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INTRODUCTION
KRAS is the most mutated oncogene in human cancer 

(1). It acts as a signaling switch that, when bound to GTP, 
orchestrates a program of cell proliferation and survival. 
Until recently, efforts to target KRAS have been unsuccess-
ful due to its small binding pocket, high affinity for GTP, 

and redundant mechanisms of posttranslational processing. 
The development of allele-specific KRASG12C inhibitors that 
trap KRAS in the inactive, GDP-bound state (2, 3) led to a 
paradigm change, with clinical responses in 30% to 50% of 
patients with non–small cell lung cancer (NSCLC) harboring 
KRASG12C mutations (4, 5).
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gable target in colorectal cancer. However, secondary resistance limits its efficacy. 
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of putative resistance alterations expected primarily to prevent inhibition of ERK signaling by drugs at 
progression. Serial analysis of patient blood samples on treatment demonstrates that most of these 
alterations are detected at a low frequency except for KRASG12C amplification, a recurrent resistance 
mechanism that rises in step with clinical progression. Upon drug withdrawal, resistant cells with 
KRASG12C amplification undergo oncogene-induced senescence, and progressing patients experience 
a rapid fall in levels of this alteration in circulating DNA. In this new state, drug resumption is ineffec-
tive as mTOR signaling is elevated. However, our work exposes a potential therapeutic vulnerability, 
whereby therapies that target the senescence response may overcome acquired resistance.

SIGNIFICANCE: Clinical resistance to KRASG12C–EGFR inhibition primarily prevents suppression of ERK 
signaling. Most resistance mechanisms are subclonal, whereas KRASG12C amplification rises over time 
to drive a higher portion of resistance. This recurrent resistance mechanism leads to oncogene-induced 
senescence upon drug withdrawal and creates a potential vulnerability to senolytic approaches.
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These agents are not as effective in colorectal cancers 
with KRASG12C mutation. We have previously shown that 
the activity of these drugs in KRASG12C colorectal cancer 
is limited because activation of epidermal growth factor 
receptor (EGFR) reactivates ERK signaling and consequently 
combinatorial KRASG12C and EGFR inhibition more effec-
tively targets KRASG12C colorectal cancer (6). Early trial data 
provide clinical support for this observation: The response 
rate for sotorasib was 7% to 10% in colorectal cancer (7), 
and, in the first report of sotorasib plus the EGFR antibody 
panitumumab, the response rate was 27% (8). For adagrasib 
monotherapy, it was ∼20%, and, for adagrasib with the EGFR 
antibody cetuximab, it increased to ∼40% (9). Based on these 
data, combination treatments based on KRASG12C inhibitors 
and EGFR antibodies are being evaluated in registrational, 
phase III trials.

Nonetheless, patients treated with these agents eventually 
acquire resistance, and the response to single-agent or com-
bination treatment is brief. Several studies have characterized 
resistance to KRASG12C monotherapy (10–12). Remarkably, 
these alterations are highly heterogeneous, including KRAS, 
BRAF, or MEK mutations, as well as gene amplifications 
and fusions, and circulating tumor DNA (ctDNA) analy-
sis typically identifies multiple resistance alterations in the 
same patient. Here, we sought to determine the landscape 
of genetic mechanisms of resistance to EGFR–KRASG12C 
inhibition in gastrointestinal cancer and to identify novel 
approaches to potentially overcome resistance.

RESULTS
Mechanisms of Resistance to Combined KRASG12C 
and EGFR Inhibition

To identify mechanisms of resistance to the combination 
of KRASG12C and EGFR inhibitors, we grew the colorectal can-
cer cell lines C106 and RW7213, both of which are sensitive 
to this treatment (6), in drugs until the emergence of second-
ary resistance (Fig.  1A). Treatment with 3 μmol/L sotorasib 
and 50 μg/mL cetuximab led to massive cell death of both 
cell lines with few viable cells. Cells were therefore subjected 
to increasing doses of sotorasib (from 0.1 to 3 μmol/L) with 
50 μg/mL cetuximab to generate resistance (Supplementary 
Fig. S1A). Resistant sublines grew well in drugs after a period 
of 4 months for C106 cells and 2 months for RW7213 cells 
(Supplementary Fig. S1A–S1C).

Both resistant sublines expressed higher RAS-GTP levels 
than parental cells, and drug treatment led to incomplete 
inhibition of RAS-GTP (Supplementary Fig.  S1D and S1E). 
Drug treatment of C106-resistant cells failed to suppress 
activity of downstream effectors in the RAS/ERK pathway, 
whereas RW7213 resistant cells experienced a reduction in 
pathway activity but continued to have high levels of p-MEK 
and p-ERK due to elevated baseline pathway activation. 
Targeted sequencing of the resistant sublines using MSK-
IMPACT (13) identified acquired clonal NRASG12D mutation 
and subclonal APCQ879* nonsense mutation in C106-resistant 
cells and amplification of KRASG12C in RW7213 resistant 
cells, which have a homozygous (through loss of heterozygo-
sity) and clonal KRASG12C mutation (Fig. 1B; Supplementary 
Figs. S2A–S2E and S3A and S3B). Single-cell sequencing 

of the C106-resistant subline indicated that the NRASG12D 
mutation occurred in the same cells bearing the KRASG12C 
alteration (Fig.  1B), with an acquired gain of the mutant 
NRAS allele occurring in all cells (Fig.  1B). In addition, the 
subclonal APCQ879* nonsense mutation was found to be a late 
event in tumor evolution (Fig. 1B; Supplementary Figs. S2A–
S2E). Copy-number analysis of the resistant RW7213 cells 
revealed the presence of more than 20 copies of KRAS, further 
validated by fluorescence in situ hybridization (FISH; Fig. 1C; 
Supplementary Fig.  S3A and S3B). In parallel, a KRASG12C 
mutant colorectal cancer patient-derived xenograft (PDX) 
model (CLR113) that was initially sensitive to sotorasib and 
cetuximab combination treatment (6) developed acquired 
resistance after about 10 months that was associated with 
amplification of KRASG12C [variant allelic frequency (VAF) 
1.00, cancer cell fraction (CCF) 100%], BRAFK601E (VAF 0.03, 
CCF 13%), and RAF1S259F (VAF 0.03, CCF 10%) acquired alter-
ations (Fig. 1D and 1E; Supplementary Fig. S4). These data 
indicate that multiple resistance mechanisms can contribute 
to the survival of KRASG12C mutant cells and that KRASG12C 
amplification may be a recurrent alteration at resistance.

