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ABSTRACT 21 

N-methyl-D-aspartate receptors (NMDARs) uniquely require binding of two different 22 

neurotransmitter agonists for synaptic transmission. D-serine and glycine bind to one 23 

subunit, GluN1, while glutamate binds to the other, GluN2. These agonists bind to the 24 

receptor’s bi-lobed ligand-binding domains (LBDs), which close around the agonist 25 

during receptor activation. To better understand the unexplored mechanisms by which 26 

D-serine contributes to receptor activation, we performed multi-microsecond molecular 27 

dynamics simulations of the GluN1/GluN2A LBD dimer with free D-serine and glutamate 28 

agonists. Surprisingly, we observed D-serine binding to both GluN1 and GluN2A LBDs, 29 

suggesting that D-serine competes with glutamate for binding to GluN2A. This 30 

mechanism is confirmed by our electrophysiology experiments, which show that D-31 

serine is indeed inhibitory at high concentrations. Although free energy calculations 32 

indicate that D-serine stabilizes the closed GluN2A LBD, its inhibitory behavior suggests 33 

that it either does not remain bound long enough or does not generate sufficient force 34 

for ion channel gating. We developed a workflow using pathway similarity analysis to 35 

identify groups of residues working together to promote binding. These conformation-36 

dependent pathways were not significantly impacted by the presence of N-linked 37 

glycans, which act primarily by interacting with the LBD bottom lobe to stabilize the 38 

closed LBD.  39 

 40 

INTRODUCTION 41 

The N-methyl-D-aspartate receptor (NMDAR) is an ionotropic glutamate receptor 42 

(iGluR) that uniquely requires the binding of a co-agonist in addition to its primary 43 
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agonist for activation. This heterotetrameric ion channel comprises at least two different 44 

subunits, GluN1 (isoforms 1-4a and 1-4b) and GluN2 (subtypes A-D), assembled as a 45 

dimer of GluN1/GluN2 heterodimers. The GluN2 subunit binds the neurotransmitter 46 

glutamate, while the GluN1 subunit can either bind the co-agonists glycine or D-serine. 47 

Traditionally, glycine had been considered the dominant GluN1 agonist [1–3], but more 48 

recent work has suggested that D-serine may in fact be the dominant co-agonist for 49 

synaptic NMDARs in the brain [4]. D-serine is synthesized by the enzyme serine 50 

racemase expressed in astroglia [5] and neurons [6] [7] and is released into the 51 

postsynapse by the Asc-1 transporter [8] [9]. D-serine binding to these synaptic 52 

NMDARs is responsible for inducing long-term potentiation (LTP), which is critical for 53 

memory functions [10]. In addition, recent clinical efforts have indicated that D-serine 54 

could be a promising therapeutic for the treatment of neuropsychiatric disorders 55 

[11][12], most notably schizophrenia [13] and post-traumatic stress disorder (PTSD) 56 

[14]. Unlike the more well-studied agonists glutamate and glycine, the role of D-serine is 57 

less defined, causing it to be known as the “shape-shifting” agonist [9] that can adopt 58 

different roles in neurotransmission. 59 

Each NMDAR subunit consists of an amino-terminal domain (ATD), a ligand-60 

binding domain (LBD; also called an agonist-binding domain, ABD), a transmembrane 61 

domain (TMD), and a disordered cytoplasmic C-terminal domain [15]. The LBDs adopt a 62 

bi-lobed clamshell architecture that close upon agonist binding. Previous computational 63 

studies of NMDAR LBDs have indicated that glycine binding to the GluN1 LBD and 64 

glutamate binding to the GluN2A LBD drives the conformational equilibrium toward the 65 

closed LBD [16]. While crystallographic studies have determined the binding pose of D-66 
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serine bound to the closed GluN1 LBD [17], the molecular mechanisms by which D-67 

serine finds its way into and stabilizes NMDAR LBDs is not well understood.  68 

Previous simulation studies have revealed the mechanisms by which glycine and 69 

glutamate diffuse into the LBD binding site [18]. Specifically, they found that glycine 70 

binds to the GluN1 subunit by freely diffusing into the binding pocket, where it is trapped 71 

by energetically favorable interactions with key binding site residues. Glutamate, on the 72 

other hand, was found to contact residues along the protein surface that helped guide 73 

itself into its binding pocket, positioning it to interact stably with residues in the binding 74 

site. These two binding mechanisms were referred to as “unguided" and "guided" 75 

diffusion, respectively [19]. This paradigm established the two extremes by which 76 

ligands enter their receptor sites: one in which stable ligand binding only depends upon 77 

the identity of the binding site residues and another that also heavily relies on residues 78 

outside the binding site to guide the ligand toward its bound pose.  79 

Performing multi-microsecond molecular dynamics simulations of the 80 

glycosylated GluN1/GluN2A LBD dimer, we identified binding mechanisms and residues 81 

critical for promoting D-serine binding and stabilization by developing a new binding 82 

pathway clustering workflow. Surprisingly, we observed D-serine binding to both GluN1 83 

and GluN2A LBDs. We determined that D-serine binding to GluN2A partially stabilizes 84 

the active LBD conformation. Inspired by these simulation results, we determined that 85 

D-serine competes with glutamate for binding to GluN2A via a competitive inhibition 86 

mechanism using electrophysiology measurements, where D-serine was found to be 87 

inhibitory at high concentrations. Since NMDAR LBDs are glycosylated under 88 

physiological conditions [20], including N-linked glycans in our simulations revealed that 89 
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glycans primarily regulate the binding process by stabilizing the active LBD. In total, we 90 

investigated the molecular components contributing to D-serine binding and 91 

stabilization, highlighting the complex components driving neurotransmission. 92 

 93 

RESULTS 94 

D-serine binding pathways for GluN2A and GluN1 LBDs 95 

In simulating the GluN1/GluN2A LBD dimer, which is a physiological NMDAR 96 

unit, we intended to focus our attention on the mechanisms by which D-serine binds to 97 

the GluN1 LBD, the subunit to which D-serine is a potent agonist. However, in our 98 

simulations, we also observed a significant number of D-serine binding events involving 99 

the GluN2A LBD, an unexpected finding. These binding events are primarily made up of 100 

guided-diffusion pathways in which D-serine contacts key residues on the LBD surface 101 

to help guide it into the binding cleft. In our aggregate ~51 𝜇s of sampling of the 102 

glycosylated GluN1/GluN2A LBD dimer, we identified 99 guided-diffusion pathways for 103 

