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Abstract

We present STARsolo, a comprehensive turnkey solution for quantifying
gene expression in single-cell/nucleus RNA-seq data, built into RNA-seq aligner
STAR. Using simulated data that closely resembles realistic scRNA-seq, we
demonstrate that STARsolo is highly accurate and significantly outperforms
pseudoalignment-to-transcriptome tools. STARsolo can replicate the results
of, but is considerably faster than CellRanger, currently the most widely used
tool for pre-processing scRNA-seq data. In addition to uniquely mapped reads,
STARsolo takes account of multi-gene reads, necessary to detect certain classes
of biologically important genes. It has a flexible cell barcode processing scheme,
compatible with many established scRNA-seq protocols, and extendable to
emerging technologies. STARsolo can quantify transcriptomic features beyond
gene expression, which we illustrate by analyzing cell-type-specific alternative
splicing in the Tabula Muris project.
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1 Introduction

Single-cell RNA-sequencing (scRNA-seq) has revolutionized the analysis of complex
biological systems, providing unprecedented insight into transcriptomic profiles of
individual cells and enabling high-throughput characterization of cellular composi-
tion of tissues, tumor microenvironments, developmental programs and microbial
communities. A multitude of bioinformatic tools have been developed to perform a
variety of scRNA-seq analyses, such as identifying known and novel cell types, pin-
pointing cell type markers, reconstructing gene regulatory networks, and inferring
developmental trajectories [1].

Single-cell RNA-seq technologies generate read sequences containing three key
pieces of information: cDNA fragment that identifies the RNA transcript; cell bar-
code (CB) that identifies the cell where the RNA was expressed; and Unique Molec-
ular Identifier (UMI) that identifies the specific RNA molecule [2]. The foundational
stage of the scRNA-seq analyses is mapping/quantification, which involves four main
steps: (i) mapping the cDNA fragments to a reference, (ii) assigning reads to genes,
(iii) assigning reads to cells (cell barcode demultiplexing), and (iv) counting the num-
ber of unique RNA molecules (UMI deduplication). The outcome of this procedure
is the gene/cell expression matrix, which contains the counts of RNA molecules in
each cell for each gene. The mapping/quantification accuracy is of the utmost im-
portance, since it serves as the starting point for all the downstream analyses. This
procedure is also computationally demanding, as it requires processing hundreds of
millions of reads generated in a typical scRNA-seq experiment.

A number of mapping/quantification tools have been developed recently, and they
can be classified in two broad categories. The fully modular tools [3–6] use standard
RNA-seq aligners that are not aware of the intrinsics of the scRNA-seq protocol,
while protocol-specific CB/UMI processing happens in a separate step. The ad-
vantage of this approach is its high flexibility in selecting the aligner, read-to-gene
assignment and CB/UMI processing methods. However, since the communication
between different steps happens via generic file formats (e.g. FASTQ and BAM),
this approach typically results in low processing speed and overtaxing of computing
infrastructure. The next wave of tools, Alevin [7] and Kallisto-bustools [8], signif-
icantly increased the overall computational efficiency owing to a tight integration
between alignment and CB/UMI processing steps. To achieve high performance
without sacrificing modularity, these tools utilize efficient intermediate file formats
[9, 10].

In this manuscript we present STARsolo [11], a comprehensive turnkey solution
for mapping/quantification of scRNA-seq data. STARsolo is built directly into the
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RNA-seq aligner STAR [12], which is widely used for mapping bulk RNA-seq data.
In STARsolo, read mapping, read-to-gene assignment, cell barcode demultiplexing
and UMI collapsing are tightly integrated (Methods 5.1), avoiding input/output
bottlenecks and boosting the processing speed. Importantly, STARsolo performs
read alignment to the full genome, resulting in a higher accuracy compared to the
alignment to transcriptome only.

To evaluate the mapping/quantification accuracy we developed a strategy for
simulating scRNA-seq reads based on real RNA-seq data (Methods 5.2). We used
simulated data to compare STARsolo with Kallisto and Alevin, and demonstrated
high accuracy of STARsolo gene quantification (Results 2.2, 2.4). On the other hand,
we found a significant reduction of gene quantification accuracy for tools that utilize
pseudoalignment-to-transcriptome, resulting in false positive detection of thousands
of genes (Results 2.3).

To compare computational efficiencies of different mapping/quantification algo-
rithms, we benchmarked the processing speed and Random Access Memory (RAM)
usage of STARsolo, CellRanger, Alevin and Kallisto on a real dataset (Results 2.7).
While pseudoalignment-to-transcriptome tools are the fastest and require least RAM,
STARsolo is the fastest among the highly accurate methods. Moreover, STAR uses
less RAM and is much faster than pseudoalignment-to-transcriptome for more com-
plicated analyses such as RNA Velocity [13] calculations or single-nucleus RNA-seq
quantification.

STARsolo is designed to be a drop-in replacement for the CellRanger [14], a pro-
prietary tool from 10X Genomics company, which presently is the dominant commer-
cial scRNA-seq platform. CellRanger uses STAR for mapping reads to the reference
genome, while the other steps of the gene quantification pipeline are performed with
its own proprietary algorithms. With an appropriate choice of parameters, STAR-
solo can generate a gene/cell count matrix almost identical to CellRanger’s (Results
2.5). The other tools deviate significantly from CellRanger, both in overall gene
expression quantification and, crucially, in differential expression of cell-type-specific
marker genes (Results 2.6).

Unlike CellRanger, which is hard-coded for analyzing 10X Genomics products,
STARsolo features a flexible CB/UMI processing scheme, which is compatible with
many established protocols and can be easily extended to emerging technologies. An-
other important advantage of STARsolo is the ability to quantify reads that map to
multiple genes (Results 2.4). The importance of including multi-gene reads had been
discussed before for bulk [15–19] and single-cell RNA-seq data [7, 10, 20]. Further-
more, STARsolo is capable of investigating transcriptomic features beyond standard
gene expression, which we illustrate by analyzing cell-type-specific alternative splic-
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ing in the Tabula Muris scRNA-seq dataset (Results 2.8).

2 Results

We compared STARsolo performance on simulated and real data with several exist-
ing tools: CellRanger [14], Alevin/Alevin-fry [7, 10, 21] and Kallisto/Bustools [8,
9, 22]. CellRanger is a de facto standard for analyzing 10X Genomics scRNA-seq
data, while Kallisto and Alevin use light-weight alignment-to-transcriptome algo-
rithms which are profoundly different from STAR’s aligment to the full genome.
For Alevin, we used 4 different alignment modes: pseudoalignment and selective
alignment to transcriptome only, as well selective alignment with partial and full
genome decoys. As we will see below, these options have a strong impact on the
mapping/quantification accuracy.

2.1 Simulating scRNA-seq reads

To quantitatively gauge the accuracy of mapping/quantification tools, we need to
know the true gene expression values, which can only be accomplished by simulating
scRNA-seq data. We note that most published scRNA-seq simulation methods (e.g.
[23–26]) simulate the gene/cell count matrix but not the scRNA-seq read sequences
that are required to test the mapping/quantification approaches.

Typically, bulk RNA-seq reads are simulated using a predefined distribution of
reads across the RNA transcripts, modeled after a distribution observed in real RNA-
seq data. Such an approach, however, is unfeasible for scRNA-seq reads, owing to a
non-trivial distribution of reads through the transcript. To bypass this complication,
we propose a simulation strategy that closely reflects real scRNA-seq reads (see
Methods 5.2 for details). For a selected real scRNA-seq dataset, we map the cDNA
reads to the transcriptome and full genome simultaneously, using the highly accurate
BWA-MEM [27] aligner. For each read the ”true locus” is selected randomly from
the top-scoring BWA-MEM alignments, with the preference given to the transcript
over genomic alignments. Then, the cDNA read sequence is simulated from the true
locus sequence, with substitution errors added at a constant mismatch error rate of
0.5%, typical for good quality Illumina sequencing. Each read is given its real CB
and UMI, if the CB is present in the CB-passlist. UMIs for the reads whose ”true
locus” is a transcript are counted towards the corresponding genes to generate the
true gene/cell count matrix.