To evaluate resistance mechanisms to KRASG12C inhibitor 
and anti-EGFR antibody in patients, we collected circulat-
ing free DNA (cfDNA) from 12 patients with colorectal 
cancer treated with combination treatment [adagrasib plus 
cetuximab (n  =  8) or sotorasib plus panitumumab (n  =  4)], 
who initially experienced tumor regression and then devel-
oped either radiographic (RECIST) or clinical progression 
(Fig.  1F). Patient characteristics and response information 
are summarized in Supplementary Table  S1, and baseline 
tumor tissue sequencing results are shown in Supplementary 
Fig. S5. Emergent alterations identified at resistance (Fig. 1G; 
Supplementary Table  S2) included KRASG12C amplification, 
KRAS mutations (G12A/D/F/LR/S/V, H95L/Q/R, and Y96D/
H/N), NRAS mutations (Q61K/R), downstream ERK path-
way alterations (BRAF mutations/fusions, MEK1 mutations), 
receptor tyrosine kinase (RTK) activation (MET amplifica-
tion/fusion, RET fusion, EGFR mutations), and MYC amplifi-
cation. Similar to what was previously reported for resistance 
to KRASG12C inhibitor monotherapy and in accordance with 
our preclinical models treated with sotorasib–cetuximab 
combination, multiple resistance-associated alterations were 
identified in individual patients, with the majority predicted 
to prevent inhibition of ERK signaling by drug (12).

Resistance Dynamics in ctDNA of Colorectal 
Cancer Patients on KRASG12C–EGFR Inhibition

Similar to resistance alterations to KRASG12C inhibitor 
monotherapy (10, 11), all acquired alterations were identified 
at low VAF, at one tenth or one hundredth of the frequency of 
alterations identified at baseline. To better understand clonal 
dynamics of resistance to combination treatment in colo-
rectal cancer, ctDNA was serially collected during treatment 
and sequenced about every 6 weeks in 4 patients (Fig. 2A–C; 
Supplementary Table  S3). Longitudinal analysis confirmed 
the emergence of multiple resistance alterations. Resistant 
alterations often emerged many weeks before the develop-
ment of clinical resistance and remained at a low frequency, 
largely <1% VAF, whereas the baseline alterations and tumor 
marker (CEA) rose higher during treatment. In multiple 
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Figure 1.  Mechanisms of resistance to combined KRASG12C and EGFR inhibition in colorectal cancer. A, Graph showing cell viability of parental and resistant 
(-R) C106 and RW7213 cells. Statistical analyses and P values represent Mann–Whitney test (t test); ****, P ≤ 0.0001. Cmab, cetuximab. B, Heat map of KRASG12C 
and NRASG12D alleles detected by single-cell sequencing of C106 resistant subline. CNA, copy-number alteration; VAF, variant allelic frequency; het, heterozy-
gous mutant; NA, not applicable; wt, wild-type. C, FISH staining for the KRAS gene in RW7213 parental cells and resistant subline. Manual review of parental 
RW7213 cells indicated no amplification [mean KRAS (red)/Cen12 (green) ratio of 1.1; 50 cells counted] in approximately 90% of the hybridized area and 
approximately 10% hybridized area with increased KRAS copies (mean red/green ratio of 3.5; 50 cells counted). Mean red/green ratio in the resistant subline, 
based on manual counting of 20 cells, was 6.4 with >20 KRAS (red) signals in all cells. Scale bars, 5 μm. D, Nonsynonymous somatic mutations identified by MSK-
IMPACT in the CLR-113 original and resistant PDXs. Mutation types (left) and CCF of mutations identified (right) are color coded according to the legend. SNV, 
single-nucleotide variant. (continued on next page)
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patients, once resistance alterations were first detected, each 
successive time point identified new resistance alterations 
with only modest changes in the VAF of the preexisting resist-
ant alterations (Fig. 2A–C; Supplementary Table S3). We did 

not observe a clonal sweep with the emergence of a dominant 
resistance alteration in any patient. In several patients, the 
VAF of the putative resistance alterations actually decreased 
and became undetectable despite continued treatment. 
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These included alterations expected to cause resistance to 
a KRASG12C inhibitor, such as the KRASG13D, NRASQ61K, and 
BRAFV600E mutations detected in patient 1 (Fig. 2A) and the 
BRAFV600E mutation and BRAF fusion in patient 3 (Fig. 2C). 
These data together suggest that resistant subclones do not 
grow effectively and are unable to grow out to dominate the 
population. Indeed, among the many low-frequency resist-
ance alterations detected in patients, the only putative resist-
ance genetic event that increased steadily in step with tumor 
marker response was amplification of the KRASG12C variant. 
Clinical resistance to KRASG12C and EGFR inhibition is thus 
characterized by the accumulation and loss of many low-
frequency resistance alterations, whereas KRASG12C amplifica-
tion drives a higher portion of the resistance phenotype.

