ARTICLE Communicated by Hava T. Siegelmann

Reducing Catastrophic Forgetting With Associative Learning:
A Lesson From Fruit Flies

Yang Shen

yashen@cshl.edu

Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology,
Cold Spring Harbor, NY 11724, U.S.A.

Sanjoy Dasgupta

dasgupta@eng.ucsd.edu

Department of Computer Science and Engineering, University of California,
San Diego, La Jolla, CA 92093, U.S.A.

Saket Navlakha

navlakha@cshl.edu

Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology,
Cold Spring Harbor, NY 11724, U.S.A.

Catastrophic forgetting remains an outstanding challenge in continual
learning. Recently, methods inspired by the brain, such as continual
representation learning and memory replay, have been used to combat
catastrophic forgetting. Associative learning (retaining associations be-
tween inputs and outputs, even after good representations are learned)
plays an important function in the brain; however, its role in continual
learning has not been carefully studied. Here, we identified a two-layer
neural circuit in the fruit fly olfactory system that performs continual as-
sociative learning between odors and their associated valences. In the
firstlayer, inputs (odors) are encoded using sparse, high-dimensional rep-
resentations, which reduces memory interference by activating nonover-
lapping populations of neurons for different odors. In the second layer,
only the synapses between odor-activated neurons and the odor’s associ-
ated output neuron are modified during learning; the rest of the weights
are frozen to prevent unrelated memories from being overwritten. We
prove theoretically that these two perceptron-like layers help reduce
catastrophic forgetting compared to the original perceptron algorithm,
under continual learning. We then show empirically on benchmark data
sets that this simple and lightweight architecture outperforms other
popular neural-inspired algorithms when also using a two-layer feed-
forward architecture. Overall, fruit flies evolved an efficient continual
associative learning algorithm, and circuit mechanisms from neuro-
science can be translated to improve machine computation.

Neural Computation 35,1797-1819 (2023) ~ © 2023 Massachusetts Institute of Technology
https://doi.org/10.1162 /neco_a_01615

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

mailto:
mailto:
mailto:
https://doi.org/10.1162/neco_a_01615

1798 Y. Shen, S. Dasgupta, and S. Navlakha

1 Introduction

Catastrophic forgetting, when neural networks inadvertently overwrite old
memories with new memories, remains a long-standing problem in ma-
chine learning (Parisi et al., 2019). Here, we studied how fruit flies learn
continuously to associate odors with behaviors and discovered a circuit mo-
tif capable of alleviating catastrophic forgetting.

While modern machine learning algorithms excel at learning complex
and discriminating representations (LeCun et al., 2015), an equally chal-
lenging problem in continual learning is finding good ways to preserve
associations between these representations and output classes. Indeed, the
performance of deep artificial neural networks is considerably degraded
when classes are learned sequentially (one at a time), as opposed to being
randomly interleaved in the training data (Goodfellow et al., 2013). The ef-
fect of this simple change is profound and has warranted the search for
new mechanisms that can preserve input-output associations over long pe-
riods of time. In addition, catastrophic forgetting has been shown to ef-
fect deeper layers of neural networks more than feature extraction layers
(Ramasesh et al., 2021). This finding highlights the importance of preserv-
ing good associations for reducing catastrophic forgetting.

Since learning in the natural world often occurs sequentially, the past
few years have witnessed an explosion of brain-inspired continual learn-
ing models. These models can be divided into three categories: (1) reg-
ularization models, where important weights (synaptic strengths) are
identified and protected (Hinton & Plaut, 1987; Fusi et al., 2005; Benna
& Fusi, 2016; Kirkpatrick et al., 2017; Zenke et al., 2017; Douillard et al.,
2020; Peng et al., 2021); (2) experience replay models, which use external
memory to store and reactivate old data (Lopez-Paz & Ranzato, 2017) or
use generative models to generate new data from prior experience (van de
Ven et al., 2020; Tadros et al., 2020, 2022; Shin et al., 2017) and (3) com-
plementary learning systems (McClelland et al., 1995; Roxin & Fusi, 2013),
which partition memory storage into multiple subnetworks, each subject
to different learning rules and rates. Importantly, these models often take
inspiration from mammalian memory systems, such as the hippocampus
(Wilson & McNaughton, 1994; Rasch & Born, 2007) or the neocortex (Qin
et al., 1997; Ji & Wilson, 2007), where detailed circuit anatomy and physi-
ology are still lacking. Fortunately, continual learning is also faced by sim-
pler organisms, such as insects, where supporting circuit mechanisms are
understood at synaptic resolution (Takemura et al., 2017; Zheng et al., 2018;
Li et al., 2020).

Most brain-inspired algorithms use backpropagation-based supervised
learning, whose existence in the brain is still controversial. On the other
hand, associative learning (a local learning scheme that strengthens con-
nections between representation neurons and output neurons) plays an
important role for learning in the brain, though its role toward reducing

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

Reducing Catastrophic Forgetting With Associative Learning 1799

catastrophic forgetting in artificial neural networks has not been carefully
analyzed.

Here, we developed an associative continual learning algorithm in-
spired by the fruit fly olfactory system. This algorithm tackles an important
yet underappreciated subproblem within continual learning: after good
representations are learned, how do you best preserve associations between
representation neurons and output classes in a class-incremental learning
framework? The algorithm we propose stitches together two well-known
computational ideas—sparse coding (Maurer et al., 2013; Ruvolo & Eaton,
2013; Ororbia et al., 2019; Ahmad & Scheinkman, 2019; Rapp & Nawrot,
2020; Hitron et al., 2020) and perceptron-like associative learning (Hinton
& Plaut, 1987; Fusi et al., 2005; Benna & Fusi, 2016; Kirkpatrick et al., 2017;
Zenke et al., 2017; Minsky & Papert, 1988)—in a unique and effective
way, which we show effectively reduces catastrophic forgetting under
a simple feedforward network architecture. The fruit fly circuit uses a
perceptron-like architecture, which we prove theoretically helps reduce
catastrophic forgetting compared to the original perceptron algorithm.
We also show empirically that the fruit fly circuit outperforms alternative
perceptron-like circuits in design space (e.g., replacing sparse coding with
dense coding, associative learning (freezing synapses) with supervised
learning (modifiable synapses), which provides biological insight into the
function of these evolved circuit motifs and how they operate together in
the brain to sustain memories.

2 Methods

2.1 Circuit Mechanisms for Continual Learning in Fruit Flies. How
do fruit flies associate odors (inputs) with behaviors (classes) such that
behaviors for odors learned long ago are not erased by newly learned
odors? We first review the basic anatomy and physiology of two layers of
the olfactory system that are relevant to the exposition here (Modi et al.,
2020).

The two-layer neural circuit we study takes as input an odor after a se-
ries of preprocessing steps have been applied, including gain control (Root
etal., 2008; Gorur-Shandilya et al., 2017), noise reduction (Wilson, 2013), and
normalization (Olsen et al., 2010; Stevens, 2015). After these steps, odors are
represented by the firing rates of d = 50 types of projection neurons (PNs),
which constitute the input to the two-layer network motif described next.

