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Abstract
The advent of long-read sequencing methods provides new opportunities for profiling the
epigenome - especially as the methylation signature comes for “free” when native DNA is
sequenced on either Oxford Nanopore or Pacific Biosciences instruments. However, we lack
tools to visualize and analyze data generated from these new sources. Recent efforts from the
GA4GH consortium have standardized methods to encode modification location and
probabilities in the BAM format. Leveraging this standard format, we developed a
technology-agnostic tool, modbamtools to visualize, manipulate and compare base
modification/methylation data in a fast and robust way. modbamtools can produce high quality,
interactive, and publication-ready visualizations as well as provide modules for downstream
analysis of base modifications. Modbamtools comprehensive manual and tutorial can be found
at https://rrazaghi.github.io/modbamtools/.

Introduction
Direct single-molecule sequencing methods, e.g. Pacific Biosciences (PacBio) and Oxford
Nanopore Technologies (ONT), have recently greatly expanded in throughput and yield. In
addition to the canonical base sequencing data that these platforms generate, modifications on
the nucleic acids can be measured directly, either via delays in the incorporation of bases (IPD,
PacBio (Flusberg et al. 2010)) or perturbations in the electrical current (ONT (Simpson et al.
2017)). These have been accompanied by development of software tools to measure and call
modifications within this data, but the output formats of these calls were not standardized
precluding easy downstream development. Modification data files have typically been stored as
enormous (terabyte scale) tsv/csvs and early efforts to incorporate 5-methylcytosine information
from ONT into a “bisulfite-like” BAM file required complex manipulations(Lee et al. 2020).
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More recently, the Global Alliance for Genomics and Health (GA4GH) (Rehm et al. 2021)
standards group proposed an addition to the BAM file spec, incorporating two new tags (MM
and ML) for SAM/BAM alignment files. The MM tag is used to locate the strand and position the
modification was observed on, and the ML tag is the probability of each modification being
present (http://samtools.github.io/hts-specs). Although these tags were introduced as an
adaptation to long-read base modification data, it is anticipated that all technologies will
eventually incorporate this file format.

Single molecule base modification callers have rapidly adapted to the new standard format.
Currently, for nanopore data, most modification calling tools can output BAM files with tags,
including guppy, bonito, Megalodon, and nanopolish (Simpson et al. 2017). Similarly, Primrose,
and ccsmeth (Ni et al. 2022) can be used for PacBio reads. An updated list of compatible tools
generating these alignment files can be found at https://rrazaghi.github.io/modbamtools/.

Here we introduce modbamtools, a suite of tools to explore modifications in single-molecule
data using this new format. With this tool we generate interactive and batch visualization and
analysis for methylation frequency and single-molecule methylation. Profiling methylation across
individual molecules, we can look at coordination of long-range methylation effects, e.g.
enhancer-promoter interactions, and the degree of variation of methylation “noise” within
regions. We have also generated modules to phase reads by using genetic variation or through
methylation alone via a read clustering approach, to enable exploration of allele-specific
methylation and epigenetic heterogeneity.

Results

Usage and Examples
We developed modbamtools, a software package that provides analysis and interactive
visualization of single-read base modification data along with other highly used formats for
genomic tracks (GTF, bigwig, bedgraph, etc). Modbamtools utilizes core python modules
including numpy (van der Walt et al. 2011), pandas (McKinney and Others 2011), scikit-learn
(Pedregosa et al. 2011), pysam (Heger et al. 2014), click, plotly (Plotly Technologies Inc., 2015),
modbampy, pybigwig (Ryan et al. 2016), pypdf2, pillow, and hdbscan (McInnes et al. 2017). We
have made modbamtools easily accessible through PyPI (`pip install modbamtools`).

The tool has three main elements (`calcMeth`, `calcHet`, `cluster`) and a plotting function that
allows for interactive plotting of single-read base modification data. This generates a multi-panel
plot (Figure 1) consisting of an annotation track, methylation frequency track, and single-read
plots. The annotation track can display other sets of genomics data including gene models,
other epigenetic data (e.g. ENCODE ChIP-seq), and genetic variation. Methylation frequencies
along with a smoothed average frequency is plotted on top of the reads similar to a conventional
genome browser. The methylation frequency plot shows the per locus frequency of modified to
total called bases. Finally, the single-read plots represent each individual single molecule with
base modifications indicated as blue for unmodified and red for modified. These figures can be

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.07.499188doi: bioRxiv preprint 

https://paperpile.com/c/SW3Uy7/sVlL
http://samtools.github.io/hts-specs
https://paperpile.com/c/SW3Uy7/N50U
https://paperpile.com/c/SW3Uy7/2vdf
https://rrazaghi.github.io/modbamtools/
https://paperpile.com/c/SW3Uy7/GGdg
https://paperpile.com/c/SW3Uy7/eD2e
https://paperpile.com/c/SW3Uy7/J1YZ
https://paperpile.com/c/SW3Uy7/AZEU
https://paperpile.com/c/SW3Uy7/vsqj
https://paperpile.com/c/SW3Uy7/ZtXF
https://doi.org/10.1101/2022.07.07.499188
http://creativecommons.org/licenses/by/4.0/


output as HTML, PDF, PNG, or SVG. The HTML provided is generated with plotly and is
interactive, allowing magnification. Multiple plots can be output in batch mode by providing a
BED file of regions of interest resulting in a multiple page HTML or PDF report.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.07.499188doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499188
http://creativecommons.org/licenses/by/4.0/