Effect of Drug Withdrawal on KRASG12C-Amplified 
Resistant Cells

Intrigued by the correlation of KRASG12C amplification 
with clinical resistance, we used the RW7213 resistant cells 
harboring high-grade KRASG12C amplification to investigate 
the characteristics of this resistance mechanism. The resist-
ant cells grow as colonies in a medium containing cetuximab 

and sotorasib, maintaining the same morphology of the 
parental RW7213 cell line. We then grew these cells in the 
absence of drugs to mimic the effect of stopping treatment at 
clinical progression. We found that KRAS amplification was 
maintained in the resistant RW7213 cells with short-term 
drug withdrawal, and analysis of RAS downstream effector 
signaling in RW7213 parental, resistant, and resistant cells 
off drugs showed instead further increase of MAPK and 
Pi3K–mTOR pathway activation upon drug withdrawal in 
the resistant cells compared with the resistant cells on drugs 
and parental RW7213 cells (Fig. 3A).

Together with these effects on signaling, we also observed 
that 24 to 48 hours after drug withdrawal, RW7213 KRASG12C-
amplified cells acquired a large and flat morphology, and this 
phenotype was maintained over time (Fig. 3B). This feature 
is reminiscent of cellular senescence, a program that can 
be triggered by excessive oncogenic signaling (14). RW7213 
resistant cells in which the drug was withdrawn showed an 
increase in β-galactosidase activity and decrease in cellular 
proliferation, as measured by Ki-67 staining, both consistent 
with a senescent phenotype (Fig. 3C). Senescent cells acquire 
a new metabolic state, are protected from apoptosis, and 

Figure 3.  Drug withdrawal drives the senescent phenotype in a resistant colorectal cancer cell line with acquired KRASG12C amplification. A, Western 
blot analyses of the effects on MAPK and mTOR pathway regulation in RW7213 parental cells and in RW7213 resistant cells (RW7213-R) with and 
without cetuximab–sotorasib combination; vinculin is included as a loading control. B, Microscopy images of RW7213-R with and without cetuximab–
sotorasib combination: 10× magnification; scale bars, 100 μm. In the bottom left corner, the black square represents the area magnified in the upper-
right corner inset. The red arrows indicate senescent cells. C, Ki-67 and β-galactosidase (β-Gal) staining by immunofluorescence (time point 4 days): 
10× magnification; scale bars, 100 μm. Quantification represents the percentage of β-Gal– and Ki-67–positive cells per total number of cells; ± symbol 
indicates variation between pictures. Ten independent pictures have been quantified per condition. D, Western blot analyses of p16, p21, cleaved PARP, 
and uPAR expression upon drug withdrawal; vinculin is included as a loading control. (continued on following page)
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activate a secretory program known as the senescence-
associated secretory phenotype (SASP; refs. 15–17). In line 
with a senescent phenotype, RW7213 resistant cells taken 
off the drug combination downregulated apoptosis markers; 
increased expression of cyclin-dependent kinase inhibitors 
and uPAR, a marker of senescence (18); and accumulated 
cytokines indicative of SASP (Fig.  3D and E). By contrast, 

C106 resistant cells harboring KRASG12C and NRASG12D 
mutations did not exhibit the senescence phenotype or 
markers (Supplementary Fig. S6A and S6B), suggesting that 
this effect is specific for KRASG12C amplification. These data 
suggest that high levels of KRAS signaling, which are needed 
to drive resistance to the drugs, trigger oncogene-induced 
senescence upon drug withdrawal.
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Figure 3. (Continued) E, SASP cytokine array time-course experiment. Data shown represent duplicates. Statistical analyses and P values represent 
two-way ANOVA with Dunnett multiple comparisons test. ns (not significant) = P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001. (continued 
on next page)
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To check for similar changes in the clinical setting, we evalu-
ated activation of the MAPK and mTOR pathways in tissue 
samples from a patient who developed KRASG12C amplification 
at resistance (Fig. 1E). Several patients with colorectal cancer 
had identifiable KRASG12C amplification at resistance, and 
patient 12 underwent biopsy of a liver metastasis immediately 
before starting KRASG12C and EGFR inhibitors (pretreatment 
2021) and again at progression where tissue was collected 8 
days after the stop of KRASG12C and EGFR inhibitor drug ther-
apy and before the start of any new therapy (resistance 2022; 
Fig.  3F). Sequencing and FISH showed acquired high-level 
KRAS amplification at progression (Fig.  3F; Supplementary 
Fig. S6C). Phosphorylated ERK levels were high pretreatment 
(2+ staining involving >90% of cells) and further increased at 
progression (3+  staining involving  >90% of cells). Phospho-
rylated ribosomal protein S6 (S235) levels were low prior to 
treatment (absent staining) and elevated (2+ staining involv-
ing 70% of cells) in the progression sample collected after 8 
days of drug withdrawal (Fig.  3F). These data demonstrate 
in a patient progressing with KRASG12C amplification that, 
after drug stop, tumor tissue has elevated MAPK and mTOR 
pathway signaling. We further checked changes in p16 levels, 
which commonly associates with senescence (19), in these 
clinical samples as a marker for senescence and found rare 
staining pretreatment (2+ staining, involving 5% of cells) and 
increased p16 expression at progression (2+  staining, involv-
ing 65% of cells; Fig. 3F). These data provide the support that, 
in patients, tumors with acquired KRAS amplification may 
also undergo senescence changes upon drug withdrawal.

Exploiting the New Steady State after Drug 
Withdrawal to Overcome Resistance

Given the dramatic effect of drug withdrawal, we wondered 
if KRASG12C amplification produces a selective disadvantage 
upon drug withdrawal in the clinical setting and monitored 
ctDNA in two of the patients with colorectal cancer with 
acquired KRASG12C amplification at resistance. We followed 
the ctDNA of patients 1 and 5, who both harbored KRASG12C 

mutant colorectal cancer that had developed multiple 
resistance alterations, including KRASG12C amplification (Figs. 
1E and 2A). Comparison of ctDNA from before and about 4 
weeks after drug withdrawal in each of these patients showed 
a 2-fold reduction of the signal from KRAS amplification. By 
contrast, the relative frequency of the other preexisting altera-
tions and emergent mutations remained mostly unchanged 
(Fig.  4A and B; Supplementary Table  S3). Together, these 
data suggest that KRASG12C amplification is a mechanism of 
secondary resistance that shows fitness only in the presence of 
the selective pressure mediated by drug treatment.

