
Sketching and sampling approaches for fast
and accurate long read classification
Arun Das* and Michael C. Schatz

Abstract

Background: In modern sequencing experiments, quickly and accurately identifying
the sources of the reads is a crucial need. In metagenomics, where each read comes
from one of potentially many members of a community, it can be important to identify
the exact species the read is from. In other settings, it is important to distinguish which
reads are from the targeted sample and which are from potential contaminants. In
both cases, identification of the correct source of a read enables further investigation
of relevant reads, while minimizing wasted work. This task is particularly challenging
for long reads, which can have a substantial error rate that obscures the origins of each
read.

Results: Existing tools for the read classification problem are often alignment or index-
based, but such methods can have large time and/or space overheads. In this work, we
investigate the effectiveness of several sampling and sketching-based approaches for
read classification. In these approaches, a chosen sampling or sketching algorithm is
used to generate a reduced representation (a “screen”) of potential source genomes for
a query readset before reads are streamed in and compared against this screen. Using
a query read’s similarity to the elements of the screen, the methods predict the source
of the read. Such an approach requires limited pre-processing, stores and works with
only a subset of the input data, and is able to perform classification with a high degree
of accuracy.

Conclusions: The sampling and sketching approaches investigated include uniform
sampling, methods based on MinHash and its weighted and order variants, a mini-
mizer-based technique, and a novel clustering-based sketching approach. We demon-
strate the effectiveness of these techniques both in identifying the source microbial
genomes for reads from a metagenomic long read sequencing experiment, and in dis-
tinguishing between long reads from organisms of interest and potential contaminant
reads. We then compare these approaches to existing alignment, index and sketching-
based tools for read classification, and demonstrate how such a method is a viable
alternative for determining the source of query reads. Finally, we present a reference
implementation of these approaches at https:// github. com/ arun96/ sketc hing.

Keywords: Sketching, Sampling, Classification, MinHash, Metagenomics

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Das and Schatz BMC Bioinformatics (2022) 23:452
https://doi.org/10.1186/s12859-022-05014-0

BMC Bioinformatics

*Correspondence:
arun.das@jhu.edu

Department of Computer
Science, Johns Hopkins
University, Baltimore, MD 21218,
USA

https://github.com/arun96/sketching
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-05014-0&domain=pdf

Page 2 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

Background
Metagenomics has become an increasingly popular area of study over the past two
decades, and has enabled us to better understand the diversity, interactions and evo-
lution of microbial communities in a plethora of environments [1–3]. Metagenom-
ics has highlighted the problem of being able to quickly and accurately identify the
source of a given DNA sequence from all the genomic material in a given sample. This
is needed to classify and sort reads for further downstream analysis, and to identify
and remove potential contaminants that are present in a sample. Efficient solutions
to such problems are especially important in metagenomics, where the scale of these
microbial communities can be extremely large. Individual metagenomics datasets can
contain thousands of genomes, and large sequence repositories such as Refseq [4, 5]
contain hundreds of thousands of microbial genomes against which metagenomic
sequencing reads may need to be compared. The scale of the metagenomics sequenc-
ing experiments themselves are also massive; initiatives like the Tara Oceans Project
[6, 7], the MetaSUB Research Consortium [8] and the Twitchell Wetlands sequencing
effort have generated 7.2 trillion, 8 trillion and 2.6 trillion bases of sequencing data
respectively across thousands of samples.

The read classification problem is to identify the source genome of a given input
read, usually by comparing the read to a list of potential source genomes and choosing
the one with the highest similarity. This comparison may be done naively by compar-
ing the entirety of each read to the entirety of each genome to find the best align-
ment or through an exhaustive analysis of k-mers present. While these approaches
are highly accurate they can incur high computational overheads, which presents an
opportunity for lower overhead techniques such as sketching or sampling, especially
for long read data.

Sketching is the process of generating an approximate, compact summary of the
data (a “sketch”), which retains properties of interest and can be used as a proxy for
the original data [9]. Sampling selects a subset of the data, either systematically or
randomly, but does not guarantee the preservation of these properties. Each has
unique advantages: sketching has been shown to bound error better than sampling [9,
10], while systematic sampling (such as uniform sampling) can provide bounds on the
number of samples from specific sections of the original data included in the gener-
ated subset. Both sketching and sampling provide simple routes to greatly reduce the
size of an input set, while retaining the characteristics and features that identify the
set, thus allowing a comparable level of accuracy.

One of the most well-known sketching approaches, and the main one we employ
in our work, is MinHash, which was first presented as a method to estimate docu-
ment similarity using the similarity between their hashed sub-parts [11]. It is now
widely used in genomics, such as in Mash [12], which performs fast similarity and
distance estimation between two input sequences, and tools such as Mash Screen [13]
which uses MinHash to predict which organisms are contained in a mixture. Other
tools include MashMap [14], which blends minimizers and MinHash for fast, approx-
imate alignment of DNA sequences, and MHAP [15] to accelerate genome assem-
bly. Beyond MinHash, several related approaches have been proposed, such as bloom

Page 3 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

filters [16, 17], the HyperLogLog sketch [18, 19], and other sketching approaches to
estimate similarity, containment or cardinality [20].

