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Abstract

There are many short-read variant-calling tools, with different strengths and
weaknesses. We present a tool, Minos, which combines outputs from arbitrary variant
callers, increasing recall without loss of precision. We benchmark on 62 samples from
three bacterial species and an outbreak of 385Mycobacterium tuberculosis samples.
Minos also enables joint genotyping; we demonstrate on a large (N = 13k)M.
tuberculosis cohort, building a map of non-synonymous SNPs and indels in a region
where all such variants are assumed to cause rifampicin resistance. We quantify the
correlation with phenotypic resistance and then replicate in a second cohort (N = 10k).

Background
The use of whole genome short-read sequence data to study cohorts of bacterial genomes
from a single species is now a standard practice (e.g., [1, 2]). There are a multitude of
variant callers, which analyze reads from a sample and make statements about where it
differs from a fixed reference genome. However, there is no one best variant caller, or
even approach—all have strengths and weaknesses. The single-sample-inference problem
is well studied and understood—mapping to a reference works well where the sample and
reference are reasonably close, and primarily for SNPs (SAMtools [3]), but fares progres-
sively worse as the reference and sample diverge [4]. On the other hand, methods based
on local assembly (GATK [5], Octopus [6]) are better able to detect small indels, and those
based on global assembly (Cortex [7], McCortex [8]) are exceptionally specific, robust to
reference-choice, and better at accessing clustered SNPs or indels up to a few kb in size,
but at a cost in sensitivity. Ideally, it would be valuable to be able to combine the output
of two different methods (“callsets”) in some rigorous manner, resulting in a product bet-
ter than either. Simply using the union of callsets gives no control over false discovery
rate, and the intersection is too conservative, losing the benefit of callers with different
strengths. This “variant adjudication” problem of rigorously combining callsets, where
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discordances between input variants are resolved and then variant sites are genotyped, is
the first challenge we address in this study. In doing so we separate two processes which
are typically bound together within a single variant-caller: the discovery of genetic vari-
ants, and the genotyping of these variants. In our schema, we allow different callers to do
discovery, and then use our new method to adjudicate (i.e., genotype).
Moving beyond single samples, there are many use-cases where one needs to jointly

analyze a cohort, producing a matrix of variants versus samples and making binary or
probabilistic statements (genotype calls) at all positions that are segregating in the cohort.
This is more tricky, primarily because the density of variation increases with cohort
size, and inevitably there are situations where SNPs and indels overlap. This is typically
described as joint genotyping [5], and itself is a form of adjudication problem—once we
have the full list of segregating sites and alleles, we can revisit all samples and genotype
each one. This is the second main problem we address in this study.
Finally, underlying both, there is an important technical challenge: how to combine

Variant Call Format (VCF) [9] files, either for the same sample from different variant
callers, or from multiple samples in a cohort when collecting a list of segregating sites.
In both cases, we want a clean VCF file with a set of non-overlapping records, each rep-
resenting a segregating site with alternate alleles, which can be independently genotyped
(see Fig. 1). This likely entails combining independent overlapping variants from the input
VCF files into some consistent multi-allelic record. This particular problem is techni-
cally awkward and can in theory get arbitrarily ugly—in the pathological worst case, there
could be overlapping records that gradually tile across the whole genome.
Our motivation was the desire to study tens of thousands ofMycobacterium tuberculo-

sis genomes for the CRyPTIC project [10]. This project sequenced and phenotyped over
15,000 isolates for resistance to 13 different drugs using a 96-well microtitre plate [11],
and then applied methods such as Genome-Wide Association Studies (GWAS) to analyze
the genetic basis for drug resistance. M. tuberculosis has relatively low levels of diversity
by bacterial standards, with no recombination, relatively fewmobile genetic elements, and
a small pan-genome [12]. However, despite this, almost 17% of the 4.4Mb genome was
variable within the cohort, and in some regions almost every single base harbored a mul-
tiallelic SNP or indel. Typical approaches tuned for high precision callsets would refuse
to make calls in such dense regions, but for our purposes we needed to be able to both
represent and correctly genotype these regions.
There has been prior work on these problems, with recent tools focussed on human

data. Joint genotyping is available in GATK; however, it relies on machine-learning-based
filtering (VQSR) generated from human-specific truth-data. Applying GATK to non-
human species required considerable efforts to train a black box VQSR for each new
species (e.g., see [13] for Plasmodium). At the time of writing, GATK explicitly does not
support bacterial data, although a new version for this is in development. There are also
graph-based genotypers for structural variants that operate on similar principles to ours,
although with different graph structures and genotyping models, such as Paragraph [14]
and vg [15].
Two other graph-mapping based tools are available: BayesTyper [16] maps reads to a

directed acyclic graph of informative kmers, and GraphTyper [17] maps to local graphs
of SNPs and indels from pre-mapped reads. BayesTyper is set up to take VCFs from dif-
ferent callers, combine them and genotype, much like Minos. GraphTyper’s intended use
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Fig. 1 Variant adjudication pipeline implemented by Minos. Input variants in one or more VCF file(s) are merged
to make a deduplicated set of variants. When running on a single sample, the input VCF files could be from
different tools. When joint genotyping across samples, there is one VCF file originating from each sample. Next,
overlapping variants are clustered together—for example the variants at positions 7 and 8—allowing the
construction of a non-nested variation graph. Genotype calls are made using read mapping to the graph

is to genotype large human cohorts, either with SNP/indels it has discovered, or using a
predefined VCF of structural variants. We compare Minos with both below.
Our approach was to build a pure adjudicator, able to run a single command that can