Hence, we used the RW7213 resistant cells to investigate 
the effects of MAPK signaling suppression after a period 
of drug removal. After stopping cetuximab–sotorasib com-
bination treatments, we rechallenged the cells with either 
the same combination (Fig.  4C) or with the MEK inhibitor 
trametinib (Fig. 4D) as a function of time. While drug treat-
ment was able to significantly decrease MAPK signaling, the 
cells maintained higher levels of p-S6K and p-S6 that were 
not suppressed by drug treatment, suggesting a new steady 
state after drug withdrawal with higher mTOR pathway 
signaling. mTOR signaling activation has been associated 
with senescence, as it regulates several senescence-associated 
phenotypes (15). p-ERK was inhibited best after the shortest 
time off drug (2 days), and this time point was associated 
with a lower induction of p-S6 levels. However, rechallenge 
at longer time points could not suppress mTOR signaling or 
restore apoptotic potential (cleaved PARP).

These data suggest that periods of drug withdrawal and 
retreatment will be unable to reestablish drug sensitivity and 
cell death. However, we hypothesized that the senescent state 
and associated activation of mTOR-dependent signaling in these 
cells may provide a therapeutic vulnerability. Indeed, the mTOR 
inhibitor AZD8055, which has been previously proposed as a 
senolytic agent (20), was able to inhibit S6K and S6 phospho-
rylation selectively in RW7213 resistant cells in which drug was 
removed (Fig. 4E). Proliferation assays show that RW7213 cells 
off drug are more sensitive to AZD8055 than cells maintained 
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Figure 3. (Continued) F, FISH staining for KRAS (scale bar, 5 μm) and IHC for p-ERK, p-S6 (S235), and p16 in tissue samples collected from patient 
12, consisting of pretreatment liver metastasis biopsy (pretreatment 2021) and progression liver metastasis biopsy collected 8 days after stopping 
KRASG12C and EGFR inhibitors (resistance 2022). Mean KRAS (red)/Cen12 (green) ratio, based on manual counting of 50 cells from each time point, was 
1.8 for the pretreatment specimen and 13.2 for the resistance specimen. p-ERK staining was 2+ involving >90% of cells pretreatment and 3+ involv-
ing >90% of cells at progression; p-S6 staining was absent pretreatment and 2+ involving 70% of cells at progression; and p16 staining was 2+ involving 
5% of cells pretreatment and 2+ involving 65% of cells at progression. Magnification of all IHC slides is 20×; scale bars, 100 μm.
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with continuous drug exposure (Fig. 4F). To support the speci-
ficity of mTOR inhibition, we used another senolytic drug, the 
BCL2 inhibitor navitoclax (21), and this compound failed to 
block cell proliferation in the RW7213 resistant cells after drug 
withdrawal or with continuous drug exposure (Fig. 4G).

Altogether, these data suggest that there may be enhanced 
activity and selectivity of mTOR blockade in resistant 
KRASG12C cancers with KRASG12C amplification following 
drug withdrawal and nominates further exploration of a 
one–two punch approach of drug withdrawal and senolytic 
therapy as a potential strategy to overcome acquired resist-

ance to EGFR–KRASG12C combination in those tumors that 
acquired KRASG12C amplification (Fig. 4H).

DISCUSSION
Here, we report the genetic mechanisms of secondary 

resistance to concomitant EGFR and KRASG12C blockade in 
KRASG12C mutant colorectal cancer. In agreement with previ-
ous studies, our patients show subclonal heterogeneity and 
acquired mutations at low variant allele frequencies. This may 
be due in part to the evaluation of ctDNA, as this method 

Figure 4.  Effect of treatment withdrawal in resistant colorectal cancers with amplified KRASG12C. A and B, Longitudinal analysis of ctDNA in colorectal 
cancer patients who held KRAS and EGFR inhibition for approximately 4 weeks after progression. KRASG12C ctDNA VAFs are marked with squares, and KRAS 
plasma copy numbers are marked with circles. All the other variants are reported in green. AMP, amplification; GCN, gene copy number. C, Western blot 
analyses of p-ERK, p-MEK, p-S6K, p-S6, and cleaved PARP expression upon drug withdrawal and rechallenge with 50 μg/mL cetuximab and 3 μmol/L soto-
rasib combination; vinculin is included as a loading control. D, Western blot analyses of p-ERK, p-MEK, p-S6K, p-S6, and cleaved PARP expression upon drug 
withdrawal and rechallenge with 10 nmol/L trametinib (tram); vinculin is included as a loading control. E, Western blot analyses of p-S6K and p-S6 upon drug 
withdrawal or in drug-containing medium after treatment with 10 nmol/L AZD8055; vinculin is included as a loading control. (continued on next page)

A

B

–5 6 12 18 24 30 36 42 46
0

20

40

60

80

0

5

10

15

Week

%
VA

F

KRASG12C

G
C

N

KRAS AMP

Preexisting alterations (point mutations)

Acquired GCN alterations
Acquired alterations (point mutations)