Approaches to read classification

The simplest approach to read classification is to align each query read to all poten-
tial source genomes, and using the genome with the best alignment as the predicted
source. While the most accurate approach would be exhaustive sequence-to-sequence
alignment with dynamic programming, this is impractically slow, so aligners typically
use some form of seed-and-extend that start with exact matches and build out longer
regions of high similarity. Tools such as Minimap2 [21], Winnowmap [22] and Win-
nowmap2 [23] use a variation of this approach in the anchor chaining strategy, where
sets of exactly matched seeds are chained together to aid in alignment. However, even
with these optimizations, alignment still remains computationally expensive, and offers
a level of detail not always necessary in read classification.

A more sophisticated approach is index-based analysis, where a pre-computed index
is constructed with sequences that are specific or important to each genome or group of
interest. Then each query read is classified by the presence or absence of these pre-iden-
tified markers. The foremost examples of this form of read classification are the Kraken
[24, 25] set of tools, as well as tools such as CLARK [26] and Centrifuge [27]. While the
read classification process in index-based approaches can be extremely fast, there is sub-
stantial time and space overhead associated with the construction of the index.

The space, time and computational overhead associated with alignment- and index-
based read classification has motivated the need for faster, more accurate, and lower
overhead alternatives. Sketching has proven to be a viable solution instead of whole
genome comparisons as it provides the level of accuracy required for less demanding
tasks such as read classification, while substantially reducing overhead. Examples of
this are MashMap [14] and MetaMaps [28], which use approximate similarity instead of
exact alignment between regions of two sequences to perform alignment.

In this work, we critically evaluate several sketching and sampling methods that aim
to reduce the computational overhead of read classification. We apply sketching, using
MinHash- and minimizer-based approaches, as well as uniform sampling, to generate
compact, approximate representations of potential source genomes for a given readset.
We then classify reads against these representations, and demonstrate that we are able
to classify, with a high degree of accuracy, reads from a microbial community and detect
contaminants in real and simulated sequencing experiments.

Methods
In our methods, we consider several sketching and sampling approaches to generate
reduced representations of the source genomes. We refer to this collection of reduced
representations, and any auxiliary information generated alongside them, as a “screen”
of the genomes, inspired by the use of the term to describe a collection of MinHash
sketches in Mash Screen [13]. The screen acts as a proxy for the source genomes, remov-
ing the need to store or use the original sequences. In our work, a screen comprises
sets of k-mers, one for each potential source genome, with each set of k-mers being the
reduced representation for the original genome they were generated from.

Page 4 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

Query reads are then compared against this screen, with the read being classified to
the most similar reduced representation in the screen (Fig. 1). Use of just the screen
instead of the genomes themselves significantly reduces the computation necessary to
determine the source of a query read.

Determining sketch and sample size

As our goal is to reduce the computation needed to determine the source of a read,
the single biggest factor in such an approach is the size of the screen, or the fraction of
the k-mers from the genomes that are stored. The ideal screen size will minimize the
input storage requirement while being detailed enough to capture the specificity of each
genome. To do this, three main factors must be considered: (1) the size of the genomes
(in base pairs); (2) the read length and error rate of the reads we are classifying; and (3)
the amount of similarity needed to correctly match a read and its true source genome.
We refer to this as the number “target matches” or “shared hashes”, which is the number
of sketched or sampled k-mers a read and its source genome share. We formalize this
using the following formula:

This formula allows us to sketch and sample at a rate where we expect to retain the tar-
get number of k-mers per read length of sequence in the original genome, adjusted for
error. We adjust for error by computing the fraction of k-mers we expect to be affected
by error at that error rate, and oversampling or oversketching to compensate for this. The
resulting sketch or sample has, in expectation, the desired number of error-free hashes
stored from each read length of sequence in the genome, and therefore the desired num-
ber of error-free shared hashes with a read drawn from the same region. This formula
is used to determine the expected number of stored hashes in all our approaches, as
the cost of generating similar sized sketches and samples is relatively equal across the
approaches.

(1)Sketch/sample size =
#Target matches × (Genome size)

Read length × (1− Read error rate)k

Fig. 1 Overview of sketching and sampling methods. (Top) The screen is generated using the desired
sketching or sampling approach from potential input genomes, read k-mers are compared against the
screen, with the element of the screen most similar to the read predicted as its source. (Bottom Left) The
different sketching and sampling approaches used to generate a screen. (Bottom Right) Sketch clustering:
input genomes are clustered, and the generated screen is arranged to match this clustering, with reads
compared to the root and then down the tree

Page 5 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

As shown in Eq. (1), the exact size of the screen depends on the experimental param-
eters. The compression factor is equal to the targeted number of k-mer matches per read
divided by the read length, with an oversampling by a factor of 1/(1—error)k to correct
for errors. This makes these approaches best suited for lower error, longer reads, as these
require the fewest number of hashes across the genome, with shorter or higher error
reads requiring larger screens. The number of target matches also determines screen
size, but as we will see in the results section, high accuracy is possible with small screens
that are much smaller than the original data, especially for low error rate and longer
reads.