GluN2A and 104 (plus 23 free diffusion events) for GluN1. Due to the stochastic nature 104 

of these pathways, we needed to develop a reliable way to identify key features of 105 

predominant binding pathways. To address this, we applied pathway similarity analysis 106 

(PSA) [21] to quantify the spatial and geometric similarity between pairs of paths (Fig. 107 

1A). Here, we extend this application to ligand binding pathways by monitoring the 108 

change in ligand 𝐶! position throughout each path. This allowed us to cluster paths 109 

traversing similar regions of the LBD surface. To aid in describing the different faces of 110 

the LBD, we use an order parameter (𝜉", 𝜉#) defined in previous work [16] to describe 111 

whether D-serine primarily contacts residues on the 𝜉" or 𝜉# face of the LBD (Fig. 1B, 112 
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2A). For GluN2A, cluster analysis revealed four distinct regions of D-serine occupancy. 113 

The clusters correspond to the following methods of binding: 1. D-serine approaches 114 

the binding pocket from the 𝜉# face; 2. D-serine contacts the D1 residues on the 𝜉" face; 115 

3. D-serine zigzags between D1 and D2 lobes on the 𝜉" face; 4. D-serine primarily 116 

contacts residues on the D2 lobe of the 𝜉" face (Fig. 1C-F). Similarly, for GluN1, cluster 117 

analysis revealed four distinct clusters corresponding to similar pathways of binding: 1. 118 

D-serine contacts the 𝜉# face; 2. D-serine zigzags between D1 and D2 lobes on the 𝜉" 119 

face; 3. D-serine contacts residues on the N-terminal (top) end of D1 of the 𝜉" face; 4. 120 

D-serine contacts residues of D1 loop 2 that protrudes from the LBD into solution. We 121 

then analyzed the resulting clusters to identify key residues that guide D-serine into the 122 

binding site (Fig. 2B-E). Interestingly, we observed that GluN1 pathways involve fewer 123 

interactions between D-serine and D2 residues; most notably, there were fewer 124 

contacts with Helix F (Helix E for GluN2A) compared to GluN2A pathways.  125 

To quantify the extent to which these clusters involve similar residue contacts, we   126 

used a pairwise similarity metric called the overlap coefficient (i.e., Szymkiewicz–127 

Simpson coefficient) that describes agreement between sets of residues [22]. Doing so 128 

provides a way to determine whether these spatial clusters are mostly made up of 129 

random contacts, or whether groups of residues tend to act together to promote binding, 130 

allowing us to quantify the extent to which agonist diffusion is “guided” by contacts along 131 

the LBD. For GluN2A, we computed the overlap coefficient for all path pairs in each 132 

cluster for comparison with the global mean (global 〈𝑂𝐶〉 = 0.557) (Fig. S1A). We found 133 

that pathway pairs in three of the four clusters yielded an overlap coefficient greater 134 

than the mean of all pairs of paths from all clusters, indicating that pathways in each 135 
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cluster are made up of specific residue contacts (Fig. S1C). In contrast, for GluN1, a 136 

significant cluster (26 paths) involving interactions with residues on the 𝜉# face of the 137 

LBD has a cluster mean 𝑂𝐶 much less than the global mean (global 〈𝑂𝐶〉 = 0.671), 138 

indicating that this cluster primarily comprises random contacts (Fig. 1B, S1B,D). This 139 

suggests that D-serine binding to GluN1 may be more diffusion-driven and less guided 140 

than to GluN2A. Therefore, we propose that agonist binding mechanisms exist on a 141 

spectrum ranging from unguided to guided diffusion. The difference in the specificity of 142 

D-serine contacts along binding pathways for GluN2A and GluN1 suggests that the 143 

extent to which agonists rely on pathways of guiding residues depends on LBD 144 

architecture and not solely upon the identity of the agonist.  145 

Mapping important pathway residues onto the intact GluN1/GluN2A NMDAR 146 

(PDB ID: 6MMM [23]) further enriches our understanding of binding pathways by 147 

allowing us to determine whether residues in particular pathways are accessible for 148 

binding or obscured by other receptor domains and subunits. For GluN2A, access to 149 

residues on the extreme of the 𝜉# face is slightly restricted by the presence of the GluN1 150 

subunit of the adjacent LBD dimer (Fig. S2A). However, this interface does not seem to 151 

be near the specific residues identified as critical for binding. Even more restricted is 152 

access to residues on the 𝜉" face of GluN1, which are obscured by GluN2A of the 153 

adjacent LBD dimer, including residues identified as critical for binding pathways (Fig. 154 

S2B). This might bias the pathways observed for the intact receptor by forcing the 155 

agonist to favor residues on the 𝜉# face of the LBD. Since our overlap coefficient 156 

analysis of the cluster that corresponds to the  𝜉# face of GluN1 identified more non-157 

specific interactions, it is possible that the D-serine mechanism would be biased to favor 158 
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unguided diffusion. It is also possible that access to residues near the N-terminal end of 159 

D1 would be restricted by the R2 lobe of its own ATD.  160 

 We next investigated whether a specific LBD conformational state was favored 161 

for successful D-serine binding pathways. We computed our (𝜉", 𝜉#) order parameter to 162 

quantify the degree of closure of the LBDs for all trajectory frames identified as part of 163 

binding (and unbinding) pathways and found that (𝜉", 𝜉#) = (16,14) for GluN2A (Fig. 164 

S3A) and (𝜉", 𝜉#) = (11,13) for GluN1 (Fig. S3B). These values correspond to a partially 165 

open LBD. The LBD needs to be open enough for the ligand to diffuse into the pocket 166 

but closed enough to form some stabilizing interactions with the ligand. However, we 167 

notice that the 𝜉" is smaller for GluN1, indicating that agonist binding can occur at 168 

slightly more closed LBD conformations. GluN1 pathways where (𝜉", 𝜉#) = (11,13) are 169 

mostly in the cluster defined by D-serine interactions with Loop 2, highlighting the role of 170 

Loop 2 residues in D-serine binding to GluN1. Overall, these results suggest that the 171 

degree of LBD closure does influence the likelihood of successful binding.  172 

 173 

Effects of D-serine binding on the LBD conformational free energy landscapes  174 

Since we did not expect to see D-serine binding to the GluN2A LBD, we needed 175 

to determine whether these GluN2A D-serine binding events are able to modulate the 176 