Our simulation approach does not deal with the full complexity of real scRNA-seq
data: for instance, it avoids the issues of CB and UMI error correction. However, by
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simulating reads from a realistic distribution of transcriptomic and genomic loci, we
can evaluate the accuracy of the most crucial steps of the algorithms: read mapping
and read-to-gene assignment.

2.2 Simulations without multi-gene reads

One of the important, not yet fully solved questions of both bulk [15–19] and scRNA-
seq [7, 10, 20] analyses is how to deal with multi-mapping reads. The definition of a
multi-mapping read is somewhat inconsistent throughout the literature. In studies
where reads are mapped to the whole genome, multimappers are defined as reads that
map to two or more genomic loci. Yet if reads are mapped to the transcriptome, the
multimappers are defined as reads that map to two or more transcripts. For scRNA-
seq analyses, we count the number of reads per gene, hence what matters is whether
a read maps to one or multiple genes. For clarity, we will call reads that map to two
or more genes ”multi-gene reads”. Note that a multi-gene read can map to only one
genomic locus where two or more genes overlap, or it can map to multiple genomic
loci that contain multiple genes. On the other hand, a read that maps to multiple
genomic loci, but overlaps a gene in only one locus, is considered a ”unique-gene”
read.

To investigate the effect of multi-gene reads on the mapping quantification ac-
curacy, we first performed simulations excluding multi-gene reads. Accordingly, we
ran all tools with options that discard multi-gene reads (see Supp. Table 1 for tools’
parameters).

We derived the simulated dataset from the 10X Peripheral blood mononuclear cell
dataset generated by the 10X Chromium v3 protocol (10X-pbmc-5k, Supp. Table
1). This dataset is a representative of typical 10X libraries, containing 384 million
reads for ∼5000 cells, with ∼8000 UMIs per cell on average. This dataset will be used
throughout this manuscript for both simulated and real data comparisons.

All metrics here (and everywhere in this study) are calculated for a set of ”filtered”
cells, common for all tools. For simulations, this set is created by intersecting the
top 5000 cells by their true UMI counts with raw cells from STARsolo, raw cells from
Kallisto (which does not perform cell filtering), and filtered cells from Alevin (which
does not output unfiltered cells).

Figure 1A shows the overall Spearman correlation coefficient between true simu-
lated gene/cell counts and those produced by each tool (see Supp.Fig. S1A for the
full correlation matrix). The correlation is calculated between the elements of the
gene/cell count matrices which are expressed (i.e. count ≥1 UMIs) in either the
simulation or tool quantification. We can see that STARsolo achieves a nearly per-
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fect agreement with true counts R≈0.99, while the pseudoalignment-to-transcriptome
algorithms (Kallisto and Alevin sketch) show the lowest correlation (R≈0.77 and
0.8 respectively). Alevin’s accuracy increases as its alignment algorithm changes
from pseudoalignment to selective alignment, and it improves further when a partial
and, finally, full genome decoy is used in addtion to the transcriptome. Ultimately,
Alevin full-decoy attains correlation with truth as high as STARsolo.

Another metric, Relative Deviation (RD) of a tool’s gene/cell counts with respect
to the simulated truth, is defined as RD = (Ctool − Ctrue)/max(Ctool, Ctrue) and is
presented in Figure 1B (Supp.Fig. S1B shows Mean Absolute RD). The negative
values of RD correspond to false negatives, i.e. a tool not detecting gene/cell counts
that were simulated. The positive values of RD correspond to false positives, i.e.
gene/cell counts that were not present in the simulated data but were predicted
by a tool. Figure 1B shows that all tools have low false negative rates (i.e. high
sensitivity), with only several percent of genes/cells having RD<0. Strikingly, while
STARsolo and Alevin full-decoy show a very low false positive rate, Kallisto and
Alevin sketch predict false expression for >20% of gene/cell matrix elements. As
before, the Alevin performance improves as it moves away from pseudoalignment-to-
transcriptome to the selective alignment with full genome decoy.

The third metric is the per-cell Spearman correlation coefficient between each
tool and the truth, calculated in each cell (Figure 1C, cell-averaged R shown in
Supp.Fig. S1B). In this calculation we include only those genes that are expressed in
any of the cells in either the simulation or tool matrices. STARsolo and Alevin full-
decoy show high congruity to the ground truth for almost all cells (R>0.99), while
other tools yield a wide distribution of lower correlations, with Kallisto and Alevin sketch
again showing the worst performance (R≈0.86 and 0.88 respectively).

2.3 Pseudoalignment-to-transcriptome predicts expression for
thousands of non-expressed genes

To further investigate the impact of algorithmic choices on mapping/quantification
accuracy, we compared the genes predicted to be expressed in each cell by each
tool to the simulated truth. Figure 1D shows the distribution of the number of
false positive genes per cell, i.e. genes that were not expressed in the simulated
data, but were predicted by a tool. While STARsolo and Alevin full-decoy call
only a few false positive genes per cell (∼5 on average), the pseudoalignment-to-
transcriptome tools predict expression for a vast number of non-expressed genes, on
average ∼600 for Kallisto and ∼700 for Alevin sketch in each cell, which constitutes
a substantial proportion of all genes expressed in a cell (≈21% and 24% respectively,
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Supp.Fig. S1B).
We believe that this severe overprediction of gene expression by the pseudoalignment-

to-transcriptome tools is caused by the reads that originate in the non-exonic regions
of the genome (intronic and intergenic), but are forced to map to the sequence-
similar regions of the transcriptome. Intronic reads are very abundant in single-cell
RNA-seq data [13], likely owing to non-specific priming of poly-dT reverse tran-
scription primers. The full and partial decoy options for Salmon/Alevin were de-
veloped to specifically mitigate the adverse effect of non-transcriptomic reads [28],
which explains their significant performance improvement over pseudoalignment-to-
transcriptome-only approach.

To confirm this hypothesis we excluded the non-exonic reads from our simu-
lated data. This indeed resulted in a significant accuracy improvement for the
pseudoalignment-to-transcriptome tools (see Figure S2). In reality, however, current
droplet-based single cell RNA-seq technologies contain a large (∼20-40%) propor-
tion of intronic reads [13], making pseudoalignment-to-transcriptome-only approach
unreliably inaccurate for such technologies.

2.4 Simulation with multi-gene reads

Since multi-gene reads constitute a relatively small proportion of all reads, they are
discarded in many bulk and single-cell RNA-seq pipelines. However, their exclusion
may conceal expression of important genes and gene families [15–19]. To include the
multi-gene reads, the expectation-maximization algorithm was introduced in Alevin,
and its impact on gene detection and quantification was investigated [7, 20]. A
similar option was also implemented in Kallisto [8].

We implemented several options in STARsolo for multi-gene reads recovery, rang-
ing from a simple uniform distribution of multi-gene reads among their genes, to a full
expectation-maximization model, which was used for the comparisons below (Meth-
ods 5.1.7). In Figure 2, we present the accuracy metrics for simulations that include
multi-gene reads. All tools were run with their multi-gene options (Supp. Table 1).
Only gene/cell count matrix elements ≥0.5 were considered expressed.

Comparing Figures 1A and 2A, we see that when simulations include multi-gene
reads, the genes/cells Spearman correlation to the true counts is reduced for all tools.
For the most accurate tools, STARsolo and Alevin full-decoy, it drops from R≈0.99
to 0.95. For the pseudoalignment-to-transcriptome tools the reduction of correlation
is larger: from R≈0.86 to 0.69 for Kallisto, and from R≈0.9 to 0.61 for Alevin sketch.

Multi-gene reads also reduce per-cell Spearman correlation with the true counts
(Figures 2D vs 1D) and diminish the precision of gene detection (Figures 2C vs

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.05.442755doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442755
http://creativecommons.org/licenses/by/4.0/


1C). While STARsolo and Alevin full-decoy keep false positive genes in check, the
pseudoalignment-to-transcriptome tools further inflate the number of false positive
genes, on average from ∼700 to ∼1,100 for Kallisto, and from ∼600 to ∼800 for
Alevin full-decoy.

