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Abstract—We consider the possibility of applying game theory to analysis and modeling of neurobiological sys-
tems. Specifically, the basic properties and features of information asymmetric signaling games are considered
and discussed as having potential to explain diverse neurobiological phenomena; we focus on neuronal action
potential discharge that can represent cognitive variables in memory and purposeful behavior. We begin by argu-
ing that there is a pressing need for conceptual frameworks that can permit analysis and integration of informa-
tion and explanations across many scales of biological function including gene regulation, molecular and
biochemical signaling, cellular and metabolic function, neuronal population, and systems level organization to
generate plausible hypotheses across these scales. Developing such integrative frameworks is crucial if we
are to understand cognitive functions like learning, memory, and perception. The present work focuses on sys-
tems neuroscience organized around the connected brain regions of the entorhinal cortex and hippocampus.
These areas are intensely studied in rodent subjects as model neuronal systems that undergo activity-
dependent synaptic plasticity to form neuronal circuits and represent memories and spatial knowledge used
for purposeful navigation. Examples of cognition-related spatial information in the observed neuronal discharge
of hippocampal place cell populations and medial entorhinal head-direction cell populations are used to illustrate
possible challenges to information maximization concepts. It may be natural to explain these observations using
the ideas and features of information asymmetric signaling games.� 2023 The Author(s). Published by Elsevier Ltd on

behalf of IBRO. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Key words: game theory, information Asymmetry, hippocampus, entorhinal cortex, spatial cognition, navigation, cell assemblies.
INTRODUCTION

A child might ask ‘‘how does the brain work?” Because

computers are now second nature and the brain clearly

computes, one might be tempted to draw on analogies

between brains and computers to answer the child, but

an agile self-respecting neuroscientist is more likely to

answer, ‘‘well, you know, the brain is the most complex

system we know of, so it should not surprise you that

we do not understand how it works.” Dinner party

guests often ask ‘‘how does memory work?” to which

our neuroscientist might answer, ‘‘your neurons make a

molecule named PKMzeta that is crucial,” or ”synapses
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change their effectiveness to store memories,” or ‘‘when

you experience something, the neurons in your brain

discharge electrical signals in specific patterns, those

patterns replay when you recall the memory,” or ‘‘there

is a part of the brain called the hippocampus, it is where

you store memories, until they are transferred to the

neocortex.” Depending on the quality of the wine, the

neuroscientist might add ‘‘it doesn’t seem at all like

computer memory.” While each of these proximate

explanations is in a sense standard, it is remarkable that

each involves a distinct level of biological organization,

where a great amount of self-consistent, rigorously-

obtained detail is known within the level, but rather little

is known about how to connect the phenomena between

the levels and advance an ultimate explanation. Such

an explanation would also encompass evolution,

development, and genetics. Indeed, concepts like

transcription, translation, and post-translation

modifications like phosphorylation that operate at the

nanoscale and minutes-long timescales of genes and

macromolecules, may appear off the mark when
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explanations turn to the dynamics of electrical discharge

through neuronal circuits and their computations.

The experimentalists amongst us work to understand

how the hippocampus-entorhinal cortex neuronal circuitry

operates. We identified that the persistent,

autophosphorylating enzyme, protein kinase M zeta

(PKMf) is translated from mRNA at postsynaptic

dendritic sites that were activated during recent learning

and that this metabolic synthesis is crucial for long-term

memories to persist (Sacktor, 2011; Tsokas et al.,

2016). We identified that increased PKMf expression

and synaptic strengthening persists at a subset of

hippocampal-entorhinal synapses, for at least a month,

so long as the memory persists (Pavlowsky et al., 2017;

Hsieh et al., 2021). We also validated the hypothesis that

memories of a place in which discomfort was experienced

are recollected when slow gamma oscillations originating

at the Schaffer collateral synapses of hippocampus sub-

field CA1 dominate mid-frequency gamma oscillations

that originate at the stratum lacunosum moleculare. This
competition manifests as memory-associated neuronal

ensemble ‘‘place cell” discharge that resembles the

ensemble location-specific discharge at the recollected

place, despite the subject initiating the recollection from

the current location, which is a physically different place

(Dvorak et al., 2018; Dvorak et al., 2021). Although we

study these memory phenomena at distinct levels of biol-

ogy, in the same laboratory, we still shy away from

designing experiments to test hypotheses across the dif-

ferent levels of biology. This is in large part because we

lack conceptual frameworks that are useful for describing,

organizing, or understanding the cross-level neurobiolog-

ical memory phenomena (see Bell, 2008).
THE CHALLENGE OF CROSS-SCALE
ANALYSIS AND UNDERSTANDING

Brains are self-organizing and changing. Simply using a

brain changes it structurally as well as functionally, so

that it will operate differently in the future, as we

recently showed in mice (Chung et al., 2021). We also

have incomplete knowledge of the myriad neurobiological

processes that result in neuronal implementations, algo-

rithms, and even the computations involved in the forma-

tion and maintenance of memory, three features which

contribute to our overall understanding of cognitive pro-

cesses (Marr, 1971). Even in artificial computing systems

where we fully know the implementation, algorithms and

computations, neuroscience techniques commonly used

to infer functions from recorded data are ill-equipped for

cross-scale analysis in the relatively simple architecture

of a microchip, let alone a human brain (Jonas and

Kording, 2017). We believe this lack of integration in the

study of memory severely limits the generalizability of

conceptual frameworks across scales.

Moreover, although neuronal datasets have become

larger and more comprehensive in the past decade, the

unavoidable under-sampling of neurons has motivated

an interest in a theoretical framework that can guide

predictive models from sparse data with the intention to

unify observations at many scales of analysis (Bassett
and Sporns, 2017). It is here where a new conceptual

framework can have substantial utility if it explains how

a unique biochemical phenomenon at one scale is con-

strained by and enabled by distinct phenomena across

scales. Such a framework should have predictive power

beyond scale-specific and substrate-specific processes,

similar to universality classes (Ódor, 2004) that illustrate

how unrelated materials like a flock of birds and a network

of neurons behave in a statistically similar manner near

critical conditions (Fruchart et al., 2021).

Considering the need for a framework that

encompasses the interactions between emergent

neurobiological phenomena and their constituent

elements, we believe the concepts and analytical

framework of signaling games are well suited for this

cross-scale analysis, primarily due to its dynamical and

decentralized modeling approach. The framework has

been applied to diverse domains of enquiry, where

information is asymmetrically distributed among freely

interacting entities. Applications have included the

evolution of the genetic code (Jee et al., 2013), macro-

molecular signaling cascades and immunology, eco-

nomics (Spence, 1973) and financial systems, and

cyber security and internet governance (Casey et al.,

2019), which in our opinion bodes well that the framework

may fit the bill to meet the needs of our cross-scale chal-

lenge to understand the neurobiology of memory in partic-

ular, and maybe even brain function in general (Rosser,

2003).

In the original (non-cooperative) formulation of game

theory (Nash, 1950), the information was considered

symmetric between players, in that both players reveal

exactly the same information, and use that information

in simultaneous strategic choices. Accordingly, in an infor-

mation symmetric system, information is revealed faith-

fully, but in more general signaling systems modeled as

signaling games, signals can be enhanced with additional

or more reliable information. The signal can also be disin-

formation — deceptive and distorted with respect to the

receiver’s expectations. Fig. 1 presents the extensive

form schematic of an information asymmetric game to

illustrate how a signaling game can operate. We do not

intend to model anything here, much less a neural system

with many elements and complexity in the systems oper-

ations. The scores in this illustrative example are arbi-

trary, set by the circumstances of the game, in this case

by the authors. Player I (circle PI) is the Sender and

Player II (circle PII) is the Receiver. Consider each to

be a pair of successive neuronal processing nodes. The

schematic begins with the center vertical line, where nat-

ure (N) selects the sender type on each instance of the

game. Each bifurcation on the diagram indicates Player

I’s (Left vs Right) or Player II’s (Up vs Down) choice, after

which there will be a payout for each player that depends

on their respective moves and utility functions. Player I

can be one of two types in the instance of each game,

i.e., a transmitter of sensory representations (red) or of

memory representations (blue). Imagine Player II is

involved in the motor output in response to an activity sig-

nal from Player I, but Player II does not know if Player I’s

signal is a sensory or a memory signal type. Upon receiv-



Fig. 1. Two example information asymmetric signaling games to illustrate the game’s operation and

ability to do information processing based on the payout structure. (A) The MATCH game incentivizes

‘honest’ signaling by Player I. Player II is incentivized to match Player I’s type with an identifying

response because Player I reveals its type faithfully to Player II. When Player I is type sensory it is

likely to signal R (Sensory-R payouts > 1) instead of B (Memory Sensory-B payouts = 1) in hopes

that Player II will guess R‘, which Player II is more likely to do because the (R,R’) payout = 2 instead

of B’ in which the (R,B’) payout = 1. When Player I is type memory it is likely to signal B (Memory-B

payout > 0) instead of R (Memory-R payout = 0) in hopes that Player II will guess B’, which Player II

is more likely to do because the (B,B’) payout > 1 instead of R’ in which the (B,R’) payout = 1. Player

II correctly reports Player I’s type by generating a corresponding signal that becomes reliably

correlated with the sender’s type. There are no profitable deviations for Player I given Player II’s

strategy. This corresponds to a so-called separating (Nash) equilibrium because the sensory and

memory nodes have adopted distinctive signals (marked by rectangles), allowing the Player II node to

distinguish them. (B) The UNCERTAIN game has a different payout structure that incentivizes Player