On treatment

Off treatment

KRASG12C

KRAS AMP

0 12 16
0

20

40

60

80

100

0

5

10

15

%
V

A
F G

C
N

Cell lysates at D10

On Off Off 
+ 

tra
m

Combo Off 
+ 

tra
m

 o
n 

D4

Off 
+ 

tra
m

 o
n 

D7

p-ERK

p-MEK

Vinculin

p-S6 235-236

p-S6K

Cleaved PARP

C

D

p-ERK

p-MEK

Vinculin

p-S6 235-236

p-S6K

Cleaved PARP

On Off Off 
+ 

co
m

bo
 o

n 
D2

Combo Off 
+ 

co
m

bo
 o

n 
D4

Off 
+ 

co
m

bo
 o

n 
D6

Off 
+ 

co
m

bo
 o

n 
D8

Cell lysates at D10

p-S6 235-236

p-S6K

Vinculin

0 D2 D4 D8 0 D2 D4 D8

Cell lysates at D10

Drugs-on Drugs-off
AZD8055
10 nmol/L

E

p-S6 240-244

p-S6 240-244

p-S6 240-244

Preexisting alterations (point mutations)

Acquired GCN alterations

Acquired alterations (point mutations)

On treatment

Off treatment

Week

Patient #1

Patient #5

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/13/1/41/3351061/41.pdf by guest on 02 O

ctober 2023



Yaeger et al.RESEARCH BRIEF

50 | CANCER DISCOVERY JANUARY  2023	 AACRJournals.org

exposes tumor heterogeneity more than single biopsy speci-
mens (22). Sequencing data from our study and others (10–12) 
might suggest that a small fraction of cells may be sufficient to 
drive clinical resistance. This concept is in line with recent stud-
ies of metastatic behavior in which, for example, single-cell RNA 
sequencing of small-cell lung cancers identified a rare popula-
tion of stem-like cells that appears to drive metastatic outcomes 

in this cancer (23). However, our study highlights that these low 
frequency alterations appear and disappear during treatment, 
and this may support an induction of mutagenesis due to drug 
(24) and also that these lesions can be characterized by low fit-
ness and may not effectively drive resistance.

In contrast to the low frequency resistance mechanisms, 
we identify KRASG12C amplification as a recurrent resistance 
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Figure 4. (Continued) F, Short-term proliferation assay of RW7213 resistant cells (RW7213-R) in medium containing cetuximab–sotorasib (black) 
and in senescent conditions (dark red). Cells were seeded in the absence or presence of drugs for 4 days and then treated for 96 hours with increasing 
concentrations of AZD8055, and then ATP content was measured using CellTiter-Glo. Data represent the average and standard deviation of 3 biologi-
cal replicates. ns (not significant) = P > 0.05; ****, P ≤ 0.0001. G, Short-term proliferation assay of RW7213-R in medium containing cetuximab–sotorasib 
(black) and in senescent conditions (dark red). Cells were seeded in the absence or presence of drugs for 4 days and then treated for 96 hours with 
increasing concentration of navitoclax, and then ATP content was measured using CellTiter-Glo. Data represent the average and standard deviation of 3 
biological replicates. H, Proposed model: KRASG12C mutant signaling is maintained at a similar level in parental cells and in resistant cells in the presence 
of concomitant EGFR and KRASG12C blockade. Upon drug removal, KRASG12C-amplified signaling drives oncogene-induced senescence characterized by 
elevated mTOR activity, creating a new steady state that may be targeted by senolytic treatments.
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mechanism that tracks with tumor markers and response 
and engages oncogene-induced senescence when the drug is 
removed. Previous reports showed that BRAF amplification 
upon RAF inhibitor resistance can be modulated by intermittent 
treatment (25), and we show that amplified KRASG12C recedes in 
the absence of drug in patients’ plasma. Here, we describe the 
transition to a senescence state in a cell line and patient’s tumor 
and hypothesize that the drop of KRASG12C in ctDNA is due 
to the protective effect of senescence from apoptosis and con-
sequently the release of cell-free DNA. We also show in the cell 
line that the senescent phenotype that has high mTOR pathway 
activation prevents a strategy of intermittent therapy from over-
coming resistance, and that in clinical samples from a patient 
with acquired KRAS amplification, mTOR pathway signaling is 
induced after drug release and correlates with p16 induction as a 
marker of senescence. These results provide a possible mechanis-
tic explanation for the worse outcomes seen with intermittent 
RAF inhibition for melanoma treatment in the clinic (26).

Oncogene overexpression in vitro is challenging, as cells select 
against this hyperactivation over time, and we were unable to 
generate KRASG12C-overexpressing cell lines. This suggests that 
KRASG12C-amplified cells need the adaptation underlying long-
term drug exposure and acquired resistance to therapy and 
raises questions about what mechanisms regulate this adapta-
tion and how can we target them.

Our data, however, nominate a new potential approach to 
overcome acquired resistance by exploiting vulnerabilities due 
to the senescence program during periods of drug withdrawal 
to target resistant cells more broadly. In this work, we took 
advantage of the new dependency on mTOR signaling that 
develops when cells enter the senescent state because of exces-
sive oncogenic RAS signaling. Activation of mTOR-dependent 
signaling is required for maintenance of cellular senescence 
(15, 27), and drug withdrawal can be combined with senolytic 
approaches (28) to facilitate tumor clearance, as shown by us 
and others, by inhibition of mTOR signaling (20). Additional 
mechanistic insights into mTOR activation and longer-term 
drug-off kinetics will be important to examine further in future 
studies. Other potential senolytic approaches can be based on 
exploiting SASP chemokines that can recruit immune cells, 
suggesting the potential to target resistant cancer cells with 
immune-checkpoint inhibitors (29–32). Moreover, senescence-
driven expression of uPAR could also become a target for 
chimeric antigen receptor T-cell therapy (33). Further studies 
will provide important insights on how to effectively target 
KRASG12C mutant cancers that developed secondary resistance 
to KRASG12C inhibitors as single agents and in combination.

METHODS
Cell Lines and Compounds

The RW7213 cell line was cultured in RPMI (Lonza). The C106 
cell line was cultured in Iscove’s modified medium (Lonza). Each 
media was supplemented with 10% FBS, 2 mmol/L L-glutamine, 100 
U/mL penicillin, and 100 mg/mL streptomycin. Resistant deriva-
tives were grown in media containing cetuximab (50 μg/mL) and 
sotorasib (3 μmol/L). C106 cells were purchased from ECACC, and 
RW7213 was provided by Dr. Diego Arando (Group of Molecular 
Oncology, Nanomedicine Research Program, Molecular Biology 
and Biochemistry Research Center, CIBBIM Nanomedicine, Vall 
d’Hebron Hospital Research).