GluN2A LBD conformation. Since full LBD closure occurs on multi-microsecond to 177 

millisecond timescales [24][25][26], direct observation of such a conformational change 178 

was not fully captured from our equilibrium binding trajectories. Instead, to ensure we 179 

are sampling the full range of LBD conformations, we performed umbrella sampling free 180 

energy molecular dynamics simulations to obtain the conformational free energy 181 
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landscape of GluN2A bound to D-serine (Fig. 3A). We used the order parameter (𝜉", 𝜉#) 182 

[16] that captures the opening and closing motion of the LBDs observed in crystal 183 

structures of these domains. Since no crystal structure exists for D-serine bound to 184 

GluN2A, we identified residues critical for stabilizing the agonist in the closed state by 185 

analyzing contacts in lowest-energy (≤1 kcal mol-1) conformers (Fig. S4A). For 186 

reference, we compared the resulting energy landscape to those previously computed 187 

for the apo- and glutamate-bound GluN2A monomers (Fig. 3C,D) [16]. We see that, like 188 

glutamate, D-serine stabilizes the closed LBD conformation. The D-serine energy 189 

landscape has a global minimum corresponding to (𝜉", 𝜉#)  values of (11, 11.5 Å) and a 190 

metastable minimum corresponding to (𝜉", 𝜉#) values of (15.5, 11.5 Å). The presence of 191 

a metastable agonist-bound LBD partially open intermediate suggests that D-serine 192 

may not stabilize the closed conformation to the same extent as glutamate and 193 

generate sufficient force to control channel gating. We then compared different 194 

conformers corresponding to these two states to determine residues critical for agonist 195 

stabilization. The primary difference between the residue contacts in conformers of the 196 

two states is the prevalence of interactions with Thr-690 (Fig. S4B), which only contacts 197 

D-serine in the more closed state centered at (𝜉", 𝜉#) = (11, 11.5 Å). This is supported by 198 

our binding simulations; although we do not fully sample LBD closure, trajectory frames 199 

with low (𝜉", 𝜉#)  values involve contacts with Thr-690. This suggests that Thr-690 is 200 

critically involved in promoting full GluN2A LBD closure upon agonist binding. 201 

Experimental binding studies have indicated that D-serine may be a more potent 202 

GluN1 agonist than glycine [27]. To better understand the molecular mechanism 203 

responsible for this difference in agonist potency, we computed the conformational free 204 
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energy for the D-serine-bound GluN1 LBD (Fig. 3F). Compared with the previously 205 

computed glycine-bound and apo LBDs (Fig. 3G,H) [16], the presence of D-serine in 206 

the binding cleft results in a greater population of conformers in the closed conformation 207 

and fewer conformers adopting a more open conformation. Similar to GluN2A Thr-690, 208 

GluN1 Asp-732 and (to a lesser extent) Ser-688 help stabilize D-serine in the closed 209 

LBD conformation by interacting with the D-serine hydroxyl. For this reason, we propose 210 

that D-serine’s high potency is due, at least in part, to its ability to more strongly 211 

stabilize a closed LBD through additional interactions with the D2 lobe.  212 

 213 

D-serine and glutamate compete for binding to the GluN2A LBD  214 

Since our simulations revealed that D-serine can enter the GluN2A LBD binding 215 

pocket and partially stabilize the active conformation, we hypothesized that D-serine 216 

might compete with glutamate for binding to GluN2A. In fact, we observed D-serine 217 

binding to GluN2A, even in the presence of glutamate, although glutamate bound more 218 

frequently than D-serine and with longer residence times in the binding site (Datasets 219 

S2, S3). Since increasing the D-serine concentration would increase the frequency of D-220 

serine binding to GluN2A, it is possible that D-serine could function as an inhibitor 221 

(competitive antagonist) at high concentrations. If true, this behavior may factor into 222 

therapeutic strategies focused on increasing D-serine concentration in the synapse by 223 

establishing an upper dosage limit after which a D-serine increase is no longer 224 

potentiating.  225 

To probe this behavior experimentally, we measured GluN1-2A NMDAR currents 226 

using two-electrode voltage clamp (TEVC) electrophysiology. We observed that at high 227 
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(~1 mM) D-serine concentrations, NMDAR activity was inhibited (Fig. 4A). The inhibition 228 

was dependent on glutamate concentrations, implying that the inhibitory effect of D-229 

serine may be competitive (Fig. 4B). Furthermore, dose-response curves of glutamate 230 

activation were right-shifted in the presence of increasing concentrations of D-serine 231 

(Fig. 4C). The calculated slope value of the Schild plot at 1.1 ± 0.1 implied that D-serine 232 

and glutamate likely compete against each other (Fig. 4C). Combined with our 233 

simulation results, our electrophysiological data supports the hypothesis that D-serine at 234 

high concentrations can bind to the GluN2A subunit and compete against glutamate.  235 

Since a similar inhibitory effect was also observed at high glycine concentrations 236 

by TEVC electrophysiology (Fig. 4A), we repeated our umbrella sampling simulations 237 

with glycine bound to the GluN2A LBD. We see that glycine also favors the closed LBD 238 

(Fig. 3B). The lowest-energy conformers of GluN2A with glycine are fastened shut by 239 

contacts between the N-terminal amine of glycine and Tyr-730. Although glutamate still 240 

stabilizes the closed GluN2A LBD to the greatest extent, comparable thermodynamics 241 

between different agonists suggests that kinetics of agonist binding and unbinding is a 242 

critical driver of agonist-induced activation. The GluN2A LBD likely never closes around 243 

glycine because glycine does not remain bound long enough to induce LBD closure.  244 

Previous binding studies [18] have indicated that glutamate, the primary GluN2A 245 

agonist, similarly relies on LBD surface residues to promote binding. To determine 246 

whether D-serine and glutamate binding are guided by similar residue contacts, we 247 

computed the overlap coefficient between residues in D-serine and glutamate pathways 248 

to be 0.964 for the glycosylated GluN2A LBD, corresponding to a significant overlap in 249 
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agonist occupancy (Fig. 5A). This high degree of overlap between glutamate and D-250 

serine pathway residues indicates that they bind through similar mechanisms.  251 