take multiple VCF files, handle all overlapping variants, and output a single accurate
callset with no inconsistencies. Intuitively, read pileup can be used to test goodness-of-fit.
Reads shouldmap perfectly to a reference containing the correct allele, so comparing pile-
ups on alternate alleles can resolve disagreements between callsets. Of course, it would
be prohibitively expensive to remap all reads to every input allele independently and then
compare the pileup on each allele. Instead, we build a genome graph of the combined alle-
les from all callers and map once to that, using gramtools [18]. Reads naturally align to
the correct allele, and we can genotype using the resulting coverage and ambiguity infor-
mation (described below). We implemented this, plus a workflow for joint genotyping
cohorts, in our new tool, Minos.
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We first use 62 high-quality polished long-read assemblies from three bacterial species
and benchmark Minos against BayesTyper and GraphTyper. We then apply all three tools
to anM. tuberculosis outbreak (N = 385) in the UK in 2013, evaluating precision for both
reference and non-reference calls.
Finally, we apply our method to our motivating problem—studying antimicrobial resis-

tance in large cohorts of M. tuberculosis. We first joint-genotype the CRyPTIC global
cohort ofM. tuberculosis genomes (N = 15, 215) which contains around 700,000 variants
(roughly one SNP every 5bp). We focus on the 81bp rifampicin-resistance determin-
ing region (RRDR) in the rpoB gene, which bears an enormous level of variation. The
WHO-endorsed Xpert® MTB/RIF assay assumes any non-synonymous SNP or indel in
this region causes resistance to rifampicin [19], although as we discuss below, the story
is a little more complex. We restrict to non-synonymous SNPs and indels and give an
unprecedented map of dense variation in the RRDR and how strongly each variant corre-
lates with resistance. We find the five known “borderline” mutations [20] but also show
that there are more. We then joint-genotype a second, independent, cohort of 13,411 M.
tuberculosis genomes which have also been phenotyped for rifampicin, and replicate the
finding. We consider the significance of these findings in the Discussion.

Results
We developed a new tool called Minos, which takes putative variant calls as input, adju-
dicates between all of the calls, and reports a final accurate callset. It uses the standard
Variant Call Format (VCF) for its input and output. It can accept VCF files from any
source, using all records where the genotype (GT) field is present and has a non-reference
call (records without this field are ignored). Additionally, Minos includes a Nextflow [21]
pipeline to joint genotype large numbers (tens of thousands) of samples, producing a set of
calls at the same variant sites across all samples. See Fig. 1 for an overview of the pipeline,
and the “Methods” section for a complete description.
Existing tools to assess the accuracy of call sets, such as hap.py (https://github.com/

Illumina/hap.py) and RTG vcfeval [22], were developed for human diploid data and
require truth variant calls in a VCF file. Such evaluations typically need to cope with
uncertain phasing in the “truth data”. However in our case, as is typical in bacterial
genomics, the truth data is a polished (haploid) whole genome assembly assumed to con-
tain no errors. We therefore developed a tool called Varifier to meet the need for a tool
that uses such a truth sequence to determine the precision and recall of a call set. As
described in full in the “Methods” section, Varifier evaluates each allele call by aligning
the allele plus flanking sequence to the truth genome. This method is robust to com-
plex variants, which can have more than one correct VCF representation.We found other
tools could make errors around these types of variants—an example is given in Additional
file 1. In this study, for each sample, we used a truth genome assembled from long reads
(PacBio or Oxford Nanopore), and polished using the same Illumina reads that were used
for variant calling.We used Varifier and these truth genomes to benchmarkMinos against
GraphTyper and BayesTyper with simulated and real data.

Single-sample benchmarking

We performed an initial sanity check that BayesTyper, GraphTyper, and Minos all work
as expected, using simulated reads made with ART [23] and simulated variants in theM.

https://github.com/Illumina/hap.py
https://github.com/Illumina/hap.py
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tuberculosisH37Rv reference genome [24]. All tools performed near perfectly on this sim-
ple data set, affirming that theymake nomajor errors (Additional file 1: Fig. S1, Additional
files 2, 3, 4 and 5: Tables S1–S4). The default Minos filters dropped the recall of SNPs and
short indels slightly (Additional file 1: Fig. S1), due to unrealistically low variation in read
depth in the simulations, which caused the “MIN_GCP” filter (see the “Methods” section)
to fail true positive calls. However, as shown later, this is not an issue in real sequencing
read data. Having confirmed all tools passed a basic test, wemove on from the simulations
to empirical data.
Next, the tools were compared using real data from M. tuberculosis, Staphylococcus

aureus, and Klebsiella pneumoniae, using samples which each had a high-quality polished
long read assembly to act as truth, and matched Illumina data (see Methods). We selected
reference genomes for each species (1 for M. tuberculosis, 2 for S. aureus and 5 for K.
pneumoniae) to reflect the diversity of the species.
For each Illumina data set, reads were trimmed using Trimmomatic [25], mapped to

the reference genome with BWAMEM [26], and PCR duplicate reads were removed with
SAMtools. Variants were called independently using two variant callers with orthogo-
nal strengths: SAMtools/BCFtools is pileup-based, with high sensitivity for SNPs and low
precision for indels; Cortex is assembly-based, with high precision for SNPs and indels,
but lower recall. The SAMtools/BCFtools and Cortex callsets were input to BayesTyper,
GraphTyper, and Minos, resulting in a single set of calls from each tool (BayesTyper and
GraphTyper required additional processing of the SAMtools/Cortex VCF files, described
in Additional file 1). In order to maximize recall, and because the adjudication tools
should remove false-positive variants, the unfiltered callsets from SAMtools and Cortex
were used. All results shown are using the default variant call filters for each tool, except
where noted, and with unreliable regions of the genomes masked.
Note that GraphTyper can be run in two genotyping modes: default and “sv” (described

in [27]). The “sv” mode resulted in significantly worse results in many cases (Additional
file 6: Table S5); therefore, it is not discussed further in this manuscript. All GraphTyper
results in this manuscript refer to running in default mode.
The results are summarized in Table 1 (also Additional file 1: Fig. S2, S3). Minos

achieved the best F-score and recall across seven of the eight data sets. The biggest varia-
tion between tools was seen in the recall. Although GraphTyper had the highest precision,
Minos was equally precise in three of the data sets, and the biggest difference in mean
precision between Minos and GraphTyper was 0.05%.
We also investigated the effect of including more variant callers as input to BayesTyper,