2.1.1 Sparse Coding. The goal of the first layer is to convert the dense in-
put representation of the PNs into a sparse, high-dimensional representa-
tion (Cayco-Gajic & Silver, 2019) (see Figure 1A). This is accomplished by a
set of about 2000 Kenyon cells (KCs), which receive input from the PNs. The
matrix connecting PNs to KCs is sparse and approximately random (Caron
et al., 2013); each KC randomly samples from about 6 of the 50 projection

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

1800 Y. Shen, S. Dasgupta, and S. Navlakha

A B
random O O
projection O
S S O
deep network O O
Projection Kenyon cells (KCs) MBONs
neurons (PNs) frozen " modified
input layer sparse, high-dimensional output
representation classes

Figure 1: A two-layer circuit for continual learning in the fruit fly olfactory sys-
tem. (A) An input (odor) is received by the “nose” and preprocessed via a series
of transformations. In the fruit fly, this preprocessing includes noise reduction,
normalization, and gain control. In a deep network, preprocessing is similarly
used to generate a suitable representation for learning. After these transforma-
tions, the dimensionality of the preprocessed input (PNs) is expanded via a ran-
dom projection and is sparsified via winner-take-all thresholding. This leaves
only a few Kenyon cells active per odor (indicated by red shading). To asso-
ciate the odor with an output class (MBON), only the synapses connecting the
active Kenyon cells to the target MBON are modified. The rest of the synapses
are frozen. (B) A second example with a second odor, showing different Kenyon
cells activated, associated with a different MBON.

neurons and sums up their firing rates. Next, each KC provides feedfor-
ward excitation to a single inhibitory neuron, called APL. In return, APL
sends feedback inhibition to each KC. The result of this loop is that approx-
imately 95% of the lowest-firing KCs are shut off, and the top 5% remain
firing in what is often referred to as a winner-take-all (WTA) computation
(Turner et al., 2008; Lin et al., 2014; Stevens, 2015). Thus, an odor initially
represented as a point in R is transformed, via a 40-fold dimensionality
expansion followed by WTA thresholding, to a point in R2°?, where only
approximately 100 of the 2000 KCs are active (i.e., nonzero) for any given
odor.

This transformation was previously studied in the context of similarity
search (Dasgupta et al., 2017, 2018; Papadimitriou & Vempala, 2018; Ryali
et al., 2020), compressed sensing (Stevens, 2015; Zhang & Sharpee, 2016),
and pattern separation for subsequent learning (Babadi & Sompolinsky,
2014; Litwin-Kumar et al., 2017; Dasgupta & Tosh, 2020).

2.1.2 Associative Learning. The goal of the second layer is to associate
odors (sparse points in high-dimensional space) with behaviors.

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

Reducing Catastrophic Forgetting With Associative Learning 1801

The main locus of associative learning lies at the synapses between KCs
and a set of mushroom body output neurons called MBONSs (Aso et al.,
2014), which encode behaviorally relevant odor information important for
decision making (see Figure 1).

During training, say the fly is presented with a naive odor (odor A) that
is paired with a punishment (e.g., an electric shock). How does the fly learn
to avoid odor A in the future? Initially, the synapses from KCs activated by
odor A to both the “approach” MBON and the “avoid” MBON have equal
weights. When odor A is paired with punishment, the KCs representing
odor A are activated around the same time that a punishment-signaling
dopamine neuron fires in response to the shock. The released dopamine
causes the synaptic strength between odor A KCs and the approach MBON
to decrease, resulting in a net increase in the avoidance MBON response.1
Eventually the synaptic weights between odor A KCs and the approach
MBON are sufficiently reduced to reliably learn the avoidance association
(Felsenberg et al., 2018).

Importantly, the only synapses that are modified in each associative
learning trial are those from odor A KCs to the approach MBON. All
synapses from odor A KCs to the avoid MBON are frozen (i.e., left un-
changed), as are all weights from silent KCs to both MBONS. Thus, the vast
majority of synapses are frozen during any single odor-association trial.

To summarize, associative learning in the fly is driven by dopamine sig-
nals that only affect the synapses of sparse odor-activated KCs and a target
MBON that drives behavior.

2.2 The FlyModel. We now introduce an associative continual learning
algorithm based on the two-layer olfactory circuit above.

As input, we are given a d-dimensional vector, x = (x1, X2, ..., %g) € RY,
As in the fly circuit, we assume that x is preprocessed to remove noise
and encode discriminative features. Biologically, this is often accomplished
by peripheral sensory circuitry that is separate from learning-related cir-
cuitry; computationally, the representations extracted from models trained
on other data sets, as often done in transfer learning, could serve a similar
role. To emphasize, our goal here is not to study the complexities of learn-
ing good representations but rather to disentangle representation learning
from associative learning and focus exclusively on the latter.

The first layer computes a sparse, high-dimensional representation of
x. This layer has m units, where m ~ 40d. The input layer and the first
layer are connected by a sparse, binary random matrix, ®, of size m x d.
Each row of ® contains about 0.1d ones in random positions, and the

1Curiously, approach behaviors are learned by decreasing the avoid MBON response,
as opposed to increasing the approach MBON response, as may be more intuitive.

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

1802 Y. Shen, S. Dasgupta, and S. Navlakha

rest of the positions in the row are set to zero. The initial representation
Y(x) = (Y1, Y2, ..., ¥m) € R™ is computed as

¥ (x) = Ox. (2.1)

After this dimensionality expansion, a winner-takes-all process is applied,
so that only the top I most active units remain on and the rest of the units are
set to 0. This produces a sparse representation ¢(x) = (¢1, ¢2, ...,) € R",
where

2.2)

Y; if v, is one of the I largest positive units of ¥ (x)
"0 otherwise.

For computational convenience, a min-max normalization is applied to
¢(x) so that each unit has a value between 0 and 1. The matrix @ is fixed and
not modified during learning; that is, there are no trainable parameters in
the first layer. The winner-takes-all competition could be implemented in
alternative ways (Holca-Lamarre et al., 2017) besides the direct inhibition
we show here. But direct inhibition has the benefit of easily specifying the
number of neurons remaining active per input.

The second layer is an associative learning layer, which contains k output
class units, y = {y1, 2, . . ., yx}. The first and second layers are connected with
all-to-all synapses. If an input x is to be associated with target y;, the only
weights that are modified are those between the active units in ¢(x) and y;.
No other weights, including those from the active units in ¢(x) to the other k
— 1 units in y—are modified. We refer to this as “partial freezing” of weights
during learning.

Formally, let w;; € [0, 1] be the weight between ¢; and y;. Then, for all i
[1...m],jel[l...k], the weight update rule after each input x is

1-— i+ B¢ if j = target
U::(or)wj j = targ 23)

(1 — a)w; otherwise.

Here, B is the learning rate, and « is a very small forgetting term that mimics
slow, background memory decay. In our experiments, we set & = 0 to min-
imize forgetting and to simplify the model. The problem of weight satura-
tion arises when o = 0, since weights can only increase and never decrease.
However, despite thousands of training steps, most weights did not satu-
rate (see Figure S1) since most ¢; are inactive for most classes (sparse cod-
ing) and only a small fraction of the active ¢; weights are modified during
learning (partial freezing). Nonetheless, in practice, some small, nonzero o
may be desired to avoid every synapse from eventually saturating.

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

Reducing Catastrophic Forgetting With Associative Learning 1803

Finally, biological synapses have physical bounds on their strength, and
here we mimic these bounds by capping weights to [0, 1].

3 Theoretical Results

The fruit fly associative learning algorithm (partial freezing) resembles
a well-known supervised learning algorithm: the perceptron (Rosenblatt,
1958). On an instance ¢, the multiclass perceptron predicts a label in
[1...k] and then performs an update if this prediction is incorrect:

w;j +¢; if j = target
wij =y wij —¢; if j = prediction 3.1)

W otherwise.

In contrast, the partial freezing algorithm always updates and modifies only
the weights of the target class. We now see how these differences affect
catastrophic forgetting. (See supplement for details.)

3.1 Even the Perceptron with Linearly Separable Data Suffers from
Catastrophic Forgetting. It is well known that if the data points (x, y) pre-
sented to the perceptron algorithm have linear margin y > 0 and have
lengths bounded by ||x|| < R, then the algorithm will make at most 2kR?/y2
wrong predictions over its entire lifetime, where k is the number of classes.
This is true regardless of the order in which the data are presented.

Nonetheless, catastrophic forgetting is possible. One way this can hap-
pen is if the data are not perfectly separable. In that case, the linear margin
condition does not hold and the perceptron will not converge. But forget-
ting can occur even when the data are separable, as we now show.