Despite similar pathway residues, we identified key residues that distinguish 252 

glutamate from D-serine binding pathways (Fig. 5B and Dataset S7). Most of the 253 

residues important for D-serine binding, but not for glutamate binding, are located on 254 

the 𝜉# face of the LBD. Most notably, Glu-413, Tyr-730, Ser-511, and Asp-731 all occur 255 

in D-serine binding pathways with a frequency of more than ten times their fractional 256 

occurrence in glutamate binding pathways. It is important to note, however, that 257 

glutamate does interact with residues on the 𝜉# face, but the specific nature of those 258 

contacts differ between the two agonists. In contrast, we found that Lys-487 is 259 

contacted with significantly greater frequency in glutamate binding pathways. Due to 260 

these residues’ close proximity to the binding cleft, it is likely that these residues are 261 

responsible for facilitating proper positioning of the agonists in the binding site, based 262 

on differences in agonist size and shape.  263 

An important feature of glutamate binding to GluN2A is its ability to bind in an 264 

inverted pose relative to the crystal structure, which we observed in previous 265 

simulations [18] [19]. Since no experimental structure exists for glutamate bound in the 266 

inverted pose, we performed umbrella sampling simulations to determine the free 267 

energy landscape of the GluN2A LBD with glutamate bound in the inverted pose (Fig. 268 

3E). We found that glutamate bound in the inverted pose prevents full LBD closure as 269 

predicted in previous work [18]. Specifically, glutamate in the inverted pose stabilizes a 270 

conformation centered around (𝜉", 𝜉#)  values of (14, 13 Å). Comparing the low-energy 271 

conformers of D-serine and inverted glutamate (≤ 1 kcal mol-1) with the glutamate-272 
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bound crystal structure, we found that D-serine and glutamate are stabilized by the 273 

same residues, although there are fewer interactions between Thr-690 and glutamate in 274 

the inverted pose, further supporting the importance of this residue for stabilizing the 275 

fully closed LBD. 276 

 277 

Kinetic analysis of D-serine binding pathways  278 

We computed the D-serine association rate constant (kon) for GluN2A and GluN1 279 

LBDs using a method described [28] and used in previous iGluR work [19] as 280 

summarized in the equation below: 281 

𝑘$% = 	
𝑁&

∑ 𝑡'[𝐿']
𝑠''

	. 282 

 283 

Here, 𝑁& is the number of association events, 𝑡' is the time the agonist spends in bulk 284 

solvent, 𝑠' is the number of identical binding sites, and [𝐿'] is the concentration of free 285 

agonist. One advantage of this approach is the ability to combine simulations performed 286 

at various concentrations of free agonist [𝐿']. Here, 𝑘$% is a bulk property and relies on 287 

fully sampling the LBD conformational landscape throughout the simulation. However, 288 

our binding simulations fail to adequately sample the agonist-bound, closed LBD state. 289 

This affects both the number of observed binding events 𝑁& and the time the agonist 290 

spends in bulk solvent (𝑡'). Since this value is most sensitive to the number of identified 291 

binding events 𝑁&, we computed the 𝑘$% for different 𝑁& values based on the duration of 292 

the resulting binding event. This minimizes contributions from extremely short binding 293 

events that are unlikely to be functionally relevant. For GluN2A, this results in a D-serine 294 

𝑘$% with an upper bound of 7.8	 × 10( M-1s-1 (all events included) and a lower bound of 295 
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1.6	 × 10( M-1s-1 (only events with agonist residence times > 100 ns were included). For 296 

GluN1, the upper bound for 𝑘$% is 9.0	 × 10( M-1s-1 and the lower bound is 7.0	 × 10) M-297 

1s-1. Based on these values, it is reasonable to expect that D-serine binds to GluN2A 298 

and GluN1 at similar rates. For comparison, the association rate constants computed for 299 

glutamate binding to GluN2A with this method range from 4.9	 × 10( M-1s-1 to 1.4	 × 10* 300 

M-1s-1. Similar ranges of D-serine binding rate constants for GluN2A and GluN1 support 301 

our data indicating a guided-diffusion mechanism. However, this definition of the 302 

association rate constant does not capture the molecular details that produce this bulk 303 

behavior. 304 

For agonist binding mechanisms dominated by guided diffusion, we can monitor 305 

how much time the agonist spends (1) in bulk solvent, (2) associated with the LBDs, 306 

and (3) docked in the binding cleft (interacting with the conserved arginines Arg-523 for 307 

GluN1 or Arg-518 for GluN2A). Transitions between these states can be represented by 308 

the following three-step process: 309 

 310 

𝑃 + 𝐿	 ⇌ 𝑃𝐿+,,$- ⇌ 𝑃𝐿.$-/0.	. 311 

 312 

Here, the 𝑃𝐿+,,$- state either results in successful binding (represented by pathways) or 313 

nonspecific interactions resulting in dissociation. From the clusters of residues that we 314 

identified in our pathway similarity analysis, we determined to what extent a particular 315 

residue is critical for guiding the agonist into the binding site using a conditional 316 

probability-based framework (Datasets S9, S10). For GluN2A, given that a binding 317 

event results in successful agonist docking, residues Asp-515, Glu-517, Arg-692, Asn-318 
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687, Lys-487, Lys-484, and Ser-689, Lys-488, Ser-511, and Glu-413 are contacted 319 

most frequently across all datasets. Given successful D-serine binding, contacts with 320 

GluN1 residues Lys-496, Lys-495, Trp-498, Arg-489, and Glu-497 occur in the greatest 321 

number of pathways. Slightly less agreement in crucial GluN1 binding residues across 322 

datasets further supports a more diffusive/random binding mechanism for D-serine 323 

binding to GluN1. 324 

 325 

Role of N-linked glycans in D-serine binding pathways 326 

In addition to identifying residues that are responsible for agonist specificity in 327 

binding pathways, we also explored the effect of the N-linked Man5GlcNAc2 (Man5) 328 

glycans (Fig. S6A) on the residues involved in agonist binding pathways. Previous 329 

electrophysiological studies have indicated that glycans function as LBD potentiators 330 

[29]. In our simulations, we observed that near-pocket glycans appear to “reach” into the 331 

binding pocket. This reaching behavior was observed in previous simulations of the 332 

glycosylated NMDAR LBDs in which the glycan forms a “cage” around the binding 333 

pocket by forming interactions with the LBD D2 lobe and is believed to be associated 334 

with NMDAR potentiation by glycans [29]. For GluN2A, there are two glycans that are 335 

near the binding pocket: N443-Man5 and N444-Man5, both of which can interact with 336 

the LBD D2 lobe (Fig. 6A). For GluN1, there is a single glycan N491-Man5 that adopts 337 

this caged conformation (Fig. 6B). To quantify this behavior in our simulations, we 338 

developed a general order parameter to describe the relationship between the glycan 339 

and the LBD D2 lobe that measured the minimum distance between any glycan heavy 340 

atom and any residue on the LBD D2 lobe. From this order parameter, we computed 341 
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glycan PMFs along the glycan-D2 order parameter for each near-pocket glycan (Fig. 342 

