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Abstract:  
 

Biological membranes of many tissues and organs contain large-pore channels designed to 

permeate a wide variety of ions and metabolites. Examples include connexin, innexin, and 

pannexin, which form gap junctions and/or bona fide cell surface channels. The most recently 

identified large-pore channels are the calcium homeostasis modulators (CALHMs), which 

permeate ions and ATP in a voltage-dependent manner to control neuronal excitability, taste 

signaling, and pathologies of depression and Alzheimer’s disease. Despite such critical biological 

roles, the structures and patterns of oligomeric assembly remain unclear. Here, we reveal the first 

structures of two CALHMs, CALHM1 and CALHM2, by single particle cryo-electron 

microscopy, which show novel assembly of the four transmembrane helices into channels of 8-

mers and 11-mers, respectively. Furthermore, molecular dynamics simulations suggest that lipids 

can favorably assemble into a bilayer within the larger CALHM2 pore, but not within CALHM1, 

demonstrating the potential correlation between pore-size, lipid accommodation, and channel 

activity.  
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Main Text:  

 
First identified as a genetic risk factor for Alzheimer’s disease(1) and later as voltage-gated 

channels expressed in the brain(2) and taste cells(3-6), CALHM1 has been the most well studied 

family member to date. The function of CALHM2 proteins expressed in astrocytes have been 

linked to depression(7) and implicated to play a role in glial-neuronal functions(7). While 

CALHM3 has been shown to form heteromeric channels with CALHM1(8), the functions of the 

remaining members, CALHM4-6, are currently unknown. The calhm genes are conserved 

throughout vertebrates and non-vertebrates. Furthermore, CALHM1 from Caenorhabditis elegans 

has been shown to possess similar functional properties to that of human CALHM1 

(hCALHM1)(9), demonstrating functional conservation throughout diverse species as well.  

In this study, we focused on the two major family members, CALHM1 and CALHM2, 

which are involved in controlling excitability of neurons(2, 7). We first conducted expression 

screening of CALHM orthologues using fluorescence coupled size-exclusion chromatography 

(FSEC)(10), which concluded that chicken CALHM1 (chCALHM1) and human CALHM2 

(hCALHM2) show protein size homogeneity suitable for structural analysis. chCALHM1 and 

human CALHM1 (hCALHM1) have 67.7%/80.2% and 81.4%/93.8% sequence identity/similarity 

overall and within the transmembrane domains (TMDs), respectively (fig. S1). chCALHM1 also 

contains Asp120, the equivalent residue of which in hCALHM1 (Asp121) has been shown to be 

critical for its ion channel activity(11) (fig. S1). Indeed, our patch-clamp electrophysiology shows 

that chCALHM1 has similar functional properties to hCALHM1 including voltage-sensitivity, 

calcium sensitive inhibition, and channel blockade by ruthenium red (Fig. 1A-B). Both 

chCALHM1 and hCALHM2 proteins were recombinantly expressed in Sf9 insect cells, infected 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2019. ; https://doi.org/10.1101/857698doi: bioRxiv preprint 

https://doi.org/10.1101/857698
http://creativecommons.org/licenses/by-nd/4.0/


with the respective recombinant baculoviruses(12), purified, and reconstituted into lipid nanodiscs 

prior to vitrification for the cryo-EM study (fig. S2; also see Supplementary Methods).  

We solved the structure of chCALHM1 using single particle cryo-EM analysis at an overall 

resolution of 3.63 Å (Fig. 1C-E, fig. S3-4, table S1) as assessed by Fourier Shell Correlation 

(FSC)(13, 14). The cryo-EM structure was solved in the absence of calcium, and therefore likely 

represents the active state. The cryo-EM density of the extracellular domain, the four TMD helices, 

and the cytoplasmic helices (CTHs) were of sufficient quality to conduct de novo modeling 

between residue numbers 26-79, 91-137 and 151-247, altogether spanning 198 out of 342 amino 

acids. Most of the missing density is in the carboxyl terminal region after the CTH where 72 out 

of 94 residues are predicted to be unstructured by a secondary structure analysis(15). Nevertheless, 

the structure confirms the previous prediction that CALHM1 harbors four transmembrane domains 

with the amino and carboxyl termini facing the cytoplasm(16). The cryo-EM density for TMD1 

facing the pore is weaker compared to the other three TMDs, indicating the presence of 

conformational flexibility. Some unresolved density extends from TMD1 towards the middle of 

the channel at the cytoplasmic side, likely representing the amino terminal residues in multiple 

conformations (fig. S5). In CALHM1s from human and Caenorhabditis elegans, the first nine 

residues have been shown to alter voltage-sensitivity(17), thus, we suggest that these voltage-

sensing residues are located in the inner-pore within the membrane spanning region (fig. S5). Our 

current structure clearly showed octameric assembly with the pore-like structure in the middle of 

the oligomer (Fig. 1C-D). The assembly is mediated mainly by interactions between TMD2 and 