Suppose we introduce one class at a time, or a couple of classes at a time,
as is commonly done in continual learning. The guarantees of the percep-
tron need to be interpreted carefully in this setting. After new classes are
introduced, the algorithm will, in general, need to see more examples of ear-
lier classes and tweak their weight vectors further. It is thus never “done”
with a particular class.

To make this more concrete, suppose that we introduce one class at a
time, and the margin so far, after seeing the first j classes is y;. That is, y;
is the linear margin of classes {1, 2, . . ., j}, which can only get smaller as
j grows: y1 > y» > y3 = --- Upon introducing the kth class, the mistake
bound goes up by 2kR?/y? — 2(k — 1)R?/y? | = 2R?/y?; we can think of this
quantity as the additional number of mistakes we might make in accommo-
dating the kth class. Crucially, in order to get convergence, some of these
mistakes may need to be made on classes that have been seen earlier.

We now construct a concrete example of this phenomenon.

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

1804 Y. Shen, S. Dasgupta, and S. Navlakha

Lemma 1. Pick any positive integer d that is a power of two. Then there exists
a set of d —1 vectors x1, . .., x4_1 € {0, 1} with the following two properties:
(1) each vector x; has exactly d/2 ones and (2) any pair of vectors has a dot product
exactly d/4.

Proof. Start with the d x d Hadamard matrix and remove the row that is
all ones. In the resulting (d — 1) x d matrix, replace every —1 with a 0, and
take x1, ..., xs_1 to be the rows of the matrix. O

Now consider a situation with 4 — 1 classes, where class j is supported
on the single point x;. The ideal classifiers are w; = x;:

A2 ifi=j
Wit tH= d/4 otherwise.

Suppose the classes are introduced one at a time, in order:

¢ C(lass 1 is introduced: w; is set to xq, which is perfect.

e Class 2 is introduced: point x, is misclassified as coming from class
1. Thus, w; is set to x,, which is perfect, but w; is changed to x; — x»,
which no longer correctly classifies class 1:

wi Xy = —x2) 0 =d/2—d/4=d/4,
wy - X1 = d/4

Moreover, for any j > 2, we have w; - x; = (x; — x2) - xj = 0. Thus, all
such points x; will be classified as class 2.

¢ C(lass 3 is introduced: point x3 is misclassified as coming from class 2.
Thus wj is set to x3, but now w, becomes x, — x3, suffering a similar

fate to wy.
And so on. By the time x;_1 has arrived, all of wy, . .., wy_» have been
corrupted to the point of uselessness, even though they were originally set
perfectly.

Thus, even in the case where the perceptron algorithm is known to fare
best (i.e., when the data are linearly separable), catastrophic forgetting oc-
curs under continual learning.

3.2 The Partial-Freezing perceptron Does Not Suffer from Catas-
trophic Forgetting. The partial-freezing algorithm in equation 2.3 is an as-
sociative version of the perceptron. We now show that even in a continual
learning framework, this algorithm will provably learn to correctly distin-
guish classes if the classes satisfy a separation condition that says, roughly,
that dot products between points within the same class are, on average,
greater than between classes. We will then show that adding sparse coding

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

Reducing Catastrophic Forgetting With Associative Learning 1805

enhances the separation of classes (Babadi & Sompolinsky, 2014), making
associative learning easier.

Definition 1. Let 7y, . . ., 7ty be distributions over R4, corresponding to k classes
of data points. We say the classes are y-separated, for some y > 0, if for any pair of
classes j # j and any point x, from class j,

EX'vnj[xo : X] >y + EX’Nn]-/ [xo : X/]

Here, Ex-, refers to expected value under a vector X drawn at random from dis-
tribution .

Under y-separation, the labeling rule,

X > argmax w; - X,
j

is a perfect classifier if the wj (i.e., the KC — MBON weight vector for class
j) are the means of their respective classes, thatis, w; = Ex~,,[X]. This holds
even if the means are only approximately accurate, within O(y) (in the sup-
plement, see theorem 8). The partial freezing algorithm, in turn, provably
produces such mean estimates (in the supplement, see theorem 5).

3.3 Sparse Coding Provably Creates Favorable Separation for Contin-
ual Learning. The separation condition of definition 1 is quite strong and
might not hold in the original data space. But we will show that subsequent
sparse coding can nonetheless produce this condition, so that the partial
freezing algorithm, when run on the sparse encodings, performs well.

To see a simple model of how this can happen, suppose that there are N
prototypical inputs, denoted py, ..., pn € X, where X C R?, that are some-
what separated from each other: for some & € [0, 1),

Pi-Pi _
Ipilllip;ll =5

Eachp;hasalabel y; €[1...k]. Let C; C [N] be the set of prototypes with label
j. Since the labels are arbitrary, these classes will in general not be linearly
separable in the original space (see Figure S2).

Suppose the sparse coding map ¢ : X — {0, 1} generates k-sparse rep-
resentations with the following property: for any x, x" € &,

p()- B() <k f (f‘—x) ,

el

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

1806 Y. Shen, S. Dasgupta, and S. Navlakha

where f: [~ 1, 1] — [0, 1] is a function that captures how the coding pro-
cess transforms dot products. Some earlier work (Dasgupta et al., 2018) has
characterized f for two types of random mappings: a sparse binary matrix
(inspired by the fly’s architecture) and a dense gaussian matrix (common in
engineering applications). In either case, f(s) is a much shrunken version of
s; in the dense gaussian case, for instance, it is roughly (k/m)! ~*.

We can show that for suitable &, the sparse representations of the
prototypes—that is, ¢(p1), . . ., ¢(pn) € {0, 1}""—are then guaranteed to be
separable, so that the partial freezing algorithm will converge to a perfect
classifier.

Theorem 1. Let N, = max; |C;|. Under the assumptions above, the sparse rep-

resentation of the data set, {(p(p1), 1), - - ., (@(pn), yn)}, is (1/N, — f(§))-
separated in the sense of definition 1.

Proof. This is a consequence of theorem 9 in the supplement, a more gen-
eral result that applies to a broader model in which observed data are noisy
versions of the prototypes. (|

4 Experimental Evaluation

4.1 Testing Framework and Problem Setup. We tested each algorithm
(see below) on two benchmark data sets using a class-incremental learning
setup (Farquhar & Gal, 2019; van de Ven et al., 2020), in which the training
data were ordered and split into sequential tasks. For the MNIST-20 data
set (a combination of regular MNIST and Fashion MNIST; see the supple-
ment), we used 10 nonoverlapping tasks, where each task is a classification
problem between two classes. For example, the first task is to classify be-
tween digits 0 and 1, the second task is to classify digits 2 and 3, and so on.
Similarly, the CIFAR-100 data set is divided into 25 nonoverlapping tasks,
where each task is a classification problem among four classes.

Testing is performed after the completion of training of each task and is
quantified using two measures. The first measure, the accuracy for classes
trained so far, assesses how well classes from previous tasks remain cor-
rectly classified after a new task is learned. Specifically, after training task
i, we report the accuracy of the model tested on classes from all tasks < i.
The second measure, memory loss, quantifies forgetting for each task sep-
arately. We define the memory loss of task i as the accuracy of the model
when tested (on classes from task i only) immediately after training on task
i minus the accuracy when tested (again, on classes from task i only) af-
ter training on all tasks, that is, at the end of the experiment. For example,
say the immediate accuracy of task i is 0.80, and the accuracy of task i at
the end of the experiment is 0.70. Then the memory loss of task i is 0.10. A
memory loss of zero means memory of the task was perfectly preserved
despite learning new tasks.