During classification, read k-mers are only compared against the stored k-mers in
the screen. This can be done efficiently using hash table-based sets: the space required
for representing the reference genomes will typically be only a few percent of the
total sequence length, and the number of hash table lookups will also be substantially
reduced. Once computed, a screen can be re-used for all future runs, amortizing the cost
of screen generation across all future uses. This approach also reduces the cost of updat-
ing the set of potential source genomes; instead of rebuilding the whole index, sketches
or samples can easily be added or removed, with the rest of the screen left unchanged.

Overview of sketching and sampling approaches

In this work, we consider several existing sketching and sampling techniques. Given
a list of input genomes, each of these techniques generates a set of selected k-mers to
act as a reduced representation of each original sequence. These sets of selected k-mers
make up the elements of the screen that all query reads are compared against to deter-
mine their source genome. In the case of more sophisticated techniques that generate
auxiliary information, such as weights or orderings of the stored k-mers, the screen will
also contain this data for use during comparisons of query reads.

In order to allow strand-neutral comparisons, all approaches will use and store canon-
ical k-mers. In our implementation, this is defined as the lexicographically smaller of the
forward and reverse complement representations of the k-mer being considered. This is
the same definition used in Mash [12] and Kraken [24].

A reference implementation of these approaches can be found at https:// github. com/
arun96/ sketc hing. A summary of the theoretical runtime and space requirements for
these approaches can be found in Table 1.

Uniform

In this approach, k-mers are uniformly extracted across the genome to reach the desired
sample size. The chief benefit of this approach is simplicity, including a guarantee on the
maximum distance between k-mers in our screen, which is generally not guaranteed for
alternative approaches. This also guarantees that each read will have a highly predictable
amount of overlap with the sampled version of its source genome, though error in these
samples can obscure the detection of this overlap. Computationally, uniform sampling is
the simplest of the approaches; For a genome of size n, a sample of size s can be gener-
ated by selecting a k-mer every n/s bases, meaning the sample can be generated in O(n)
time and stored in O(s) space.

https://github.com/arun96/sketching
https://github.com/arun96/sketching

Page 6 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

MinHash

This sketching technique enables quickly estimating the similarity between two input
sequences by computing the Jaccard coefficient of the selected k-mers extracted from
one sequence compared to those selected in a second sequence. There are several
widely used methods to generate a MinHash sketch, such as using multiple hash func-
tions or a partitioning of the space of possible k-mers. For our analysis, we use a sin-
gle hash function, and select the s smallest hash values returned, such as is used in
Mash. As hashing is simply a permutation of the input values, this effectively gener-
ates a random sampling of s k-mers to be used as the representation of the original
genome. In terms of computation, MinHash requires all k-mers to be hashed while
maintaining a list of minimal hashes, which can be done using a fixed-size max-heap.
A sketch of size s from a genome of size n requires O(n) time to hash each k-mer.
Then the s smallest hash values can then be identified using a max-heap of size s for a
total runtime of O(n log s).

Weighted MinHash (WMH)

This enhances a basic MinHash with weights for each k-mer representing a measure of
the k-mer’s “importance”, with more highly weighted k-mers indicating a greater level of
confidence in a match. Weights are typically based on the number of times that an ele-
ment occurs, or on a predetermined scoring scheme. In our reference implementation,
the weight is a measure of “uniqueness”; we compute the weight of a k-mer as the total
number of genomes in our screen minus the number of genomes the k-mer is found
in. Unique k-mers occurring in a single genome are weighted the highest as these are
strong candidates for precisely identifying the source of a read. This is especially useful
when considering reads that share the same number of k-mers with multiple potential
genomes; having a shared highly weighted k-mer with one of these potential genomes
can help determine the source with more accuracy than a random tie break. This
approach can be further extended to add a “multiplier” into weighted MinHash, where
unique k-mers have their computed weight multiplied by some multiplier M (M = 1 in
regular weighted MinHash), allowing these highly informative k-mers to play an even
larger role in determining the similarity between a read and its genome.