II to match Player 10s sensory responses but not memory responses, resulting in suboptimal

conditions for Player II that decorrelates the Player I signal from the sender type. When Player I is

type sensory, it is likely to signal R (Sensory-R payout > 1). Player II’s guess should be R’ because

the (R,R’) payout = 2 instead of guessing B’ which has (R,B’) payout = 1. However, when Player I is

type memory it is now also incentivized to signal R (Memory-R payout > 1) instead of signaling B

(Memory-B payout < 2). Player II is therefore compelled to signal R’ because the (R,R’) payout is

greater than the (R,B’) payout, even though Player II could have done better if Player I revealed a

distinguishing B signal since the (B,B’) payoff = 3 for Player II. However, given these payouts, Player

I would be worse off (Memory-B payout < 2). The fact that Player I benefits from ambiguating signals

at the expense of the receiver, Player II, is the hallmark of deception. The B and R signals are now

decorrelated from the sender type in proportion to the number of memory types in the population,

breaking the separating equilibrium. Given that Player II does not know Player I’s type, Player II will

reliably report R’ in response to Player I’s signals, whether Player I’s activity originates from the

sensory or memory node. This corresponds to a so-called pooling (Nash) equilibrium because the

sensory and memory types have adopted the same signals, preventing the Player II node from

distinguishing them, and pooling the two types of senders into the same response strategy (marked

by rectangles).
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ing the signal, Player II responds by sending either motor

signal R’ or B’. What signal each player is likely to send

depends on the individual agent’s utility payouts, which

is a function of the action of both players. Two possible

signaling games are depicted in panels A and B. The pos-

sible interactions that define each game are identical, but

the two games differ in the two payout structures, repre-

sented as coordinates in ordered pair form: (Player I,

Player II). One player must respond strategically to the

other’s signal, which can keep unrevealed information pri-

vate. In game theory, the correlations between sender

signals and receiver responses correspond to priors

regarding what type of sender is affiliated with a given sig-

nal, and since interests are not necessarily aligned

between the information-rich senders and information-

poor receivers, these priors are effectively ‘‘beliefs” that

determine the strategies for signaling behavior and may

be updated after each subsequent interaction. What gen-

erates different signaling games is the information pro-

cessing that occurs enroute to a particular receiver. In
information asymmetric signaling

games the sender may know the

meaning of the signal, but the recei-

ver is uncertain and possibly com-

pletely ignorant about the meaning

(Smith, 2000; Rosser, 2003;

Dongen, 2006; Jee et al., 2013).

These additional considerations

introduce information asymmetry

between players, and this asymme-

try facilitates more complex interac-

tions between agents.

Note that a receiver in one

communication can then act as a

sender to transmit signals further

through the system in a chain or

network-like fashion at each stage,

with direct or indirect feedback

coupling. As we will discuss

presently, this situation represents

precisely the signalling condition of

the neurons that constitute a

nervous system, particularly in

association areas like the

hippocampus where drifting and

multi-stable activity is a feature of

its memory and learning function

(Kelemen and Fenton, 2013;

Sheintuch et al., 2020; Chung

et al., 2021). Although popular neu-

ral network models of brain compu-

tations rely on circuit connections

that explicitly separate sender

types by the information that they

relay, we present a network model

demonstrating how parameters of

individual neurons (Excitability,

Inhibitory Gain, Time Constants

etc.) can be collectively tuned to

generate multiple structured repre-

sentations from otherwise unstruc-

tured connection architectures
(Pehlevan and Sompolinsky, 2014). With regards to sig-

naling games, our model demonstrates the existence of

multiple informative states that emerge as stable

responses to a continuous variable (position) signaled

by random inputs. Any different set of random inputs gen-

erates states that are representationally equivalent, in

that they model the desired variable, but would not be

equivalent in biological terms with respect to the meta-

bolic and signaling costs incurred by individual neurons.

For instance, it is clear from Fig. 2 that a subset of neu-

rons fail to fire reliably in the random input-weight net-

work, which is likely a substantial cost for neurons

(Laughlin et al., 1998; Chintaluri and Vogels, 2022). This

demonstrates the potential utility of a signaling game

framework, because informative cell assemblies arise

due to individual signaling parameters in the absence of

labeled lines, resulting in multiple solutions to information

processing and an opportunity to compete for network

resources across the multiple informative equilibria. Due
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Fig. 2. Pattern formation in randomized leaky integrate-and-fire (LIF) network with constant recurrent connection weights. This illustrates the

emergence of informative signaling equilibria from noisy inputs with mixed selectivity and random, all-to-all inputs. (A) Simplified LIF model of

simulated positional inputs (P = 2) around a circular track, differentially encoding the positions. These inputs provide labeled-line feedforward

positional signals to the recurrent excitatory (E) network. (B) The E firing rates reflect the enforced positional tuning of the input weights (left),

however, the network is not capable of differentially encoding the positions when the input tuning is randomized (right). (C) Top: Elaborated P = 30

position LIF Recurrent Network model with inhibitory (I) all-to-all connections within the recurrent network, and its corresponding labeled line

connection structure. Bottom: Recurrent E firing rates encode the position trajectories, and representations are made sparse by inhibition. (D) Top:
Randomized LIF Recurrent Network model as in panel C with random input weights (left) and feedforward inputs tuned to multiple (20%) locations.

Bottom: Recurrent E firing rates encode the position trajectories. E neurons are ordered according to within-position spike primacy, where the first

units to spike at a given position are ordered before the first units to spike at the next position. Only the first 16 neurons to spike at a given position

were considered in the ordering. Note that this cell-specific selectivity occurs despite each E neuron receiving signals from every input neuron with

randomized connection weights. Template-matching decoding accurately predicts the position trajectories from recurrent E activity in (E) the

labeled-line and (F) the random-input recurrent networks. Top: The position-averaged activity from separate simulations using the same inputs and

architecture serves as the template for the decoder. Bottom: When positional tuning is randomly reassigned in the inputs, the template matching

decoder fails to decode the new trajectories from the recurrent E activity and template in the labeled-line recurrent network but succeeds for the

random-input network, which generates new network firing activity patterns that correspond to the new separating equilibria of the network with

distinct positional tuning across the recurrent E cells.
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to the differential allocation of signaling costs, signaling

strategies determine the winners and losers of the signal-

ing game, as well as the overall persistence of the signal-

ing game. Separate work will model changing strategies

in this network, in this perspective we focus on implica-

tions of the network model and the signaling game frame-

work generally.
SIGNALING GAMES

We previously used a recurrent network with excitatory

(E) and inhibitory (I) leaky-integrate-and-fire units to

demonstrate that random input patterns sampled from

locations along a ring can be represented by position-

tuned responses only if spike timing dependent plasticity
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(STDP) learning rules are activated amongst the E-I and

I-E connections (Levy et al., 2023). Because STDP at

the E-E connections was not effective, it is unclear

whether the network learned position with the connection

strengths, or alternatively, if the learned connections

enabled the network to process the place information

without storing it (O’Reilly et al., 2019). Here we modified

the model to illustrate the value of the signaling game

framework by providing a network example that cannot

be easily understood from the standard view that the par-

ticular set of connection strengths between neurons in a

network store information and define the information

channels that these neurons encode (Zhenrui et al.,

2022; Levy et al., 2023).

We begin with so-called labeled-line architectures as

described in sensory systems and the findings of

topographic maps, which have strongly influenced the

field’s thinking about the efficiency of hard-coded

channels for encoding and decoding the maximum

amount of information available (Fig. 2(A–C)). If each

network unit only receives strong input from a particular

stimulus subset it is then straightforward to understand

how those network units follow the input activity patterns

to the recurrently-connected units. However, as

information becomes more integrated across senses

and memory, it is less clear how information channels

could be structured topographically or systematically in

association regions like the hippocampus (Redish et al.,

2001; Levy et al., 2023). Multi-modal information con-

verges from both cortical and subcortical regions in hip-

pocampus, with no obvious way to combine or generate

labeled-lines or other similar functional topographies. By

definition, labeled lines are inflexible and thus maladap-

tive to a system that must remap its patterns of cofiring

activity to generate distinct memories and new experi-

ences (Fig. 2(B,E)). We organized the recurrent network

with random all-to-all feedforward input connections, with-

out any connection strength plasticity. The network can

nonetheless generate selective unitary responses that

represent each unit’s strongest inputs within the temporal

structure of the input activity (Fig. 2(D)). The momentary

input can be readily decoded as a unique pattern of net-

work activity (Fig. 2(E)), even with the random-input net-

work (Fig. 2(F)). This result is surprising because,

instead of using a learning rule to set the recurrent

weights, some high and some low, we set all the E-E

(0.20), I-E (0.05), and E-I (0.05) weights to constants.

Moreover, each E unit receives simultaneous signals from

all input units, each with random weights, and yet the E

units reliably settle into configurations of stimulus-tuned

assemblies so long as the network is EI balanced. This

effect occurs in part because recurrent inhibition prevents

global runaway excitation, allowing only a subset of neu-

rons to be active for any given stimulus pattern. Conse-

quently, the network establishes a reliable configuration

of positional tuning despite having no positionally tuned

input connections and despite having no variety in the

recurrent connection weights. Unlike the labeled-line net-

work configuration (Fig. 2(E)), the random-input network

even makes the network robust to remapping of the feed-

forward input tuning (Fig. 2(F)). This situation holds
because the random assortment of positional signals onto

every unit allows for a diverse array of new stimulus-

dependent configurations.