All the cell lines were determined to be Mycoplasma free using the 
Venor GeM Classic kit (Minerva Biolabs, last test July 2022) and 
tested by short tandem repeat profiling at 10 different loci.

Sotorasib and trametinib were purchased from SelleckChem. 
Cetuximab was purchased from the Pharmacy at Memorial Sloan 
Kettering Cancer Center (MSKCC).

Cell Viability Assay
For dose–response proliferation assays, 4,000 cells were seeded 

in 96-well culture plates in complete medium. After 24 hours, the 
indicated concentrations of sotorasib and cetuximab were added 
to cell. After 72 hours, cell viability was determined by measuring 
ATP content using CellTiter-Glo Luminescent Cell Viability assay 
(Promega). DMSO-only treated cells were used as control. Assays 
were performed with 3 replicates and were each repeated three times. 
For senolytic proliferation assays with RW7213 resistant cells, 2,000 
cells were seeded in 96-well culture plates in a medium containing 
the combination of 50 μg/mL cetuximab and 3 μmol/L sotorasib or 
medium only to induce senescence. After 96 hours, serial dilutions 
of AZD8055 or navitoclax were added to cells, and cell viability was 
determined at baseline by measuring ATP content using CellTiter-
Glo Luminescent Cell Viability assay (Promega). After 96 hours, cell 
viability was determined again by measuring ATP content using 
CellTiter-Glo Luminescent Cell Viability assay (Promega). DMSO-
only treated cells were used as control, and all the values were normal-
ized on baseline measurements. In all the experiments, plates were 
incubated at 37°C in 5% CO2.

Antibodies and Western Blotting
After seeding and drug treatments, cells were washed with cold 

PBS and lysed in RIPA buffer (Pierce, #89901) plus phosphatase and 
protease inhibitors (Thermo Scientific, #1861277, #1861278). Lysates 
were cleared by centrifugation at 14,000 rpm at 4°C and quantified 
using the BCA method (Pierce, #23224).

Samples were prepared using LDS + Reducing agent Novex buffers 
(Invitrogen, #NP0008, #NP0009). Ten to 20 μg of lysates were loaded 
and run on NuPageTM 4% to 12% Bis-Tris gels (Thermo Fisher, 
#NP0321BOX) followed by transfer to nitrocellulose membranes 
(Bio-Rad, #1620233). Membranes were incubated overnight with the 
indicated antibodies, washed, and incubated again for 45 minutes 
with anti-rabbit or anti-mouse secondary antibodies. Detection was 
performed using Immobilion Western (Millipore; #WBKLS0500).

The following primary antibodies were obtained from Cell Signal-
ing Technology and were used at a concentration of 1:1,000: anti-p16 
(#80772), anti-p21 12D1 (#2947), anti-Actin (#4970), anti–p-MEK1/2 
S217/221 (#9154), anti–p-p44/42 MAPK T202/204 (#9101), anti–total 
ERK1/2 (#9102), anti–p-AKT 473 (#4060), anti–p-S6K(#9204), anti– 
p-S6 235-236 (#4858), anti–p-S6 240–244(#5364), anti-uPAR (#12713), 
anti–p-RSK (#9944), anti–p-4E-BP1 65 (#9451), anti–p-4E-BP1 37/42 
(#2855), and anti-Vinculin (#13901S). Anti–Cyclin D1 antibody was 
purchased from Thermo Scientific (PA516777) and used at 1:1,000 
dilution. Anti-KRAS and anti-NRAS were purchased from Santa Cruz 
Biotechnology and used at 1:500; anti-p338-CRAF was purchased from 
Millipore and used at 1:1,000.

RAS-GTP Pulldown Assay
RAS-GTP pulldown assay was performed according to the manu-

facturer’s protocol (Thermo Scientific; #16117). Briefly, 500 μg of 
lysates was loaded into columns together with agarose beads and 
RAS-RBD bait and incubated for 1 hour at 4°C. After the incubation, 
beads were washed three times and resuspended in LDS + Reducing 
agent Novex buffers (Invitrogen; #NP0008, #NP0009). A fraction of 
lysates was used to measure total RAS amount. Pulldown and total 
lysates were subjected to the Western blotting procedure as described 
above. The kit provided primary antibody against pan-RAS.
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SASP Cytokine Array
Conditioned media were collected from cells that were cultured in 

the presence or absence of the drug combination. Aliquots of the media 
were analyzed with a multiplex immunoassay designed for human sam-
ples, “Human Cytokine Array/Chemokine Array 48-Plex HD48” (Eve 
Technologies). Cytokine concentration was normalized by cell count.

In Vivo Studies
The CLR113 PDX was derived from liver metastasis. Tumor tissue 

was transplanted orthotopically into NSG mice to establish the PDX 
(Institutional Review Board protocols 06-107, 14-091). Once a tumor 
became visible in the first mouse, it was transplanted and expanded 
to other animals. Tumor tissue was implanted subcutaneously in the 
flank of 4- to 6-week-old NSG female mice, and treatment of the mice 
began when the tumor reached approximately 100 mm3 in size. Mice 
were randomized (n  =   5 mice per group) to receive drug treatments 
or vehicle as control.

Sotorasib (100 mg/kg) and trametinib (3 mg/kg) were given daily 
by gavage. Cetuximab was administered 50 mg/kg twice a week by 
intraperitoneal injections.

Studies were performed in compliance with institutional guide-
lines under an Institutional Animal Care and Use Committee 
(IACUC)–approved protocol. The animals were immediately eutha-
nized as soon as the tumors reached the IACUC set limitations.