GraphTyper, and Minos. In principle, a new caller adds value if it finds variants which are
missed by the other callers. The above analysis was repeated, but with calls from Snippy
(https://github.com/tseemann/snippy) included together with those from SAMtools and
Cortex. The results were almost identical: the mean precision and recall across all data for
each tool was the same to two decimal places (Additional file 7: Table S6, Additional file 1:
Fig. S4), indicating that for these data, Snippy offers no additional benefit once Samtools
and Cortex are combined.

Performance

On the real bacterial data, all tools had a relatively fast run time and low RAM usage
(Additional file 8: Table S7, Additional file 1: Fig. S5). On each data set, GraphTyper had

https://github.com/tseemann/snippy
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Table 1Mean precision, recall, and F-score on each empirical data set with each reference genome.
Numbers in bold show the best precision, recall, and F-score for each species and reference genome

Species Number of
samples

Reference genome Tool Mean
precision

Mean recall Mean
F-score

M. tuberculosis 17 H37Rv BayesTyper 0.9995 0.9217 0.9579
GraphTyper 0.9997 0.8938 0.9422
Minos 0.9997 0.9181 0.9559

S. aureus 28 TW20 BayesTyper 0.9984 0.8669 0.9279
GraphTyper 0.9990 0.7530 0.8545
Minos 0.9988 0.8786 0.9347

USA300 BayesTyper 0.9993 0.8671 0.9283
GraphTyper 0.9995 0.7506 0.8534
Minos 0.9994 0.8792 0.9353

K. pneumoniae 17 GCF_000784945.1 BayesTyper 0.9990 0.9052 0.9495
GraphTyper 0.9999 0.9063 0.9505
Minos 0.9999 0.9143 0.9550

GCF_001952915.1 BayesTyper 0.9995 0.8800 0.9346
GraphTyper 0.9999 0.8788 0.9340
Minos 0.9994 0.8922 0.9417

GCF_003073315.1 BayesTyper 0.9996 0.9267 0.9617
GraphTyper 0.9999 0.9297 0.9634
Minos 0.9998 0.9367 0.9672

GCF_003076555.1 BayesTyper 0.9994 0.9397 0.9686
GraphTyper 0.9999 0.9387 0.9683
Minos 0.9999 0.9438 0.9710

GCF_011006575.1 BayesTyper 0.9995 0.9078 0.9511
GraphTyper 0.9999 0.9075 0.9513
Minos 0.9998 0.9238 0.9602

the shortest run time and smallest RAM usage, followed by Minos and then BayesTyper.
The median wall clock time for Minos across the data sets ranged from approximately 2.5
min per sample (M. tuberculosis) to 6 min (K. pneumoniae). K. pneumoniae required the
highest RAM, where the median peak usage across all runs for Minos was 2.5GB.

Joint genotyping of cohorts

We wrote a Nextflow pipeline, included in the Minos code repository, to easily joint
genotype large numbers of samples. It outputs a single VCF file containing all samples
genotyped at the same sites, and the same information in per-sample VCF files. We tested
this pipeline, together with BayesTyper and GraphTyper, to re-analyze 385 M. tuberculo-
sis [28] samples from an outbreak in the UK, which we call the “Walker 2013” data set.
Note that BayesTyper and GraphTyper are not set up for this use case, and therefore, pro-
cessing the data was required to attempt to use these tools in this manner, as described in
the Methods section.
Our final analysis was to joint genotype two large M. tuberculosis cohorts of more

than ten thousand samples each, using the results to analyze the phenotypes and corre-
sponding genotypes in the 81bp rifampicin resistance determining region (RRDR) of the
rpoB gene. The first large data set (“CRyPTIC”) consisted of 15,215 samples released by
the CRyPTIC project [10], phenotyped using a microtitre plate assay [11, 29], and the
second (“Mykrobe”) data set consisted of 13,411 samples previously published [30] and
phenotyped using traditional culture-based DST (drug susceptibility testing).
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Variants were called on each sample independently with the same methods as above
using Cortex and SAMtools, and then calls adjudicated with Minos. Each of these per-
sample Minos VCF files was used as input to each of the three tools. The result was a
callset for each tool, at the same variant sites for all samples for that tool (variant sites
were not the same between tools). Minos is the only tool of the three that is set up to con-
sistently merge all input VCF records, so that no two sites in the output contain reference
positions in common. Furthermore, this means Minos does not, unlike BayesTyper and
GraphTyper, output two separate VCF records with incompatible genotype calls. This is
discussed in more detail in Additional file 1.
A summary of the data sets and variants output by Minos is given in Table 2. A typical

M. tuberculosis genome might be around 1000 to 2000 SNPs distant from the H37Rv
reference genome. Since these are spread across a 4.4Mb genome, excessive density of
variants is not a problem for the single-sample adjudication problem. However when joint
genotyping the larger cohorts, we are adjudicating all segregating variation, covering 17–
18% of the genome, including some regions of hundreds of base-pairs where almost every
single base is a multiallelic SNP or indel. These dense regions present a scaling challenge
to graph genome algorithms, depending on implementation and indexing strategy.