The reason for this reduction in accuracy becomes clearer if we compare the
relative deviation (RD) from the true counts for simulations with and without multi-
gene reads (Figures 2B vs 1B). We see that the proportion of false negatives (negative
RD) increases when multi-gene reads are included, which indicates that multi-gene
algorithms cannot recover correctly all multi-gene reads. At the same time, the pro-
portion of false positives (positive RD) also increases, indicating that the algorithms
are assigning some of the multi-gene reads to the non-expressed genes.

To further elucidate the impact of multi-gene recovery, we run the tools with
and without multi-gene recovery options (Figure 3). Without multi-gene recovery,
STARsolo mult:No and Alevin full-decoy mult:No have a very low false positive rate,
but, owing to exclusion of multi-gene reads, yield a higher (∼5%) false negative rate.
Turning on multi-gene read recovery reduces the false negative rate, at the cost of
some increase the false positive rate, resulting in an overall accuracy improvement.
While this improvement in accuracy is relatively small, it can have serious impli-
cations for biological inferences derived in downstream analyses. For instance, it
may reveal expression of functionally important gene paralogs specific to certain cell
types.

2.5 Mapping/quantification comparison on real data

To evaluate tools’ performances on real scRNA-seq data, we used the 10X Peripheral
blood mononuclear cell dataset generated by the 10X Chromium v3 protocol (10X-
pbmc-5k, the same dataset as was used to generate the simulated data). To compare
all tools on the same set of cells, we computed the intersection between CellRanger
filtered cells (5026), STARsolo and Kallisto raw (unfiltered) cells, and Alevin filtered
cells. The resulting intersection contains 4655 cells. In real user experience, the cell
calling (filtering) will produce different sets of cells for Alevin and Kallisto, which
will further amplify their differences to CellRanger. STARsolo, on the other hand,
can perform cell filtering identically to CellRanger (Methods 5.1.8).

Figures 4 and S4 show the same accuracy metrics as were used for the simulated
data, but each tool is compared to the CellRanger instead of the simulated truth,
since the latter is not available for the real data. Such a comparison makes sense
because CellRanger has been used for mapping/quantification of the 10X scRNA-
seq data in thousands of studies, and the results have been validated by orthogonal
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experiments on many occasions. In these comparisons, the differences between tools
arise not only from the differences in read mapping and read-to-gene assignment, but
also from the differences in CB/UMI processing.

As STARsolo was run with parameters designed to match CellRanger’s gene
quantification, we see that STARsolo sparseSA (with sparse suffix array) results are
nearly identical to CellRanger’s (which also uses sparse suffix array). In this example,
out of ∼17M non-zero gene/cell UMI counts, we only find a difference by one count
in 85 gene/cell matrix elements (∼0.0005%). STARsolo fullSA, which utilizes a full
suffix array, is still nearly perfectly correlated with CellRanger. The advantage of
the full suffix array is in higher mapping speed, though it comes at the cost of higher
RAM consumption (see Benchmarking section 2.7).

Other tools exhibit much lower agreement with CellRanger’s results. Similarly to
the trends observed in the simulated data, pseudoalignment-to-transcriptome tools
show the largest deviation from CellRanger. The agreement steadily improves for
Alevin as it moves towards a more complete alignment to a fuller genome. In con-
cordance with simulation results, Alevin sketch and Kallisto predict expression for
a large number of extra genes in each cell (∼600 and ∼800 on average) that are not
expressed according to CellRanger, which constitutes a substantial proportion of all
genes expressed in a cell (on average ∼21% and ∼26% respectively). We note that sig-
nificant differences between STARsolo/CellRanger and Kallisto gene quantifications
have been previously reported. [29, 30].

2.6 Differential gene expression is strongly influenced by
mapping/quantification tools

To assess the effect of mapping/quantification algorithms on downstream analyses,
we performed clustering and differential gene expression (DGE) calculations for the
10X-pbmc-5k dataset. We used Scanpy [31] and followed a standard pipeline (Meth-
ods 5.3) described for a similar dataset in [32–34]. As in the previous section, we
used a common set of cells for all tools. Additionally, the clustering and cell type
annotation were performed only for CellRanger (Figure S5) and transferred to all
other tools.

We identified significantly differentially expressed marker genes for each cell type
using the Wilcoxon rank-sum method and Benjamini-Hochberg multiple testing cor-
rection, requiring padj<0.01. Figure 5A compares the sets of significantly overex-
pressed marker genes in each cluster between all tools and CellRanger. We observe a
nearly perfect agreement for STARsolo sparseSA/fullSA, and a decent agreement for
Alevin full-decoy, while Kallisto and Alevin sketch deviate significantly from Cell-

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.05.442755doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442755
http://creativecommons.org/licenses/by/4.0/


Ranger.
In Figures 5C-G we compare the log2-fold-changes (i.e. the effect sizes) for the

significant marker genes of the largest cluster (Naive CD4+ T cells) for each tool
vs CellRanger (see Supplementary Figures S6-S13 for other clusters). The Pearson
correlation coefficients between these values are shown in Figure 5B.

In accord with our previous observations, pseudoalignment-to-transcriptome tools
show poor agreement with CellRanger, which is especially pronounced for some of
the smaller cell clusters (FCGRA3+ Mono and Dendritic Cells, Figures S11,S12).
The red circles with CellRanger’s log2(FC)=0 on these plots represent the genes
that were not detected by CellRanger in any cells, but were deemed significant by
Kallisto and Alevin sketch (likely False Positives). As before, we observe a close to
perfect correlation with CellRanger for STARsolo sparseSA/fullSA, and a generally
good correlation for Alevin full-decoy.

2.7 Benchmarks: trading accuracy for speed

To benchmark speed and Random Access Memory (RAM) usage, we ran all tools
on the 10X-pbmc-5k dataset (Methods 5.4). Figure 6A shows the run-time, scaled
to 100M reads, as a function of the number of threads. Good thread scalability is
essential for taking full advantage of the current trend in processor technologies which
increases the number of cores with each generation. We see that for most tools the
processing speed saturates at ∼16-20 threads, with the exception of Kallisto, whose
performance saturates at ∼8 threads.

Pseudoalignment-to-transcriptome tools trade accuracy for high speed and low
RAM usage. Alevin sketch is ∼2-3 times faster than STARsolo fullSA. Kallisto is 2
times faster than STARsolo fullSA with 8 threads, though this advantage diminishes
as the number of threads increases and disappears at ∼16 threads. On the other
hand, among the highly accurate tools, STARsolo is the fastest: STARsolo fullSA is
4.4 times faster than CellRanger and 2.8 times faster than Alevin full-decoy.

Since transcriptome sequence length is .10% of the whole genome size, the
pseudoalignment-to-transcriptome tools require a small amount of RAM (.4 GiB,
Figure 6B). On the other hand, for tools that map reads to the whole genome, RAM
usage depends on the full genome size: for the human genome, STARsolo fullSA
uses 32 GiB. STARsolo sparseSA trades speed for lower RAM usage: it uses 16 GiB
of RAM, but it is 1.7 times slower than STARsolo fullSA. While CellRanger also
uses the sparse suffix array, its memory usage scales with the number of threads,
taking 14.6 GiB of RAM for every 4 threads, requiring 73 GiB of RAM for 20
threads. Alevin partial-decoy uses a small part of the genome as a decoy, making
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its RAM consumption (3.4 GiB) as small as Alevin sketch’s, and much smaller than
Alevin full-decoy ’s (18 GiB).

All the comparisons and benchmarks up to this point were done for spliced (ma-
ture) mRNAs. We also performed benchmarks for another type of quantification:
expression of pre-mRNAs. Such quantification is necessary for single-nucleus RNA-
seq data which is widely used in cases where cell isolation is problematic (e.g. for
brain cells). The majority of RNAs in a nucleus are unspliced pre-mRNAs, and thus
quantifying snRNA-seq data requires counting reads that map to both exonic and
intronic sequences. This is straightforward for STARsolo, since it maps reads to the
whole genome, and only the read-to-gene assignment algorithm has to be adjusted.
On the other hand, the pseudoalignment-to-transcriptome tools require significant
modifications of their algorithms to include intronic sequences, resulting in many-fold
speed reduction and RAM usage increase.