TMD4, between TMD1 and TMD3, and between the forty-residue long CTHs of neighboring 

subunits (fig. S6). The octameric assembly shown in our high resolution cryo-EM structure differs 

from a previous study suggesting hexameric assembly of CALHM1 based on Blue Native-PAGE 
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and photobleaching of the hCALHM1-EGFP constructs(16). Nevertheless, the subunit-interface 

residues are highly conserved between chCALHM1 and hCALHM1 strongly implying 

preservation of oligomeric mechanisms (fig. S1 and S6, 88.5%/100% identity/similarity over 35 

residues in TMDs and CTH). The only other octameric channel reported to date is innexin(18), 

however, it does not share similar features in the pattern of oligomeric assembly with chCALHM1. 

Furthermore, contrary to a previous suggestion, there is no similarity in the membrane topology, 

structure, and oligomeric assembly pattern of chCALHM1 to N-methyl-D-aspartate (NMDA) 

receptors(1) which contain three TMDs and a re-entrant loop and form hetero-tetramers(19, 20). 

Importantly, the structural comparison of monomers demonstrated that chCALHM1 does not 

resemble other four transmembrane channel proteins including connexin (CX26)(21), innexin 

(INX6)(18), or the volume-regulated anion channel (VRAC; LRRC8)(22, 23) (Fig. 1F).  

A key residue known to modulate CALHM1 ion permeability and calcium sensitivity, 

Asp120 (Asp121 in hCALHM1)(11), is located in TMD3 at the interface with the neighboring 

subunit (fig. S6A-C). Although in chCALHM1, each of the Asp120 residues face the inner pore, 

they do not appear to participate in pore formation directly as they are distant from each other (~20 

Å apart between the Cαs of the neighboring Asp120 residues). Instead, Asp120 may facilitate 

inter-subunit interactions which stabilize channel assembly (fig. S6C). Mutation of another key 

residue in hCALHM1 (Pro86Leu) has also previously been shown to be a risk factor for the age 

of onset of Alzheimer’s disease in selected populations(1), and although the equivalent residue in 

chCALHM1 is Gln85, it is clear that this residue is located in the disordered loop between TMD2 

and TMD3. Consistent with this location, which faces the cytoplasm and is not part of the channel-

pore (fig. S6A-B; asterisks), the Pro86Leu mutation in hCALHM1 has previously been shown not 

to alter channel activity(1). Instead, the mechanisms underlying the association of this mutations 
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with Alzheimer’s disease pathology may involve other factors, such as protein-protein interactions 

involving this loop and subsequent cell signaling events that regulate the level of amyloid beta(24).  

 CALHM2 has a moderately high sequence similarity to CALHM1 within the predicted 

TMD domains (35%/56% and 37%/55% between hCALHM1 and hCALHM2 and between 

chCALHM1 and hCALHM2, respectively (identity%/similarity%); fig. S7), yet, unlike CALHM1, 

does not show voltage-dependent ion channel activities(8). Thus, we wondered what structural 

features of CALHM1 and CALHM2 may be responsible for this functional difference. To permit 

an extensive comparison, we conducted a structural analysis of the human CALHM2 (hCALHM2) 

protein by implementing a similar protocol to that used above for chCALHM1 (fig. S8, also see 

Supplementary Methods). Single particle cryo-EM analysis of the hCALHM2 sample in the 

absence of calcium resulted in one major 3D class at 3.48 Å resolution as assessed by FSC (fig. 

S9-10, table S1). As in the case of chCALHM1, the hCALHM2 protomer contains four TMDs 

and the long CTH that is the signature of the CALHM family (Fig. 2A-B, D). The orientations of 

the four TMD helices in hCALHM2 are also similar to that of chCALHM1 and unrelated to 

connexin (CX26), innexin, or VRAC (Fig. 2E). However, the profound structural difference 

between chCALHM1 and hCALHM2 is that the oligomeric state of hCALHM2 is 11-mer. As in 

chCALHM1, the oligomeric assembly of hCALHM2 is mediated by interactions between TMD2 

and TMD4, between TMD1 and TMD3, and between the CTHs of the neighboring subunits (fig. 