Outbreak analysis

We evaluated performance of Minos and alternate tools on genomes in the Walker 2013
data set, from an outbreak of M. tuberculosis. To measure the precision and recall of the
three tools before and after joint genotyping, the 17 M. tuberculosis samples used ear-
lier were added into the outbreak data set. Joint genotyping the samples generally had a
negligible effect on precision and recall (Additional file 9: Table S8). BayesTyper recall
increased by 0.07%, whereas the recall of GraphTyper and Minos dropped by 4.2% and
0.6% respectively. BayesTyper precision fell by 0.13%, and both GraphTyper and Minos
increased by 0.01%.
Up to this point in the manuscript, precision has always been calculated by consider-

ing only non-reference allele calls, focussing on the differences between a given sample
and the reference genome. However, joint genotyping involves genotyping every sample
at every variant site. As a result, the majority of calls have the reference genotype, and
correctly genotyping these cases is critical for applications such as building a phyloge-
netic tree, computing a genetic distance matrix or for GWAS. The difference between
excluding or including reference calls for each tool is shown in Fig. 2 and Additional file 9:
Table S8. After joint genotyping, and including reference genotype calls in the calculation,
Minos achieved a precision of 99.95%, compared with 92.87% and 88.85% for BayesTyper
and GraphTyper respectively.

Table 2 Summary ofM. tuberculosis data sets used for joint genotyping. “Genome inside sites” is the
total length of all reference alleles across all sites after clustering. It is reported as the total number of
base pairs, and in parentheses as a percentage of the 4.4Mbp H37Rv reference genome. SNP sites is
the number of sites where all alleles have length 1

Data set Number
of samples

Unique
variants

Excluded
variants

Sites after
clustering

Genome inside
sites (bp(%))

Total
alleles

SNP sites

Walker 2013 385 31,548 231 30,621 41,437 (1%) 62,690 27,639

Mykrobe 13,411 699,484 6,259 593,584 756,003 (17%) 1,414,723 552,543

CRyPTIC 15,215 718,863 6,576 611,269 778,949 (18%) 1,469,100 568,224
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Fig. 2 Precision and recall when joint genotypingM. tuberculosis outbreak data. The left plot considers
non-reference allele calls only, i.e., the variant sites that are genotyped to be different from the reference
genome. The right plot shows the results when all allele calls are included. Individual samples are marked as dots,
and the mean precision and recall for each tool is shown as a cross. The convex hull of the data points for each
caller is shaded with an associated color

Association of rifampicin resistance with the RRDR region of rpoB

Returning to the motivating problem for which Minos was developed, we applied Minos
to two large M. tuberculosis cohorts (“CRyPTIC” and “Mykrobe” data sets) for which we
have associated resistance phenotype data for the first-line drug rifampicin. We sought
first to confirm thatMinos would indeed function at this scale, and then to build a detailed
map of variation in the RRDR (rifampicin resistance determining region) of the rpoB gene.
Minos output genotype calls at 593,584 and 611,269 variant sites for the Mykrobe and
CRyPTIC data sets respectively (Table 2). These sites cover approximately 17–18% of the
4.4Mb H37Rv reference genome.
The total turnaround time of the pipeline, which was limited to a maximum of 2000

concurrent tasks, was approximately 23 h for the Mykrobe data set and 26 h for CRyP-
TIC. These represent real-world times, since the compute cluster we used was shared
with numerous other users. A breakdown of the run times and maximum RAM usage is
provided in Additional file 10: Table S9. The total CPU time was 787 core-days for the
Mykrobe data set and 905 core-days for CRyPTIC. The pipeline is optimized to mini-
mize memory, with the peak memory used when merging and clustering variants at less
than 8GB. The majority of the run time comprises running Minos on each sample, which
required less than 2GB of RAM per sample.
We then used the joint genotyping output to analyze the genotype-phenotype rela-

tionship within the RRDR of the rpoB gene, by restricting to the 13,259 samples of the
Mykrobe data set, and the 8955 samples of the CRyPTIC data set with a high quality
rifampicin phenotype [10] (from 12,099 CRyPTIC samples with any quality rifampicin
phenotype). Figure 3 shows all the identified amino acid variants—substitutions, inser-
tions, and deletions—plotted along the RRDR, with their prevalence and proportion of
resistant samples for the CRyPTIC data. The same plots for the Mykrobe data and all
CRyPTIC data are given in Additional file 1: Fig. S6, and the raw data are in Additional
file 11: Table S10.
As expected the variant S450L, found in 1919 of the samples, dominates. The next most

common variant D435V appears in 345 samples. Several rare indels were identified, most
of which appear to cause rifampicin resistance. In the CRyPTIC samples, two insertions
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Fig. 3 All amino acid variants identified in the RRDR of the rpoB gene by joint genotyping 8,955 samples from the
CRyPTICM. tuberculosis data set. Each plot shows the RRDR region from left to right. Single amino acid variants are
shown in the upper grid, with the y axis corresponding to the variant amino acid. The lower area shows deletions
and insertions, with the inserted sequence given in the colored boxes. For example, the leftmost deletion of
amino acids TS at position 427-428 is found in one sample, which is resistant. The leftmost insertion adds R after
the S at position 431 (found in one resistant sample). The plots show the same variants, but with different color
schemes. In a each variant is colored by the number of samples possessing that variant. Plot b colors the variants
by the percent of samples with that variant that are rifampicin resistant
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were identified (R inserted at 431–432 and F at 433–434), and all nine samples with either
of these are rifampicin resistant. Six of the eight deletions arise only in resistant samples.
In the Mykrobe data, there were seven deletions and three insertions, all of which were
only found in resistant samples.
We find a total of 72 distinct amino acid mutations and indels within the 81bp RRDR