Figures 6B,C show that STARsolo’s speed and RAM usage stay the same for
pre-mRNA quantification, while Kallisto’s speed is reduced by a factor of ∼5, and its
RAM usage increases by a factor of ∼17 to a total 68 GiB. Thus, for single-nucleus
pre-mRNA quantification, both STARsolo sparseSA and STARsolo fullSA are up to
∼2 and ∼5 times faster than Kallisto, while consuming significantly less RAM.

2.8 Beyond gene expression: cell-type specific alternative
splicing

Similarly to bulk RNA-seq, single-cell data contain information about other tran-
scriptomic features, such as splicing, isoform expression, polyadenylation, allele-
specific expression, etc. Characterizing these transcriptomic features in a cell-type-
specific manner may enable discovery of interesting biological phenomena beyond
gene expression. However, most analyses of droplet-based scRNA-seq data are fo-
cused on gene expression, with a few notable exceptions: [35–40].

It is a common preconception that the 3′-end cloning bias prevents studying
splicing in droplet-based scRNA-seq data. Here we illustrate STARsolo capabili-
ties for detecting alternative splicing in scRNA-seq data by analyzing the data from
the Tabula Muris [41] project. Tabula Muris contains 10X scRNA-seq libraries for
∼100 thousand cells from 20 Mus musculus organs and tissues. We found that a large
proportion (∼20-40%) of the reads in these datasets are spliced, allowing quantifica-
tion of splice junctions (SJ) in different cell types.

We used gene/cell and SJ/cell counts output by STARsolo to calculate SJ usage
(Usj) in each cell-type using the pseudobulk approach (see Methods 5.5). For each
SJ and cluster, the SJ usage metric is defined as total SJ expression in the cluster
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normalized by the expression of the corresponding gene. The clustering and cell type
annotations were generated by the Tabula Muris project based on gene expression.
To identify significant inter-cluster SJ usage switching, we use Wilcoxon rank-sum
test for bootstrapped cell samples from each cluster, and Benjamini-Hochberg mul-
tiple testing correction.

In Figures 7A,B we show the differential SJ usage between a pair of cell clusters.
As expected, for most of the SJs, the usage changed only slightly between the cell
types. Still, there are many SJs whose usage considerably changes between the
clusters, resulting in cell-type dependent differential expression of the corresponding
alternatively spliced isoforms. Figures 7C-F show the number SJs with significant
cell-type specific SJ usage for several tissues, aggregated over cell type pairs in each
tissue, as well as aggregated over all tissues. We see that hundreds of SJs undergo
substantial usage switches in each tissue. Of course, because of low sequencing depth
and 3′-end cloning bias, only a small portion of significant cell-type specific SJs can
be detected in droplet-based scRNA-seq protocols. However, we believe that such
analyses may lead to discovery of some interesting examples of biologically important
cell-type specific alternative splicing.

3 Discussion

In this work we presented STARsolo, an accurate, fast and versatile tool for mapping
and quantification of single-cell RNA-seq data

To assess STARsolo’s accuracy and compare it with other mapping/quantification
tools, we developed a method for simulating scRNA-seq reads, which closely resem-
bles real data. Simulations play an important role in assessing quality of the results,
as they establish the ground truth not available for real data. We believe that
our simulation procedure will be helpful in guiding future improvements of map-
ping/quantification algorithms.

Using simulated data, we demonstrated the high accuracy of STARsolo’s gene
quantification. On the other hand, our simulations show a significantly lower accu-
racy for pseudoalignment-to-transcriptome tools (Kallisto and Alevin sketch). This
reduction in quantification accuracy is caused by intronic reads, which constitute
a large proportion of scRNA-seq libraries. The pseudoalignment-to-transcriptome
algorithms force intronic reads to map to spurious genes, resulting in hundreds false
positive genes in each cell. We note that the developers of Salmon/Alevin addressed
this problem by moving away from the pseudoalignment-to-transcriptome to a more
accurate selective alignment to both transcriptome and genome decoy [28]. As a
result, Alevin full-decoy achieves high (as good as STARsolo) agreement with the
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simulated truth.
Our benchmarking of processing speed and RAM usage showed strong trade-offs

between accuracy and speed/RAM usage. The least accurate pseudoalignment-to-
transcriptome tools are also the fastest and consume the least amounts of RAM. On
the other hand, among the highly accurate tools, STARsolo with full suffix array is 4.4
times faster than CellRanger and 2.8 times faster than Alevin full-decoy. STARsolo
can use a sparse suffix array, reducing RAM consumption 2-fold (from 32 to 16 GiB
for human genome) at the cost of 1.7-fold reduction in speed, which is still faster
than CellRanger or Alevin full-decoy.

Furthermore, STARsolo’s RAM usage and speed do not depend on the type of
transcript/gene annotations used to assign reads to genes. Contrarily, the compu-
tational efficiency of the pseudoalignment-to-transcriptome tools drastically deteri-
orates when intronic reads have to be counted in addition to exonic reads. This is
required, for instance, for quantifying pre-mRNA in single-nucleus RNA-seq data,
or unspliced transcripts in RNA Velocity calculations[13]. We showed that for pre-
mRNA quantification, STARsolo is up to 5 times faster than Kallisto and consumes
less RAM (32 GiB vs 68 GiB).

For real scRNA-seq data, we compared STARsolo and other tools with Cell-
Ranger. We demonstrated that STARsolo with proper parameters can match Cell-
Ranger’s results almost perfectly, while other tools show significant differences.
While CellRanger’s quantification is not the ground truth (which is not available
for real data), we still believe it is an important reference point, since CellRanger
has been widely used for analyzing thousands of scRNA-seq datasets generated with
10X Genomics technology. Many of the biological discoveries in these studies were
validated with alternative experimental techniques, thus confirming the overall va-
lidity of the CellRanger algorithms.

An additional advantage of replicating CellRanger results is that it simplifies
comparing a new experiment with existing data. STARsolo needs to be run only
on the new dataset, and its output can be directly compared to the old CellRanger
quantifications.

To replicate CellRanger results we carefully dissected CellRanger procedures for
read trimming, read-to-gene assignment, cell barcode demultiplexing, UMI dedupli-
cation and cell filtering, in some cases using the source code, available for the older
CellRanger versions, while in other cases reverse engineering the algorithms from the
observed output. This signifies that we validated CellRanger’s approaches in silico.
We believe this is an important service to the research community, as the CellRanger
is widely used, but its methodology has not been well documented or peer-reviewed.

In addition to significantly higher speed and lower RAM usage, STARsolo has
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other advantages over CellRanger. STARsolo can take into account multi-gene reads,
which are presently disregarded by the CellRanger. Including multi-gene reads is
important for detecting certain classes of biologically important genes (e.g. paralogs).
STARsolo has several different strategies for taking into account the multi-gene reads,
which we tested on simulations with multi-gene reads. We observed that multi-gene
quantification options increase the sensitivity, ”rescuing” the multi-gene reads and
thus detecting genes that are supported by multi-gene reads only. However, at the
same time, some of the multi-gene reads are not properly resolved, which slightly
decreases the precision.

Another advantage of STARsolo is its ability to process data from multiple
scRNA-seq platforms, while CellRanger is locked into 10X Genomics products, by
both software design and licensing [42]. A multitude of scRNA-seq methods have
been published, with a variety of read barcoding schemes. To accomodate a large
range of single cell technologies, STARsolo uses a flexible system to describe CB/UMI
geometry, suppporting multiple CBs with distinct passlists, variable CB lengths, and
anchored to a specified adapter sequence.