S11). However, the fundamental difference is in the angle between TMD4 and the CTH, which is 

controlled by the linker sequence that tethers these two helices together (TMD-CTH linker; Fig. 

2E). Consequently, the sites of inter-CTH interactions are different between chCALHM1 and 

hCALHM2. This linker sequence differs between CALHM family members, suggesting that 

CALHM4-6 may also have distinct oligomeric states (fig. S6).  It is interesting to note that 
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CALHM1 and CALHM3 have similar linker sequences and are known to form heteromers(8). 

Nevertheless, the 11-mer channel assembly observed in hCALHM2 is unprecedented. Therefore, 

to validate the physiological relevance of this 11-mer assembly in the membrane environment, we 

conducted a series of disulfide-based inter-subunit crosslinking experiments (Fig. 2C). Based on 

the structure, we substituted residues in the inter-subunit interface at the extracellular side of 

TMD2 and TMD4 (Arg52/Tyr182) and at the CTHs (Asn226/Arg240) with cysteines (Fig. 2C), 

subjected the mutants to SDS-PAGE, and detected bands by Western blot in the presence and 

absence of a reducing agent. In the case of CTH mutants located in the cytoplasm, we facilitated 

disulfide bond formation by addition of copper phenanthroline to the membrane fraction. In the 

non-reducing condition, we observed a high molecular weight band around 460 kDa. Monomer 

bands were exclusively observed in the reducing condition, indicating that the band shift in the 

non-reducing condition is mediated by disulfide bonding between the engineered cysteines (Fig. 

2C). The resolution of the Western blot experiment is not sufficiently high to unambiguously 

assign 11-mer assembly, however, the result shows that the oligomeric assembly observed in the 

cryo-EM structure is consistent with its physiological state in the membrane. 

 One noteworthy observation is that the hCALMH2 11-mer dimerizes to form a 22-mer 

reminiscent of a gap junction in the presence of 1 mM CaCl2 under cryo-EM conditions (fig. S12-

13). Our 22-mer structure solved at 3.68 Å showed a high structural similarity to the 11-mer 

structure (RMSD = 0.853 Å over 265 residues), indicating that the calcium did not alter the protein 

architecture. Inclusion of 1 mM CaCl2 does not oligomerize hCALHM2 to a 22-mer assembly in 

solution as observed in the identical peak retention time in size-exclusion chromatography, thus, 

whether this gap junction structure observed under the cryo-EM condition is physiological or not 

remains unresolved at this point. However, similar gap junction formation was also observed in 
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cryo-EM images of chCALHM1 under similar conditions (data not shown), indicating the 

propensity of the CALHM channels to form dimers in the presence of calcium under cryo-EM 

conditions. 

Further structural inspection revealed that the majority of the channel-lining residues 

(TMD1 and 3) in chCALHM1 are hydrophilic (Fig. 3A-B) whereas those in similar positions in 

hCALHM2 are hydrophobic (Fig. 3C-E). Thus, we speculated that hydrophobic molecules, for 

example lipids, may be favorably placed in this hydrophobic channel-like structure of hCALHM2. 

This speculation was partially supported by our observation of amorphous density in the middle 

of the 11-mer assembly in hCALHM2 (Fig. 3F), which is not present in the octameric 

chCALHM1. To assess if the 11-mer channel-like structure in hCALHM2 can accommodate lipids 

in the middle, we conducted molecular dynamics simulations of chCALHM1 and hCALHM2 in 

the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) (Fig. 3G-H). Coarse-

grained structural models(25) of chCALHM1 and hCALHM2 were mixed with POPC lipids and 

allowed to self-assemble into bilayers(26). During replicates of 500 ns simulations, a membrane 

bilayer formed around both proteins within the first 100 ns, with a number of lipids inside the 

channel pore. In hCALHM2, the central pore lipids were oriented with a bilayer-like configuration 

that remained stable, both in simulations of the protein-membrane systems upon conversion into 

their corresponding atomistic representation as well as in further, extended coarse-grained 

simulations (up to 5 µs per replicate) (Fig. 3H). By marked contrast, however, although 

phospholipids could also be accommodated within the smaller chCALHM1 pore, they did not 