We do not assert this random-input network

configuration is realistic, rather we use it to illustrate that

information representations can emerge dynamically

and agnostic to explicit information tuning in either the

inputs or the connection weights, which is a challenge

for standard notions. The Fig. 2 example includes a

predetermined EI balance for the network to settle into

stable configurations. In fact, by allowing STDP rules to

self-organize the EI balance in the network through

changes in excitatory and inhibitory interactions, the

representations become robust to arbitrary initializations

of the EI balance (data not shown). This observation

suggests that the organization of E cells, into

informative stimulus-tuned assemblies, may be a

dynamical after-effect of internal recurrent dynamics that

self-organize based on local spike-time differences that

are only circumstantially coupled to information about

the external world from where inputs originate. These

phenomena can be analytically interpreted from the

perspective of a non-reciprocal dynamical systems

theory (Fruchart et al., 2021) whereby the interactions

between non-reciprocal E and I units are well-suited for

pattern formation.

This example of the random-input network that

challenges standard intuitions has motivated us to

consider alternative frameworks, which is why we

hypothesize that signaling game theory can offer a

powerful complement for understanding how signaling

agents can settle into informative coactivity patterns in

the absence of global optimization functions. The

adaptive utility of relaying a particular signal, such as

the local minimization of spike-time differences within

assemblies via STDP, determines the structure and

function of any signaling game. In a signaling game, the

collection of senders and receivers interact strategically

via signals, each trying to maximize local functions that

are dependent on the actions of other signalers. These

functions are local utilities that determine the ability of

the signaling agent to persist in the signaling game.

Those utilities are influenced by the current signals in

the game, as well as the subjective probabilities about

the implication of the transmitted signals. These

subjective probabilities are only abstractions

representing how an agent will interpret a given signal

based on the past action histories. Note, it is important

to recognize that these subjective probabilities do not

require an epistemic agent. The strength of a synaptic

connection is in essence a subjective probability

measure of the signaling value that is transmitted by the

presynaptic neuron to the postsynaptic neuron, and this

subjective probability may not reliably communicate the

true information value of the signaling therein. What

matters instead is that the postsynaptic cell is

biophysically compelled to expend its metabolic

resources by responding with a postsynaptic change in

ion flux, which is measured as a membrane voltage

deviation before returning to the resting potential. With

additional metabolic expenditures, that synaptic
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connection can be persistently strengthened or

weakened, adjusting the metabolic cost of receiving

subsequent patterned inputs (Tian et al., 2008). In fact,

non-epistemic signaling games can also occur in cases

without any clear adaptive advantage, such as the signal-

ing game between cancer cells and the immune system

combatting the metastatic signaling cascades. Here, both

the cancer cells and the immune cells have signaling util-

ities that govern local interactions, and these utilities are

dynamically interacting in a manner that is only diffusely

governed by natural selection (Casey et al., 2021). Within

an organism, it is instead the signaling stable strategies,

akin to the ‘‘evolutionary stable strategies” proposed by

John Maynard Smith, which permit certain signaling

games to persist over time, often at deleterious costs for

the organism (Smith, 2000). Although the specific instan-

tiations of signaling systems differ, there are general prop-

erties of signaling systems that are universal across

scales. Fundamentally, the activity of any signaling sys-

tem is defined by its signaling conventions, which is

attractive for a cross-scale framework to formalize neuro-

scientific understanding.

Notice that, in an important way, establishing a

convention is different from transmitting information,

akin to the distinction between memory for information

storage and memory for information processing (O’Reilly

et al., 2019; Chung et al., 2021). In fact, establishing a

convention is a prerequisite for information transmission.

We highlight this distinction because a standard way of

conceptualizing neuronal systems, and the brain, is as

an information maximization organ. Indeed, popular neu-

ral network models believed to be relevant to brain func-

tion often impose information maximizing constraints

onto the neuronal architecture and connection updates

(Linsker, 1997). These top-down constraints are typically

objective functions which change connection strengths

in order to minimize the error in the output readouts with

respect to a ground truth, which the system cannot in prin-

ciple know. Even higher order models of cognitive pro-

cesses, like attention, often use global optimization

functions explicitly defined to minimize network prediction

error, and prediction error variance, for a predetermined

type of input (Andersen, 2022). However, little is known

about how normative learning functions could emerge

from biochemical agents to adequately realize relevant

representations globally in a self-organizing network that

initially lacks these normative constraints, highlighting

the challenge of extrapolating from one level of biology

to another. Other common network models utilize global

dynamical equations of neural activity to constrain the

patterns of firing to ‘‘attractor states.” These attractor

states can be fixed points, lines, or manifolds which con-

strain the space of observed neuronal co-firing patterns in

the network. In these ‘‘attractor networks,” the con-

strained space of activity patterns can function as reliable

coordinates of neuronal representations, or even mecha-

nisms of memory encoding. Although these attractor net-

works generate multiple stable states of activity, these

path constraints are typically imposed top-down on the

network architecture, and little is known about how a bio-

logical brain can self-organize into reliable attractor states
from an initially unconstrained network configuration. Fur-

thermore, some popular examples of attractor states

being generated in networks through learning, such as

the Hopfield network models, are forced to rely on global

optimization of the Hopfield energy as a computation to be

minimized across all neurons in the network, in contrast to

the individualized maximization of utilities evoked by the

signaling game perspective (Hopfield and Tank, 1985;

Samsonovich and McNaughton, 1997).

This paper explores the merits of conceptualizing

neuronal systems as signaling organs engaged in

signaling games where conventions emerge

spontaneously. These conventions that are analogous

to attractor states can sometimes play roles that are

akin to objective functions that constrain activity of the

signaling system towards a representation of an

external variable. The premise is there is no ‘‘true”

global objective function for the network, nor a

predetermined path constraint on activity. Each

individual signaling agent simply behaves according to

its individual signaling strategies, and changes those

strategies based on individual utilities like metabolic

costs (Laughlin et al., 1998; Chintaluri and Vogels,

2022). Signaling conventions are emergent phenomena

and have varying degrees of reliability, where faithful

information processing within a given convention is only

one of multiple possible states of the signaling system.
The utility functions of individual signaling agents
can determine system’s collective behavior

A tractable definition of utility functions determining the

behavior of individual signaling agents will facilitate the

quantitative modeling of signaling strategies, and in the

absence of a pre-specified utility function, its resulting

maximization strategies can be plausibly inferred from

past action histories and an enumeration of the possible

states of the agent (DeDeo et al., 2010).

Given each agent in the game has a utility function

that it will aim to optimize through signaling, the system

of agents is likely to settle into one of several

homeostatic states, which in game theory correspond to

Nash equilibrium states (Binmore, 2007). A Nash equilib-

rium is a profile of strategies such that each player’s strat-

egy is an optimal response to the other players’

strategies. An equilibrium state is explicitly defined as

one in which each agent’s behavior is an optimal

response with respect to their utility function such that

on the whole, no agent can gain more utility by changing

their behavior.

It is important to highlight that Nash equilibria

correspond to signaling conventions that are adopted by

the signaling system, and that these equilibria may or

may not promote optimal information transmission

across the system. Signaling conventions operate like

how social conventions govern the interactions between

strangers that meet. To make this essential distinction

clear in the context of information processing, consider

the notion of an object in a computer program, or a

piece of software like a web browser. In each case the

software establishes a set of conventions as regards
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data types and even what operations can be performed

on the data types. As in a signaling game, those

conventions do not specify or define what specific

information is represented or signaled to the receiving

piece of code or the user. As in the signaling game in

Fig. 1, and as we hypothesize in neuronal systems,

those conventions allow for information processing to

occur, and constrains what and how information can be

processed, because of the conventions, although the

conventions do not specify the information itself, that is

another matter.

Batesian mimicry in snakes illustrates a biological

game theoretic example in which conventionally

informative signals, meant to signal ‘‘possession of

dangerous venom,” can be co-opted by snakes that

possess the conventionally informative color patterns

without the metabolically costly venom that reinforces

the convention (Casey et al., 2020). The authors charac-

terize the mimics as ‘‘deceptive” signaling agents that

obtain utility at the expense of the reliable convention.

However, the utility is not absolute; it depends on the

prevalence of deceptive agents in the population. A high

prevalence of non-venomous types (deceivers) within a

population (senders) with conventionally venomous-

signaling patterns allow predators (receivers) to adap-

tively reduce the significance of these color patterns and

they consequently increase predation of the snake popu-

lation. Because increasing prevalence of deception

reduces the salience of the signaling convention, and

the cost of increased predation is dear, the tradeoff sets

an equilibrium limit on the proportion of deceptive agents

in a population that is operating under unchanging and

stable conventions.