in the CRyPTIC samples with high-quality phenotypes, including the 5 mutations classi-
fied as “borderline resistant” by the WHO [20] (H445L, H445N, D435Y, L452P, L430P).
There are 13 variants in the CRyPTIC samples where the number of susceptible samples
is greater than the number of resistant samples. The most common are among the bor-
derlines listed above—L430P, where 45/67 samples are susceptible (and 9/19 susceptible
in the Mykrobe data), and H445N, where 16/22 samples are susceptible (2/6 in Mykrobe
samples). The remaining such variants are rare, each seen in up to five samples. Full
counts can be seen in Additional file 1: Fig. S6. Even if the known borderlinemutations are
excluded, Fig. 3 (right panel) shows a large number of moderate to low frequency variants
with a range of correlations with resistance. We discuss these results further below.

Discussion
Variant analysis from short read sequence data is by now a mature field, and there are
many tens of different tools for detecting SNPs and short indels [31]. Setting aside per-
formance issues and focussing entirely on completeness and correctness of the inferred
SNPs and indels, it is clear that there is no single best tool. The relative weight given
to mapping, assembly, paired-end information, and species-specific optimization (eg via
machine learning) results in different strengths and weaknesses. This leads to two ratio-
nal choices: first, to benchmark for your chosen application and choose the best tool, and
second to find a way to combine the strengths of different callers. When setting up the
CRyPTIC project, we observed that there was no off-the-shelf solution to this problem,
and set out to produce an easy-to-use tool that would do this in a rigorous manner. Minos
was the result, which we incorporated into a workflow for analysis of M. tuberculosis
genomes called Clockwork. We found that in terms of single genome analysis, perfor-
mance was relatively similar to other benchmarked tools—Minos generally had the best
recall, and GraphTyper hadmarginally the best precision. However, onlyMinos would out
of the box ingest two (or more) VCF files and output results; the other tools forced users
to write code to prepare input data and glue together their processing stages. Combin-
ing VCF files with SNPs and indels is particularly challenging for cohorts, where a large
proportion of the genome can be variable (17% in our CRyPTIC cohort for example).
When analyzing the Walker 2013M. tuberculosis outbreak and including reference/wild-
type calls, Minos had much higher precision (7–10% higher) than the other tools, and on
scaling up, only Minos could process the 12k and 13k CRyPTIC and Mykrobe cohorts.
Rifampicin is a bactericidal drug which is a critical component of the antitubercular

arsenal, resistance to which is typically used as an epidemiological proxy for multi-drug
resistance (defined as having resistance to both rifampicin and isoniazid), particularly in
PCR-based rapid diagnostics such as the Xpert® assay. The latest WHO technical report
[20] showed that there were 6 known borderline mutations in rpoB (of which 5 were in
the RRDR) [20, 32–34], and carefully reported the MIC (minimal inhibitory concentra-
tion) distributions for isolates with these mutations. In essence, the distribution of MICs
(“the level of resistance”) overlapped with the distribution for wild-type (susceptible) M.
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tuberculosis, which leads to poor reproducibility of binary classification when the thresh-
old between resistant and susceptible (ECOFF) lies in that overlap. Nevertheless, in the
light of various reports of worse patient outcome associated with some of these mutations
[35–40], the WHO expert group decided that all non-synonymous mutations and indels,
even previously unseen ones, should be treated as causing resistance for the purposes of
diagnostics and therapy. Our analysis of this, the largest consistently phenotyped cohort
to date [10], reveals that the level of resistance caused by mutations in the RRDR is indeed
heterogeneous, and reveals further candidate borderline mutations and indels, including
a cascade of overlapping rare indels at position 431. This general picture is replicated in
the second cohort (Mykrobe data set). For a more nuanced analysis, it is necessary to look
at the MIC distribution associated with specific mutations (rather than using a binary
resistant/susceptible classification), which has been done in [41].
The main limitation to this study is that for joint genotyping we set a deletion length

limit of 50bp. This reflects an underlying design decision: Minos is a tool for combin-
ing VCF files from different callers or samples, adjudicating, and outputting an improved
VCF file. However VCF is really not an appropriate file format for handling many overlap-
ping small variants and large indels—for example, a 5-kb deletion covering 20 SNPs. We
address this question of how best to genotype and encode multiscale variation (such as
SNPs on top of long alternate haplotypes or SNPs under deletions) in a separate study [18].

Conclusions
We have presented a new tool, Minos, that enables users to combine results from their
preferred variant callers, integrating their strengths, to reach closer to the underlying
truth. It also provides amethod for joint genotyping SNPs and indels in bacterial genomes.
As genomic analysis is now ubiquitous in bacteriology, we believe Minos will be of wide
utility.

Methods
Minos pipeline

First we describe the methods used by Minos, which is implemented in Python and avail-
able under the MIT license at https://github.com/iqbal-lab-org/minos. The pipeline is
outlined in Fig. 1. The first two stages process the input variant calls, which must be in
one or more VCF files, to produce a single set of calls that can be used to generate a ref-
erence graph for read mapping. Initially, calls are normalized and deduplicated to make a
single “merged” set of calls. These calls are then “clustered” into variant sites that define
the variant graph used for readmapping. Themerging and clustering are described below.

VCFmerging

Each VCF file is processed individually as follows. Variant alleles to be retained for fur-
ther processing are extracted, where for each record if the genotype (GT) field is present
then only called the alleles are kept; otherwise, all alleles are used. The remaining records
and their alleles are written to a new VCF file. Variants are decomposed into unique SNPs
and indels using the commands vcfbreakmulti and vcfallelicprimitives -l

10000 from vcflib (https://github.com/vcflib/vcflib), followed by the normalize func-
tion from vt [42], and finally the vcfuniq command from vcflib. These VCF files are

https://github.com/iqbal-lab-org/minos
https://github.com/vcflib/vcflib
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loaded into a single data structure containing all the unique variants, plus the origin (i.e.,
which VCF file) of each variant.