assemble into clearly defined or stable inner and upper leaflets (Fig. 3H). These simulations imply 

that the hydrophobicity and larger 11-mer assembly of hCALHM2 may favor the accommodation 

of lipid molecules, which prevent ion permeation.   
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 In conclusion, our study demonstrates that CAHLM1 and CALHM2 assemble as 8-mer 

and 11-mer, respectively, and that these different oligomeric states of CALHMs correlate with 

channel functions, with only the smaller 8-mer assembly displaying ion channel activity. The 

structural information presented here will serve as the foundation to study mechanistic questions 

and reagents development for CALHMs. 
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Fig. 1 Structure and function of chCALHM1. (A) Currents elicited by hCALHM1 and 
chCALHM1 with voltage steps from -100 to +100 mV in 10 mV increment in the presence and 
absence of extracellular calcium. The current of chCALHM1 can be blocked by 0.02 mM 
ruthenium red (RuR) as previously shown for hCALHM1. (B) G-V plot of chCALHM1 and 
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hCALHM1 with no CaCl2 (right panel). (C-D) Cryo-EM density (C) and atomic models (D) of 
chCALHM1 viewed from the side of the membrane, the extracellular region, and the cytoplasm. 
(E) Ribbon (left) and schematic (right) representations of the chCALHM1 protomer. The TMDs 
are colored as blue, cyan, green, and yellow for TMD1, 2, 3, and 4, respectively. Dashed lines 
represent regions that are not visible in our structure. (F) Protomers of chCALHM1, CX26(21), 
innexin(18), and LRRC8A(22). The TMDs are colored as in panel E for comparison. 
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Fig. 2 Structure and function of hCALHM2. (A-B), Cryo-EM density (A) and atomic models 
(B) of hCALHM2 viewed from the side of the membrane, the extracellular region, and the 
cytoplasm. (C) Cysteine mutations, Tyr182Cys/Arg52Cys or Asn226Cys/Arg240Cys (spheres), 
were introduced at the subunit interfaces to assess formation of inter-subunit disulfide crosslinking 
(left). Anti-1D4 Western blots (right) of SDS-PAGE show band shifts for Tyr182Cys/Arg52Cys 
and Asn226Cys/Arg240Cys (arrow 1). Tyr182Cys/Arg52Cys forms disulfide bonds independent 
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of copper phenanthroline. Formation of disulfide bonds for Asn226Cys/Arg240Cys requires 
copper phenanthroline treatment before (Asn226Cys/Arg240Cys memb) or after detergent 
solubilization. The wild-type hCALHM2 protein runs as a monomer under these conditions (arrow 
2). Under reducing conditions (beta mercaptoethanol), all constructs run as monomers (arrow 2 on 
the right gel). (D) Ribbon (left) and schematic (right) representations of the hCALHM2 protomer. 
The TMDs are colored as blue, cyan, green, and yellow for TMD1, 2, 3, and 4, respectively. 
Dashed lines represent regions that are not visible in our structure. (E) Superposition of the TMDs 
of the chCALHM1 (in cyan) and the hCALHM2 (in magenta) viewed from the side of the 
membrane (left) and the cytoplasm (right). RMSD of superposition is 1.1 Å over 105 Cα positions. 
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Fig. 3 Comparison of pore properties between chCALHM1 and hCALHM2. (A-D) Channel 
lining residues (A and C)(27) and inner pore surface (B and D; calculated by CHAP(28)) of 
chCALHM1 (A-B) and hCALHM2 (C-D) colored based on relative hydrophobicity. (E) 
Sequence alignment of the N-terminal residues showing hydrophobic and hydrophilic residues 
facing the pore with the same color code as in panel A and C. (F) Cross-section of the 
hCALHM2 showing an extra cryo-EM density in the middle of the pore. (G) Coarse-grained MD 
simulations of chCALHM1 (left) and hCALHM2 (right) embedded in POPC membranes. Side 
(cutaway) and top views of the final frame of one 5 μs replicate are shown in each case, with the 
protein backbone particles in blue, phospholipid headgroups in red, and acyl tails in white. Water 
and ions present in the simulation systems are omitted for clarity. (H) Headgroup positions of 
lipids inside each channel pore and in the surrounding bilayer membrane. The average headgroup 
z-coordinates of lipids constituting the upper- and lower-leaflets in the final frame of each 
simulation are respectively tracked through the 5 μs simulated duration; results from one 
replicate are shown for each protein. 
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Materials and Methods 