Patients
All patients were treated on KRAS inhibitor clinical trials approved 

by the MSKCC Institutional Review Board/Privacy Board [proto-
cols 19-408 (NCT03785249), 20-183 (NCT04185883)]. Collection 
of patient samples was conducted under appropriate Institutional 
Review Board/Privacy Board protocols and waivers (protocols 06-107, 
12-245, 14-019). Participating patients signed written informed con-
sent for these clinical trials and biospecimen protocols. This study 
was conducted in accordance with ethical guidelines in the Declara-
tion of Helsinki.

FISH
FISH analysis was performed on adherent cells. KRAS FISH analysis 

was performed using a 2-color KRAS/Cen12 probe mix (developed at 
MSKCC). The probe mix consisted of bacterial artificial chromosome 
clones containing the full-length KRAS gene (clones RP11-29515 
and RP11-707F18; labeled with red dUTP), and a centromeric repeat 
plasmid for chromosome 12 served as the control (clone pa12H8; 
labeled with green dUTP). Probe labeling, hybridization, washing, and 
fluorescence detection were performed according to standard proce-
dures. Slides were scanned using a Zeiss Axioplan 2i epifluorescence 
microscope equipped with a megapixel CCD camera (CV-M4+CL, JAI) 
controlled by Isis 5.5.9 imaging software (MetaSystems Group Inc.). 
The entire section was scanned through 63X or 100X to assess signal 
patterns and select representative regions for imaging. Amplification 
was defined as >10 copies of each locus.

Combined β-galactosidase and Immunofluorescence 
Staining

For immunofluorescent staining, 20,000 cells/well were seeded in 
a Nunc Lab-Tek II Chamber Slide System (Thermo Fisher, 154526). 
β-galactosidase staining was performed using ImaGeneRed C12RG 
(I-2906) according to the manufacturer’s instruction with a final 
concentration of 33 mmol/L C12RG compound for 2 hours. To stop 
β-galactosidase activity, PETG was added to the medium. Cells were 
fixed with 4% PFA for 10 minutes at RT, permeabilized using 0.02% 
Triton/PBS, and incubated with Ki-67 antibody (Abcam, ab16667) 
overnight in 0.02% Triton/5% BSA/PBS. A secondary antibody was 
added the day after, and DAPI was used to stain the nucleus. Slides 

were mounted using ProLong Gold Antifade Mountant (Thermo 
Fisher, P10144). Pictures were quantified using Fiji Software, and 10 
independent pictures have been quantified per condition.

DNA Sequencing

cfDNA Analysis.  cfDNA analysis was performed using the com-
mercially available, targeted next-generation sequencing assays 
Guardant360 CDx (Guardant Health; patients 1–5, 11) and ctDx 
FIRST (Resolution Bioscience; patients 6–10) and the MSK-ACCESS 
assay (patient 12). Guardant360 CDx is a Clinical Laboratory Improve-
ment Amendments–accredited, New York State Department of 
Health—approved cfDNA assay with analytic and clinical validation 
previously reported (34, 35). During this study, the assay included an 
assessment of 74 to 83 genes (depending on panel version ordered) 
with coverage of single-nucleotide variants (SNV) and select inser-
tions/deletions, amplifications, and fusions. Resolution Bioscience 
ctDx FIRST assay includes assessment of 113 genes and detects SNV/
indel hotspots, SNV/indel full coding sequences (CDS), amplifications, 
deletions, gene rearrangements, and gene fusions. The ctDx FIRST 
assay uses a custom bioinformatics pipeline to call variants associated 
with genomic targets. The MSK-ACCESS assay is a custom, ultradeep 
assay that includes key exons and domains of 129 genes and introns 
of 10 genes harboring recurrent breakpoints. It uses duplex unique 
molecular identifiers and dual index barcodes to minimize back-
ground sequencing errors and sample-to-sample contaminations, and 
alterations are called against matched normal DNA. The longitudinal 
ctDNA analysis in this study was performed with the Guardant360 
CDx assay.

Bulk Tissue Sequencing.  Genomic DNA was extracted from cell 
lines, frozen xenograft tumors, or formalin-fixed, paraffin-embedded 
patient tissues obtained from biopsies or resections and sequenced 
with the MSK-IMPACT next-generation sequencing assay (13). Copy-
number alterations (CNA) and loss of heterozygosity were defined 
using FACETS (36). The CCFs of somatic mutations identified in the 
cell lines and frozen xenograft tumors were computed using ABSO-
LUTE (v1.0.6; ref. 37), and a mutation was classified as clonal if its 
probability of being clonal was >50% or if the lower bound of the 95% 
confidence interval of its CCF was >90%, as previously described (38). 
For the construction of phylogenetic trees based on CNAs, major and 
minor copy numbers computed by FACETS (36) were modeled using 
transducer-based pairwise comparison functions using MEDICC 
(39), assuming a diploid state with no CNAs to root the phylogenies.