Table 1 Comparison of sketching and sampling approaches

The theoretical runtimes for generating and querying screens of size s generated from a genome of size n. The main three
approaches (Uniform, MinHash and Minimizer), are largely equivalent in terms of their computational cost. The augmented
approaches (Weighted, Order) incur additional overhead, with Order MinHash also involving a more complex query process
when comparing two sketches, depending on the choice of size of sublists (L). Exact counts of screen sizes and the number
of lookups performed during a classification experiment, as well as the overhead of an exhaustive approach, can be found
in Additional file 1: Table 5

Approach Index generation time Total index size K-mer
query
time

Uniform O(n) O(s) O(1)

MinHash O(n log s) O(s) O(1)

Weighted MinHash O(n log s) + O(n) O(s) + O(s) weights O(1)

Order MinHash O(n log s) O(s) + O(s) positions O(L)

Minimizer O(n) O(s) O(1)

Page 7 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

The addition of weight is computationally expensive; for a sketch of size s we must also
store O(s) weight values, which effectively doubles the space requirement compared to
the basic MinHash approach. There is also the added computation of determining the
weights. In the baseline approach mentioned above, we count the number of genomes
each k-mer in the sketch is present in; this can take O(n) time, though this can be mini-
mized by using existing optimized implementations, such as KMC3 [29] or Jellyfish [30].

Order MinHash (OMH)

As an alternative to WMH, the consideration of the order of the retained minimal
hashes can also filter out spurious matches and prioritize more likely sources for a query
sequence. First presented as a method to improve estimation of the edit distance [31],
an Order MinHash sketch stores the selected n hashes in ordered sublists of L hashes, in
the same order as they occur in the genome, with n/L lists making up the sketch. When
two sketches are compared using Order MinHash, the algorithm checks which hashes
are shared, along with if the shared hashes are in the correct order relative to each other.
This method of comparing two sketches means that two sequences that contain the same
k-mers but are rearranged versions of each other will have low similarity scores, while
non-ordered MinHash would report high similarity. This approach is also more robust
to sequencing errors than selecting a single long k-mer spanning the same distance.

As with Weighted MinHash, Order MinHash incurs additional computational over-
head. During sketch generation, we must store both the k-mer’s hash and its position
in the original sequence, in order to construct the ordered sublists. In addition, during
comparisons between two sets of hashes, the relative order of any shared hashes must
also be considered, meaning simple set comparison is no longer enough.

A practical limitation of approaches that include ordering in similarity comparison is
that they may not be completely suitable for circular genomes, where the relative order-
ing of k-mers is not possible without assuming that all compared sequences have agreed
on the same starting point within the circle. However, with an agreed starting point for
the sequence, only sub-lists of k-mers that span this starting point will be affected by
the circular nature of the original sequence. With short sub-list lengths, as is the case in
OMH, we can limit the impact of this to just a handful of elements in the sketch. This is
comparable to index-based approaches not considering the k k-mers that span the cir-
cle, or alignment approaches not extending alignments at the end of linear sequences to
account for the circle.

Minimizer

Minimizers were originally proposed as a sequence compression method [32], but have
become popular in genomics due to their ability to succinctly represent large sequences.
In the most widely used form of a windowed-minimizer, the algorithm slides a win-
dow of size x over the sequence, and the k-mer with the smallest hash in that window
is retained as the minimizer. This is repeated across the entire sequence, and the set of
unique minimizers is used as the representation of the full sequence. Unlike MinHash,
window-minimizers provide some guarantee on the distance between the retained
k-mers in our screen, as this distance is bounded above by twice the window size. For our
minimizer-based approach, the window size w is computed as the size of the genome (n)

Page 8 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

divided by the desired number of k-mers per genome (s), multiplied by a fixed multiplier
of two. The reasoning behind this multiplier is quite simple: since the distance between
minimizers is uniformly distributed between 0 and the window size w, we expect two
minimizers per w bases of sequence. This means that without the multiplier, we expect
2 s minimizers across the genome. Consequently, to find s minimizers for a genome of
size n, we simply double the window size. With this change, we expect a minimizer every
w bases, instead of every w/2, and thus a total of s minimizers across the genome. This
keeps the generated sketch and sample sizes relatively even across the approaches. Com-
putation of a minimizer sketch of a genome of size n using window size w can be done
naively in O(nw) by choosing the minimum of the w hashes in each of the O(n) windows,
or in O(n) by using an integer representation of the k-mers in the sequence.

Clustering sketches and samples

Using the approaches above, we can construct a screen containing reduced represen-
tations of each source genome. Input reads are then compared against all elements of
this screen, and their source is predicted based on their similarity to those elements.
While this greatly reduces the comparisons necessary to classify a read compared to tra-
ditional approaches, they still perform a large number of unnecessary comparisons with
genomes with low similarity with the query read. To tackle this, we propose a clustering-
based approach to limit the number of comparisons with less-relevant genomes.

To do this, the algorithm first computes a hierarchical clustering of the individual
sketches of the input genomes. This groups together similar genomes, whose selected
k-mers (and derivative reads) are more likely to be similar. The elements of the screen
are then generated as before, using the chosen sketching or sampling technique outlined
in the previous section. However, instead of then generating the screen as normal, we
can use the generated sketches or samples to populate the calculated clustering tree.
Each genome’s reduced representation appears in the leaves of the tree, and the reduced
representations are combined within internal nodes of the tree, until the root of the tree
contains all the elements of the original screen.