Expression, purification, and nanodisc reconstitution of CALHM1 and CALHM2 

The chCALHM1 construct with N-terminally fused Strep-II, 8xHis, and EGFP tags (StrepII2-

His8-GFP) and the hCALHM2 construct with a C-terminally fused Strep-II tag were expressed in 

the baculovirus (BV)/Sf9 system under the Drosophila Hsp70 promoter as previously 

described(12). In brief, Sf9 cells were cultured in CCM3 (Invitrogen) supplemented with 1% non-

heat inactivated FBS at 27oC, infected with BV at a cell density of 4 x 106 cell/ml, and harvested 

48-52 hours after infection. The harvested cell pellets were resuspended in 20 mM Hepes-NaOH 

(pH 7.5), 200 mM NaCl, 1 mM EDTA and 1 mM PMSF and lysed under high-pressure 

homogenization (Avestin). The lysate was spun at 4,550g for 20 min and the supernatant was 

ultracentrifuged at 186,000g for 1 hour at 4°C. The pellet was solubilized in 20 mM Hepes-NaOH 

pH 7.5, 200 mM NaCl, 1 mM EDTA, and 1% C12E8 (Anatrace) for 2 hours at 4°C and 

ultracentrifuged at 186,000g for 1 hour at 4°C. The clarified supernatant was loaded onto a Strep-

Tactin Sepharose column followed by 20 column volumes (CV) of washing with 20 mM Hepes 

(pH 7.5), 200 mM NaCl, 1 mM EDTA, 0.01% C12E8 (wash buffer) and elution using the wash 

buffer supplemented with 3 mM desthiobiotin. The purified hCALHM2 was concentrated to ~2.5 

mg/ml at 4°C using 100-kDa MWCO Amicon concentrators (Millipore) before reconstitution into 

nanodiscs. Purified chCALHM1 was concentrated to 1 mg/ml, digested by trypsin at a weight-to-

weight ratio of 1:20 for 1 hour at 18°C to remove StrepII2-His8-GFP, and purified further by size 

exclusion chromatography using a Superose 6 10/300 column (GE Healthcare) in 20 mM Tris-

HCl (pH 8.0), 200 mM NaCl, 1 mM EDTA, 0.01% C12E8. Peak fractions were pooled and 

concentrated prior to reconstitution into nanodiscs. For reconstitution into nanodiscs, soybean 

polar extract, MSP2N2, and the purified CALHM proteins, at final concentrations of 0.75, 0.3 and 

0.3 mg/ml, respectively, were mixed for 1 hour at 4°C, followed by detergent removal by SM2 
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Bio-Beads (BioRad) overnight (~12 hours). The beads were removed and the solution was further 

purified by size exclusion chromatography using a Superose 6 10/300 column (GE Healthcare) in 

20 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA. Peak fractions were pooled and 

concentrated to ~2.5 mg/ml (hCALHM2) or ~0.6 mg/ml (chCALHM1) for cryo-EM grid 

preparation. MSP2N2 protein was expressed and purified as previously described(29). 

 

Cryo-EM sample preparation, image collection and single particle analysis 

3-4 µl of the CALHM-nanodisc complex was applied to glow-discharged 1.2/1.3 400 mesh C-flat 

carbon coated copper grids (Protochips). The grids were blotted for 4 s with blot force 7 at 85% 

humidity and 15°C prior to plunge freezing into liquid ethane using a Vitrobot Mark IV (Thermo 

Fisher). Datasets were collected using a Titan Krios operated at an acceleration voltage of 300 keV 

and the GATAN K2 Summit direct electron detector coupled with the GIF quantum energy filter 

(Gatan Inc.) controlled by SerialEM software(30). Movies were recorded with a pixel size of 1.06 

Å, an exposure time of 10 s over 50 frames, and a dose rate of 1.4 e/Å2/frame. The program Warp 

was used to align movies, estimate the CTF and pick particles(31). 2D classification, ab-initio 3D 

map generation, 3D refinement, 3D classification, per particle CTF refinement and B-factor 

sharpening were performed using the program cisTEM(32). The highest resolution of 3D 

refinement used was 6 Å for all of the models in this study. The workflows of single particle 

analyses for chCALHM1 and hCALHM2 are outlined in fig. S3 and S9. De novo modeling was 

done manually using the program Coot(33). The final models were refined against the cryo-EM 

maps using PHENIX real space refinement(34) with secondary structure and Ramachandran 

restraints. The FSCs were calculated by phenix.mtriage. Data collection and refinement statistics 

are summarized in table S1. 
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Cysteine crosslinking and Western blot analysis 