Variant clustering

The merged variants are used to produce a single VCF file of “clustered” variants that is
compatible with gramtools, which in turn is used to generate a variant graph and map
reads to that graph. Although gramtools supports more complex situations (SNPs on
alternate haplotypes separate from the reference genome, SNPs underneath long dele-
tions) [18], we restrict to “non-nested” variation to maintain compatibility with VCF.
Therefore, overlapping variants must be converted into a single variant site (i.e., line in a
VCF file) containingmultiple alleles (an example is given in Additional file 1: Fig. S7). This
is straightforward when processing a single sample with a few input VCF files, such as
the SAMtools and Cortex VCF files used in this study when benchmarking Minos against
other tools. Where possible, all combinations of alleles are generated and included in the
graph. However, this is not always feasible when genotyping a large number of samples
(hundreds or thousands) because the number of theoretically possible alleles at one site
could be very large.
To process a large number of samples, heuristics are used to simplify the variant graph.

First, the number of alleles is limited by only allowing deletions of length (by default)
≤50bp. This prevents a combinatorial explosion where SNPs underneath the deletion can
cause impractically large numbers of alleles: n biallelic SNPs generates 2n alleles. Second,
the number of alleles in a variant site is limited to (by default) 500. If generating all allele
combinations at a site results in too many alleles, then only combinations of alleles actu-
ally seen in each sample are used. This happened at 1252 sites in the Mykrobe data set,
covering 53,632bp of the reference genome, and at 1195 sites (covering 50,324bp) in the
CRyPTIC data set. Third, it is possible for the graph to contain the same sequence more
than once across multiple variant sites, by choosing different paths through the graph (an
example is given in Additional file 1: Fig. S8—roughly this can happen in low complexity
sequence where two alternate deletions of some repetitive sequence can lead to the same
final sequence). As each new variant site is added, the previous seven sites are checked
and any sites generating duplicate sequences are merged into a single deduplicated site.
Removing these duplications is necessary to prevent downstream read mapping issues
caused by ambiguous mapping to different paths in the graph that are really the same
sequence. Finally, to reduce RAM usage and run time, there is an option to split the graph
into chunks, with read mapping run separately on each of these chunks. Using this option
requires the reads to be in a sorted indexed BAM file, so that the reads for each chunk can
be efficiently extracted for mapping.

Graphmapping and genotyping

The clustered VCF file made in the previous stage is input to the build command
of gramtools [18] to make a variant graph for read mapping. Reads are mapped to the
graph using the gramtools command quasimap. Each variant site is genotyped using the
output from gramtools, which reports the number of reads mapped to each allele, and
the read depth across each position of each allele. Minos supports haploid genotyping
calling only, using the model described below. Minos and gramtools use similar models—
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the gramtools model was based on that of Minos, but was modified to handle nested
genotyping.
At each variant site, the aim is to choose the correct, i.e., most likely, allele from a set of

alleles A. We have the following information from gramtools:

1. A function γ : P(A) → N (where P(A) is the power set of A), defined by γ (X) =
the number of reads that map to all alleles in X (and map to no other alleles). Since
gramtools only reports the combinations of alleles that it sees, we define γ by
assuming that all elements of P(A) not reported by gramtools have zero reads.
Note also that gramtools does exact matching of the full read length only - clipping
the ends of the reads or mismatches between the read and graph are not allowed;

2. For each allele a belonging to A, the read depth at each position in a, where reads
are allowed to be multiply mapped. This means that for each allele gramtools
matches a read to, a per-base coverage counter of each allele’s matching bases is
incremented. Thus, if a read maps to the middle 100bp of two long alternative
alleles, then a counter is incremented at each position of those 100bp in each allele.

Let c be the total coverage at a site, given by

c =
∑

X∈P(A)

γ (X).

Let a be an allele belonging to A. Define the coverage ca of a to be

ca =
∑

X∈P(A):a∈X
γ (X).

Let ε be the error rate in the reads, for which a default value of 0.002 is used and can be
changed by the user. Let d be the expected read depth and σ 2 the read depth variance,
which are estimated using the read depth reported by gramtools at each variant site. We
assume that the read depth follows a negative binomial distribution NB(n, r), where the
parameters n and r are given by

n = d2

σ 2 − d
and r = σ 2 − d

σ 2 .

This requires σ 2 > d. If this is not the case, then we set σ 2 to be double the read depth d.
This is only expected to happen in rare circumstances and was only seen in the simulated
data sets where the read depth was very even, unlike real data. The genotyping model
used by Minos comprises the three terms:

1. “Correct” coverage: NB(n, r, ca);
2. Coverage due to read errors: εc−ca ;
3. A gap (i.e., zero coverage) penalty: p

b
� (1 − p)

�−b
� , where p = 1 − NB(n, r, 0) is the

probability that a given position has zero depth, � is the length of allele a, and b is
the number of positions in a with non zero coverage.