To limit the overhead of this approach to be comparable to those presented above, the
algorithm randomly downsamples the original elements of the screen as the tree is con-
structed from the sketches and samples. This downsampling can be done as a constant
factor or by a factor proportional to the height of the tree, depending on the desired total
size of the sketch tree. A random downsample could distort set comparison metrics such
as Jaccard coefficient estimation, but is less of a concern for this analysis since a single
k-mer match is sufficient to explore the children of an internal node. However, extreme
downsampling can increase the number of misclassified or unclassified reads as they can
remove all shared k-mers.

Read classification is then performed by starting at the root, comparing the input read
to the stored representations at each of the children of the root, and then descending
into the child with which the read is most similar. This process repeats until the algo-
rithm arrives at a leaf, which is the genome predicted to be the source of the read. If, at
any point, no child is found with similarity above the required threshold to the query
read, the read is left unclassified. This approach quickly prunes genomes with low simi-
larity to the input read, and focuses on the genomes that are likely to be the source of the

Page 9 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

read, especially genomes that are either from different but similar organisms, or different
assemblies of the same genome.

Using a clustering-based approach can also provide more control over the classifi-
cation process. Instead of simply classifying reads to a single genome, we can classify
reads to a cluster of potential source genomes with high similarity by stopping the clas-
sification process before it reaches the leaves. This is similar to the LCA classification
approach taken in some index-based approaches [24, 27, 33], and can be useful in some
scenarios. We can also utilize this approach to better understand where and why mis-
classifications occur, by following the classification of a read down the tree. Doing so can
allow us to identify exactly where misclassifications occurred, and allow us to determine
how far from the correct genome the predicted genome is.

Hierarchical clustering is computationally expensive, requiring O(n3) time and Ω(n2)
space to cluster n elements. This is in addition to the cost of sketching genomes to input
into the clustering and the cost of the initial screen generation. However, the reduction
in the number of comparisons performed per read can compensate for this cost. Given
a screen of size x hashes, and the same screen in this clustered form with downsampling
factor f, a read will require x comparisons against the original screen but O(x/f) compari-
sons with the clustered screen. Therefore, with reasonable choice of f, we can reduce the
computation per read classified and yield an overall amortized time savings.

Results
Metagenomics classification

Our main experimental results are based on the widely used Culturable Genome Refer-
ence (CGR) community of high quality microbial genomes sequenced from the human
gut [34]. From this community, we selected all genomes that were available on RefSeq
(as of 12/10/20), giving us 1,310 genomes for our reference database. This community
contains several clusters of highly similar genomes that make read classification more
difficult (Table 2, Fig. 2). This difficulty is especially true for approaches that work with
reduced representations of the original genomes; unless the differences between these
similar genomes are specifically captured, there will be no information available to dis-
tinguish between them.

As an example of a simpler community, we also analyze a union of the ZymoBIOMICS
Microbial Community Standards (ZYMO) and MBARC-26 [35] reference communities,
which, when combined, contain 34 microbial and fungal genomes. This community is
much easier to classify within, as the genomes are relatively dissimilar (Table 2, Addi-
tional file 1: Fig. 1), and provides a baseline from which to interpret our results.

Table 2 Overview of the microbial communities

Community Total Sequence Number of
Organisms

Number of genomes with > X% Mash similarity to another
genome in the community

X = 5% X = 25% X = 50% X = 70% X = 90% X = 95%

CGR 4.85GBp 1310 1218 1189 990 563 315 270

ZYMO + MBARC-
26

170MBp 34 2 0 0 0 0 0

Page 10 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

For experiments in this work that use simulated reads, we use a simple simulator we
developed that allows for simulating reads across a range of read lengths and error mod-
els. We chose to use this simulator as we are not trying to exactly represent the error
models of a particular technology, and instead are exploring a wider range of read
lengths and error rates than currently found in genuine HiFi or ONT reads. A simple
simulator allows us to better explore the effects of read length and error rate, and allows
us to model performance on data with a range of parameters. More details about this
read simulator can be found at https:// github. com/ arun96/ sketc hing.

For our classification analysis, by default we use simulated PacBio HiFi-like reads
that are 10 Kb long with 1% error rates, with errors uniformly introduced. We simu-
late 10 × coverage of each genome, yielding 4.8 M reads for the CGR dataset, and 165 K
reads for the ZYMO + MBARC-26 dataset. For the classification, we use screen sizes
that target 100 shared hashes with each of these reads, or on average one shared hash
every 100 bp based on Eq. (1); this generates screens that contain approximately 2% of
the k-mers present in the original genomes.

Results across a range of read lengths, error rates and screen sizes, as well as other
experimental parameters, are reported later in this section, and presented in Fig. 3. As
no read simulator can perfectly capture the complexity of real data, results on genuine
metagenomic sequencing data can be found in the "Analysis of Genuine Metagenom-
ics Sequencing Data" section. Reference implementations, analysis scripts and details on
data availability can be found at https:// github. com/ arun96/ sketc hing.