Honest, costly, and deceptive game theoretic

signaling may seem intuitive in the domain of animal

evolution, nonetheless, these principles are broadly

generalizable, and we argue, they are translatable to the

domain of neurobiology. Most neuroscience studies

involving signaling games address cognition, honesty,

and deception at the level of human social interactions

(Jenkins et al., 2016), but these concepts of signaling

games have also been applied to analyze biological phe-

nomena at the non-behavioral sub-cellular scale of genes,

RNA, and proteins (Massey and Mishra, 2018). Our fun-

damental conjecture, the central hypothesis of our pro-

gram is that once the persistence of a signaling

convention confers reliable adaptive utility to an organism,

then there will be selective pressure against destabilizing

the convention. Moreover, although evolutionary fitness

determines selective pressure at the organismal level,

agent-based interactions between genes, proteins, or

neurons allow for complex and dynamic behavior within

a signaling system. These interactions, at the level of

the signaling agents, could appear competitive or cooper-

ative in terms of their local utility functions. Nonetheless, it

is the joint global effect on organismal fitness that allows

these signaling conventions to persist through evolution-

ary timescales. Therefore, selection can act on parame-

ters that regulate the degree of cooperation and

competition between signaling agents in a single signaling

system, as well as interactions between signaling sys-
tems in a single organism. Furthermore, the degree of

competition or cooperation could be dynamic, and sensi-

tive to environmental changes within a lifetime, with the

flexibility of this dynamic under the regulatory influence

of natural selection. Thus, if it is true that groups of organ-

isms can alter their collective behavior through reinforce-

ment and variation of communicable signals, we surmise

it is also true at all levels of biological organization, includ-

ing the levels of genes and biochemistry, cell biology,

development, neuronal circuits, anatomically- and

functionally-defined neuronal systems. While the particu-

lar signaling games, their local utility/cost functions and

conventions may differ for each level of analysis, the ana-

lytical framework is universal and compatible within mod-

ern evolutionary theory.

We believe the ambition of a universal analytical

framework to be an essential and noble goal because,

as we indicated at the start, it remains poorly

understood how local biochemical interactions give rise

to self-organizing networks capable of sophisticated

computational and cognitive capabilities. This is in part

because hypotheses regarding brain computations are

filtered through assumptions about the cognitive function

of those computations, whereas decentralized signaling

games with the proper structure generate emergent

computations in nontrivial ways solely through local,

agent-based interactions. We are heartened because, in

simple computational models programmed as signaling

games involving categorical discrimination of visual

inputs, information used by agents for categorical

discrimination of images can be unrelated to the

conceptual features that researchers use to define the

category (Bouchacourt and Baroni, 2018). Put another

way, if naive signaling agents can find mutually beneficial

conventions to communicate distinctions, then they can

interact locally to optimize their utilities regardless of the

nature of those distinctions, thus generating correlations

between signals and responses which lead to informative

population activity.

This process of generating conventions through

distinctions can reinforce (or destabilize) the existing

conventions and have consequences which feed back to

the local signaling agent’s toolkit of utility/cost functions.

In this manner, the reliability of a convention for

transmitting faithful distinctions is what differentiates the

types of Nash equilibria found in any given signaling

game. One type of Nash equilibrium is called ‘‘babbling,”

during which the agents interact via information-poor

signals. Such an equilibrium, while not effectively

purposeful, allows the system to explore possibilities. By

chance, some of these possibilities allow the

investments of costly signaling to improve the reliability

of signaling, allowing receivers to predict sender type

more reliably, raising the utility of some agents, and

changing the type of equilibrium to what is called a

‘‘separating” equilibrium. As shown in Fig. 1(A), a

separating equilibrium is conceptually similar to a

discrimination as accomplished by a competitive

neuronal network (Fig. 3), whereas a pooling equilibrium

accomplishes the opposite because the different sender

types elicit the same response as described in Fig. 1.



Fig. 3. Schematic neural network, where each neural element is a

processing node (triangle, circle) and can represent a single neuron

or an ensemble of neurons. Given its recent inputs player 1 (open

triangle) can generate a representation of type sensory or memory

and signal either R or B to the next processing node, the ‘‘receiver.”

The receiver node is illustrated with feedback and feedforward

inhibition via tunable inhibitory synapse-like connections, and it will

itself signal either R’ or B’, according to the utilities of the individual

processing nodes. The utilities of the two nodes have been set in this

example such that the utility of the R and B responses are equal.

Consequently, the network will not settle into a stable pattern of

signals unless a bias is introduced in the inputs or the connection

strengths. The rationale for setting the utility functions for the

neuronal network nodes is crucial to the implementation of the game

theoretic approach that we are contemplating.
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What Marr defined as ‘‘pattern separation,” corresponds

to a separating equilibrium, recognized as distinctively

informative patterns of cofiring in neuronal networks

(Marr, 1971). What Marr defined as ‘‘pattern completion”

corresponds to a pooling equilibrium, observed when

cofiring patterns are similar across different occasions.

Accordingly, neuronal population discharge can organize

into multistable states of separating, pooling, and bab-

bling equilibria that can be distinguished by cofiring rela-

tionships and their differences (Schneidman et al., 2006;

Park et al., 2019; Levy et al., 2023). By definition, when

patterns of neuronal cofiring are far from separating equi-

libria the signaling convention is more readily adapted to

changing conditions without either the need or cost of

adopting a new signaling convention, which may have

advantages for memory encoding that have not been rec-

ognized by standard concepts including attractor dynam-

ics, which have tended to emphasize separating equilibria

despite sometimes contrary observations (Knierim, 2002;

Lever et al., 2002; Guzowski et al., 2004; Leutgeb et al.,

2004; Wills et al., 2005). In fact, recent large population

recordings from hippocampus have revealed that cofiring

patterns in the neuronal population are largely indifferent

to distinct environments, even though environment-

specific information can be decoded from the neuronal

population (Nagelhus et al., 2023; Levy et al., 2023). Such

patterns of activity may be relatively straightforward to

explain in the game theoretic framework, but they chal-

lenge standard notions of neuronal information

representation.
Separating equilibria are characterized by stable

conventions wherein strategically optimal signaling is

distinct for distinct information types (Crawford and

Sobel, 1982). In essence, once the agents establish veri-

fiable signals with net utility outweighing the cost of such

signaling, then the system will settle into separating equi-

libria (Sobel, 2007). This would be the case for an organ-

ism that possesses neurons that self-organize into

reliable cofiring assemblies, likely at the substantial

expense of ‘‘costly signaling,” as we will elaborate pre-

sently. In terms of neuronal activity dynamics, it is easy

to describe the activity pattern of a competitive network

as a separating equilibrium when a subset of cells is vig-

orously coactive and a competing set of cells have transi-

tioned to being relatively inactive as is observed in

attentional and other functional descriptions of cortical

networks (de Almeida et al., 2009). Fig. 3 illustrates such

a competitive network, which by balancing excitation and

inhibition has a strong tendency to adopt activity patterns

that correspond to separating equilibria (Kaski and

Kohonen, 1994).
THE INFLUENCE OF INFORMATION
ASYMMETRY IN SIGNALING GAMES

Information asymmetric signaling game theory assumes

no central or overall governance mechanisms. Instead,

the rules by which the agents behave apply locally and

govern local interactions between scale appropriate

signaling agents. These conventions are the kinds of

local rules that explain much of the behavior and

dynamical structures of starling murmurations that can

be accounted for by each starling following three rules:

1) keep flying, 2) avoid collisions, and 3) do what the

immediate neighbors are doing (Reynolds, 1987; Bialek

et al., 2012; Hemelrijk and Hildenbrandt, 2012;

Hemelrijk and Hildenbrandt, 2015).

Game theoretic agents can be interacting

macromolecules, or pre- and postsynaptic neurons, or

neuronal assemblies defined by cofiring neuronal

population dynamics. We hypothesize that the utilities

that govern the behavior of each neuronal game

theoretic agent are bioenergetic functions (Laughlin

et al., 1998; Niven et al., 2007), consistent with the idea

that by preventing accumulation of reactive oxygen spe-

cies, action potentials can have a spontaneous, input-

independent, metabolic origin when firing rates fall below

a homeostatic baseline (Chintaluri and Vogels, 2022). In

each case, the system of local, scale-appropriate interac-

tions respects the bioenergetic equilibria that govern their

activity. Put another way, dynamical structures (analo-

gous to murmuration configurations) will tend to persist

when they correspond to viable signaling conventions.

Persistent conventions tend to maintain because like

most precedents, they constrain the potential subsequent

interactions between agents. This pattern of behavior

emerges because most starlings, or biomolecules or neu-

ronal action potential discharge patterns will fail to persis-

tently interact in a manner that is incompatible with the

currently persistent conventions — it will simply be too

bioenergetically costly to persistently adopt contrarian
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activities. One can observe this directly in the distribution

of cofiring relationships within a population of neurons.

The distribution is skewed such that there are many more

strongly positive cofiring relationships than anti-cofiring

relationships (see Fig. 5). That is however, not to say

the anti-cofiring relationships are unimportant. On the

contrary, they tend to be rare, their prevalence increases

with learning, and they tend to be the most important con-

tributors to the ability to discriminate information from

population network activity (Levy et al., 2023).

Once established, persistent conventions tend to

further increase their persistence. Consider those

agents that are currently behaving in ways that are

independent, or even contrary to a currently instantiated

convention, for example the neurons with weak synaptic

connections that, as a result, discharge independently of

the dominant neuronal network pattern. Such neurons

may be subsequently recruited to the dominant network

discharge pattern. Put another way, they may adopt a

discharge pattern that mimics the dominant discharge

pattern and then through the costly signaling of synaptic

plasticity, become legitimately incorporated into the

persistently active network pattern of discharge. One

might expect in this case that the weakly cofiring neuron

pairs will increase their likelihood to cofire. Although

such recruiting of independent neurons into the

persistent activity of an established cell assembly

appears intuitive, perhaps even routine, an interesting,

surprising consequence of this recruitment can occur

when the signals of the recruited neurons also provide

information that is distinctive from the information that

the network processes with its signaling convention.