The cysteine substituted Asn226Cys/Arg240Cys hCALHM2 and Arg52Cys/Tyr182Cys 

hCALHM2, as well as wild-type hCALHM2, were all C-terminally 1D4 tagged and expressed in 

the BV/Sf9 expression system under the CMV promoter. The membrane fraction were isolated and 

solubilized as above. The solubilized fraction was subjected to affinity purification by 1D4 

antibody conjugated to CNBr-activated agarose (GE Healthcare). The resin was extensively 

washed and the protein eluted with wash buffer supplemented with 0.2 mg/ml 1D4 peptide. 

Samples were then either reduced with β-mercaptoethanol, left untreated, or treated with the 

oxidizing agent (1,10-phenanthroline) copper(II). After 30 min incubation on ice, 1 mM final 

concentration iodoacetamide was added to samples treated with (1,10-phenanthroline) copper(II). 

Samples were subjected to Western blot using anti-1D4 monoclonal antibodies (University of 

British Columbia) and anti-mouse Horseradish peroxidase-conjugated antibodies (GE Healthcare). 

Protein bands were detected by enhanced chemiluminescence on X-ray film (ECL kit; GE 

Healthcare). To verify that the in-membrane hCALHM2 assembly corresponded in size to 

detergent extracted hCALHM2, the membrane fractions containing Asn226Cys/Arg240Cys 

hCALHM2-1D4 were also oxidized with (1,10-phenanthroline) copper(II) prior to detergent 

solubilization.  

 

Molecular dynamics  

Molecular structures of chCALHM1 and hCALHM2 were separately embedded within POPC 

bilayer membranes that were solvated on either side at 0.2 M NaCl concentration. Simulation cells 

were of approximate dimensions 17 x 17 x 15 nm3 (CALHM1) and 20 x 20 x 15 nm3 (CALHM2). 
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Each protein-membrane system was assembled and equilibrated via a previously established 

protocol(26). Simulations were performed with GROMACS 5.1(35). The MARTINI 2.2 force 

field(25) was used for coarse-grained simulations, with a time-step of 20 fs and an elastic network 

used to harmonically restrain Cα particles and stabilize the protein structure. Atomistic simulations 

were run using the OPLS all-atom protein force field with united-atom lipids(36) and the 

TIP4P/2005 water model(37). The integration time-step was 2 fs. Temperature and pressure were 

maintained at 37°C and 1 bar during simulations, using the velocity-rescaling thermostat(38) in 

combination with a semi-isotropic Parrinello and Rahman barostat(39), with coupling constants of 

τT = 0.1 ps and τP = 1 ps, respectively. Bonds were constrained through the LINCS algorithm(40). 

A Verlet cut-off scheme was applied, and long-range electrostatic interactions were calculated 

using the Particle Mesh Ewald method(41).  

 

Electrophysiology 

CALHM proteins were expressed in HEK293T cells infected by the recombinant BV harboring 

chCALHM1 or hCALHM under the CMV promoter. Recordings were obtained ~48 h post 

infection using borosilicate glass pipettes (Sutter Instruments) pulled and polished to a final 

resistance of 2-6 MΩ and backfilled with (in mM) 147 NaCl, 10 EGTA, and 10 HEPES pH 7.0 

with NaOH. The bath solution contained (in mM) 147 NaCl, 13 glucose, 10 HEPES pH 7.3 with 

NaOH, 2 KCl, 2 CaCl2, and 1 MgCl2. Recordings performed in the absence of Ca2+ used a similar 

solution but with no CaCl2 added. A rapid solution exchanger (RSC-200; Bio-logic) was used to 

perfuse cells with various solutions. Data was collected on an AxoPatch 200B patch-clamp 

amplifier (Axon Instruments), filtered at 2 kHz (Frequency Devices), and digitized with a Digidata 

1550B digitizer (Axon Instruments) using a sampling frequency of 10 kHz. Recordings were 
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analyzed using the Clampex 11.0 software (Axon Instruments). Patches were held at -60 mV and 

stepped between -100 mV and +100 mV in 20 mV increments for 1 s.  