Classification experiments

In microbial classification experiments, reads are drawn from a microbial commu-
nity, and compared against a screen generated from a reference database of known
genomes. Under idealized conditions, the database will contain reference genomes
from all members of the community, although in practice the community may con-
tain novel species or strains that are not yet characterized leading to poor matches
or no matches at all. For simplicity, our simulated reads are drawn from the reference

Fig. 2 Similarity in the CGR Community. Similarity between the 1310 members of the CGR community,
calculated using the number of shared hashes in their Mash sketches. In comparison to the
ZYMO + MBARC-26 community (Additional file 1: Fig. 1), there are many clusters of high similarity in the CGR
community. Genomes within these clusters are very difficult to distinguish between, and contribute to the
lower classification accuracy, across all classification approaches, in this community

https://github.com/arun96/sketching
https://github.com/arun96/sketching

Page 11 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

database collection, and reads are then classified against the screen of all genomes.
Accuracy is then measured as the fraction of reads correctly classified as being from
the true source genome.

For the human gut microbe community, at our default experimental parameters, we
see that all our sketching and sampling approaches achieve approximately 71–75%
accuracy (Fig. 3).We observe that around half of the genomes have classification accu-
racy over 90%, with the overall accuracy lowered by genomes that have high similar-
ity with other members of the community. For example, we find that of the genomes
with less than 50% classification accuracy, 90% have another member of the commu-
nity with which they are at least 70% similar. This implies that for these genomes,
we expect 70% of their reads to be very similar to at least one other genome, greatly
increasing the chances of each read being misclassified. This is magnified when con-
sidering groups of genomes with > 95% similarity, a level of similarity high enough to
consider the genomes to be of the same species [36]. Read classification between such
genomes, regardless of which approach is used, often becomes random tie-breaking.

Just how disruptive highly similar genomes are to classification accuracy is vis-
ible when classifying reads from the simpler ZYMO + MBARC-26. Here, just two of
the 34 members have Mash similarity > 1.5% with each other, with those two mem-
bers having a similarity of just 8% (Table 2). In our experiments, these two genomes
provide the vast majority of misclassified reads, across read lengths and error rates.
Overall, with a simpler community like this, any of these approaches achieve > 99%
classification accuracy, even with much shorter reads and significantly higher error
rates.

The practical consequences of these misclassifications between highly similar
genomes depends on the specific downstream analysis used in the experimental sce-
nario. However, it is clear that misclassifications will cause a decrease in precision if

Fig. 3 Key results across parameters on the CGR dataset. a Classification accuracy across a range of read
lengths and error rates, averaged over three simulated runs with variance between runs noted on each bar, b
the effect on accuracy of increasing the target number of shared hashes, c the impact read length and error
have on sketch size across our approaches, and d the accuracy and overhead of a MinHash approach across
a range of k values

Page 12 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

reads unrelated to the genomes of interest are mistakenly classified as being of inter-
est, and will cause a decrease in recall if reads of interest are incorrectly classified to
genomes filtered out from later analysis.

Impact of novel sequences on read classification

In practice, the readset being classified may contain reads from novel species or strains
not present in the set of potential source genomes. To model this situation, and to
understand where reads from such a novel source genome may go when classified using
our approaches, we removed selected genomes from our set of potential sources. We did
this for genomes with three different levels of Mash similarity to other members of the
community: one genome with no other members with > 50% similarity to it, a second
with members that it had between 50 and 90% similarity with, and a third with members
with greater than 90% similarity to it.

We find that for the first scenario, with no similar genomes in the reference collection,
removal from the set of potential source genomes results in the vast majority of its reads
remaining unclassified. For the second scenario, which retains some similar genomes
but no highly similar genomes, the majority of its reads remain classified, but approxi-
mately 25% of its reads are incorrectly classified to one of its most similar counterparts.
Finally, for the third scenario with a number of highly similar genomes, the vast majority
of its reads are classified to these highly similar genomes, with only a few reads remain-
ing unclassified.

These results are in line with what we expect from a similarity-based classification
method, and indicates that the classification of reads from a novel strain not represented
in our set of potential source genomes depends on the similarity of the novel strain to
the genomes its reads are being compared against.

Effect of experimental parameters on read classification

Read length

We see increases in performance as read lengths get longer (Fig. 3a, Additional file 1:
Table 1), as we have more opportunities for the screen k-mers to match error-free
k-mers in the read. Read length also affects the size of the screen, as longer reads mean
smaller screens are necessary to achieve the desired number of shared hashes between
a read and its source (Fig. 3c). Conversely, with shorter reads, the screen sizes must be
proportionally larger to maintain the similar levels of accuracy.