This is in fact observed in the cofiring relationships of

hippocampus principal cells under acute intoxication

with the psychotomimetic phencyclidine (Kao et al.,

2017; Park et al., 2023), or other cognition impairing

manipulations, such as tetrodotoxin-induced disinhibition

of the contralateral hippocampus (Olypher et al., 2006).

In both cases, cell pairs with negative or weak cofiring

statistics before the drug manipulation, increase their

cofiring under the manipulation, whereas the initially

strongly cofiring cell pairs are unchanged. This pattern

of selectively increased cofiring coincides with the inability

to perform behavioral tasks that require discriminating

between relevant and irrelevant information, but the same

cofiring increase is not impairing in conditions where the

irrelevant environmental information is attenuated

(Wesierska et al., 2005; Olypher et al., 2006; Kao et al.,

2017). From the perspective of the information that the

neuronal activity represents, by adopting the convention,

the recruited neurons could have deceived the neuronal

network partners that they have been recruited to join.

This framework has interesting, and powerful explanatory

implications, we will discuss shortly. For the time being, it

provides an explanation of observed increase in cofiring

of initially anti- and weakly cofiring cell pairs after knowl-

edge impairing manipulations. This game theoretic per-

spective can also explain another otherwise puzzling

observation from ensemble recordings of spatially-tuned

neurons in the entorhinal cortex and hippocampal regions
that are thought to constitute the brain’s navigation sys-

tem (Fig. 5). We will consider that next.
ENTORHINAL-HIPPOCAMPAL NEURONAL
POPULATION DYNAMICS: PHENOMENA IN

NEED OF A CONCEPT

We will now elaborate on the entorhinal-hippocampal

neuronal system to set the foundation for what we

aspire to understand and explain using the concepts of

information asymmetric signaling games (Fig. 5(A)). We

focus on hippocampus neuronal population discharge

correlates of spatial information that can be measured

by studying the spatial behavior of freely-behaving

rodents, as this is our long-standing experimental

research program (see Methodology in Appendix 1). In

freely-behaving rodent subjects like rats and mice, an

environment-specific 20–25% subset of hippocampus

principal cells discharge action potentials robustly only

when the subject is in cell-specific locations called the

cell’s firing field (O’Keefe, 1976); place cells are also iden-

tified in birds and bats (Ulanovsky and Moss, 2007;

Yartsev Michael and Ulanovsky, 2013; Payne et al.,

2021). When neurons discharge in this way they are tra-

ditionally called ‘‘place cells” (Fig. 5(A,B)). The medial

entorhinal cortex (MEC) contains neurons that signal dis-

tance travelled (‘‘grid cells”), head-direction (‘‘head-

direction cells”) (Sargolini et al., 2006), the presence of

environmental borders (‘‘border cells”) (Savelli et al.,

2008; Solstad et al., 2008) and the current speed of loco-

motion (‘‘speed cells”) (Kropff et al., 2015), with cells

tuned to spatial components in other related areas like

subiculum and retrosplenial cortex (Lever et al., 2009;

Brotons-Mas et al., 2017; Alexander et al., 2020). The

2014 Nobel Prize was awarded for the discoveries of

these functional cell classes (Fenton, 2015; Moser

et al., 2017). These spatially-tuned MEC neurons project

to the hippocampus in multiple, parallel and distinctive

pathways, providing multiple sources of the information

components for computing ‘‘place” (Fig. 5(A); Baks-Te

Bulte et al., 2005; Canto et al., 2008; Witter, 2006, 2007).

We developed an experimental paradigm in which rats

and mice readily navigate on a slowly, continuously

rotating circular arena (Fig. 5(B) top). The arena rotation

dissociates the accessible space into two simultaneous

and distinct spatial frameworks. One is stationary

defined by room-anchored landmarks, and the other is

rotating, defined by arena-anchored stimuli such as

scent marks on the rotating surfaces. Animals quickly

demonstrate that they understand the room and arena

spaces to be distinct, even if the arena never rotates

(Fenton et al., 1998; Fenton and Bures, 2003). They

demonstrate this knowledge in the active place avoidance

paradigm, in response to training during which we punish

the animal with a mild electric shock for entering a room-

defined zone and/or an arena-defined zone (Fig. 5(B) top;
Fenton and Bures, 2003;Fenton et al., 1998). In

response, they will quickly and selectively avoid the room

and/or arena shock zone, which is why we call the behav-

ior two-frame place avoidance. Two-frame place avoid-
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ance is one of the most sensitive tasks to disturbed hip-

pocampal function; even inactivating one of the two hip-

pocampi makes the animals unable to learn,

consolidate, or remember the location of the shock zone

(Cimadevilla et al., 2000; Cimadevilla et al., 2001; Kubik

and Fenton, 2005; Wesierska et al., 2005; Kelemen and

Fenton, 2010).

We investigated whether during two-frame place

avoidance, the spatially-tuned cells in hippocampus and

entorhinal cortex would exhibit spatial tuning in the room

frame or the arena frame. Despite the animal navigating

the rotating environment extremely well, very few

neurons (a fraction of a percent) demonstrate their

place cell, grid cell, or head-direction cell spatial-tuning

properties during rotation; the tuning returns once the

rotation stops (Fig. 5(B)). We have shown that this

apparent loss of spatial tuning is because the neuronal

populations collectively signal the animal’s location and

direction in an internally-organized, multistable manner

such that the ensemble activity patterns switch between

representing the current location and direction in either

the room frame or the arena frame, but not both

(Kelemen and Fenton, 2010; Kelemen and Fenton,

2013; Talbot et al., 2018; van Dijk and Fenton, 2018;

Park et al., 2019; Chung et al., 2021). Multistable switch-

ing between room and arena representations is rapid

(sub-second) and occurs in a purposeful way with a per-

iod in the range of 10 s (Kelemen and Fenton, 2010;

Kelemen and Fenton, 2013; van Dijk and Fenton, 2018;

Park et al., 2019).

These multistable population discharge dynamics in

maintained environmental conditions indicate that

neuronal activity is internally-organized and variably

registered to the environment in a manner that takes

into account the distinctive spatial frames and registers

neuronal ensemble activity to the spatial frame that is

more currently useful (i.e., use the room frame when

near the stationary room-frame shock zone and use the

arena frame when near the rotating, arena shock zone)

(Kelemen and Fenton, 2010; Kelemen and Fenton,

2013; van Dijk and Fenton, 2018; Park et al., 2019).

The cofiring relationships of simultaneously recorded cell

pairs provides additional, independent evidence for this

strong internal organization of neuronal discharge pat-

terns. This conclusion can be arrived at by computing

the pairwise correlations among all simultaneously

recorded cell pairs (Schneidman et al., 2006). We

observe that the pairwise coactivity measures of their cor-

respondence is indistinguishable during recordings with

the arena stable compared to recordings with the arena

rotating. An example from the head-direction cells

recorded from superficial layers of the medial entorhinal

cortex is shown in Fig. 5(C) top, indicating that the popu-

lation discharge of these ‘‘same-function” neurons is

dynamically rigid (stationary and steady) (Park et al.,

2019). A similarly persistent set of cofiring relationships

is also observed for all the simultaneously recorded neu-

rons in superficial MEC (Fig. 5(C) middle), further indicat-

ing that despite mixed tuning to different spatial variables

(Park et al., 2019), as a whole, the MEC network mani-

fests the stationary and steady temporal discharge
dynamics that are characteristic of neuronal attractor

dynamics (Yoon et al., 2013; Chaudhuri et al., 2019). Like

MEC, the population discharge properties of hippocam-

pus also exhibit attractor dynamic properties, in that the

collective activity of MEC cells, or the collective activity

of the cells of the hippocampus CA3 or CA1 subfields

tend to exist as relatively stable patterns of activity that

are readily described as a low-dimensional manifold in

the high-dimensional activity space that is defined by

the independent activities of the population of cells

(Samsonovich and McNaughton, 1997; McNaughton

et al., 2006; Yoon et al., 2013; Chaudhuri et al., 2019;

Gardner et al., 2021; Nieh et al., 2021). Evidence of these

low-dimensional manifolds of neuronal activity can be

readily measured as conserved pairwise coactivity pat-

terns across the network, which are known to represent

higher-order correlations (Fig. 5(C); Schneidman et al.,

2006; Levy et al., 2023).

DO SIGNALING GAMES OFFER ANYTHING
THAT INFORMATION MAXIMIZATION DOESN’T

ALREADY?

Our observations of multistable frame-specific positional

and directional population discharge, and persistence of

internally-organized cofiring discharge relationships

(Kelemen and Fenton, 2010; Talbot et al., 2018; van

Dijk and Fenton, 2018; Park et al., 2019) can be readily

accommodated by the information maximization (Info-

max) perspective that is a dominant conceptualization of

how information processing is serially organized across

connected neuronal networks with related input–output

functions (Bell and Sejnowski, 1997; Linsker, 1997), such

as the MEC and hippocampal computations of environ-

mental space (Solstad et al., 2006).