The log likelihood is then calculated by summing the natural logarithm of these three
terms. The allele with the greatest log likelihood is chosen, with genotype confidence of
the difference in log likelihoods of that allele and the second greatest log likelihood. The
genotype confidence is reported in the Minos output VCF file using the tag GT_CONF.
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Variant call filtering

The FILTER column of the VCF file made by Minos is implemented using four filters.
The first requires a read depth of at least two, called MIN_DP in the output VCF file.
The second is a read depth no more than the mean depth plus three standard devia-
tions, called MAX_DP. The third filter identifies apparent heterozygous calls (for example,
caused by contamination), requiring by default at least 90% of the reads to support the
called allele. It is called MIN_FRS (“minimum fraction of read support”, can be set by the
user). The final filter removes low confidence genotype calls. Since the genotyping model
is dependent on read depth, the confidence score is not directly comparable between dif-
ferent sets of reads. This is accounted for by normalising the confidence score as follows.
10,000 SNPs are simulated by sampling read depths from a negative binomial distribu-
tion, defined by the observed mean depth and variance—this is the same distribution as
used in the genotyping model. Incorrect read depth is sampled from a binomial distri-
bution with n = observed read depth, and p = read error rate. These simulated SNPs are
genotyped using the same method as used when variant calling, generating an expected
distribution of genotyping confidence scores specific to this run. When genotyping the
real variant sites, any call with a confidence score in the first 0.5% of the simulated geno-
type score distribution fails the filter (the threshold can be set by the user). This filter is
called MIN_GCP (minimum genotype confidence percentile) in the output VCF file.

Joint variant calling

The Minos Nextflow pipeline for joint genotyping large sets of samples is conceptu-
ally very similar to running on a per-sample basis and proceeds as follows. The starting
point is a VCF file of variant calls for each sample. These VCF files are clustered and
merged, as described above, to produce a single gramtools graph for variant calling all
samples. This graph should encapsulate all variants found across all of the input VCF files
(except for deletions longer than 50bp). Each sample is genotyped using its reads mapped
to the gramtools graph, resulting in a VCF file for each sample, where the variant sites
are identical across all samples. The pipeline also produces a single multi-sample VCF
file, combining the files using ivcfmerge (https://github.com/iqbal-lab-org/ivcfmerge).
Finally, a distance matrix is calculated by defining the distance between any two samples
to be the number of variant sites where those samples have different genotype calls.

Variant call evaluation

The variant call evaluation with Varifier was implemented in Python and is available
under the MIT license at https://github.com/iqbal-lab-org/varifier. The required input is
as follows: (1) a VCF file of variant calls to be evaluated; (2) a “mapping genome” FASTA
file, which is the reference sequence corresponding to the VCF file; and (3) a “truth
genome,” which is the sequence assumed to be correct. The basic idea is to assign a score
from zero (meaning false-positive) to one (true-positive) to each variant call, where frac-
tional scores indicate partially correct calls. The score is determined by mapping probe
sequences generated from the reference and alternative alleles to the truth genome.

Precision

Each variant is processed using the followingmethod. First, variants with no genotype call
(GT field) or a heterozygous genotype are ignored. This method is designed for haploid

https://github.com/iqbal-lab-org/ivcfmerge
https://github.com/iqbal-lab-org/varifier
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organisms only since it essentially looks for perfect allele matches to the truth genome,
which does not work for heterozygous genotype calls. A probe sequence is generated
comprising the called allele, plus the (by default) 100 flanking nucleotides from the map-
ping reference before and after the allele—we call this the “alt probe”. Similarly, a “ref
probe” is generated that uses the reference allele instead of the called allele. The alt probe
is mapped to the truth genome using minimap2 [43], and mappings that do not include
the allele in the alignment (i.e., if the start and end positions of the allele in the probe
do not lie completely inside the start and end positions of the mapping because of soft-
clipping) or have mapping quality equal to zero are ignored. If there are no remaining
mappings, then the variant is classified as a false positive and assigned a score of zero.
Otherwise, theminimap2mapping that has the greatest number of allele positionsmatch-
ing the mapping genome is chosen as the “best” match. Similarly, the ref probe is mapped
to the mapping genome and the best mapping is chosen, but with the additional require-
ment that the alignment start position in the mapping genome must be equal to that of
the best alt probe mapping. If this results in no ref probe mapping, but with the alt probe
mapped, then the variant is classified as a true positive and assigned a score of 1.
If both probe sequences have a best match identified, then edit distances between

sequences are used to define a score for the variant call. For motivation, consider the
following relatively simple example allele sequences:
Reference: TAGAC

Alt allele: TTGAA

Truth: TTGAG

Although the called allele is incorrect because it missed the C to G SNP, it does include the
other A to T SNP and is 80% correct (4/5 of the sequencematches the truth). However, the
called allele only contains half of the correct variation between the reference and the truth
(1/2 SNPs are called), and we would like to account for this. To avoid long insertions or
deletions dominating results, we score an insertion or deletion of any length as 1 (i.e., the
same as a SNP) when calculating edit distance. Let d(t, r) be the edit distance between the
truth and reference alleles, and d(t, a) the edit distance between the truth and alternative
alleles. We define the score as zero if d(t, r) is zero, otherwise:

1 − d(t, a)
d(t, r)

.

In the example above, the score is 1− (1/2) = 0.5. Note that in the simple case of a single
SNP, a false-positive scores zero and a true positive scores one. This edit distance-based
measure is designed to handle indels and other complex variants. Although the score is
usually between zero and one inclusive, in rare cases where the called allele is very distant
from the truth, it is possible to have a negative score. The overall precision is calculated
by dividing the total of the numerators by the total of the denominators, summed over all
variants under consideration.

