shows the
median, upper, and lower quartiles. Whiskers indicate the 1.5× interquartile range. Black dots
indicate outliers. e. Mean recombination rate for genomic neighborhoods of all intact LTR-RTs.
Error bars indicate 95% confidence interval estimated from 1,000 times of bootstrap resampling.
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