Figure 1: Example of modbamtools output on MEG3 (chr14:100,802,132-100,849,111) locus
using both PacBio and ONT single-molecule data from the HG002 Genome in a Bottle cell line.
“Genes” track shows GENCODE (Release 38, GRCH38) gene models and the “CTCF” track
shows CTCF CHiP-seq ENCODE track from GM12878. Methylation frequency track is colored
according to platform and haplotype, with colors indicated by the title of the single-molecule
plots. In single-molecule plots, each read is a single horizontal bar, with methylated bases
shown as red and unmethylated as blue.

Using appropriate tools, e.g. clair (Zheng et al. 2021) or whatshap (Martin et al. 2016), BAM files
can have the haplotypes of reads encoded with the commonly used “HP” tag. Our tool has the
ability to group the alignments based on phase tag (HP) in BAM files. Using this HP tag, we can
separate reads according to haplotype, plotting each haplotype’s methylation frequency as
different colored lines and the single reads as separate plot elements. We show an example of
this module on methylation calls from the HG002 cell line at the MEG3 long noncoding RNA
(lncRNA), using public single-molecule methylation data from both ONT and PacBio platforms
(Figure 1). MEG3 has known monoallelic expression in many tissues and loss of this regulation
has been implicated in development of type 2 diabetes mellitus (Rosa et al. 2005; Kameswaran
et al. 2014). From this data, we observe clear examples of allele-specific methylation at a CTCF
binding site and MEG3 promoter region.

Beyond clustering according to genomic haplotype, we have implemented a method to cluster
single-molecule reads based on methylation status alone using Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN) (McInnes et al. 2017). This is a useful
feature for regions without many SNPs for phasing reads into haplotypes (Gershman et al.
2022). Clustering can also be used to quantify different cell types or to profile early cancer
detection from a heterogeneous sample (Wang et al. 2021; Houseman et al. 2008; Gkountela et
al. 2019; Tian et al. 2020). Clustering can be performed either as a part of the plotting command
or separately (`--cluster` command) with the input of a batch file for locations used for the
clustering. As shown in Figure 2, we can cluster the SNURF gene promoter based purely on
methylation signal at this locus. This paternally imprinted locus can also be phased based on
genotyping information (Supplementary Figure 1), demonstrating the agreement of our
clustering approach with classical methods.
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Figure 2: A) single molecule methylation profile on gene SNRPN
(chr15:24,953,000-24,958,133) from HG002 data as in Figure 1. B) Single molecule methylation
profile on gene SNRPN separated into clusters with ‘modbamtools plot –cluster’

Finally, using a BED file of genomic loci, we can profile the average methylation in each
location, including methylation on each haplotype. The “calcMeth” module calculates
methylation average across each single molecule first then aggregates over all molecules which
map to that region, rather than averaging CpG methylation per CpG then averaging across the
region. This is especially useful with long reads to capture methylation variability more efficiently
(Figure 3).
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Figure 3: Example of modbamtools plot with options for haplotype separation and calculating
heterogeneity at the GNAS locus (chr20:58,790,127-58,850,596).
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With single-molecule methylation data, can quantify not only methylation frequency averaged
across all reads, but also variability of methylation across individual molecules. A few studies
have attempted to address this by proposing different algorithms to quantify this feature
(Scherer et al. 2020; Landau et al. 2014; Guo et al. 2017; Landan et al. 2012; Xie et al. 2011).
Here, we implemented a module to calculate methylation heterogeneity (“calcHet”) that
calculates this on genomic regions provided by the user (See Supplementary Note 1 for
detailed methods). Similar to the clustering function, “–heterogeneity” option can be used with
plotting command to visualize this; we have plotted it for the GNAS locus in Figure 3. There we
observe areas of clear difference in methylation heterogeneity across the region, suggesting not
only a change in methylation but a less ordered epigenetic state on one allele when compared
to the other.

Conclusion
Advances in single-molecule sequencing throughput suggest we are at an inflection point where
large scale data sets are on the horizon. These data types offer the unique advantage of
providing DNA methylation data as well as primary sequence - but without tools to take
advantage of it, these data will be “left on the table” and not used to their potential. Here we
have described a toolset to take advantage of these data, using the newly described
modification tags present in the SAM/BAM file specifications. This toolset is compatible with all
modern modification callers. Modbamtools provides fast, robust, interactive visualization and
analysis for alignment files containing base modification tags.
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modbamtools source code is available at https://github.com/rrazaghi/modbamtools. A manual
and tutorial are available at https://rrazaghi.github.io/modbamtools/.
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