Neuronal ensemble discharge patterns are assumed

to be the neuronal representations and/or instantiations

of mental objects, in short, the expression of cognitive

phenotypes. This view assumes that generating reliable

representations of cognitive variables essentially

constitutes proper entorhinal-hippocampal ensemble

function. Such assertions emerge from the Infomax

hypothesis that has been important for systems

neuroscience because it offers a unifying principle

(Barlow, 1961). Accordingly, neuronal computations at

each level of the nervous system would operate to maxi-

mize the mutual information between inputs and outputs

that the computation is operating on, and so couple the

information content across a series of such neuronal com-

putations, the output of one serving the input to the next.

While Infomax principles are readily applied to predict

what neuronal discharge might signal, it is difficult to apply

these principles to the biochemistry and cell biology that

operates and underlies the neuronal discharge that define

the mental objects of interest, in particular when a cell’s

discharge can also have a metabolic origin (Chintaluri

and Vogels, 2022). Even in straightforward terms of infor-

mation representation as it concerns the MEC – hip-

pocampal spatial information processing system,

Infomax concepts struggle to account for the lack of,

and/or transient effects of inhibitory designer receptor
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exclusively activated by designer drugs (DREADD) and

optogenetic silencing of MEC, and even the effects of

MEC lesion on downstream hippocampal place cells,

despite effects of excitatory stimulation (Miao et al.,

2015; Rueckemann et al., 2016; Kanter et al., 2017;

Schlesiger et al., 2018).

Furthermore, as it concerns the place avoidance

experiments on a rotating arena, Infomax concepts are

severely challenged to explain our additional

observation that the cofiring relationships between

simultaneously-recorded hippocampal and MEC

neurons (Fig. 5(C) bottom) is only weakly persistent

across the stable and rotating arena conditions, despite

both the entorhinal (Park et al., 2019) and the hippocam-

pal populations each exhibiting strongly persistent,

attractor-like cofiring relationships (Levy et al., 2023). If

MEC representations of space project to hippocampus

then their discharge should be informationally coupled,

and the discharge representations should be information-

ally coherent, perhaps even increasing in fidelity accord-

ing to Infomax predictions. But as Fig. 5(C) suggests,

the discharge coupling is unstable, and the frame-

specific multistability in hippocampus (Kelemen and

Fenton, 2010; van Dijk and Fenton, 2018) is observed

to have a different, weakly opposite relationship to

frame-specific behavior as is observed for MEC frame-

specific multistability (Park et al., 2019). Because it is dif-

ficult to reconcile these observations within the Infomax

framework, we were motivated to seek an alternative.

We contend that the framework of signaling games has

utility for understanding these challenging features of hip-

pocampal neuronal population dynamics at the level of

systems neuroscience, as well as at other levels of biolog-

ical organization, including cell biology and biochemical

signaling that others have demonstrated (Smith, 2000;

Jee et al., 2013).

The game theoretic framework of fundamentally

coupled senders and receivers provides a natural

analytical language and framework for characterizing

these neuronal dynamics and for analyzing their multiple

steady states as game theoretic Nash equilibria. Indeed,

the manifold patterns of attractor-like neuronal activity

(Amit, 1992) are readily described by the concept of ‘‘cel-

lularization” that naturally emerges in the game theoretic

language. Through reliable and oftentimes costly signal-

ing like metabolically-instantiated synaptic plasticity, mul-

tiple game theoretic agents, in this case neurons within an

interconnected network, can settle into stable population

equilibrium states that are characterized by signaling con-

ventions within the network acting as a single collective. In

other words, robust neuronal population dynamics pro-

duce activity patterns that themselves act as game theo-

retic senders and/or receivers, adopting the form of a

dynamically ‘‘cellularized” object, despite being com-

posed of many individual neuron components. Note that

this process of cellularization by adoption of a set of sig-

naling conventions naturally defines cross-scale interac-

tions and information transfer that are seamlessly

transcended by the game theoretic formalism, whereas

such cross-scale analysis have been a challenge for other

frameworks and conceptualizations. In the next section
we consider the entorhinal cortex and hippocampus, each

as a cellularized signaling object comprised of millions of

neurons, the hippocampus collectively signaling positions

for example, and the entorhinal cortex collectively signal-

ing components of space, for example. Entorhinal – hip-

pocampal interactions can then be characterized and

analysed as game theoretic sender-receiver interactions,

despite the reality that these interactions are implemented

by individual neurons in the two areas interacting as sin-

gle neurons do.

ENTORHINAL-HIPPOCAMPAL
NEUROBIOLOGY AS AN INFORMATION

ASYMMETRIC SIGNALING GAME

We believe that the ideas of information asymmetric

signaling games can readily and advantageously apply

to neuronal systems. To that end we now

reconceptualize the neurobiological interactions that

were described above in these game theoretic terms.

Simple conserved game conventions can first arise from

arbitrary dependencies, much like how spuriously

causally coactive neurons can undergo synaptic

plasticity so they are more likely to cofire in the future,

and in so doing establish a neuronal firing sequence

convention. Selection for useful conventions can then

privilege those with utility so they persist with potentially

increasing complexity, much like standard reinforcement

learning models and Hebbian learning rules assert.

It may be difficult to appreciate how multi-stable

cognitive organization can emerge from agents

interacting locally in simple games. It is therefore

important to emphasize how slight deviations in initial

conditions can create lasting differences in evolving

dynamical systems. For instance, in area CA1 of the

hippocampus, multiple representations of the same

spatial environment can coexist as recurring stable

patterns of firing (Sheintuch et al., 2020). However, with

time and additional exposure to the environment, these

representations tend to deviate, according to the signaling

game framework, because the information asymmetry

among the representations generates persistent

distinctions.

Mechanisms to persist, to maintain persistence and to

increase complexity of signaling conventions typically

require metabolic and other resources and so come at a

cost that most agents will not engage (Niven et al.,

2007). Such exclusions of non-compatible agents

increases the reliability of the signaling system as a

whole, which can make costly signaling advantageous

(de Ruyter van Steveninck and Laughlin, 1996). Synaptic

plasticity is metabolically costly, and molecular biosynthe-

sis needs to be coordinated pre- and postsynaptically for

the structural plasticity that changes the shapes and sizes

of synapses engaged during learning. This coordination

results in a myriad of local processes including actin poly-

merization, synthesis and then translocation of synaptic

proteins (Chen et al., 2022). In addition, once strength-

ened, potentiated synapses will result in greater trans-

membrane ion currents and thus dissipation of the

sodium and potassium ionic concentration gradients,
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which, to be restored, will require increased Na/K ATPase

biosynthesis and activity. Indeed, the upregulation of

PKMf, which is necessary and sufficient for the long-

term maintenance of wildtype long-term potentiation at

hippocampal and other synapses, coincides with the

upregulation of the Na/K ATPase (Tian et al., 2008). This

observation is consistent with the notion that the

increased communication comes at an energetic cost

and so once in place, is likely to contribute to the informa-

tion asymmetry.

As mentioned previously, information symmetric

games are those in which both players reveal complete

information about each other and consequently are

confident about how the other rational players will

strategically respond in each scenario. Information

asymmetry occurs when one player (the sender)

possesses information about its signaling type that is

not available to the other player (the receiver). By

introducing information asymmetry, we can better

describe molecular signaling cascades and neuronal

networks. As an example of a cascade, consider the

multiple roles of intracellular calcium, which can initiate

postsynaptic vesicle release, or changes in gene

expression, or programmed cell death, each depending

on the origin of the calcium. In the case of a neuronal

network, considering that each neuron receives � 104

distinct synaptic inputs, the consequences of their

activation are integrated to change the transmembrane

potential at the remote location of the axon hillock. The

neuron’s axon hillock is uncertain about which subset of

the � 104 synapses activated in temporal and spatial

summation, causing it to generate an action potential.

This fundamental uncertainty creates information

asymmetry and the opportunity for game theoretic

deception.

Game theoretic deception occurs when there is

information asymmetry and insufficient common interest

between the sender and receiver. Insufficiently costly

signaling conventions may be exploited by deceptive

agents exploiting the convention, even though they

degrade the reliability of signaling. Examples of these

preserved conventions include canonical

neurotransmitters and receptors, cell-specific signaling

proteins, and immediate early genes. Examples of

deceptive agents include but are not limited to

pharmacological or natural agents that mimic the

biomolecular structure of these conventional signals.

These conventions are ubiquitous across vertebrates

and can be found functioning in both in vitro slice

preparations as well as in in vivo preparations such as

recordings from awake freely-behaving subjects.

Essentially the same local cell-biological biochemical

constraints underlie the structural dynamics of all

neuronal populations during transcription, translation,

membrane depolarization, action potential generation,

and synaptic and neuronal population synchrony that is

measured as oscillations in local field potentials and

dynamic cofiring patterns in neuronal ensemble activity.

While not exhaustive, we believe these examples

illustrate there is substantial and natural potential to

translate neurobiological phenomena and theory into the
formal and descriptive language of information

asymmetric signaling game theory. In fact, as we

alluded to above, a game theoretic framework offers

mechanistic accounts for neuronal network phenomena

that are otherwise difficult to explain, as we will now

illustrate, by applying the concept of deception.
DECEPTION: INFORMATION
INCOMPLETENESS VS INFOMAX

Within a signaling game, the receiver’s signaling

strategies is defined by the ensemble of responses of a

particular receiver with respect to a given set of signals.