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

Reducing Catastrophic Forgetting With Associative Learning 1807

4.1.1 Comparison to Other Algorithms. There are, of course, many heavy-
duty continual learning algorithms in the literature, and our intention here
is not to perform an exhaustive comparison to them. Instead, we compared
the FlyModel with three neurally plausible methods that are popular in
the literature and represent the broad strategies of brain-inspired contin-
ual learning (e.g., synapse protection, memory replay) outlined in section 1.
All of these methods use backpropagation-based supervised learning as op-
posed to associative learning. Moreover, none of these methods have prov-
able convergence guarantees, as ours does:

1. Elastic weight consolidation (EWC; Kirkpatrick et al., 2017) uses the
Fisher information criterion to identify weights that are important
for previously learned tasks and then introduces a penalty if these
weights are modified when learning a new task.

2. Gradient episodic memory (GEM; Lopez-Paz & Ranzato, 2017) uses a
memory system that stores a subset of data from previously learned
tasks. These data are used to assess how much the loss function on
previous tasks increases when model parameters are updated for a
new task.

3. Brain-inspired replay (BI-R; van de Ven et al., 2020) protects old mem-
ories by using a generative model to replay activity patterns related
to previously learned tasks.

4. Vanilla is a standard fully connected neural network that does not
have any explicit continual learning mechanism. This is used as a
lower bound on performance.

5. Offline is a standard fully connected neural network, but instead of
learning classes sequentially, for each task, it is retrained from scratch
on all classes (current and previously seen) together, presented in a
random order. This is used as an upper bound on performance.

For a fair comparison, all five methods (except BI-R; see the supplement)
use the same architecture as the FlyModel—the same number of layers, the
same number of units per layer (m units in the first layer, k units in the
second layer)—and they all use the same hidden unit activation function
(ReLU). In addition, all methods, including the FlyModel, use the same rep-
resentation for each input. Thus, the primary difference among methods is
how learning mechanisms store and preserve memories.

See the supplement for full details on data sets, preprocessing, network
architectures, and parameters.

4.2 TheFlyModel Outperforms Existing Methodsin Class-Incremental
Learning. The FlyModel reduced catastrophic forgetting compared to all
four continual learning methods tested. For example, on the MNIST-20 data
set (see Figure 2A), after training on 5 tasks (10 classes), the accuracy of the
FlyModel was 0.86 £ 0.0006 compared to 0.77 £ 0.02 for BI-R, 0.69 & 0.02
for GEM, 0.58 + 0.10 for EWC, and 0.19 & 0.0003 for Vanilla. At the end

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

1808 Y. Shen, S. Dasgupta, and S. Navlakha

A B 1o
@10
a
S 08 |
0.8
3z @ | <
= 06 Sos- z
© 0.6° > (2}
I -
= 2 | l
£ £oa | R
S04 f} | N
oy = | e
© 0.2- |
502 I| I
g 0.0 * 1 1 B .
0.0- . !) y !
2 4 6 8 10 12 14 16 18 20 1 2 4 6 8 10
Number of Trained Classes Task Number
C " = D o
@ 1.0 ---- Offline BI-R B FlyModel
@ —4— Fly Model ~—— EWC 0s- L . EWC
008 |\ eeo GEM —— Vanilla " ¥ 1 GEM o
b AN~ @ 06- BI-R =
Q =Y o N !
£ - | . Vanilla
506 > oa >
= s Py
o4 5 2
4- 02-
> o
: = | S
2.2 » 0.0] " -
o P = Twt Ty
Q i {
< 0.0-. .)) -02° : !
0 20 40 60 80 100 1 5 10 15 20 25
Number of Trained Classes Task Number

Figure 2: The FlyModel outperforms existing continual learning methods in
class-incremental learning. (A) The x-axis is the number of classes trained on,
and the y-axis is the classification accuracy when testing the model on the classes
trained on thus far. The offline method (dashed black line) shows the optimal
classification accuracy when classes are presented together, instead of sequen-
tially. Error bars show standard deviation of the test accuracy over five random
initializations for GEM, BI-R, EWC, and Vanilla, or over five random matrices
(®) for the FlyModel. (B) The x-axis is the task number during training and the
y-axis is the memory loss of the task. (A-B) MNIST-20 data set. (C-D) CIFAR-
100. The memory loss of all tasks is shown in Figure S3.

of training (10 tasks, 20 classes trained), the test accuracy of the FlyModel
was at least 0.19 higher than any other method and only 0.11 lower than the
optimal offline model.

Next, we used the memory loss measure to quantify how well the “mem-
ory” of an old task is preserved after training new tasks (see Figures 2B
and S3). As expected, the standard neural network (Vanilla) preserves al-
most no memory of previous tasks; it has a memory loss of nearly one
for all tasks except the most recent task. While GEM, EWC, and BI-R per-
form better—memory losses of 0.24, 0.27, and 0.42, respectively, averaged
across all tasks—the FlyModel has an average memory loss of only 0.07.
This means that the accuracy of task i was only degraded on average by 7%
at the end of training when using the FlyModel.

Similar trends were observed on a second, more difficult data set (CIFAR-
100; see Figures 2C and 2D), where the FlyModel had an accuracy that was

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

Reducing Catastrophic Forgetting With Associative Learning 1809

MNIST-20

\\v_\\—

CIFAR-100

>
w

—e— Sparse Coding + Partial Freezing (FlyModel)
Sparse coding + 1-Layer NN

—A_ Dense Coding + 1-Layer NN

—e— Dense Coding + Partial Freezing

g
=}
g
o

o
©
o
©

o
o
o
o

o
ES
I
IS

o
)

Accuracy of Trained Classes
o
N

Accuracy of Trained Classes

o
o
o
=)

2 4 6 8 10 12 14 16 18 20 0 20 40 60 80 100
Number of Trained Classes Number of Trained Classes

Figure 3: Sparse coding and partial freezing are both required for contin-

ual learning. Axes are the same as those in Figure 2A. Both sparse coding

methods outperform both dense coding methods. When using sparse cod-

ing, partial freezing outperforms logistic regression (one-layer neural network).

(A) MNIST-20. (B) CIFAR-100.

atleast 0.15 greater than all continual learning methods and performed only
0.13 worse than the offline model.

4.3 Sparse Coding and Partial Freezing Are Both Required for Contin-
ual Learning. An important challenge in theoretical neuroscience is to un-
derstand why circuits may be designed the way they are. Quantifying how
evolved circuits fare against putative, alternative circuits in design space
could provide insight into the biological function of observed network mo-
tifs. We explored this question in the context of the two core components in
the FlyModel: sparse coding of representations in the first layer and partial
freezing of synaptic weights in the associative learning layer. Are both of
these components required, or can good performance be attained with only
one or the other?

We piecemeal explored the effects of replacing sparse coding with dense
coding and replacing partial freezing with a traditional single-layer neu-
ral network (i.e., logistic regression), where every weight can change for
each input. This gave us four combinations to test. The dense code was
calculated in the same way as the sparse code, minus the winner-take-all
step. In other words, for each input x, we used ¥ (x) (see equation 2.1, with
min-max normalization) as its representation, instead of ¢(x) (see equa-
tion 2.2). For logistic regression, the associative layer was trained using
backpropagation.

Both sparse coding variants (with partial freezing or with logistic regres-
sion) performed better than the two dense coding variants on both data sets
(see Figures 3A and 3B). For example, on MNIST-20, at the end of training,
the sparse coding models had an average accuracy of 0.64 versus 0.07 for the

d-ajo11B/008U/NPa W I0BIIP//:dRY WOol) papeojumod

B 008U/L692912/L6LL/LLISE/P!

€202 1990j00 Z1 U0 189S AHOLVYHOEY 1 HOGHVH ONIYdS a109 Aq 4pd'GL910

1810 Y. Shen, S. Dasgupta, and S. Navlakha

two dense coding models. Furthermore, sparse coding with partial freezing
(i.e., the FlyModel) performed better than sparse coding with logistic re-
gression: 0.75 versus 0.54 on MNIST-20 and 0.41 versus 0.21 on CIFAR-100.
Hence, on at least the two data sets used here, both sparse coding and
partial freezing are needed to optimize continual learning performance.