Yet another important feature of STARsolo is its ability to quantify transcrip-
tomic features beyond gene expression, such as splice junctions and spliced/unspliced
transcripts, required for RNA Velocity calculations [13]. By analyzing the data from
multiple tissues in the Tabula Muris dataset, we showed that despite strong 3′-end
bias, it is possible to detect cell-type-specific splice junction usage in droplet-based
scRNA-seq. STARsolo can also output a standard BAM file containing read align-
ments and error-corrected CBs and UMIs, which can be used for a variety of down-
stream analyses, such as differential splicing [36], alternative polyadenylation [39],
allele specific expression [38, 40], fusion detection, etc.

Last, but not least, STARsolo is a truly open source software, distributed under
the unrestrictive MIT license on GitHub. The entire history of STAR releases is
available, allowing for a precise reproducibility of older results. Importantly, we
welcome contributions to the STAR code, as well as comments, suggestions and
feature requests.

There are multiple areas where STARsolo performance can be enhanced. We
are working on improving quantification for multi-gene reads, adapting additional
single-cell technologies (e.g. CITE-seq-like [43] epitope indexing and scATAC-seq
[44, 45]), quantifying other transcriptomic features, as well improving documentation
and creating tutorials. We believe that owing to its uncompromised accuracy, robust
computational efficiency and technological versatility, STARsolo will become a useful
tool for single-cell genomic studies.
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5 Methods

5.1 STARsolo implementation

STARsolo is built directly into the RNA-seq aligner STAR [12], and can be run
similarly to standard STAR bulk RNA-seq alignment, specifying additionally the
single-cell parameters such as barcode geometry and passlist (a.k.a. whitelist). Users
can adjust STAR mapping parameters at will, allowing for sample and task specific
customization. Multiple options are also available for tweaking cell barcode demul-
tiplexing and UMI deduplication. One of the design goals was to closely match
the gene/cell count matrix values and formatting of the 10X CellRanger, a well es-
tablished tool used in thousands of publications for mapping/quantification of 10X
scRNA-seq data.

5.1.1 Workflow.

In the mapping step, STARsolo inputs reads from FASTQ files, or, optionally, from
unmapped or mapped BAM files (the latter is useful for reprocessing CellRanger
BAM files). The reads are aligned to the reference genome, and alignments are
checked for concordance with the transcript models to assign them to genes (5.1.2)
and/or other features (5.1.3). Simultaneously, if the barcode passlist is provided,
the cell barcodes are matched against the passlist, allowing for up to one mismatch
(5.1.4). In addition to simple barcoding schemes, STARsolo has a flexible mechanism
(5.1.5) for supporting complex barcode schemes. For each read, its CB, UMI and
gene are recorded into temporary files. It is possible to save the temporary files for
postprocessing with a different pipeline, and in the future we are planning to imple-
ment standardized formatting similar to the BUS and RAD formats implemented in
Kallisto-bustools [9] and Alevin-fry [10].

In the quantification step, STARsolo reads the CB, UMI and gene informa-
tion from temporary files, and performs CB demultiplexing and UMI deduplication
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(5.1.6). The deduplicated UMIs are counted towards their gene/cells, multi-gene
reads are recovered (5.1.7), and the raw gene/cell count matrix is generated. Finally,
the cell calling (filtering) is performed to eliminate cell barcodes containing ambient
RNA (5.1.8), and the filtered gene/cell count matrix is generated.

5.1.2 Read mapping and assignment to genes

STARsolo aligns reads to the whole genome, it uses the same genome index as STAR.
In principle, it is possible to align reads only to the transcriptome, by generating the
index for transcript sequences, which will drastically (∼10-fold) reduce the memory
requirements. However, because of high content of intronic reads in scRNA-seq
libraries, aligning scRNA-seq reads to transcriptome only results in severe accuracy
reduction (see Results 2.3).

For each read alignment, we find a set of concordant annotated transcripts. The
strandedness of the scRNA-seq library is user-specified with the --soloStrand op-
tion. An alignment is considered concordant with a transcript if all of its alignment
blocks are contained within transcript exons. If splice junctions are present in the
alignment, they have to agree with the transcript junctions. From the set of concor-
dant transcripts we create a set of corresponding concordant genes. If this gene set
contains only one gene, the read is considered unique-gene. Note that reads map-
ping to multiple loci in the genome will be considered unique-gene if only one of the
alignments is concordant with one gene, or if all the alignments are concordant with
the same gene. These rules follow CellRanger’s read-to-gene assignment policy.

For multi-gene reads, whose concordant gene set contains two or more genes, the
read-to-gene(s) assignment is performed probabilistically at a later stage (5.1.7).

5.1.3 Quantifying other transcriptomic features

In addition to quantifying gene expression, STARsolo can quantify other transcrip-
tomic features. All the features (including the standard --soloFeatures Gene ) can
be quantified simultaneously in a single STARsolo run.

--soloFeatures GeneFull produces per-cell counts of reads that overlap the
entire gene locus, i.e. both exons and introns. It will count reads originating from
both mature mRNA and pre-mRNA, and hence it is appropriate for quantifying gene
expression in single-nucleus RNA-seq experiments.

--soloFeatures SJ quantifies splice junctions by calculating per-cell counts of
reads that are spliced across junctions. It will count spliced reads across annotated
and unannotated junctions, thus allowing analysis of inter-cell alternative splicing
(see Results 2.8) and detection of novel splice isoforms.
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--soloFeatures Velocyto performs separate counting for spliced, unspliced
and ambiguous reads, similar to the Velocyto tool [13]. Its output can be used
in the RNA-velocity analyses to dissect the transcriptional dynamics of the cells.

5.1.4 CB passlisting and error correction

STARsolo converts CB sequences into a 2-bit binary representation, allowing up to
32-mer CBs that are stored in 8 bytes each. STARsolo uses a simple binary search
algorithm to exactly match the CB to the barcode passlist (--soloCBmatchWLtype
Exact ).

--soloCBmatchWLtype 1MM allows for a Hamming distance of ≤1 (i.e. up to 1
mismatch) when matching CBs to the passlist. This is done by creating all possible
1-base substitutions of the original barcode sequence and checking them against the
passlist with the binary search. The CBs that map to multiple passlist barcodes with
different mismatches are discarded. While this is not the most efficient algorithm, it
only marginally increases overall run-time.

--soloCBmatchWLtype 1MM multi* options allow to recover CBs that map to
multiple passlist barcodes with different mismatches, following the procedure intro-
duced by CellRanger, that estimates the posterior probability for each passlist match,
based on the sequencing quality score and the number of reads exactly matching each
passlist barcode.

For scRNA-seq technologies that do not provide a barcode passlist, STARsolo
can operate without the passlist, outputting all CBs without error correction. If CB
error correction is desired, users can perform passlisting based on the uncorrected
results of the 1st pass, and then provide the passlist to the 2nd pass of STARsolo.

5.1.5 Complex Cell Barcodes

To support technologies that use non-trivial barcode geometry (e.g. inDrop [46]),
we implemented a flexible scheme for specifying CB and UMI positioning. The CB
and UMI positions are specified with --soloCBposition and --soloUMIposition

with respect to either barcode read start/end or adapter sequence (given in
--soloAdapterSequence) start/end. Multiple CB positions can be specified with
corresponding barcode passlists. Varying CB lengths are allowed in each passlist.
This highly adaptable barcoding scheme allows processing a wide range of currently
available scRNA-seq protocols.
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5.1.6 UMI deduplication and gene/cell UMI counts

Similarly to CB error correction, most scRNA-seq tools perform UMI deduplication
with error correction. For instance, Alevin [7] implements a sophisticated UMI dedu-
plication algorithm based on counting monochromatic arborescences of parsimonious
UMI graphs, while recently released Alevin-fry [10] additionally implements several
simpler methods. Contrarily, Kallisto does not perform UMI error correction. We
implemented multiple options for various flavors of UMI error correction in STAR-
solo:

--soloUMIdedup Exact performs UMI deduplication without error correction,
collapsing UMIs with identical sequences.

--soloUMIdedup 1MM All performs 1-mismatch error correction, collapsing all
UMIs within a Hamming distance of 1 from each other. This is equivalent to finding
the number of connected components in a graph whose nodes are UMIs, and edges
represent Hamming distance ≤1.