6C-E). 343 

We compared our glycosylated trajectories with an additional 30 𝜇𝑠 of simulations 344 

of the non-glycosylated GluN1/GluN2A LBD dimer to identify ways in which the 345 

presence of glycans influence binding pathways. Our data indicate that residues on the 346 

𝜉# face are contacted more frequently in non-glycosylated simulations, although these 347 

residues are important for D-serine binding with and without glycans (Dataset S11). 348 

GluN2A residues Asp-515 and Glu-517, are contacted more frequently in glycosylated 349 

systems. The frequency with which D-serine interacts with GluN1 residue Arg-489 in 350 

pathways is greater for glycosylated pathways than those without glycans. On average, 351 

glycan-mediated D-serine interactions result in slightly longer pathways, suggesting that 352 

the presence of glycans slows down the binding process, setting up small kinetic 353 

“traps”.  354 

When we analyzed glycan behavior in our binding pathways, we found that very 355 

few D-serine binding pathways (27% for both GluN2A and GluN1) involve contacts with 356 

glycans. While glycan-agonist interactions make up a small percentage of time spent in 357 

binding pathways (10% for GluN2A and GluN1 D-serine pathways), patterns in glycan 358 

interactions with the agonist as it binds suggest that glycans contribute to binding 359 

pathways in a consistent way. The most common glycan-mediated D-serine-LBD 360 

interactions for GluN2A involve an interaction network formed by N443-Man5 with Glu-361 

412, Lys-438 (Fig. S6B), Lys-738, Glu-413 (Fig. S6C), Tyr-730, and Ser-511 (Fig. 362 

S6D), as D-serine moves into the binding pocket. Another contact network formed by 363 

N444-Man5 with Lys-487, Asn-687 (Fig. S6E), Arg-692, Arg-695, (Fig. S6F), and Glu-364 
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413 (alongside the N443-Man5 glycan). For GluN1, the N491-Man5 glycan interacts 365 

with D-serine, trapping it in a network of interactions dominated by Arg-489 (Fig. S6G). 366 

When formed, this contact network functions as a kinetic trap that results in longer 367 

binding pathways. Additionally, the N440-Man5 glycan also contacts D-serine as it 368 

interacts with Arg-489 and Glu-497 (Fig S6H). It is interesting to note that, unlike the 369 

glycan-mediated contacts identified for GluN2A, glycan-mediated agonist contacts for 370 

GluN1 do not involve D2 lobe residues. These glycan-mediated interactions illustrate 371 

how glycan conformation can play a functional role through involvement with agonist 372 

binding and LBD conformational dynamics. However, since glycan-mediated 373 

interactions are so infrequent, the potentiating effect of glycan-D2 interactions 374 

dominates functionally. 375 

We quantified the dependence of glycan conformation on agonist binding and 376 

LBD conformation by comparing glycan PMFs for different LBD conformations. For 377 

GluN2A, we found that glycan-D2 interactions occur more readily when the LBD is 378 

closed (calculated using a 1-dimensional projection of our LBD order parameter 𝜉"#, see 379 

Methods). This effect was more dramatic for N443-Man5 than for N444-Man5 (Fig. 380 

S7A,B). A similar relationship was determined for the N491-Man5 glycan of GluN1 (Fig. 381 

S7C); this is consistent with previous simulations [29] that suggest that N491-Man5 acts 382 

as a latch that stabilizes LBD closure. No significant relationship between glycan-D2 383 

distance and the presence of an agonist (D-serine, glutamate, or both) in the binding 384 

site was observed.  385 

 386 

DISCUSSION 387 
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Here, we characterized the guided-diffusion mechanism that drives D-serine 388 

binding to NMDAR LBDs. Instead of binding solely to the GluN1 LBD, we observed 389 

substantial D-serine binding to the GluN2A LBD, a subunit widely accepted to bind to 390 

the neurotransmitter glutamate. We showed by electrophysiology that D-serine at high 391 

concentration can compete against glutamate at GluN2A, which in turn inhibits the 392 

channel activity. In the context of synaptic transmission, our finding implies that D-serine 393 

could play a role in modulating the strength of synaptic transmission. The synaptic 394 

concentration of glutamate ranges from nanomolar concentrations [30] to >1 mM 395 

following an action potential [31]. The synaptic concentration of D-serine is unclear, 396 

however; the extracellular concentration of D-serine ranges from 5 to 7 µM [32] [33]. 397 

Possible routes for D-serine to enter the synapse include vesicular release by astroglia 398 

[34] and transport by Asc-1 [35]. 399 

Free energy landscapes computed for GluN2A bound to glutamate [16], D-400 

serine, and glycine all indicate stabilization of the closed LBD bi-lobe, which is the 401 

conformational state required for receptor activation. Agonists that can interact 402 

extensively with bottom-lobe residues stabilize this state. Since glutamate does this to 403 

the greatest extent, it is likely that D-serine does not generate sufficient force to fully 404 

gate the ion channel. Subtle differences in the thermodynamics of agonist stabilization 405 

suggest that kinetics further distinguish individual agonists. While glutamate has a 406 

slightly higher association rate than D-serine, differences between association rates 407 

across agonists and subunits is not drastic. We hypothesize that, in order for agonist 408 

binding to result in NMDAR activation, the agonist must remain in the binding site long 409 
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enough to induce closure – we found that this is largely dependent upon the number 410 

and strength of stable contacts the agonist forms with both D1 and D2 lobe residues. 411 

We determined the role of N-linked glycans in agonist binding and stabilization. 412 

Glycans impact agonist binding kinetics less by direct glycan-agonist interactions and 413 

more by stabilizing the closed LBD through glycan-D2 interactions. This bias toward 414 

LBD closure would increase the agonist residence time and potentiate NMDAR activity.  415 