4.4 Comparison of the FlyModel with the Perceptron. In our the-
oretical analysis, we highlighted two important differences between the
perceptron-supervised learning algorithm and the FlyModel associative
learning algorithm. Next, we studied how the four combinations of these
two differences affect continual learning.

The first combination (Perceptron v1) is the classic perceptron learning
algorithm, where weights are modified only if an incorrect prediction is
made, by increasing weights to the correct class and decreasing weights to
the incorrectly predicted class. The second combination (Perceptron v2) also
learns only when a mistake is made, but it increases weights only to the cor-
rect class (i.e., it does not decrease weights to the incorrect class). The third
combination (Perceptron v3) increases weights to the correct class regard-
less of whether a mistake is made, and it decreases weights to the incorrect
class when a mistake is made. Finally, the fourth combination (Perceptron
v4) is equivalent to the FlyModel; it simply increases weights to the correct
class regardless of whether a mistake is made. All models start with the
same sparse, high-dimensional input representations in the first layer.

Perceptron v1 (Original Perceptron) Perceptron v2

1: for x in data do 1: for xin data do

2: if predict # target then 2: if predict # target then
3: weight[target] += Bx 3: weight[target] += Sx
4: weight[predict] —= Bx 4:

5: end if 5: end if

6: end for 6: end for

Perceptron v3 Perceptron v4 (FlyModel)

1: for x in data do 1: for x in data do

2: if predict # target then 2: if predict # target then
3 weight[target] += Bx 3 weight[target] += fx
4 weight[predict] —= Bx 4:

5 else 5: else

6: weight[target] += fx 6 weight[target] += fx
7 end if 7 end if

8: end for 8: end for

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

Reducing Catastrophic Forgetting With Associative Learning 1811

o]

MNIST-20 CIFAR-100

1.0 1.0
n v
ﬂ) [
7] a
© 08 © 0.8
s} (v}
? k5
206 £06-
o e
[=

0.4-
k3 NN — S 04-
§0 5. —*— Perceptron V4 (FlyModel) I g
5 7" —— Perceptron V3 5 0.2-)
o —e— Perceptron V2 3 ey Lo
<0.0- Perceptron V1 (Classic) < B et =

2 4 6 8 10 12 14 16 18 20 0 10 20 30 40 50 60 70 80 90 100
Number of Trained Classes Number of Trained Classes

Figure 4: Continual learning performance for the four perceptron variants.
Axes are the same as those in Figure 2A. Compared to the classic perceptron
learning algorithm (Perceptron v1), the FlyModel (Perceptron v4) learns regard-
less of whether a mistake is made, and it does not decrease weights to the in-
correct class when mistakes are made. These two changes significantly improve
continual learning performance. (A) MNIST-20. (B) CIFAR-100.

Overall, we find a striking difference in continual learning with these two
tweaks, with the FlyModel performing significantly better than the other
three models on both data sets (see Figures 4A and 4B). Specifically, learn-
ing regardless of whether a mistake is made (v3 and v4) works better than
mistake-only learning (v1 and v2), and decreasing the weights to incorrectly
predicted class hurts performance (v4 compared to v3; no major difference
between v2 and v1).

As we showed analytically, decreasing weights to the incorrect class (v1
and v3) suffers from catastrophic forgetting when inputs from different
classes are overlapping. While this feature of the perceptron algorithm is
believed to help create a larger boundary (margin) between the predicted
incorrect class and the correct class, it also causes shared weights to be hi-
jacked by recent classes observed. This leads to more catastrophic forget-
ting, albeit faster initial learning. The FlyModel, on the other hand, avoids
this issue because the shared neurons are split between both classes and
thus cancel each other out. As a result, the weight vectors in the associa-
tive layer converge to the mean of its class inputs, scaled by a constant (see
the supplement, lemmas 3 and 4 and theorems 5 and 8). See supplement
figures S4 and S5 for an empirical demonstration of this result.

5 Discussion

While learning mechanisms in the brain have been the source of inspi-
ration for many continual learning algorithms, one commonly used neu-
ral learning mechanism (associative learning) has been largely overlooked.
Here, we developed a simple and lightweight associative continual learning

d-ajo11B/008U/NPa W I0BIIP//:dRY WOol) papeojumod

B 008U/L692912/L6LL/LLISE/P!

€202 1990j00 Z1 U0 189S AHOLVYHOEY 1 HOGHVH ONIYdS a109 Aq 4pd'GL910

1812 Y. Shen, S. Dasgupta, and S. Navlakha

algorithm that reduces catastrophic forgetting, inspired by how fruit flies
learn odor-behavior associations. The FlyModel outperformed three popu-
lar class-incremental continual learning algorithms on two benchmark data
sets (MNIST-20 and CIFAR-100), despite not using external memory, gener-
ative replay, or backpropagation. The fly’s associative learning algorithm is
strikingly similar to the classic perceptron algorithm but for two modifica-
tions that we show are critical for retaining old memories. Indeed, alterna-
tive circuits in design space suffered more catastrophic forgetting than the
FlyModel, potentially shedding new light on the biological function and
conservation of this circuit motif. Finally, we grounded these ideas theo-
retically by proving that associative layer weight vectors in the FlyModel
converge to the mean representation of its class and that sparse coding fur-
ther reduces memory interference by better separating classes compared to
the conventional perceptron algorithm, which we proved suffers under the
continual learning scenario even when classes are linearly separable.

Given the same architecture, the FlyModel requires less memory and has
comparable training efficiency compared to alternative methods (see the
supplement, Figures S6 and S7). If the input layer is N-dimensional and the
hidden layer undergoes a 40 times dimensionality expansion, given m in-
puts and ¢ tasks, the number of parameters (weights) the FlyModel needs
to store is of O(N? + tN) across the two layers, and the total computational
complexity for training is O(mN), since for each input, we only update a few
(5% x 40N = 2N) weights in the second layer. In addition, since FlyModel
makes no distinction between tasks, the computational complexity is inde-
pendent of f. On the other hand, EWC and GEM require additional storage
of weights or data from previous tasks.

The two main features of the FlyModel—sparse coding (Kanerva, 1988,
2009; Babadi & Sompolinsky, 2014) and associative learning (i.e., partial
synaptic freezing; Kirkpatrick et al., 2017; Zenke et al., 2017)—are well ap-
preciated in both neuroscience and machine learning. For example, sparse,
high-dimensional representations have long been recognized as central
to neural encoding (Kanerva, 1988), hyperdimensional computing (Kan-
erva, 2009), and classification and recognition tasks (Babadi & Sompolin-
sky, 2014). Similarly, the notion of freezing certain weights during learning
has been used in both classic perceptrons and modern deep networks (Kirk-
patrick et al., 2017; Zenke et al., 2017), but these methods are still subject to
interference caused by dense representations. However, the benefits of such
features toward continual learning have not been well quantified. Indeed,
the fly circuit evolved a unique combination of common computational in-
gredients that work effectively in practice.

The FlyModel performs associative rather than supervised learning. In
associative learning, the same learning rule is applied regardless of whether
the model makes a mistake. In supervised learning, changes are made to
weights only when the model makes a mistake, and the changes are ap-
plied to weights for both the correct and the incorrect class labels. In other

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

Reducing Catastrophic Forgetting With Associative Learning 1813

words, the FlyModel learns each class independently compared to super-
vised methods, and hence is flexible about the total number of classes to
be learned; the network is easily expandable to more classes if necessary.
Supervised methods focus on discrimination between multiple classes at a
time, which we showed is particularly susceptible to interference, especially
when class representations are overlapping. Thus, our results suggest that
some traditional benefits of supervised classification may not carry over to
continual learning (Hand, 2006) and that association-like models may better
preserve memories when classes are learned sequentially.

However, associative learning alone without good representations is not
sufficient to achieve good continual learning performance. While conven-
tional backpropagation-based continual learning algorithms try to solve
both representation learning and association learning at the same time, it
could be argued that the brain takes a different approach by separating
these two into different network layers. The associative learning compo-
nent of continual learning has not been well studied in the literature, even
though, as we showed, this seemingly simple problem can have important
consequences on reducing catastrophic forgetting.