Error rates

We see decreases in accuracy at high error rates (Fig. 3a, Additional file 1: Table 1), as
fewer k-mers remain unaffected by error, accompanied by sharp increases in screen
size. With an error rate of 1% (as found in PacBio HiFi reads), we estimate that 81% of
21-mers will remain error free, while at an error rate of 5% (as is found in Oxford Nano-
pore reads) just 34% of the 21-mers will remain error free. This is even more pronounced
at error rates close to 10% (as is found in CLR PacBio data and older Oxford Nanopore
reads), where just 10% of the 21-mers can be expected to be unaffected by error. As our
approach adjusts screen size to compensate for error rate, this results in extremely large
screen sizes to compensate for high error rate (Fig. 3c).

Page 13 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

Target number of shared hashes

The number of target matches determines how densely the reference genomes are
represented, and therefore the size of the screen. Low numbers of target matches
result in large numbers of reads being misclassified or unclassified, as there will not
be enough detectable similarity with the source genome (Additional file 1: Table 2).
Increasing the number of target matches, and thus the level of similarity between a
query read and its source genome, causes sharp improvements in accuracy (Addi-
tional file 1: Table 2). However, there is also a plateau in performance as we increase
the target number of shared hashes, as some sets of genomes differ only in a small
number of k-mers, and a sketching or sampling approach must draw from exactly
those places in order to distinguish between them. We see steady increases in per-
formance when increasing the target number of shared hashes up to 3 shared hashes
every 200 bp, but performance gains slow beyond this (Fig. 3b).

K

For k set to at least 20 (Fig. 3d), we find increasing k can result in minimal increases in
performance, yet a larger increase in screen size. This is because longer k-mers have
a higher chance of being affected by errors, so larger samples/sketches are necessary
to ensure a robust number of error free k-mers remain. This was highly pronounced
in our results, e.g. the step up from k = 30 to k = 50 came with only a 1.3% increase
in performance but a 22% larger screen. As we saw similar performance between
20 ≤ k ≤ 50, we used k = 21 across our other experiments, as it provided the specificity
necessary while keeping screen sizes small.

Weight

The addition of weight to traditional MinHash results in a slight increase in perfor-
mance across read lengths and error rates. This is expected, as the discriminative
k-mers now contribute more to the score and help break ties. Including a multiplier
has a similar effect and more heavily weighting unique k-mers results in correctly
breaking even more ties, resulting in another slight increase in performance. The
addition of weight saw a 0.5% increase in classification accuracy over unweighted
MinHash (72.7% vs 72.2%), with the inclusion of a multiplier of 5, 10 or 15 seeing a
further 0.1% increase in performance (Additional file 1: Table 4).

Order

Including order in a MinHash approach has a minimal impact on classification accu-
racy (Additional file 1: Table 4), giving a 0.2% increase compared to MinHash (72.4%
vs 72.2%). Order MinHash was initially proposed as a metric for estimating edit dis-
tance, and is most beneficial when determining the similarity between rearranged
strings that cannot be distinguished by an unordered MinHash. However, with read
classification from this large set of microbial genomes, such rearrangements are not
common.

Page 14 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

Cluster downsampling rate

Using MinHash screens, we compared the accuracy across three approaches to clus-
tering: (1) screens downsampled by a constant factor; (2) screens downsampled based
on their height in the sketch tree; and (3) screens that are not downsampled at all. We
find that constant factor downsampling approaches, with factors f = 2 and f = 4, main-
tain a good degree of accuracy (71.1% and 70.1% respectively, compared to the 72.8%
accuracy with MinHash), while keeping the number of comparisons similar to or less
than the original MinHash approach. Height-based downsampling approach results
in a sharp drop in accuracy (62.1%), as the screens near the root of the tree are down-
sampled to the point where discriminative k-mers are lost.

Analysis of clustering-based approach

Examining the output of the clustering-based approaches with zero or constant factor
downsampling, we find that the majority of misclassified reads are first misclassified
only a few levels from the leaves of the tree. This is in line with the misclassification
rates between highly similar genomes; we find that over 90% of the misclassified reads
are misclassified to a genome that is at least 90% similar to the true source genome, and
about 80% are misclassified to genomes that are at least 95% similar. These misclassifica-
tions occur lower down the clustering tree, where these similar genomes are close to
each other and classification is forced to choose one path or the other.

This can be seen by looking at the number of reads that are only misclassified close
to the end of the classification process. With a constant downsampling factor of f = 2,
we find that 80% of misclassified reads are only misclassified at the very last level of the
tree. These reads come from the many small groups of genomes with high similarity.
We can expand this analysis further to find that more than 90% of misclassified reads
are only misclassified within the last three steps of their path to a leaf; these reads come
from slightly larger groups of highly similar genomes. The remaining misclassified reads
mostly come from the few larger clusters of highly similar genomes, with a few stem-
ming from similarity caused by randomly downsampling the generated sketches or sam-
ples. When the downsampling rate is increased to f = 4, we see slight increases in the
number of reads misclassified further up the tree, but the overall pattern holds.