Single-Cell DNA Sequencing.  The C106 resistant cell line was sub-
jected to single-cell sequencing. The cell line was washed with PBS 
and quantified by combining 5 μL of cell suspension with an equal 
amount of Trypan Blue, loaded on chamber slides, and counted 
with the Countess automated cell counter (Invitrogen). A total of 
250,000 cells were used for the barcoding run. In brief, cells were 
encapsulated with lysis buffer (100 mmol/L Tris at pH 8.0, 0.5% 
IGEPAL, proteinase K 1.0 mg/mL) in a Tapestri platform (Mission 
Bio) and further lysed on the thermal cycler with the following 
conditions: 60 minutes at 50°C and 10 minutes at 80°C. The DNA 
from the encapsulated cell lysate was then primed and barcoded 
using a custom panel (Mission Bio), which targets hotspot variants 
of 54 oncogenes and tumor suppressor genes, for a total of 317 
amplicons. After exposure to UV light, droplet PCR reactions were 
thermocycled with the following conditions: 6 minutes at 98°C, 
10 cycles of 30 seconds at 95°C, 10 seconds at 72°C, 9 minutes at 
61°C, and 20 seconds at 72°C; 10 cycles of 30 seconds at 95°C, 10 
seconds at 72°C, 9 minutes at 48°C, and 20 seconds at 72°C; and a 
final step of 2 minutes at 72°C. PCR products were digested at 37°C 
for 60 minutes and posteriorly purified using 0.63× of SPRI beads 
(Beckman Coulter). Sample indices and Illumina adapter sequences 
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were then added via a 9-cycle PCR reaction, and a second 0.63× SPRI 
purification was then performed on the completed PCR reactions. 
Libraries were analyzed on a DNA 1000 assay chip with a Bioanalyzer 
(Agilent Technologies) and sequenced on a NextSeq 550 instrument 
(Illumina, Inc.; 150-bp, paired-end reads). Sequence data were ana-
lyzed using the proprietary software provided by Mission Bio (40). 
In brief, sequence reads were trimmed for adapter sequences using 
Cutadapt (41) and mapped to the hg19 human genome using the 
Burrows–Wheeler Aligner (BWA; ref.  42) after extracting barcode 
information. Following mapping, on-target sequences were selected 
using the standard bioinformatics tool (SAMtools; ref.  43), and 
barcode sequences were error-corrected based on a white list of 
known sequences (40). The number of cells was determined from 
barcodes based on the number of reads assigned to each barcode 
and amplicon read completeness. HaplotypeCaller (GATK v4.2.1.0; 
refs. 44, 45) was used to genotype the mutations present in all single 
cells with a joint-calling approach. The mutations identified in each 
cell were further intersected with MuTect2 (GATK v4.2.1.0; refs. 44, 
46) to obtain high-confidence mutations. Genotyping calls were fur-
ther examined and corrected according to variant allele frequency. 
Potential doublets or multiplets characterized by the existence of 
2 or more cells that are captured within a droplet and linked to 
a single barcode were identified using DoubletD (47) and further 
excluded from the analysis. For genotype clustering analysis of the 
five known variants (KRASG12C, NRASG12D, APCH1490Lfs*17, ERBB3V104M, 
and APCQ879*), cells were included when these five variants met the 
criteria of read depth (≥10) and genotyping quality (≥60; ref. 48). In 
addition, subclones with a higher allele dropout (ADO) rate com-
pared with the overall ADO rate of all cells were further excluded 
(49). For clonal architectures, fishplot was created using the fishplot 
package (50).

To estimate allele-specific CNAs, we used a pool of single, nonneo-
plastic, diploid cells identified in endometrioid endometrial tumors 
(51). Read counts of amplicons for C106 resistant and nonneoplastic 
cells were obtained from MissionBio’s pipeline and further used for 
allele-specific copy-number estimation. Amplicon read counts for 
cells with no coverage were imputed according to neighboring cells 
using MAGIC (52). Imputed read counts were normalized to total 
library size for each cell. Amplicon copy-number ratio was calculated 
by dividing C106-R read counts with the median of nonneoplastic 
counts. Because C106-R cells were considered to be diploid in the 
matched bulk sequencing data, the amplicon copy-number ratio was 
further transformed into noninteger copy number by multiplying by 
2. Finally, the gene integer copy number was obtained by taking the 
median value of the amplicon copy number for each gene and by tak-
ing the nearest integer value.

IHC
Samples were loaded into Leica Bond RX and pretreated with 

EDTA-based epitope retrieval ER2 solution (Leica, AR9640) for 20 
minutes at 95°C. The rabbit monoclonal antibodies against p-MAPK 
(Cell Signaling Technology, #4060, 0.5 μg/mL) or p-S6 (Cell Signal-
ing Technology, #4858, 0.17 μg/mL) were applied for 60 minutes 
and detected with the Polymer Refine Detection Kit (Leica, DS9800). 
Antibody Leica Bond Polymer anti-rabbit HRP was used, followed by  
Refine Detection Kit Mixed DAB Refine for 10 minutes and Refine 
Detection Kit Hematoxylin counterstaining for 20 minutes. After 
staining, sample slides were washed in water, dehydrated using 
ethanol gradient (70%, 90%, and 100%), washed three times in Histo-
Clear II (National Diagnostics, HS-202), and mounted in Permount 
(Fisher Scientific, SP15). For p16 IHC, samples were loaded into 
Leica Bond RX and pretreated with EDTA-based epitope retrieval 
ER2 solution (Leica, AR9640) for 20 minutes at 95°C. The mouse 
monoclonal antibody against p16 (Santa Cruz, sc-56330, 0.2 μg/mL) 
was applied for 60 minutes. Next Rabbit anti-mouse linker antibody 
(Leica Bond, Post Primary 1/5 dilution) and Leica Bond Polymer 

anti-rabbit HRP (Leica, DS9800) were used, followed by Refine 
Detection Kit Mixed DAB Refine for 10 minutes and Refine Detec-
tion Kit Hematoxylin counterstaining for 20 minutes. After stain-
ing, sample slides were washed in water, dehydrated using ethanol 
gradient (70%, 90%, and 100%), washed three times in HistoClear II 
(National Diagnostics, HS-202), and mounted in Permount (Fisher 
Scientific, SP15).

Data Availability
The human sequence raw data generated in this study are pro-

tected and not publicly available due to patient privacy requirements 
but are available upon reasonable request from the corresponding 
authors subject to institutional approvals. Cell lines and patient 
tumor somatic mutations, identified by MSK-IMPACT sequencing, 
are available in the cBioPortal (https://www.cbioportal.org/study/
summary?id=coadread_mskresistance_2022). All relevant cell-free 
DNA sequencing data are included within the article and supple-
mentary data files.
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