Our adaptation of pathway similarity analysis allowed us to identify clusters of 416 

residues critical for binding agonists. This also allowed us to determine that the 417 

presence of pathways depends on the degree of LBD closure. We also observed that D-418 

serine binds to GluN2A using similar pathways and residues as glutamate, while the 419 

locations of key D-serine cluster residues for GluN1 are different. Applied more broadly 420 

to drug-binding simulations, this method of analyzing binding pathways provides a 421 

useful framework for gleaning biological insight from noisy and diffusive binding data. 422 

 423 

METHODS 424 

Equilibrium Molecular Dynamics Simulations 425 

A construct of the GluN1/GluN2A dimer based on crystal structure (PDB ID: 426 

2A5T [36]) used in our previous study [18] was used as a starting model. The residue 427 

numberings are based on the Uniprot numbering for GRIN1 and GRIN2a entries. 428 

Man5GlcNAc2 (Man5) glycans were added using CHARMM-GUI Glycan Reader & 429 

Modeler [37] [38] [39] [40] to asparagine residues 440, 471, 491, and 771 of GluN1 and 430 

asparagine residues 443 and 444 of GluN2A in accordance with physiologically relevant 431 

glycosylation sites [20]. GluN2A was chosen as the GluN2 subtype both to facilitate 432 
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comparison with previous simulation studies and because recent evidence has 433 

suggested that the GluN2A subtype is the primary subtype at synapses, where D-serine 434 

is the dominant co-agonist [4].  435 

All systems were solvated in a 140 Å × 110 Å × 110 Å orthorhombic water box 436 

with ~150 mM NaCl using CHARMM [41]. All systems were electrically neutral. All 437 

simulations in this work were performed using the CHARMM36 forcefield [42] and 438 

TIP3P water model [43]. The systems were pre-equilibrated using NAMD 2.13 [44] first 439 

using NVT conditions and gradually relaxing backbone-sidechain restraints and then for 440 

15 ns using NPT conditions at a pressure of 1 atm and a temperature of 310 K. The pre-441 

equilibrated systems were then simulated on Anton 2 provided by the Pittsburgh 442 

Supercomputer Center [45]. A weak center-of-mass restraint of 0.5 kcal mol-1 Å-1 was 443 

applied to GluN2A N, CA, and C atoms of residues 461-463. 507-509, and 523-525 to 444 

prevent large protein translational motion. Simulations on Anton 2 were carried out at 445 

310 K with the NPT ensemble and with the weak center-of-mass restraint of 0.3 kcal 446 

mol-1 Å-1 in accordance with previous simulations [19]. Additional simulation details are 447 

provided in Dataset S1.  448 

 449 

Identification of binding pathways 450 

Identifying frames in which the ligand is bound in the receptor’s binding pocket 451 

provides key information about the ligand’s binding affinity and the bound ensemble; 452 

however, it fails to account for the process by which the ligand enters and leaves the 453 

binding pocket. In guided diffusion, the residues that guide the ligand into the binding 454 

pocket are critical for promoting the bound state. While imposing a simple distance 455 
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cutoff is sufficient for identifying the fully bound state, identifying the pathways by which 456 

the ligand binds is less trivial. Here, we introduce a “binding chains” paradigm for 457 

defining the ligand’s path along the protein. These binding chains are defined from 458 

ligand association to dissociation. An association begins when any polar ligand heavy 459 

atom comes within 6 Å of any protein polar heavy atom. The ligand is considered 460 

associated until is diffuses beyond 10 Å from the protein. The resulting chains are then 461 

filtered by contact with the selected “docking” residue(s). Here, we use the conserved 462 

arginine residue for each subunit (Arg-523 for GluN1 and Arg-518 for GluN2A) as the 463 

essential docking residue. These chains are filtered then split into their “binding” and 464 

“unbinding” components by a more specific docking criterion. In our case, we require 465 

that the NH1 and NH2 atoms of the conserved arginine be within 4 Å of the ligand 466 

carboxyl in accordance with the following scheme: 467 

 468 

Condition 1: Arg NH1 is within 4 Å of the ligand OT1 AND Arg NH2 is within 4 Å of the 469 

ligand OT2 470 

OR 471 

Condition 2: Arg NH2 is within 4 Å of the ligand OT1 AND Arg NH1 is within 4 Å of the 472 

ligand OT2 473 

 474 

This scheme accounts for both the crystallographic binding pose (Condition 2) and a 475 

“flipped” ligand orientation (Condition 1). Chains that fail to meet these criteria are 476 

discarded. Since binding and unbinding pathways can be considered reversible, we 477 

combine them in our analysis, reversing the order of the unbinding pathways so that all 478 
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pathways have the same directionality. This results in a series of binding pathways we 479 

can characterize both geometrically and in terms of key residue interactions. 480 

 481 

Pathway Similarity Analysis and Clustering 482 

Pathway Similarity Analysis (PSA) was applied to each binding pathway by 483 

monitoring the agonist position as it binds. PSA involves computing a pairwise distance 484 

metric between paths that serves as a measure of geometric similarity [21]. The 485 

weighted average Hausdorff distance was selected as the path metric because it gave 486 

the most geospatially distinct clusters of agonist density around the protein. This 487 

weighted average Hausdorff distance was computed for all pairs of paths using the 488 

following formula as described in previous work [21] and implemented in the 489 

MDAnalysis python package [46][47]. The weighted-average Hausdorff distance 490 

between two paths 𝐴 and 𝐵 can be expressed as: 491 

 492 

𝛿1
2!"#(𝐴, 𝐵) = "

#
D "|4| 𝛿1

,56(𝐴|𝐵) +	 "|7| 𝛿1
,56(𝐵|𝐴)F, 493 

 494 

where |𝐴| and |𝐵| are the number of frames in paths 𝐴 and 𝐵, respectively, and 𝛿1,56 is 495 

the one-sided summed Hausdorff distance from path 𝐴 to path 𝐵,  496 

 497 

𝛿1,56(𝐴|𝐵) = 	∑ min
&∈7

𝑑(𝑎, 𝑏) 	9∈4 . 498 

 499 

Here, 𝑑(𝑎, 𝑏) represents the distance between point 𝑎 of path 𝐴 and point 𝑏 in path 𝐵. 500 

For our system, each point 𝑎 is the agonist 𝐶! position for a single frame in path 𝐴, and 501 
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each point 𝑏 is the agonist 𝐶! position for a single frame in path 𝐵. Therefore, 𝑑(𝑎, 𝑏) 502 

represents the Euclidean distance between the agonist 𝐶! ’s of points in paths 𝐴 and 𝐵. 503 