--soloUMIdedup 1MM Directional* options use the ”directional” approach im-
plemented in UMItools, which collapses two UMIs with Hamming distance =1 only
if the read number for the ”winning” UMI is sufficiently higher than for the other
UMI.

--soloUMIdedup 1MM CR options closely mimics the CellRanger algorithm. It
first sorts the UMI by the number of reads per UMI, and then alphabetically. Next,
it moves through the sorted list, collapsing UMIs with Hamming distance ≤ 1.

While the multi-gene reads are not considered in this step, we can still encounter a
UMI that maps to multiple genes. For such ”gene-inconsistent” UMI, different reads
map uniquely to different genes, which should not be possible under the assumption
that each UMI originates from one RNA molecule. STARsolo has several options to
filter out such UMIs:

--soloUMIfiltering MultiGeneUMI compares the number of reads for each
gene for a given UMI, and keeps only the gene with the maximum number of reads.
If two or more genes contain the same largest number of reads, the UMI is discarded.

--soloUMIfiltering MultiGeneUMI CR is similar to the previous option, but
matches more closely CellRanger’s filtering, which is performed both before and
after UMI error correction.

--soloUMIfiltering MultiGeneUMI All is the most stringent option, and fil-
ters out all UMIs that contain unique-gene reads mapping to different genes.

The gene/cell count matrix for unique-gene reads/UMIs is generated by sim-
ply counting the number of collapsed (deduplicated) UMIs for each gene/cell. In
the current STARsolo implementation, the quantification step is performed after
CB/UMI/gene information for all reads is loaded into RAM. This, in principle, is
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not as memory-efficient as the approach first implemented in Kallisto-bustools and
later in Alevin-fry, which first sort the reads by CB, allowing CB/UMI processing
in small batches. In practice, STARsolo’s RAM usage is dominated by the whole
genome suffix array: 16 GiB for sparse and 32 GiB for full human suffix arrays.
Suffix arrays are unloaded from RAM before the quantification step, which utilizes
16 bytes per read to record CB/UMI/gene information (= 8+4+4 bytes). Thus the
maximum RAM consumption will not exceed the suffix array size unless the sample
contains more than 1 Billion mapped reads for STARsolo sparseSA and 2 Billion
reads for STARsolo fullSA.

5.1.7 Multi-gene reads

Multi-gene reads are concordant with (i.e. align equally well to) transcripts of two or
more genes. One class of multi-gene read are those that map uniquely to a genomic
region where two or more genes overlap. Another class are those reads that map to
multiple loci in the genome, with each locus annotated to a different gene.

Including multi-gene reads allows for more accurate gene quantification and, more
importantly, enables detection of gene expression from certain classes of genes that
are supported only by multi-gene reads, such as overlapping genes and highly similar
paralog families.

First, we collect all multi-gene reads with the same CB and UMI. Since they
originate from the same RNA molecule, we compute the intersection of gene sets
from these reads, creating a multi-gene UMI gene set. Next, the multi-gene UMI is
assigned probabilistically to one or more genes from its gene set, using one of the
following options:

--soloMultiMappers Uniform uniformly distributes the multi-gene UMIs to all
genes in its gene set. Each gene gets a fractional count of 1/Ngenes, where Ngenes is
the number of genes in the set. This is the simplest possible option, and it offers
higher sensitivity for gene detection at the expense of lower precision.

--soloMultiMappers EM uses Maximum Likelihood Estimation (MLE) to dis-
tribute multi-gene UMIs among their genes, taking into account other UMIs (both
unique- and multi-gene) from the same cell (i.e. with the same CB). Expectation-
Maximization (EM) algorithm is used to find the gene expression values that max-
imize the likelihood function. Recovering multi-gene reads via MLE-EM model
was previously used to quantify transposable elements in bulk RNA-seq [18] and
in scRNA-seq [7, 8].

--soloMultiMappers Rescue distributes multi-gene UMIs to their gene set pro-
portionally to the sum of the number of unique-gene UMIs and uniformly distributed
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multi-gene UMIs in each gene [15]. It can be thought of as the first step of the EM
algorithm.

5.1.8 Cell calling (filtering)

The outcome of the previously described steps is the raw gene/CB count matrix. It
typically contains hundreds of thousands of CBs, while only a few thousand cell have
been provided as input to the assay. The cell calling step aims to filter out the CBs
that correspond to empty droplets, i.e. contain ambient RNA rather than true cells.
Multiple methods have been developed to perform the cell filtering [4, 7, 47], and
these tools can be directly applied to the raw count matrix generated by STARsolo.

To achieve agreement with CellRanger for the filtered gene/cell count matrix, we
implemented the following cell calling options:

--soloCellFilter CellRanger2.2 was used by the older versions of CellRanger
and is based solely on the total number of UMIs per CB [14]. It filters out cells whose
UMI count is <10% of the robust maximum count, which is defined as the 99% of
UMI counts in all detected barcodes. This approach is somewhat similar to the knee-
point thresholding used in [48]. While this approach works well for homogeneous
cell populations, it fails to recover the cells with low RNA content in heterogeneous
samples (e.g. tumor microenvironment samples that contain a mixture of large tissue
cells and small immune cells).

--soloCellFilter EmptyDrops CR replicates the cell calling in newer Cell-
Ranger versions, which is based on the EmptyDrops approach [47]. EmptyDrops
recovers small cells from complex samples by detecting CBs whose gene expression
significantly deviates from the ambient RNA profile. CellRanger implementation dif-
fers from the EmptyDrops algorithm in several aspects, thus producing moderately
different results. In particular, it uses the multinomial distribution as described in
the first version of the EmptyDrops [49] rather than Dirichlet-multinomial distribu-
tion [47]. In addition, CellRanger makes different choices with respect to the choice
of cells with high UMI counts that do not undergo filtering, the choice of candidate
low-count cells to be tested against ambient RNA profile, and the choice of CBs that
are assumed to contain ambient RNA.

5.2 Simulating scRNA-seq reads

The main idea of our simulation is to get the information about CB/UMI and read
position on a transcript (or genome) from the real scRNA-seq data. The advantage
of this approach is that it does not require to build a generative statistical model of
read distribution along the transcript length, as is done for the bulk quantification
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algorithms [50–52]. Building a generative model for scRNA-seq is a non-trivial task,
because read distribution along the exons and introns is highly irregular, owing to
non-uniformity and non-linearity of Reverse transcription polymerase chain reaction
(RT-PCR).

Our simulation method consists of the following steps:
1. Select a real scRNA-seq datasets to be the basis of the simulations, the corre-

sponding passlist, as well as genome asssembly and transcript/gene annotations.
2. Remove reads with CBs that do not exactly match any entries in the CB-passlist.

Since only exact passlist matches are kept, our simulation does not test the CB
error correction algorithms. Also remove UMIs with undefined (”N”) bases.

3. Map the real dataset to the combined full genome and transcriptome. For this
task we use highly accurate short read aligner BWA-MEM [27] with -a option,
which outputs all detected alignments. It is crucially important to map reads to
transcriptome and genome sequences simultaneously, because a large proportion
of reads in scRNA-seq data originate from non-exonic (mostly intronic) sequences
that are absent from the transcriptome sequence.

4. For each read, we select those BWA-MEM alignments whose score is equal to the
highest score for this read.

5. If read CB/UMI combination was not yet observed, randomly choose one of the
top-scoring read alignments. If the top-scoring set contains alignments to both
transcripts and genome, we choose only among transcript alignments. The se-
lected alignment determines the origin of the CB/UMI-specified RNA molecule:
it can be either one specific transcript, or a general genomic (non-transcript) locus.

6. If the CB/UMI is assigned to a transcript, add 1 to the corresponding gene/cell
in the true count matrix.

7. If a read CB/UMI combination was already observed, choose the alignment with
the same transcript/genomic locus as was recorded the first time it was observed.
If the top-scoring set does not contain proper transcript/genomic locus, this read
is discarded. This procedures ensures that each CB/UMI corresponds to only one
transcript or genomic locus.

8. For the selected alignment, extract the ”true” sequence from the transcript or
genomic sequence. To simulate sequencing errors, make random sequence substi-
tutions with a nominal error rate. In this study we used mismatch error rate of
0.5%, which is similar to the one observed in realistic Illumina sequencing.