 
  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2019. ; https://doi.org/10.1101/857698doi: bioRxiv preprint 

https://doi.org/10.1101/857698
http://creativecommons.org/licenses/by-nd/4.0/


 
 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
 

 
 
 
 

Fig. S1. Sequence alignment of CALHM1 orthologues A multiple sequence alignment of CALHM1 
orthologues (Gallus gallus, Homo sapiens, Caenorhabditis elegans and Danio rerio). Red boxes indicate 
identical residues and red characters indicate similar residues. The positions of the TMD1-4 (red bars above 
the alignment), the CTH (the grey bar above the alignment), and the ‘linker’ are based on the chCALHM1 
structure from the current study. An asterisk and an arrow annotate Asp120 and the position of Pro86 in 
Homo sapiens CALHM1 (Glu85 in chCALHM1), respectively. The multiple sequence alignment was 
generated using Clustal Omega(42) and graphically presented using ESPript 3.0(43).  
 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2019. ; https://doi.org/10.1101/857698doi: bioRxiv preprint 

https://doi.org/10.1101/857698
http://creativecommons.org/licenses/by-nd/4.0/


 
 
 
 
Fig. S2. Reconstitution of chCALHM1 into lipid nanodiscs (A) Representative Superose-6 SEC 
chromatograph of chCALHM1 in MSP2N2 nanodiscs with soy polar extract. (B) SDS-PAGE of the 
fractions collected from SEC. The band for chCALHM1 has a tendency to spread out in SDS-PAGE.  
Fractions that eluted between 13.5-15.5 ml were pooled, concentrated and subjected to cryo-EM. 
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Fig. S3. Single particle analysis of chCALHM1 (A) A representative micrograph (scale bar = 38.8 nm), 
representative 2D class averages, and the 3D classification workflow are shown. (B) The FSC plots of the 
two half maps (top) and the map vs model (bottom) are shown. (C) The angular distribution plot for class 
3. (D) Local resolutions of class 3 were calculated using ResMap(44).   
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Fig. S4. Representative cryo-EM density of chCALHM1. (A) Cryo-EM density of the overall octameric 
assembly (left) and the cross sectional view of the central cavity (right). (B-C) Representative density for 
a monomer (B), and individual TMDs and a CTH (C). 
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Fig. S5. Presence of extra cryo-EM density in the chCALHM1 pore. (A) Extra cryo-EM density is 
observed in the middle of pore-like structure of the chCALHM1. Here the pore-density and the density for 
only subunit H are shown for clarity. TMD1 and the pore-density are continuous (arrow). (B) The density 
observed from the top of the extracellular region. The diameter of the pore is 19.5 Å.   
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Fig. S6. Inter-subunit interface of chCALHM1. (A-B) The chCALHM1 structure viewed from the top 
of extracellular region (A) and the side of the membrane (B). Shown in spheres are the Asp120 residues 
critical for calcium sensitivity and ion permeation. (C) Asp120 (sphere) and surrounding residues (sticks) 
form polar interactions to mediate inter-subunit interactions. (D-E) The inter-subunit interactions between 
TMD2 and TMD4 (D) and CTHs (E). (F) The schematic presentation of the interactions between two CTHs 
(magenta and slate blue). Polar and van der Waals interactions mediated by hydrophobic residues (ovals) 
are shown as dashed and solid lines, respectively. The residues in italic are the equivalent ones in 
hCALHM1 in a sequence alignment. 
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Fig. S7. Sequence alignment of CALHM family members. A multiple sequence alignment of the Homo 
sapiens CALHM 1-6. The red boxes indicate identical residues and red characters indicate similar residues. 
The positions of the TMD1-4 (red bars above the alignment), the CTH (the grey bar above the alignment), 
and the ‘linker’ are based on the hCALHM2 structure from the current study. The multiple sequence 
alignment was generated as in fig. S1.  
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Fig. S8. Reconstitution of hCALHM2 into lipid nanodiscs. (A) Representative Superose 6 SEC 
chromatograph of hCALHM2 in MSP2N2 nanodiscs with soy polar extract. (B) SDS-PAGE of the fractions 
collected from SEC. Fractions that eluted between 14.5-16.5 ml were pooled, concentrated and subjected 
to cryo-EM. 
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Fig. S9. Single particle analysis of hCALHM2. (A) A representative micrograph (scale bar = 38.8 nm), 
representative 2D class averages, and the 3D classification workflow are shown. (B) The FSC plots of the 
two half maps (top) and the map vs. model (bottom) are shown for class 8. (C) The angular distribution 
plot for class 8. (D) Local resolutions of class 8 were calculated using ResMap(44).   
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Fig. S10. Representative cryo-EM density of hCALHM2. (A) Cryo-EM density of the overall 11-mer 
assembly (left) and the cross-sectional view of the central cavity (right). (B-C) Representative density for 
a monomer (B), and individual TMDs and a CTH (C). 
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Fig. S11. Interaction of hCALHM2 subunits. (A-B) The hCALHM2 structure viewed from the top of 
extracellular region (A) and the side of the membrane (B). Shown in spheres are the Arg124 residues at the 
equivalent position to chCALHM1 Asp120 or hCALHM1 Asp121. (C) Arg124 (sphere) and surrounding 
residues (sticks) form polar and hydrophobic interactions to mediate inter-subunit interactions. (D-E) The 
inter-subunit interactions between TMD2 and TMD4 (D) and CTHs (E). (F) The schematic presentation of 
the interactions between two CTHs (magenta and slate blue) in hCALHM2 (top) and chCALHM1 (bottom). 
Polar and van der Waals interactions mediated by hydrophobic residues (ovals) are shown as dashed and 
solid lines, respectively. The lines in magenta are the conserved interactions between chCALHM1 and 
hCALHM2. The residues in italic are the equivalent ones in hCALHM1 in a sequence alignment. 
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Fig. S12. Single particle analysis of 22-meric hCALHM2. (A) A representative micrograph (scale bar = 
38.8 nm), representative 2D class averages, and the 3D classification workflow are shown. (B) The FSC 
plots of the two half maps (top) and the map vs. model (bottom) are shown for class 8. (C) The angular 
distribution plot for class 8. (D) Local resolutions of class 8 were calculated using ResMap(44).   
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Fig. S13. Structure of 22-meric hCALHM2. (A) Cryo-EM density of the 22-meric hCALHM2 viewed 
from the side of the membrane and from the cytoplasm. (B) The structural models in the same orientation 
as the cryo-EM density in (A), showing locations of the TMD2-4 and the CTH. There is little or no structural 
change between the 22-mer and 11-mer structures except for the extracellular region (due to the inter-11-
mer interaction).  
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Table S1 Cryo-EM data collection, refinement and validation statistics 
 