𝛿1,56(𝐴|𝐵) is then computed by summing the shortest distance from each point 𝑎 in path 504 

𝐴 to any point 𝑏 of path 𝐵 over all points in path 𝐴. Each of the normalized one-sided 505 

sums 𝛿1,56(𝐴|𝐵) and 𝛿1,56(𝐵|𝐴) are then averaged with equal weights. This does not 506 

give more weight to pathways with more frames, thus removing the temporal 507 

component from the analysis. Temporal patterns in binding pathways are analyzed for 508 

the spatial clusters separately.  509 

These path pairs were then clustered using hierarchical clustering according to 510 

their weighted-average Hausdorff distances with the Ward (minimum variance) linkage 511 

criterion as described in previous work [21] and implemented in SciPy [48]. The 512 

complete linkage criterion also gave reasonable clustering. This agglomerative metric 513 

assigns clusters by successively combining clusters that minimize the sum of squared 514 

errors between them. Hierarchical clustering presents an advantage here because it 515 

does not assume the number of clusters a priori. Rather, final clusters were selected 516 

using the Ward distances showed in the dendrograms (see supplemental) as a guide 517 

and by overlaying the ligand occupancy density on the protein to ensure that each 518 

cluster represents a distinct spatial region of the protein.   519 

 520 

Quantifying residue similarity with the overlap coefficient (Szymkiewicz–Simpson 521 

coefficient) 522 

 To quantify the similarity between two sets of residues 𝐴 and 𝐵, the overlap 523 

coefficient was computed by dividing the number of overlapping residues between 𝐴 524 
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and 𝐵 by the size of the smaller set of residues and is illustrated in the equation below 525 

[22]: 526 

 527 

𝑂𝐶(𝐴, 𝐵) = |4∩7|
6;%	(|4|,|7|)

 . 528 

 529 

Scaling the size of the intersection by the smallest set size normalizes the overlap and 530 

accounts for the large range in pathway lengths. If 𝐴 is a subset of 𝐵, then 𝑂𝐶(𝐴, 𝐵) = 1. 531 

This scaling method is appropriate, since these pathways are stochastic and involve a 532 

mixture of random residue contacts and “guiding” residue contacts critical for binding. 533 

This would be problematic for the more common Jaccard similarity metric, which scales 534 

the intersection by the total size of both sets, where many random contacts increase 535 

pathway length and dilute the value of the similarity metric.  536 

The overlap coefficient was used to quantify the residue overlap between pairs of 537 

pathways in each cluster to validate the spatial clustering and determine whether 538 

pathways within clusters involve similar residue contacts. In addition, this metric was 539 

used to quantify the similarity between residues involved in D-serine and glutamate 540 

binding.  541 

 542 

Umbrella Sampling  543 

All-atom models were constructed from monomeric GluN1 (PDB ID: 1PB8 [17]) 544 

and GluN2A (based on PDB ID: 2A5S [36]). Since no crystal structure of D-serine 545 

bound GluN2A exists, LBDs were constructed using MODELLER [49] to fill in missing 546 

residues, and sidechain remodeling was performed on those residues using SCWRL4 547 
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[50]. D-serine and glycine were modelled into the GluN2A LBD by superimposing the 548 

conserved arginine of the 2A5S glutamate-bound crystal structure (Arg-518) with the 549 

conserved arginine of the D-serine (1PB8) or glycine (1PB7) bound crystal structure, 550 

since there exists no crystal structure of GluN2A bound to these agonists. Bound 551 

crystallographic waters in the GluN2A (2A5S) and GluN1 (1PB8) structures were 552 

retained in the simulations. 553 

To generate windows for umbrella sampling, targeted molecular dynamics 554 

simulations were performed by “opening” the closed LBD along the order parameter 555 

(𝜉", 𝜉#) [16]. Specifically, 𝜉" and 𝜉# are defined as the center of mass distance between 556 

the backbone atoms of the following residue selections: 𝜉" is defined by residues 484-557 

485 and 688-689 for GluN1 and residues 485-486 and 689-690 for GluN2A. 𝜉# is 558 

defined by residues 405-407 and 714-715 for GluN1 and 413-414 and 713-714 for 559 

GluN2A. 205 simulation windows were selected at 1 Å × 1 Å increments. Each window 560 

was solvated with a solvent box with dimensions 94 Å × 72 Å × 68 Å and 150 mM 561 

NaCl.  562 

Umbrella sampling simulations were performed by applying a bias of 2 kcal mol-1 563 

to the (𝜉", 𝜉#) order parameter to each of the 205 simulation windows. Equilibration was 564 

performed in an NVT ensemble by gradually relaxing backbone and sidechain 565 

restraints, and production simulations were carried out in an NPT ensemble at 300 K 566 

and 1 atm for best comparison with previously computed NMDAR LBD monomers [16].  567 

To ensure that the agonist does not diffuse out of the binding site, a restraint of 2 kcal 568 

mol-1 Å-1 between the carboxyl group of the agonist and the guanidinium group of the 569 

conserved arginine (Arg-523 for GluN1 and Arg-518 for GluN2A) was applied if the 570 
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distance between these groups exceeded 3.2 Å. Previous work has indicated that these 571 

restraints do not affect the results but ensures that only the bound population is 572 

sampled [16]. A weak center-of-mass restraint of 0.5 kcal mol-1 Å-1 was used applied to 573 

the N, CA, and C atoms of residues 461-463, 507-509, and 523-525 for GluN2A and 574 

residues 460-462, 512-514, and 528-530 for GluN1 to prevent translational protein 575 

motion. Biased trajectories were mathematically unbiased using the weighted histogram 576 

analysis method (WHAM) [51] [52]. 5 ns of production sampling for each window were 577 

used to compute the potential of mean force (PMF) for each simulation agonist.  578 

Standard deviations of all PMFs were computed by block averaging with ten blocks of 579 

trajectory for each window [53]. 580 

 581 

Computing energetics of glycan conformational dynamics 582 

 To quantify glycan conformational dynamics, a glycan-D2 order parameter was 583 

defined as the minimum distance between the heavy atoms of the glycans near the 584 

binding cleft (N491-Man5 for GluN1 and N443-Man5 and N444-Man5 for GluN2A) and 585 

the bottom lobe 𝐶! atoms (residues 537-544 and 663-754 for GluN1 and residues 533-586 