When senders can flexibly alter their signaling in

response to the subjective probabilities of other agents,

their signals can cause the receiver to respond in ways

that benefit the sender at the expense of the receiver.

This phenomenon is understood within the signaling

game framework as deception, whereby subjective

probabilities of receivers are leveraged by senders at

the expense of the receivers utilities. When deception

occurs, conventions are destabilized because signals

are de-correlated from the receiver’s expected utility.

When the interests of senders and receivers are

adversarially structured, deception results in increased

utility for the sender at the expense of the receiver.

Under some conditions, this could generate a

destabilizing feedback loop that may lead to the

breakdown of signaling, which could be clinically

relevant in degenerative neuropathology. Under different

conditions more favorable for cognition, destabilizing

signals could result in more robust conventions flexible

to distortion, deception, and new information, which may

be relevant for learning and memory. We stress that in

a signaling game ‘‘deception” doesn’t require an

epistemic agent, as in the well-known cases of frogs

and snakes (Casey et al., 2021) but also that ‘‘utility” in

a signaling game is not the same as ‘‘utility” in natural

selection, though one can lead to the other. For example,

winner-take-all neuronal network configurations in which

neurons compete for inputs and coactivity in output repre-

sentations is an example of competitive signaling game

utility that results in output contrast (Fig. 4). Distinctive

output can be a net positive adaptive advantage for the

organism as a whole as we have observed in hippocam-

pal responses to cognitive control training (Dvorak et al.,

2018; Chung et al., 2021; Dvorak et al., 2021), or in the

case of pathology a net negative as we have observed

with the psychotomimetic agent phencyclidine (Kao

et al., 2017; Park et al., 2023).

Let’s consider the notion of game theoretic deception

in the context of an explicit neuronal discharge

phenomenon that we have studied in the neuronal

dynamics of the hippocampus. Hippocampal neurons,

residing in the CA1 output subfield, can discharge as if

to represent the current location of a mouse. This

interpretation of the observables leads one to think of

the ‘‘place cell” phenomenon. From there it is relatively

straightforward to understand how a place cell network

of neuronal activity is ‘‘encoding” the current location.

However, we also observe that, at least transiently, the



Fig. 4. Winner-take-all competitive networks function to select the

strongest response amongst a number of competing responses. (A)
Many network architectures have winner-take-all properties, but the

most basic motif is to have sufficient mutual excitation amongst the

same-function network elements and mutually-inhibitory coupling

between the excitatory elements. (B) Illustration of a competitive

network where each node represents a population of the nodes. Such

a system will transform a set of inputs of varied type into an output

that is dominated by type of the strongest inputs.
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same CA1 neuronal network’s discharge will not signal

the current location (Dvorak et al., 2018). Instead for

about 500 ms, the discharge will represent a distant loca-

tion that, during a spatial memory task, can be shown to

represent the mouse’s recollection of a remote goal or

some other behaviorally-important location (Fig. 6). Con-

ventional explanations do not easily explain how such

non-local place cell activity can come about, and the field

has hypothesized that there might be specialized ‘‘goal” or

‘‘reward” cells, rather than place cells that sometimes act

like goal or other types of functionally-defined cells

(Poucet and Hok, 2017; Gauthier and Tank, 2018;

Duvelle et al., 2019). Recent work shows that any place

cells can transiently express non-local place cell dis-

charge that otherwise resembles routine locally-

legitimate place cell firing. Because the CA1 network

behavior has switched from signaling local positions to

signaling remote locations, what in ordinary neuroscien-

tific parlance is context-dependent activity, in game theo-

retic terms, the network has been deceived into signaling

a remote location, similar to Player II in the UNCER-

TAINTY game we considered in Fig. 1. The deception

appears especially strong and maladaptive in Fmr1-null
mutant mice that model the genetic defect in human Frag-

ile X Syndrome, the leading cause of intellectual disability

and autism. Fmr1-null mutant mice express synaptic pro-

tein expression dysregulation (Broek et al., 2015;

Thomson et al., 2017) and as a consequence of memory

training, excessive synaptic plasticity in hippocampus

CA1 (Talbot et al., 2018). When challenged with a novel

location after learning an initial location, Fmr1-null CA1

place cell network discharge and the mouse’s behavior

both recollect the formerly correct location rather than

the currently correct location for the memory task

(Dvorak et al., 2018). These phenomena are straightfor-

ward to explain as instances of deception within asym-
metric signaling games, and the neuronal mechanism

for transiently switching the hippocampus information pro-

cessing from encoding to recollection is consistent with

this game theoretic explanation (Dvorak et al., 2021).

There is a transient, strong synchronous discharge event

that originates in the upstream MEC and is observed in

the dentate gyrus (DG). The event is called a MEC-

originating dentate spike (DSM). The DSM acts like a con-

trol switch for the MEC ? DG ? CA3 ? CA1 neuronal

circuit (Fig. 6) that changes information processing in

the circuit in a way that causes the CA3 cells to discharge

in a manner that is informationally disconnected from the

ongoing location-specific discharge in the dentate gyrus.

From the game theoretic perspective, the DSM-triggered

CA3 activity has deceived CA1 into discharging in a man-

ner that appears normal, only, instead of representing the

current location, the DSM-associated CA1 discharge rep-

resents a remote, recollected location (Fig. 6). A similar,

non-local place cell ensemble discharge phenomenon

has also been described that is easily explained in game

theoretic terms by this deception concept. Again, on a

subsecond timescale, the ensemble discharge of CA1

neurons will toggle between representing non-local

places that a rat may visit in the near future (Kay et al.,

2020). It is as if the activity during that moment represents

something akin to the rat’s aspirations or intentions rather

than where it is, which is not easy to explain from a feed-

forward information maximization conceptualization of

hippocampal spatial information processing but is a natu-

ral consequence of deceptive signaling.
WRAPPING UP

We have recognized that signaling game theory can

successfully explain, describe, and model complex

phenomena in diverse fields ranging from biomolecular

evolution to economics. From the small-scale to the

large-scale, at each level of analysis there are biological

signaling agents transmitting signals in attempts to

maximize their respective local utility. Information

asymmetry between signaling agents can lead to stable

equilibria under cooperative circumstances, equilibria

which may persist due to the low cost of signaling

relative to the acquired utility of signaling for the local

agents. These equilibria might be cognitively beneficial

or deleterious depending on the context, and factors

influencing these equilibria are under the regulatory

influence of natural selection. Persistent signaling

equilibria are considered conventions, and many

conventions are preserved across species, adding

credence to the universality of signaling systems and

their emergent conventions as neurobiological objects of

study.

Neurons use biochemical and bioelectric signals to

differentially allocate metabolic resources to particular

‘‘privileged” connections. Although the local metabolic

constraints of neurons are determined by biochemical

considerations, natural selection and experience can act

on these asymmetries at the level of their emergent

features. These emergent features are phenotypes, and

for our consideration these are the phenotypes of
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cognition and behavior, which are

correlates of neuronal ensemble

discharge patterns. Coordinating

behavior into coherent patterns is a
Fig. 5. Hippocampal network functional

architecture for spatial cognition, and func-

tional cellularization. (A) schematic illustrat-

ing the functional connectivity amongst the

distinct subregions of the medial entorhinal

cortex and the hippocampus. Only excita-

tory inputs are illustrated, emphasizing the

interareal connections, whereas the inhibi-

tory connections tend to be mostly local

(intra-areal) and have been omitted. Note

that the innervations target distinct dendritic

compartments. The spatial firing properties

of principal cells in each area are also

indicated by an example session-averaged

firing rate map from neuronal recordings

while a rat explored a rectangular arena.

Note how grid, head direction, and border

spatially-tuned cells of MEC represent

component variables from which place can

be computed (distance, azimuthal direction,

and environmental boundary, respectively)

from the spatially-tuned MEC inputs to the

subfields in which place cell spatial firing

patterns are the most frequently observed

spatial firing patterns. (B) Top-to-bottom:

Schematic of stable-rotating-stable experi-

mental active place avoidance experimen-

tal conditions. Example polar firing rate

representations of two head-direction cells

and blue-to-red color-coded firing rate

maps illustrate the typical spatial tuning of

MEC and hippocampus (CA1) cells

recorded while rats navigate during two-

frame place avoidance in a stable-rotating-

stable triad of 30-min recordings. The

rotating session dissociates the accessible

space into two spatial frames, a stationary

room frame and a rotating arena frame, and

the two frame-specific firing rate maps are

provided for each cell. The number under

each map is the minimum rate in the red

category measured in AP/s units. Note how

the spatial tuning observed during the

stable sessions is lost during the rotation.

(C) Distribution of cell pair cofiring mea-

sured as Kendall’s correlation (s) computed

at 250 ms resolution. Each simultaneously-

recorded pair of cells was recorded in the

stable-rotating-stable triad session. The cell

pairs are sorted in descending order by the

value of s during the rotating recording and

the order of cell pairs is maintained for all

three recordings. Note (1) that the correla-

tion patterns skew to significant positive

values with few significant negative values,

and (2) that the correlation patterns strongly

persist across the session triad (r2 coeffi-

cient of determination values given below

the plots) for MEC recordings. In contrast,

the persistence of cofiring is much weaker

for MEC-hippocampus cell pairs (Stable –

Stable: MEC-MEC pairs (r = 0.79) vs.