Previous studies share conceptual similarities with some features of
FlyModel. For example, PackNet (Mallya & Lazebnik, 2018) uses weight
pruning to free up redundant weights while keeping important weights
fixed. This approach is similar to partial freezing, but instead of pruning
less important weights, partial freezing only modifies relevant weights dur-
ing learning and requires no computation to determine the importance of
weights in retrospect. Partial freezing also resembles another well-known
continual learning method, iCaRL (Rebuffi et al., 2017). iCaRL selects a few
prototypes per class, stores these, and then, at prediction time, averages the
prototypes for each class (using the current representation) and chooses the
one nearest the query vector. FlyModel maintains one linear function per
class and, at prediction time, takes the one with the highest value.

There are four additional features of the fruit fly mushroom body (MB)
that remain underexplored computationally. First, instead of using one out-
put neuron (MBON) per behavior, the mushroom body contains multi-
ple output neurons per behavior, with each output neuron learning at a
different rate (Hige et al., 2015; Aso & Rubin, 2016). This simultaneously
provides fast learning with poor retention (large learning rates) and slow
learning with longer retention (small learning rates), which is reminiscent of
complementary learning systems (Parisi et al., 2019). Second, the MB con-
tains mechanisms for memory extinction (Felsenberg et al., 2018) and re-
versal learning (Felsenberg et al., 2017; Felsenberg, 2021), which are used
to update inaccurate memories. Third, there is evidence of memory replay
in the MB, which is required for memory consolidation (Yu et al., 2005;
Haynes et al., 2015; Cognigni et al., 2018). Fourth, there exists feedback from
the MB to the input layer that could tune representations during learning
(Hu et al., 2010). We hope our model can be used as a stepping stone as

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

1814 Y. Shen, S. Dasgupta, and S. Navlakha

circuit mechanisms controlling these computations are discovered. More-
over, although we only evaluated continual learning performance using
simple architectures, follow-up work has already successfully implemented
some variants of FlyModel (Robinson et al., 2023; Bricken et al., 2023), sug-
gesting that better performance can indeed be achieved using more sophis-
ticated architectures.

Finally, a motif similar to that of the fruit fly olfactory system also
appears in the mouse olfactory system, where sparse representations in
the piriform cortex project to other learning-related areas of the brain
(Komiyama & Luo, 2006; Wang et al., 2020). In addition, the visual system
uses many successive layers to extract discriminative features (Riesenhuber
& Poggio, 1999; Tacchetti et al., 2018), which are then projected to the hip-
pocampus, where a similar sparse, high-dimensional representation is used
for memory storage (Olshausen & Field, 2004; Wixted et al., 2014; Lodge &
Bischofberger, 2019). Thus, the principles of learning studied here may help
illuminate how continual learning is implemented in other brain regions
and species.

In all, our work exemplifies how understanding detailed neural anatomy
and physiology in a tractable model system can be translated into efficient
architectures for use in artificial neural networks.

References

Ahmad, S., & Scheinkman, L. (2019). How can we be so dense? The benefits of using
highly sparse representations. CoRR, abs/1903.11257.

Aso, Y., Hattori, D., Yu, Y., Johnston, R. M., Iyer, N. A., Ngo, T.-T,, . . . Rubin, G. M.
(2014). The neuronal architecture of the mushroom body provides a logic for as-
sociative learning. eLife, 3, e04577.

Aso, Y., & Rubin, G. M. (2016). Dopaminergic neurons write and update memories
with cell-type-specific rules. eLife, 5. 10.7554/ eLife.16135

Babadi, B., & Sompolinsky, H. (2014). Sparseness and expansion in sensory repre-
sentations. Neuron, 83(5), 1213-1226. 10.1016/j.neuron.2014.07.035

Benna, M. K., & Fusi, S. (2016). Computational principles of synaptic memory con-
solidation. Nature Neuroscience, 19(12), 1697-1706. 10.1038 /nn.4401

Bricken, T., Davies, X., Singh, D., Krotov, D., & Kreiman, G. (2023). Sparse distributed
memory is a continual learner. arXiv:2303.11934.

Caron, S.J., Ruta, V., Abbott, L., & Axel, R. (2013). Random convergence of olfactory
inputs in the Drosophila mushroom body. Nature, 497(7447), 113-117. 10.1038/
nature12063

Cayco-Gajic, N. A., & Silver, R. A. (2019). Re-evaluating circuit mechanisms under-
lying pattern separation. Neuron, 101(4), 584-602. 10.1016/j.neuron.2019.01.044

Cognigni, P., Felsenberg, J., & Waddell, S. (2018). Do the right thing: Neural network
mechanisms of memory formation, expression and update in Drosophila. Current
Opinion in Neurobiology, 49, 51-58. 10.1016 /j.conb.2017.12.002

Dasgupta, S., Sheehan, T. C., Stevens, C. E, & Navlakha, S. (2018). A neural data
structure for novelty detection. Proceedings of the National Academy of Sciences USA,
115(51), 13093-13098. 10.1073 /pnas.1814448115

€202 1990J0Q g1 U0 J8sh AHOL1VHOEY 1 HO8HVYH ONI¥dS 109 Aq 4pd'GL9L0 & 000U/L692912/L6.L/L LISE/PA-BIoIIE/00BU/NPS W I0RIIP//:d]Y WOl papeojumoq

https://doi.org/10.7554/eLife.16135
https://doi.org/10.1016/j.neuron.2014.07.035
https://doi.org/10.1038/nn.4401
https://doi.org/10.1038/nature12063
https://doi.org/10.1016/j.neuron.2019.01.044
https://doi.org/10.1016/j.conb.2017.12.002
https://doi.org/10.1073/pnas.1814448115

Reducing Catastrophic Forgetting With Associative Learning 1815

Dasgupta, S., Stevens, C. E, & Navlakha, S. (2017). A neural algorithm for a
fundamental computing problem. Science, 358(6364), 793-796. 10.1126/science
.2am9868

Dasgupta, S., & Tosh, C. (2020). Expressivity of expand-and-sparsify representations.
arXiv:2006.03741

Douillard, A., Cord, M., Ollion, C., Robert, T., & Valle, E. (2020). Podnet: Pooled out-
puts distillation for small-tasks incremental learning. In Proceedings of the IEEE
European Conference on Computer Vision.

Farquhar, S., & Gal, Y. (2019). Towards robust evaluations of continual learning.
arXiv:1805.09733v3.

Felsenberg, J. (2021). Changing memories on the fly: The neural circuits of memory
re-evaluation in Drosophila melanogaster. Current Opinion in Neurobiology, 67, 190—
198.10.1016/j.conb.2020.12.003

Felsenberg, J., Barnstedt, O., Cognigni, P, Lin, S., & Waddell, S. (2017). Reevalua-
tion of learned information in Drosophila. Nature, 544(7649), 240-244. 10.1038/
nature21716

Felsenberg, J., Jacob, P. F., Walker, T., Barnstedt, O., Edmondson-Stait, A. J., Pleijzier,
M. W.,,...Waddell, S. (2018). Integration of parallel opposing memories underlies
memory extinction. Cell, 175(3), 709-722.

Fusi, S., Drew, P. J., & Abbott, L. F. (2005). Cascade models of synaptically stored
memories. Neuron, 45(4), 599-611. 10.1016/j.neuron.2005.02.001

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., & Bengio, Y. (2013). An
empirical investigation of catastrophic forgetting in gradient-based neural networks.
arXiv:1312.6211.

Gorur-Shandilya, S., Demir, M., Long, J., Clark, D. A., & Emonet, T. (2017). Olfactory
receptor neurons use gain control and complementary kinetics to encode inter-
mittent odorant stimuli. eLife, 6. 10.7554 / eLife.27670

Hand, D. J. (2006). Classifier technology and the illusion of progress. Statistical Sci-
ence, 21(1), 1-14.