539 and 661-757 for GluN2A). One relative PMF was computed for each of the three 587 

near-pocket glycans using a window size of 0.2 Å using all glycosylated datasets. Error 588 

for each PMF was quantified using the standard deviation computed by block averaging 589 

with five blocks (Fig. S5A-D). Blocks for which the window is not sampled were omitted 590 

from the error calculation; this was only necessary for high glycan distances >20 Å. A 591 

1D projection of the (𝜉", 𝜉#) order parameter, 𝜉"#, which averages 𝜉" and 𝜉#, was used as 592 

a single measure of LBD closure for computing glycan PMFs  [16][54][55]. 593 
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 594 

Electrophysiology 595 

cRNA encoding GluN1-4b and GluN2A was injected into defolliculated Xenopus 596 

laevis oocytes (0.2–0.5 ng total cRNA per oocyte). The oocytes were incubated in 597 

recovery medium (50% L-15 medium (Hyclone) buffered by 15mM Na-HEPES at a final 598 

pH of 7.4), supplemented with 100 μg mL−1 streptomycin, and 100 U mL−1 penicillin at 599 

18°C. Two electrode voltage clamp (TEVC; Axoclamp-2B) recording was performed 600 

between 24 to 48 hours after injection using an extracellular solution containing 5 mM 601 

HEPES, 100 mM NaCl, 0.3 mM BaCl2, 10mM Tricine at final pH 7.4 (adjusted with 602 

KOH). The current was measured using agarose-tipped microelectrode (0.4–0.9 MΩ) at 603 

the holding potential of −60 mV. Maximal response currents were evoked by 50 μM of 604 

D-serine and 100 μM of L-glutamate. Data was acquired by the program PatchMaster 605 

(HEKA) and analyzed by Origin 8 (OriginLab Corp). 606 
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 860 

 861 
Fig. 1. Identifying D-serine binding pathways for GluN2A using pathway similarity analysis (PSA). 862 
(A) Overview of the PSA workflow for quantifying similarity between D-serine binding pathways. (B) 2-863 
dimensional order parameter (𝜉$, 𝜉%) that describes the degree of GluN2A LBD closure. For each of the 864 
above (C-F), the left image shows D-serine density, while the right image shows the residues most 865 
frequently contacted by D-serine as it enters/leaves the binding site for each cluster. Labeled residues 866 
demonstrate ≥ 0.2 fractional occurrence defined relative to the most contacted residue in each cluster, 867 
but all residues with ≥ 0.1 fractional occurrence are shown in stick representation (see Dataset S5). (C) 868 
Cluster 1 involves residues of the 𝜉% face of the LBD. (D) Cluster 2 involves residues of the 𝜉$ face of the 869 
D1 lobe. (E) In Cluster 3, D-serine zigzags between D1 and D2 lobe residues of the 𝜉$ face. (F) Cluster 4 870 
primarily involves D2 lobe residues on the 𝜉$ face.  871 
 872 
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 873 
 874 
 875 
Fig. 2. Identifying D-serine binding pathways for GluN1 using pathway similarity analysis (PSA). 876 
(A) 2-dimensional order parameter (𝜉$, 𝜉%) that describes the degree of GluN1 LBD closure. For each of 877 
the above (B-E), the left image shows D-serine density, while the right image shows the residues most 878 
frequently contacted by D-serine as it enters/leaves the binding site for each cluster. Labeled residues 879 
demonstrate ≥ 0.2 fractional occurrence defined relative to the most contacted residue in each cluster, 880 
but all residues with ≥ 0.1 fractional occurrence are shown in stick representation (see Dataset S6). (B) 881 
In Cluster 1, D-Serine contacts residues on the 𝜉% face of the LBD. (C) Cluster 2 involves interactions with 882 
both D1 and D2 residues of the 𝜉$ face. (D) Cluster 3 involves contacts with residues at the top of the D1 883 
lobe on the 𝜉$ face. (E) Cluster 4 is defined by interactions with D1 loop 2 that reaches into solution.  884 

A 
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 885 

 
 
Fig. 3. Conformational free energy 
landscapes for GluN2A and GluN1 LBDs. 
Umbrella sampling molecular dynamics 
simulations were used to compute the 
potential of mean force (PMF) along the 
(𝜉$, 𝜉%) order parameter for (A) D-serine 
bound to GluN2A, (B) glycine bound to 
GluN2A, (C) apo GluN2A previously 
computed in [16], (D) glutamate bound to 
GluN2A in its crystallographic pose 
previously computed in [16], (E) glutamate 
bound to GluN2A in the inverted pose 
identified in [18], (F) D-serine bound to 
GluN1, (G) glycine bound to GluN1 
previously computed in [16], (H) apo GluN1 
previously computed in [16]. 
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 886 
 887 
Fig. 4. D-serine completes glutamate binding as an antagonist at high concentration. (A) 888 
Representative Two-electrode voltage clamp (TEVC) recording on GluN1/GluN2A NMDARs expressing 889 
oocytes. The trace showed GluN1 agonist D-serine inhibited the NMDAR current at a high concentration. 890 
6 𝜇M of glutamate was present throughout the recording. (B) Glutamate-concentration dependent dose-891 
response curves of high-concentration D-serine inhibition. (C) D-serine-concentration dependent dose-892 
response curves of glutamate potentiation (left). Schild plot analysis of D-serine competition on glutamate 893 
(right). The calculated slope of the Schild plot was 1.11±0.13 and the intercept was 2.38±0.26. DR stands 894 
for dose ratio. All the dose-response experiments were repeated at least four times.  895 

896 
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 897 
 898 
Fig. 5. Comparison of D-serine and glutamate binding to GluN2A. (A) Overlay of D-serine (teal) and 899 
glutamate (gray) density. (B) Residues that distinguish D-serine (teal) from glutamate (gray) binding 900 
pathways (see Dataset S7).  901 
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 915 
 916 
Fig. 6. Conformational dynamics of near-pocket glycans. N-linked Man5GlcNAc2 (Man5) glycans (A) 917 
N443-Man5 and N444-Man5 for GluN2A and (B) N491-Man5 for GluN1. Glycan conformational energy 918 
landscapes for (C) GluN2A N443-Man5, (D) GluN2A N444-Man5, and (E) GluN1 N491-Man5 were 919 
obtained by computing the minimum distance between all glycan heavy atoms and D2 lobe residues and 920 
binning the distribution from all glycosylated simulation systems. Shaded error regions were computed 921 
using a block-averaging scheme described in Methods.  922 
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