 hCALHM2 
(EMDB-xxx) 
(PDB xxxx) 

chCALHM1 
(EMDB-xxxx) 
(PDB xxxx) 

hCALHM2 gap 
junction 
(EMDB-xxxx) 
(PDB xxxx) 

Data collection and processing    
Magnification    130,000 130,000 130,000 
Voltage (kV) 300 300 300 
Electron exposure (e–/Å2) 70 70 70 
Defocus range (μm) 1.2 – 2.8  1.5 – 3  1.5 – 3  
Pixel size (Å) 1.06 1.06 1.06 
Symmetry imposed C11 C8 D11 
Initial particle images (no.) 331,726 533,665 119,211 
Final  particle images (no.) 104,755 308,916 52,737 
Map resolution (Å) 
    FSC threshold 

3.48 
0.143 

3.63 
0.143 

3.68 
0.143 

    
Refinement    
Initial model used (PDB code) de novo de novo 

 
hCALHM2 

Model resolution (Å) 
    FSC threshold 

3.63 
0.5 

3.83 
0.5 

3.79 
0.5 

Model resolution range (Å)    
Map sharpening B factor (Å2) -90 -150 -90 
Model composition 
    Non-hydrogen atoms 
    Protein residues 
    Ligands 

 
22,781 
2,292 
0 

 
12,528 
1,592 
0 

 
45,832 
5,916 
0 

CC map vs. model (%) 0.81 0.81 0.83 
R.m.s. deviations 
    Bond lengths (Å) 
    Bond angles (°) 

 
0.004 
0.754 

 
0.006 
0.939 

 
0.007 
0.859 

 Validation 
    MolProbity score 
    Clashscore 
    Poor rotamers (%)    

 
2.24 
7.08 
2.96 

 
2.18 
9.34 
0.59 

 
2.07 
10.78 
0.07 

 Ramachandran plot 
    Favored (%) 
    Allowed (%) 
    Disallowed (%) 

 
91.79 
8.21 
0 

 
83.42 
15.93 
0.65 

 
91.09 
8.89 
0.02 
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