MEC-HPC pairs (r = 0.41) z = 9.24, p � 0;

Stable-Rotating: MEC-MEC pairs

(r = 0.78) vs. MEC-HPC pairs (r = 0.35)

z = 9.88, p � 0). See Appendix 1 for

Methods.
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Fig. 6. Non-local hippocampal network discharge as deception. (A)
Cartoon illustrating that hippocampus place cell activity can typically

be decoded to accurately identify the subject’s current position (left).

However, at times the position decoding is non-local in that it points to

a position remote from the subject’s current position (right). This non-

local decoding is often to the vicinity of a shock zone (red sector) if the

mouse has been trained to avoid that shock zone. Furthermore, the

non-local representation of position tends to occur � 2 seconds

before the subject will make avoidance movements away from the

shock zone, suggesting that it is a recollection of the shock zone’s

location. (B) Bayesian posterior maps of the likelihood of a mouse’s

position calculated on the basis of a 500-ms observation of place cell

population discharge centered at the times indicated. (C) T = 0 s is

the moment that slow gamma dominance was observed in the

concurrent CA1 local field potential (SGdom). SGdom is computed as

the ratio of slow (�30 Hz) to mid-frequency (�70 Hz) gamma (MG) in

the local field potential, and T = 0 is marked as the peak of the

sufficiently positive SG/MG ratio. The firing rate maps of six place

cells are shown ordered from the one with the firing field closest to the

mouse’s current location to the one with the firing field distant from

the current location and near the shock zone. Note that during this 5-s

data segment, that despite the mouse moving very little, which place

cells discharge action potentials (rasters shown) changes from the

cells with fields at the current location, to the cells with fields near the

shock zone, remote from the mouse. It is not obvious what sensory

cues would switch firing from representing local position to non-local

position, but SGdom transiently switching CA1 network function from

processing local place information based on sensory cues to

processing non-local information based on memory predicts these

observations. SGdom is triggered by a medial entorhinal cortex-

originating dentate spike event that switches hippocampal informa-

tion processing from sensation-based encoding to memory based

recollection (Dvorak et al., 2021). Figure based on (Dvorak et al.,

2018).
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unifying feature of all evolutionary signaling systems, and

the reliability of signaling is determined by how well a

signal can predict a sender’s type. For instance, a

signaling system approximating Infomax consists of

senders reliably signaling their type, thereby reducing

distortion, and generating optimal and predictable

responses. But, as mentioned above, observable, and

adaptive hippocampal function demands more than

optimally reliable information. Spatial information

maximization is instead merely one end in a spectrum of

signaling organization: the optimally informative end. On

the other end of the spectrum is completely

uninformative signaling (so-called babbling equilibria)

whereby signals do not reliably distinguish among

sender types. Either end of this spectrum alone is

untenable for the demands on hippocampal function. It

is therefore our contention that entorhinal-hippocampal

organization can be understood as the cellularization of

scale-specific signaling agents ranging from genes,

proteins, neurons, and neuronal populations that interact

according to shared signaling conventions. Every

cellularized group of signaling agents is organized

somewhere along the babbling versus separating

signaling spectrum. From the scale of neuronal

ensemble dynamics, and emergent sensorimotor

features, information-rich separating equilibria can

approximate information maximization paradigms and

attractor networks which have been highly fruitful to

systems neuroscience research. These populations of

highly cofiring neurons are well suited to encode reliable

sensorimotor features of the world, allowing an

organism to benefit from the high degree of

cellularization and reliable signaling. Furthermore,

signaling game theory also provides an explanation for

aspects of hippocampal activity which are not well

understood from a systems level information

maximization paradigm. Populations of cofiring neurons

further from separating equilibria generate less

cellularization, allowing signaling conventions to adapt to

changing relations between the organism and the world.

We observe that loose correlations observed in less

cellularized populations underlie Fmr1-null mutant CA1

hippocampus’ susceptibility to deception (Talbot et al.,

2018). Moreover, the dynamic restructuring of population

vector correlations observed during remapping experi-

ments in area CA1 (Redish et al., 2000; Jackson and

Redish, 2007; Kubie et al., 2020; Levy et al., 2023) pro-

vide further support for the significance of signaling equi-

libria that can transiently stray from separating equilibria

to establish new conventions. In summary, the tension

generated between different cellularized agents and their

respective level of cellularization can account for the com-

plex array of functions attributed to the hippocampus,

functions which emerge from metabolic and energetic

constraints of individual neurons and scale up to

population-level phenotypes of cognition and memory.
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APPENDIX 1

Methods

These procedures were previously described in detail

(Park et al., 2019), and are here provided in brief to com-

plement the data reported in Fig. 5.
Subjects

We used 14 adult male Long-Evans hooded rats weighing

300–400 g (Taconic Farms, NY). All experimental

procedures were approved by NYU’s Institutional Animal

Care and Use Committee. Rats were handled by the

experimenter for 5 days (5 min/day) before surgery

under pentobarbital (50 mg/kg, i.p.) anesthesia. The

surgery was to implant custom microdrives on the skull

that could micro-position electrodes at the recording

sites in the brain. Two-four independently movable

tetrode-configured electrode bundles were targeted to

the hippocampus (relative to Bregma AP 3.8, ML �2.5,

DV 1.9) and the medial entorhinal cortex (relative to the

from sinus AP 0.5, ML, 4.5, DV, 2.0) of seven rats.

Eight independently movable tetrode electrodes were

targeted to the medial entorhinal cortex of seven rats.

The animals were allowed at least a week to recover

before behavioral training began.
Behavior

The rats were habituated to the stainless-steel disk arena

(diameter 1.2 m). They were encouraged to continuously

forage for 20-mg sugar pellets (Bio-Serv, NJ) that were

randomly dispensed to random locations by a computer-

controlled overhead feeder. Each of the 5 days of the

habituation phase, the arena was stable for 30 min and

rotating at 1 rpm for 30 min. Active place avoidance

training followed to avoid an annulus-sector that for

some rats was 30� and for other rats was 45�. The

sector extended from the edge of the arena toward an

annulus at either 50% or 40% of the radius,

respectively. The rats were trained to avoid a mild < 0.

4 mA foot shock if they entered a shock zone that was

defined in a fixed location of the room and a coincident

fixed location on the arena surface. When the arena

was stable the room-defined and arena-defined shock

zones were physically identical, but when the arena

rotated, they were dissociated such that the stationary

room location of the shock zone remained fixed in the

room (but not on the rotating arena), and the rotating

arena location of shock remained fixed on the arena

(but not in the stationary room). The rats received ten

daily training sessions consisting of the triad stable1-

rotating-stable2, each lasting 30 min, where the arena

was stable or rotating and the two stable sessions were

identical with the area in an identical orientation. Using

two infrared LEDs mounted to the recording electronics

on the rat’s head, the rat’s position and head direction

were tracked 30 times a second using an overhead

video camera and software (Tracker, Bio-Signal Group,

Acton, MA). Position and head direction were tracked in

both the stationary spatial frame of the room and the

rotating spatial frame of the arena by referencing an

infrared LED that was attached to the arena.
Electrophysiology

The electrodes were advanced into the CA1 and MEC

regions until action potentials could be recorded. The

signals were filtered between 300 Hz and 7 kHz,
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amplified up to 7000 times and digitized at 48 kHz using

commercial hardware and software (dacqUSB, Axona

Ltd, St Albans, UK). In this way, ensembles of action

potentials were recorded from dorsal hippocampus and

dorsomedial entorhinal cortex while the animals

performed the active place avoidance task in the stable

and rotating conditions. A total of 1465 single units were

recorded from MEC, and 756 single units were recorded

from CA1. Single unit isolation quality was assessed by

computing IsoIBG and IsoINN, the Isolation Information

measures (Neymotin et al., 2011). Only the single units

that had values greater than 3.5 bits were considered suf-

ficiently well-isolated for these studies (MEC 810, CA1

414).

Data analysis

Custom C/C++ and MATLAB software was used to

compute all outcome measures, with details published,

and code publicly available (Park et al., 2019). Functional

cell classes were determined by statistical criteria after

computing firing-rate tuning as a function of place and

head-direction determined by dividing the number of

action potentials that a single unit discharged while the

rat was in each 2.13-cm square positional bin, or 10�
directional bin divided by the total time the rat was
detected in that bin. MEC head-direction cells were clas-

sified as single units with long duration (>350 us) action

potential and direction-independent firing rate below

10 AP/s. CA1 place cells were classified as single units

with long duration action potentials (>350 us), position-

independent firing rate <5 AP/s, and spatial coherence

(>0.4). The network stability was estimated by computing

the n(n-1)/2 pair-wise spike train correlations between all

simultaneously recorded pairs of n cells. The spike counts

were computed in fixed duration 250 ms time bins for

each spike train and Kendall’s correlation (s) was calcu-

lated between the spike counts of all pairs of simultane-

ously recorded cells within MEC, CA1, and between

MEC and HPC. The stability of the network state across

the Stable1 vs Stable2 and across the Stable1 vs. Rotat-

ing conditions was investigated by comparing the s values
for each cell pair in the two conditions, and this was quan-

tified by computing the Pearson correlation across the

pairs of s. The coefficient of determination (r2) is used to

estimate the variance in the s values in one condition that

is explained by the variance in the other condition, and

thus the stability of the network discharge. Statistical com-

parisons between distributions of correlation were per-

formed after transforming r values to z using Fisher’s

transform.
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