Haynes, P. R., Christmann, B. L., & Griffith, L. C. (2015). A single pair of neurons
links sleep to memory consolidation in Drosophila melanogaster. eLife, 4. 10.7554/
eLife.03868

Hige, T., Aso, Y., Modi, M. N., Rubin, G. M., & Turner, G. C. (2015). Heterosynaptic
plasticity underlies aversive olfactory learning in Drosophila. Neuron, 88(5), 985
998.10.1016/j.neuron.2015.11.003

Hinton, G. E., & Plaut, D. C. (1987). Using fast weights to deblur old memories. In
Proceedings of the 9th Annual Conference of the Cognitive Science Society (pp. 177—
186). Erlbaum.

Hitron, Y., Lynch, N., Musco, C., & Parter, M. (2020). Random sketching, clustering,
and short-term memory in spiking neural networks. In T. Vidick (Ed.), 11th In-
novations in Theoretical Computer Science Conference, 151 (pp. 23:1-23:31). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

Holca-Lamarre, R., Liicke, J., & Obermayer, K. (2017). Models of acetylcholine and
dopamine signals differentially improve neural representations. Frontiers in Com-
putational Neuroscience, 11, 54. 10.3389/fncom.2017.00054

Hu, A., Zhang, W., & Wang, Z. (2010). Functional feedback from mushroom bodies
to antennal lobes in the Drosophila olfactory pathway. Proceedings of the National
Academy of Sciences, 107(22), 10262-10267. 10.1073 /pnas.0914912107

d-ajo11B/008U/NPa W I0BIIP//:dRY WOol) papeojumod

B 008U/L692912/L6LL/LLISE/P!

€202 1990j00 Z1 U0 189S AHOLVYHOEY 1 HOGHVH ONIYdS a109 Aq 4pd'GL910

https://doi.org/10.1126/science.aam9868
https://doi.org/10.1016/j.conb.2020.12.003
https://doi.org/10.1038/nature21716
https://doi.org/10.1016/j.neuron.2005.02.001
https://doi.org/10.7554/eLife.27670
https://doi.org/10.7554/eLife.03868
https://doi.org/10.1016/j.neuron.2015.11.003
https://doi.org/10.3389/fncom.2017.00054
https://doi.org/10.1073/pnas.0914912107

1816 Y. Shen, S. Dasgupta, and S. Navlakha

Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and
hippocampus during sleep. Nature Neuroscience, 10(1), 100-107. 10.1038/nn1825

Kanerva, P. (1988). Sparse distributed memory. MIT Press.

Kanerva, P. (2009). Hyperdimensional computing: An introduction to computing
in distributed representation with high-dimensional random vectors. Cognitive
Computation, 1(2), 139-159. 10.1007 /s12559-009-9009-8

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
... Hadsell, R. (2017). Overcoming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences USA, 114(13), 3521-3526. 10.1073/
pnas.1611835114

Komiyama, T., & Luo, L. (2006). Development of wiring specificity in the olfactory
system. Current Opinion in Neurobiology, 16(1), 67-73. 10.1016/j.conb.2005.12.002

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436—-444.
10.1038 /nature14539

Li, F, Lindsey,]J. W., Marin, E. C., Otto, N., Dreher, M., Dempsey, G., . . . Rubin,
G. M. (2020). The connectome of the adult Drosophila mushroom body provides
insights into function. eLife, 9.

Lin, A. C., Bygrave, A. M., de Calignon, A., Lee, T., & Miesenbock, G. (2014). Sparse,
decorrelated odor coding in the mushroom body enhances learned odor dis-
crimination. Nature Neuroscience, 17(4), 559-568. 10.1038 /nn.3660

Litwin-Kumar, A., Harris, K. D., Axel, R., Sompolinsky, H., & Abbott, L. F. (2017).
Optimal degrees of synaptic connectivity. Neuron, 93(5), 1153-1164. 10.1016/
jneuron.2017.01.030

Liu, X., & Davis, R. L. (2009). The GABAergic anterior paired lateral neuron sup-
presses and is suppressed by olfactory learning. Nature Neuroscience, 12(1), 53-59.
10.1038/nn.2235

Lodge, M., & Bischofberger, J. (2019). Synaptic properties of newly generated granule
cells support sparse coding in the adult hippocampus. Behavioural Brain Research,
372,112036. 10.1016/j.bbr.2019.112036

Lopez-Paz, D., & Ranzato, M. (2017). Gradient episodic memory for continual learn-
ing. In1. Guyon, Y. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
& R. Garnett (Eds.), Advances in neural information processing systems, 30 (pp. 6467—
6476). Curran.

Mallya, A., & Lazebnik, S. (2018). Packnet: Adding multiple tasks to a single network
by iterative pruning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (pp. 7765-7773).

Maurer, A., Pontil, M., & Romera-Paredes, B. (2013). Sparse coding for multitask
and transfer learning. In Proceedings of the 30th International Conference on Machine
Learning.

McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are com-
plementary learning systems in the hippocampus and neocortex: Insights from
the successes and failures of connectionist models of learning and memory. Psy-
chological Review, 102(3), 419-457. 10.1037/0033-295X.102.3.419

Minsky, M. L., & Papert, S. A. (1988). Perceptrons (Exp. ed.). MIT Press.

Modi, M. N., Shuai, Y., & Turner, G. C. (2020). The Drosophila mushroom body: From
architecture to algorithm in a learning circuit. Annual Review of Neuroscience, 43,
465-484. 10.1146 /annurev-neuro-080317-0621333

d-ajo11B/008U/NPa W I0BIIP//:dRY WOol) papeojumod

B 008U/L692912/L6LL/LLISE/P!

€202 1990j00 Z1 U0 189S AHOLVYHOEY 1 HOGHVH ONIYdS a109 Aq 4pd'GL910

https://doi.org/10.1038/nn1825
https://doi.org/10.1007/s12559-009-9009-8
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1016/j.conb.2005.12.002
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nn.3660
https://doi.org/10.1016/j.neuron.2017.01.030
https://doi.org/10.1038/nn.2235
https://doi.org/10.1016/j.bbr.2019.112036
https://doi.org/10.1037/0033-295X.102.3.419
https://doi.org/10.1146/annurev-neuro-080317-0621333

Reducing Catastrophic Forgetting With Associative Learning 1817

Olsen, S. R., Bhandawat, V., & Wilson, R. I. (2010). Divisive normalization in olfactory
population codes. Neuron, 66(2), 287-299. 10.1016 /j.neuron.2010.04.009

Olshausen, B. A., & Field, D. . (2004). Sparse coding of sensory inputs. Current Opin-
ion in Neurobiology, 14(4), 481-487.10.1016/j.conb.2004.07.007

Ororbia, A., Mali, A, Kifer, D., & Giles, C. L. (2019). Lifelong neural predic-
tive coding: Sparsity yields less forgetting when learning cumulatively. CoRR,
abs/1905.10696.

Papadimitriou, C. H., & Vempala, S. S. (2018). Random projection in the brain and
computation with assemblies of neurons. In A. Blum (Ed.)., 10th Innovations in
Theoretical Computer Science Conference, 124 (pp. 57:1-57:19). Dagstuhl, Germany.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Parisi, G.1., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong
learning with neural networks: A review. Neural Networks, 113, 54-71. 10.1016/
jneunet.2019.01.012

Peng, J., Tang, B., Jiang, H., Li, Z., Lei, Y., Lin, T., & Li, H. (2021). Overcoming long-
term catastrophic forgetting through adversarial neural pruning and synaptic
consolidation. IEEE Transactions on Neural Networks and Learning Systems, 33(9),
4243-4256. 10.1109/TNNLS.2021.3056201

Qin, Y. L., McNaughton, B. L., Skaggs, W. E., & Barnes, C. A. (1997). Memory re-
processing in corticocortical and hippocampocortical neuronal ensembles. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 352(1360), 1525-1533.
10.1098 /rstb.1997.0139

Ramasesh, V. V., Dyer, E., & Raghu, M. (2021). Anatomy of catastrophic forgetting:
Hidden representations and task semantics. In Proceedings of the International Con-
ference on Learning Representations.