9. Record the simulated sequence, as well as CB/UMI in read 1/2 FASTQ files,
which, together with the true gene/cell count matrix, comprise the simulated
dataset.
We note that all the properties of our simulated dataset are defined by the real
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scRNA-seq dataset (which served as the basis), genome assembly, transcript/gene
annotations, and the mismatch error rate (the only adjustable parameter).

5.3 Real data: clustering and differential gene expression

We used a common set of 4655 cells (Results 2.5) as a starting point for the scanpy
1.6.0 [31] pipeline described in [34], which, in turn is based on the Seurat tutorial
[33]:
1. We further filtered the cells that contain < 200 genes or > 20% of mitochondrial

reads based on CellRanger counts, resulting in the final set of 4, 473 cells which
was used for all tools.

2. For each tool, genes detected in less than 3 cells were excluded.
3. Counts were normalized to 10000 reads per cell, a pseudocount of 1 was added

and the natural log transformation was performed. These normalized expression
values were used for differential gene expression calculations (see below).

4. For UMAP embedding, neighborhood graph calculation and clustering, the ex-
pression values were scaled to unit variance and zero mean across the cells and
truncated at a maximum value of 10.

5. 3, 000 highly variable genes were selected using the ’seurat v3’ algorithm.
6. The shared neighborhood graph was produced for 20 nominal nearest neighbors,

based on euclidean distance for the top 20 PCA components
7. We clustered CellRanger’s neighborhood graph using the Leiden clustering algo-

rithm, adjusting the resolution to obtain 9 clusters.
8. We assigned cell types to clusters using marker genes from [33], see Figure S5.
9. We transferred CellRanger’s cell-cluster labels obtained above to all other tools

for differential gene expression comparisons.
10. The differentially expressed genes in each cluster for each tool were detected using

scanpy ’s implementation of the Wilcoxon rank-sum test, which was previously
found to be one of the top performing methods [53].

5.4 Benchmarking speed and RAM consumption

All benchmarks were performed on the workstation with two Intel Xeon Gold 6140
processors (total 36 cores), 384 GiB of DDR4/2666 RAM, and 8 12TB SATA hard
drives in RAID0 configuration.

The benchmarking parameters were the same as used for the real scRNA-seq data
comparisons (Supp. Table 1). Output of the Linux command /usr/bin/time -v

was parsed to extract run-time (”Elapsed (wall clock) time”) and maximum RAM
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consumption (”Maximum resident set size”). Since CellRanger spawns multiple pro-
cesses, a custom made script was needed to track its total memory consumption.
Each tool was run 5 times, and the mean run-time was calculated.

5.5 Alternative splicing analysis

For analysis of alternative splicing, we reprocessed the 10X libraries generated by
the Tabula Muris consortium [41]. STAR genome index was generated for GRCm38
mouse genome assembly with Gencode M20 annotations. STARsolo was run with
--soloFeatures Gene SJ to output both gene/cell and SJ/cell count matrices.
Only annotated SJs and only reads that mapped uniquely to a single splice junction
were considered in this analysis.

Our analysis utilizes the pseudobulk approach: the SJ expression values are aver-
aged over cell types which are determined by clustering the cells using gene expres-
sion. We used the clustering and cell type annotations provided by Tabula Muris [41].
To calculate the average relative SJ usage in a cluster (denoted as U), we normalized
SJ counts by the expression of the gene the SJ belongs to: we sum the SJ counts
over the cells in the cluster and divide it by sum of the counts for the corresponding
gene:

Usj,cluster =

∑
cell ∈ cluster

Csj,cell∑
cell ∈ cluster

Cgene[sj],cell

To estimate the variance of each SJ in a cluster, we used a bootstrapping ap-
proach. Usj,cluster were calculated on 100 sets of cells randomly chosen with replace-
ment from each cluster. Wilcoxon rank-sum test was applied to the bootstrapped
Usj,cluster values to calculate the p-values, which were adjusted for multiple testing
using the Benjamini-Hochberg procedure. Median values of Usj,cluster were used to
represent average relative SJ usage in each cluster.

To avoid low-expressed genes, we only considered SJs that belonged to genes with
expression greater than the 75th percentile in each cluster. Also, we only considered
clusters with ≥200 cells. More detailed description of our splicing pipeline can be
found in Supp. Methods 2.1.

5.6 Code availability

STARsolo is built into STAR and is available on: https://github.com/alexdobin/
STAR. The scripts for the analyses presented in this manuscript are available on:
https://github.com/dobinlab/STARsoloManuscript.
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[30] R. S. Brüning et al. Comparative Analysis of Common Alignment Tools for
Single Cell RNA Sequencing. preprint. Bioinformatics, 2021. doi: 10.1101/
2021.02.15.430948.

[31] F. A. Wolf, P. Angerer, and F. J. Theis. “SCANPY: Large-Scale Single-Cell
Gene Expression Data Analysis”. Genome Biology 19.1 (2018), p. 15. doi:
10.1186/s13059-017-1382-0.

[32] R. Satija et al. “Spatial Reconstruction of Single-Cell Gene Expression Data”.
Nature Biotechnology 33.5 (5 2015), pp. 495–502. doi: 10.1038/nbt.3192.

[33] Seurat - Guided Clustering Tutorial. url: https://satijalab.org/seurat/
articles/pbmc3k_tutorial.html (visited on 04/25/2021).

[34] Theislab/Scanpy-Tutorials. GitHub. url: https://github.com/theislab/
scanpy-tutorials (visited on 04/25/2021).

[35] V. Ntranos et al. “A Discriminative Learning Approach to Differential Ex-
pression Analysis for Single-Cell RNA-Seq”. Nature Methods 16.2 (2 2019),
pp. 163–166. doi: 10.1038/s41592-018-0303-9.

26

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.05.442755doi: bioRxiv preprint 

https://doi.org/10.1038/s41467-019-10500-w
https://doi.org/10.1016/j.cels.2020.08.003
https://doi.org/10.1093/bioinformatics/btz752
https://arxiv.org/abs/1303.3997
http://arxiv.org/abs/1303.3997
http://arxiv.org/abs/1303.3997
https://doi.org/10.1186/s13059-020-02151-8
https://doi.org/10.1186/s13059-020-02151-8
https://doi.org/10.1534/g3.120.401160
32220951
https://doi.org/10.1101/2021.02.15.430948
https://doi.org/10.1101/2021.02.15.430948
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1038/nbt.3192
https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
https://github.com/theislab/scanpy-tutorials
https://github.com/theislab/scanpy-tutorials
https://doi.org/10.1038/s41592-018-0303-9
https://doi.org/10.1101/2021.05.05.442755
http://creativecommons.org/licenses/by/4.0/


[36] R. Dehghannasiri, J. E. Olivieri, and J. Salzman. “Specific Splice Junction De-
tection in Single Cells with SICILIAN”. bioRxiv (2020), p. 2020.04.14.041905.
doi: 10.1101/2020.04.14.041905.

[37] Y. Hu, K. Wang, and M. Li. “Detecting Differential Alternative Splicing Events
in scRNA-Seq with or without Unique Molecular Identifiers”. PLoS computa-
tional biology 16.6 (2020), e1007925. doi: 10.1371/journal.pcbi.1007925.
pmid: 32502143.

[38] P. N. M. et al. “Estimating the Allele-Specific Expression of SNVs From 10×
Genomics Single-Cell RNA-Sequencing Data”. Genes 11.3 (3 2020), p. 240.
doi: 10.3390/genes11030240.

[39] V. Agarwal et al. “The Landscape of Alternative Polyadenylation in Single
Cells of the Developing Mouse Embryo”. bioRxiv (2021), p. 2021.01.21.427498.
doi: 10.1101/2021.01.21.427498.

[40] C. A. Darby et al. “scHLAcount: Allele-Specific HLA Expression from Single-
Cell Gene Expression Data”. Bioinformatics 36.12 (2020), pp. 3905–3906. doi:
10.1093/bioinformatics/btaa264.