Recall

Recall is determined using the following method (a flow chart is provided in Additional
file 1: Fig. S9). First, a VCF file of all expected calls must either be supplied by the user,
or alternatively is made by comparing the mapping genome to the truth genome. Two
separate expected callsets are made: one using MUMmer [44] and the other using min-
imap2 and PAFtools. MUMmer is used by running the commands from its dnadiff
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pipeline. minimap2 is run with the options -c -cs, and the output is piped into unix
sort -k6,6 -k8,8n, and then into the call command of PAFtools with the options
-l50 -L50. Taking the union gives a set of variant calls between the mapping and truth
genomes, which we expect to contain false positives that need to be removed. The final
truth variant callset is made using the same probe mapping method described in the
above precision section, to remove false-positive calls. Each variant call from MUMmer
and minimap2 is kept if probe mapping to the truth genome results in a true-positive call
where the called allele matches perfectly (in other words, the variant has a score of one).
In the rare case where both tools call at the same position but with conflicting calls, the
calls are not used.
To recap, at this point in the recall pipeline, we have a set of variants to be evaluated,

a set of truth variant calls, and the mapping and truth genomes. The truth calls are in a
VCF file with respect to the mapping genome. Next, all variants in the VCF file of calls
to evaluate are applied to the mapping genome, to produce a new “mutated” genome.
Determining recall is now the same as answering: how many truth variants are found in
the mutated genome? This is answered using probe mapping using the same method as
for precision. The VCF file of truth calls is evaluated, where the mutated reference takes
the place of the “truth” genome.

Benchmarking

Truth genomes

The S. aureus truth genomes were generated from PacBio and Illumina reads as follows.
The PacBio raw reads were assembled using canu v1.6 [45] to produce the draft assembly.
The contigs from the draft assembly were aligned to the respective reference genomes
using the nucmer utility from the MUMmer3 [46] package. The contigs were oriented
to match the reference and trimmed based on the nucmer alignments and circularized
using minimus2 [47]. The assemblies were polished using the Illumina reads by iteratively
running Pilon v1.23 [48] until no more corections were made, up to a maximum of 10
runs. Reads were mapped using BWA MEM version 0.7.17 to make input for each Pilon
iteration.
The 17M. tuberculosis truth genomes were from [18], which already had the same Pilon

polishing process applied to them as used on the S. aureus genomes. We used K. pneumo-
niae assemblies from [49] for the truth genomes, which we note already had Pilon run on
them as part of their assembly process.

Genomemasks

A genome mask was available forM. tuberculosis H37Rv, which is used routinely by Pub-
lic Health England. The plasmids were masked from the K. pneumoniae and S. aureus
mapping genomes. A mask was generated for each truth genome by excluding positions
where there was not a majority agreement between Illumina mapped Illumina reads and
that genome, as described in Additional file 1. These masks were used by Varifier, which
ignores all variants intersecting any masked region of the truth or mapping genomes.

K. pneumoniae reference genomes

The five K. pneumoniae genomes used as references for variant calling were chosen as
follows. The average nucleotide identity (ANI) was calculated between each truth genome
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and allK. pneumoniae genomes in RefSeq using FastANI [50]. RefSeq [51] genomes with a
minimumANI less than 97.5% or amaximumANI of 100%were excluded. The remaining
genomes were listed in order of theminimumANI, and 5 the genomes were chosen evenly
spaced from this list, to obtain a range of ANI between the truth and mapping genomes.

Joint genotyping

The nextflow pipeline included in the Minos github repository was used to run joint
genotyping on all three data sets. A nextflow configuration file is included that contains
preset profiles to set sensible default parameters for “medium” and “large” size data sets.
The “medium” profile was used for the Walker 2013 data set, and “large” was used for the
CRyPTIC and Mykrobe data. The pipeline needs an input TSV file, listing sample names
and paths to VCF and reads files, plus the reference genome in FASTA format, and option-
ally a reference genome mask in BED format. The single command line used to run the
complete pipeline is provided in Additional file 1. The pipeline is set up to handle large
cohorts by saving RAM where possible. It splits the genome into slices, each containing
approximately the same number of alleles, and processes each slice in series. Each slice
overlaps by a read length to remove end effects from mapping. The Walker 2013 set was
split into 100 slices, and the two large sets into 300 slices. The slicing option requires that
the input reads for each sample are in a sorted, indexed BAM file, so that the reads for
each slice can be efficiently extracted. Such BAM files are typically generated during most
variant calling pipelines, and so this requirement is unlikely to create further work.
Joint genotyping with BayesTyper and GraphTyper both required a single sorted VCF

file from concatenating (taking account of VCF headers) all input VCF files. This file was
sorted, compressed with bgzip, and indexed with tabix for GraphTyper. For BayesTyper,
bcftools norm was run on the VCF file. Then the same commands used for running on
individual samples were used, as described in Additional file 1. These were successful on
all samples in the Walker 2013 data set. On the Mykrobe data set both tools failed on the
first sample, ERR025833. For BayesTyper, the combine function ran successfully, but the
cluster command failed. GraphTyper failed when running the genotype function,
after processing approximately 10% of the genome, with a peak RAM usage of 76GB.
After joint genotyping the CRyPTIC and Mykrobe data sets, the RRDR region was

analyzed as follows. To avoid ambiguity, we note that the RRDR region is the 27 amino
acid sequence at 426-452 in the rpoB gene in the H37Rv genome (it is often alterna-
tively described with E. coli numbering as 507-533). In H37Rv genome coordinates, this
is 759807-763325.
To analyze the RRDR region, only samples that had a high-quality rifampicin phenotype

of resistant or susceptible were used. This information is provided in the supplementary
tables of [30] for the Mykrobe data. For the CRyPTIC data, we used the samples from
[10]. Each of these samples was processed as follows. Its variants contained in the whole
rpoB gene were extracted and applied to the genome sequence and translated, making a
mutated amino acid sequence. The amino acid variants of the sample were deduced from
aligning the mutated amino acid sequence to the reference amino acid sequence. Then
the variants in the RRDR were extracted for each sample. In this way, combinations of
nucleotide variants were accounted for (for example, two consecutive SNPs could cause a
single amino acid change).
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