Rapp, H., & Nawrot, M. P. (2020). A spiking neural program for sensorimotor control
during foraging in flying insects. Proceedings of the National Academy of Sciences,
117(45), 28412-28421. 10.1073 /pnas.2009821117

Rasch, B., & Born, J. (2007). Maintaining memories by reactivation. Current Opinion
in Neurobiology, 17(6), 698-703. 10.1016/j.conb.2007.11.007

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., & Lampert, C. H. (2017). iCaRL: Incremen-
tal classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 2001-2010).

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in
cortex. Nature Neuroscience, 2(11), 1019-1025. 10.1038 /14819

Robinson, B. S., Joyce, J., Norman-Tenazas, R., Vallabha, G. K., & Johnson, E. C.
(2023). Informing generative replay for continual learning with long-term memory for-
mation in the fruit fly. bioRxiv:2023-01.

Root, C. M., Masuyama, K., Green, D. S., Enell, L. E., Nassel, D. R,, Lee, C. H., &
Wang, J. W. (2008). A presynaptic gain control mechanism fine-tunes olfactory
behavior. Neuron, 59(2), 311-321. 10.1016/j.neuron.2008.07.003

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6), 386. 10.1037 /h0042519

Roxin, A., & Fusi, S. (2013). Efficient partitioning of memory systems and its im-
portance for memory consolidation. PLOS Computational Biology, 9(7), e1003146.
10.1371/journal.pcbi. 1003146

d-ajo11B/008U/NPa W I0BIIP//:dRY WOol) papeojumod

B 008U/L692912/L6LL/LLISE/P!

€202 1990j00 Z1 U0 189S AHOLVYHOEY 1 HOGHVH ONIYdS a109 Aq 4pd'GL910

https://doi.org/10.1016/j.neuron.2010.04.009
https://doi.org/10.1016/j.conb.2004.07.007
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1109/TNNLS.2021.3056201
https://doi.org/10.1098/rstb.1997.0139
https://doi.org/10.1073/pnas.2009821117
https://doi.org/10.1016/j.conb.2007.11.007
https://doi.org/10.1038/14819
https://doi.org/10.1016/j.neuron.2008.07.003
https://doi.org/10.1037/h0042519
https://doi.org/10.1371/journal.pcbi.1003146

1818 Y. Shen, S. Dasgupta, and S. Navlakha

Ruvolo, P, & Eaton, E. (2013). ELLA: An efficient lifelong learning algorithm. In S.
Dasgupta & D. McAllester (Eds.), Proceedings of the 30th International Conference
on Machine Learning.

Ryali, C., Hopfield, J., Grinberg, L., & Krotov, D. (2020). Bio-inspired hashing for
unsupervised similarity search. In Proceedings of the 37th International Conference
on Machine Learning.

Shin, H., Lee, J. K., Kim, J., & Kim, J. (2017). Continual learning with deep generative
replay. arXiv:1705.08690v3.

Stevens, C. F. (2015). What the fly’s nose tells the fly’s brain. Proceedings of the National
Academy of Sciences, 112(30), 9460-9465. 10.1073 /pnas.1510103112

Tacchetti, A., Isik, L., & Poggio, T. A. (2018). Invariant recognition shapes neu-
ral representations of visual input. Annual Review of Vision Science, 4, 403—422.
10.1146 /annurev-vision-091517-034103

Tadros, T., Krishnan, G. P., Ramyaa, R., & Bazhenov, M. (2020). Biologically inspired
sleep algorithm for reducing catastrophic forgetting in neural networks. In Pro-
ceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (pp. 13933—
13934).

Tadros, T., Krishnan, G. P.,, Ramyaa, R., & Bazhenov, M. (2022). Sleep-like unsuper-
vised replay reduces catastrophic forgetting in artificial neural networks. Nature
Communications, 13(1), 7742. 10.1038 /s41467-022-34938-7

Takemura, S. Y., Aso, Y., Hige, T., Wong, A., Lu, Z,, Xu, C. S,, . . . Scheffer, L. K.
(2017). A connectome of a learning and memory center in the adult Drosophila
brain. eLife, 6.

Turner, G. C., Bazhenov, M., & Laurent, G. (2008). Olfactory representations by
Drosophila mushroom body neurons. Journal of Neurophysiology, 99(2), 734-746.
10.1152/jn.01283.2007

van de Ven, G. M., Siegelmann, H. T., & Tolias, A. S. (2020). Brain-inspired replay for
continual learning with artificial neural networks. Nature Communications, 11(1),
4069. 10.1038 /541467-020-17866-2

Wang, P. Y., Boboila, C., Chin, M., Higashi-Howard, A., Shamash, P, . . . Axel, R.
(2020). Transient and persistent representations of odor value in prefrontal cortex.
Neuron, 108(1), 209-224. 10.1016 /j.neuron.2020.07.033

Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble
memories during sleep. Science, 265(5172), 676—679. 10.1126 /science.8036517

Wilson, R. L. (2013). Early olfactory processing in Drosophila: Mechanisms and
principles. Annual Review of Neuroscience, 36, 217-241. 10.1146 /annurev-neuro
-062111-150533

Wixted, J. T., Squire, L. R., Jang, Y., Papesh, M. H., Goldinger, S. D., Kuhn, J.R,, . ..
Steinmetz, P. N. (2014). Sparse and distributed coding of episodic memory in neu-
rons of the human hippocampus. Proceedings of the National Academy of Sciences,
111(26), 9621-9626. 10.1073 / pnas.1408365111

Yu, D., Keene, A. C,, Srivatsan, A., Waddell, S., & Davis, R. L. (2005). Drosophila
DPM neurons form a delayed and branch-specific memory trace after olfactory
classical conditioning. Cell, 123(5), 945-957.

Zenke, F,, Poole, B., & Ganguli, S. (2017). Continual learning through synaptic intel-
ligence. Proceedings of Machine Learning Research, 70, 3987-3995.

d-ajo11B/008U/NPa W I0BIIP//:dRY WOol) papeojumod

B 008U/L692912/L6LL/LLISE/P!

€202 1990j00 Z1 U0 189S AHOLVYHOEY 1 HOGHVH ONIYdS a109 Aq 4pd'GL910

https://doi.org/10.1073/pnas.1510103112
https://doi.org/10.1146/annurev-vision-091517-034103
https://doi.org/10.1038/s41467-022-34938-7
https://doi.org/10.1152/jn.01283.2007
https://doi.org/10.1038/s41467-020-17866-2
https://doi.org/10.1016/j.neuron.2020.07.033
https://doi.org/10.1126/science.8036517
https://doi.org/10.1146/annurev-neuro-062111-150533
https://doi.org/10.1073/pnas.1408365111

Reducing Catastrophic Forgetting With Associative Learning 1819

Zhang, Y., & Sharpee, T. O. (2016). A robust feedforward model of the olfactory sys-
tem. PLOS Computational Biology, 12(4), e1004850.

Zheng, Z., Lauritzen, J. S., Perlman, E., Robinson, C. G., Nichols, M., Milkie, D., . . .
Bock, D. D. (2018). A complete electron microscopy volume of the brain of adult
Drosophila melanogaster. Cell, 174(3), 730-743.

Received February 4, 2023; accepted July 14, 2023.

d-ajo11B/008U/NPa W I0BIIP//:dRY WOol) papeojumod

B 008U/L692912/L6LL/LLISE/P!

€202 1990j00 Z1 U0 189S AHOLVYHOEY 1 HOGHVH ONIYdS a109 Aq 4pd'GL910