[41] N. Schaum et al. “Single-Cell Transcriptomics of 20 Mouse Organs Creates
a Tabula Muris”. Nature 562.7727 (7727 2018), pp. 367–372. doi: 10.1038/
s41586-018-0590-4.

[42] 10XGenomics/Cellranger. GitHub. url: https://github.com/10XGenomics/
cellranger (visited on 04/26/2021).

[43] M. Stoeckius et al. “Simultaneous Epitope and Transcriptome Measurement
in Single Cells”. Nature Methods 14.9 (9 2017), pp. 865–868. doi: 10.1038/
nmeth.4380.

[44] J. D. Buenrostro et al. “Single-Cell Chromatin Accessibility Reveals Principles
of Regulatory Variation”. Nature 523.7561 (2015), pp. 486–490. doi: 10.1038/
nature14590. pmid: 26083756.

[45] D. A. Cusanovich et al. “Multiplex Single Cell Profiling of Chromatin Accessi-
bility by Combinatorial Cellular Indexing”. Science (New York, N.Y.) 348.6237
(2015), pp. 910–914. doi: 10.1126/science.aab1601. pmid: 25953818.

[46] R. Zilionis et al. “Single-Cell Barcoding and Sequencing Using Droplet Mi-
crofluidics”. Nature Protocols 12.1 (1 2017), pp. 44–73. doi: 10.1038/nprot.
2016.154.

27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.05.442755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041905
https://doi.org/10.1371/journal.pcbi.1007925
32502143
https://doi.org/10.3390/genes11030240
https://doi.org/10.1101/2021.01.21.427498
https://doi.org/10.1093/bioinformatics/btaa264
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://github.com/10XGenomics/cellranger
https://github.com/10XGenomics/cellranger
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/nature14590
https://doi.org/10.1038/nature14590
26083756
https://doi.org/10.1126/science.aab1601
25953818
https://doi.org/10.1038/nprot.2016.154
https://doi.org/10.1038/nprot.2016.154
https://doi.org/10.1101/2021.05.05.442755
http://creativecommons.org/licenses/by/4.0/


[47] A. T. L. Lun et al. “EmptyDrops: Distinguishing Cells from Empty Droplets
in Droplet-Based Single-Cell RNA Sequencing Data”. Genome Biology 20.1
(2019), p. 63. doi: 10.1186/s13059-019-1662-y.

[48] E. Z. Macosko et al. “Highly Parallel Genome-Wide Expression Profiling of
Individual Cells Using Nanoliter Droplets”. Cell 161.5 (2015), pp. 1202–1214.
doi: 10.1016/j.cell.2015.05.002.

[49] A. T. L. Lun et al. Distinguishing Cells from Empty Droplets in Droplet-Based
Single-Cell RNA Sequencing Data. preprint. Bioinformatics, 2018. doi: 10.

1101/234872.

[50] H. Jiang and W. H. Wong. “Statistical Inferences for Isoform Expression in
RNA-Seq”. Bioinformatics (Oxford, England) 25.8 (2009), pp. 1026–1032. doi:
10.1093/bioinformatics/btp113. pmid: 19244387.

[51] B. Li et al. “RNA-Seq Gene Expression Estimation with Read Mapping Un-
certainty”. Bioinformatics (Oxford, England) 26.4 (2010), pp. 493–500. doi:
10.1093/bioinformatics/btp692. pmid: 20022975.

[52] C. Trapnell et al. “Transcript Assembly and Quantification by RNA-Seq Re-
veals Unannotated Transcripts and Isoform Switching during Cell Differentia-
tion”. Nature Biotechnology 28.5 (2010), pp. 511–515. doi: 10.1038/nbt.1621.
pmid: 20436464.

[53] C. Soneson and M. D. Robinson. “Bias, Robustness and Scalability in Single-
Cell Differential Expression Analysis”. Nature Methods 15.4 (4 2018), pp. 255–
261. doi: 10.1038/nmeth.4612.

28

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.05.442755doi: bioRxiv preprint 

https://doi.org/10.1186/s13059-019-1662-y
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1101/234872
https://doi.org/10.1101/234872
https://doi.org/10.1093/bioinformatics/btp113
19244387
https://doi.org/10.1093/bioinformatics/btp692
20022975
https://doi.org/10.1038/nbt.1621
20436464
https://doi.org/10.1038/nmeth.4612
https://doi.org/10.1101/2021.05.05.442755
http://creativecommons.org/licenses/by/4.0/


Figure 1: Simulations without multi-gene reads (Results 2.2).
(A): Spearman correlation coefficient R vs simulated truth for gene/cell matrix elements.
(B): Relative Deviation for gene/cell matrix elements with respect to the true counts.
(C): Histogram of per-cell Spearman correlation coefficients vs truth.
(D): Histogram of the number of false positive genes per cell: genes that were not expressed in the
simulation, but were detected by each tool.

(A) (B)

(C) (D)
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Figure 2: Simulations with multi-gene reads (Results 2.4).
(A): Spearman correlation coefficient R vs simulated truth for gene/cell matrix elements.
(B): Relative Deviation for gene/cell matrix elements with respect to the true counts.
(C): Histogram of per-cell Spearman correlation coefficients vs truth.
(D): Histogram of the number of false positive genes per cell: genes that were not expressed in the
simulation, but were detected by each tool.

(A) (B)

(C) (D)
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Figure 3: Simulations with multi-gene reads: multi-gene vs no-multi-gene algorithms (Results
2.4).
(A): Relative Deviation for gene/cell counts with respect to true counts.
(B): Mean Absolute Relative Deviation and Spearman correlation for gene/cell matrix elements with
respect to the true counts.

(A) (B)
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Figure 4: Mapping/quantification comparison for the real dataset 10X-pbmc-5k (Results 2.5).
(A): Spearman correlation coefficient R vs CellRanger for gene/cell matrix elements.
(B): Relative Deviation for gene/cell matrix elements with respect to the CellRanger counts.
(C): Histogram of per-cell Spearman correlation coefficients vs CellRanger.
(D): Histogram of the number of extra genes that were not detected by CellRanger, but were detected
by each tool.
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(C) (D)
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Figure 5: Differential gene expression in the real 10X-pbmc-5k dataset (Results 2.6).
(A): Jaccard index for significantly overexpressed cluster marker genes, each tool vs CellRanger.
(B): Pearson correlation between each tool and CellRanger for log2-fold-changes of significantly
differentially expressed genes in each cluster.
(C)-(G): Log2-fold-changes for significantly (padj < 0.01) differentially expressed genes in the Naive
CD4+ T cluster, each tool vs CellRanger. The log2(FC) values were truncated at −10 and 10. The
genes that were not detected by a tool were assigned log2(FC) = 0.

(A) (B)

(C) (D) (E)

(F) (G)
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Figure 6: Speed and RAM benchmarks on the real 10X-pbmc-5k dataset (Results 2.7).
(A): Run-time vs number of threads: wall-clock time scaled to 100 million reads, for mRNA
quantification.
(B): Maximum resident memory for mRNA (single-cell) and pre-mRNA (single-nucleus) quantifications,
for runs with 20 threads.
(C): Run-time vs number of threads for pre-mRNA quantification.

(A) (B)
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Figure 7: Cell-type-specific alternative splicing in the Tabula Muris dataset (Results 2.8).
(A): SJ usage (Usj) fold change vs Usj maximum in Bladder vs Bladder-Urothelial cell types. Only SJs
with significant usage switching (padj < 0.05) are shown. SJ thresholds limit mark different minimum SJ
counts (50, 200, 100) in one of the clusters.
(B): Histogram of Usj log2-fold-changes in Bladder vs Bladder-Urothelial cell types.
(C,D,E): Histograms of Usj log2-fold-changes aggregated for all cell-type pairs in Lung, Spleen, Trachea.
(F): Histograms of Usj log2-fold-changes aggregated for all cell-type pairs in all Tabula Muris tissues.
(G): Example of an exon-skipping event in Bladder vs Bladder-Urothelial clusters: browser snapshot and
UMAP-embedded Usj usage values.
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