We can also explore these clustering-based results to highlight the small margins that
cause misclassifications.With a constant downsampling factor f = 4, just over 75% of
all misclassified reads result from incorrectly breaking a tie, and a further 15% from an
incorrect source having just one more shared hash with the read than the true source.
Decreasing this downsampling factor to f = 2 drops the latter to 8%, with incorrect tie
breaks accounting for 87% of all incorrect classification decisions. This means that with
downsampling factors f = 2 and f = 4, 90% and 95% of misclassifications respectively
come down to tie breaks or a single extra shared hash across the entire read.

An alternative approach to help avoid misclassifications based on incorrectly resolving
ties is to end classification when a tie is encountered, and report that the source genomes
are found in the subtree below the internal node where the tie occured. As ties are the
primary cause of incorrectly classified reads, and mostly occur near the leaves (thus
meaning the subtree rooted at them is small), such an approach would greatly narrow
down the source of a large number of previously misclassified reads without incorrectly

Page 15 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

associating a read to a single wrong genome. Applying this method to our previous
results, we find the leaf representing the predicted source of the read is in the subtree
below where classification is stopped 90% of the time, even with a downsampling factor
of f = 4. This method is commonly utilized in index-based read classification approaches,
and the choice to use a clustered screen opens the door to this form of classification,
which is suitable for applications where narrowing the source of a read to a small group
of highly similar potential source genomes instead of a single genome is sufficient.

It is worth mentioning that the pattern of the majority of misclassifications occurring
lower down in the tree does not hold when using height-based downsampling. In addi-
tion to the drop in accuracy discussed in the previous section, we observe high numbers
of misclassification in the initial levels of the clustering tree, as the elements there are
downsampled to the point where distinction between even slightly similar elements is
difficult.

Host contaminant detection

The goal of the contaminant detection and classification is, for a given read set, to dis-
tinguish between reads that come from organisms or sequences of interest, and reads
that are from potential contaminants. For our experiments, we considered human reads
simulated from GRCh38 [37] and mixed with contaminant reads drawn from a selected
microbial community, and classified against a screen containing both the human and
microbial genomes. The HiFi-like sequence reads were simulated as above using 10 Kb
reads at 10 × coverage with 1% error. Accuracy is measured as the fraction of human and
microbial reads correctly identified as being of interest or as being a contaminant, while
also measuring the fraction of contaminant reads that are correctly classified to their
source genome.

When using the CGR community as the source of contaminant reads, we find all the
sketching and sampling approaches to be successful at distinguishing between microbial
and human reads. Across all approaches, > 99% of all human reads are correctly distin-
guished from microbial reads and classified to the chromosome they are drawn from.
We also observe that very few microbial reads are misclassified as human, with over 99%
correctly identified as being contaminants. This is not unexpected; human and microbial
genomes are quite dissimilar, and therefore the sketches or samples of the sequences will
also be dissimilar, making read classification successful in nearly all cases.

This lack of similarity can be highlighted by comparing 1 Mb regions of the human
genome to each of the 1310 microbial genomes in the contaminant community using
Mash. This results in approximately 3.8 million pairwise comparisons, and of these,
we find that less than 7000 of these comparisons share a hash between their sketches.
Within these pairs, the level of similarity is low, with very few of these pairs sharing more
than 0.5% of the hashes that make up their Mash sketches. This low similarity explains
the ease with which we can distinguish most human and contaminant reads, but also
explains the small number of the reads that remain incorrectly identified, as these reads
may be drawn from these small regions of similarity.

Despite the dissimilarity between the human and contaminant genomes, it is worth
highlighting that we are able to distinguish between these sequences with high accuracy
while storing just 2% of the original k-mers. We see similar accuracy while storing as

Page 16 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

little as 1% of the original k-mers, with a slight decrease to 98% when storing 0.2% of
the k-mers and 96% when storing 0.1% (Additional file 1: Table 3). Below this threshold,
accuracy starts to drop sharply; when storing just one of every 2000 k-mers, we are able
to differentiate between 89% of human and microbial reads, and 60–70% when we fur-
ther halve the number of stored k-mers (Additional file 1: Table 3).

After distinguishing between human reads and contaminants, we then attempt to clas-
sify the contaminant reads to the exact source genome. The results match what we pre-
sent in the classification experiments; approximately 75% of the contaminant reads are
mapped to the correct genome, with the misclassified reads coming from the genomes
discussed in the previous section. We also classify human reads to the chromosome they
are drawn from, and are able to do this with > 95% accuracy.

Comparison to existing tools

To evaluate the performance of the sketching and sampling approaches, we also tested
several widely used approaches for read classification on the same dataset and experi-
mental settings. Versions of all tools used can be found in Additional file 1: Note 1.

In order to compare these existing tools to both our reference implementations of the
sketching and sampling approaches and to each other, these comparisons are done using
accuracy instead of runtime. This is done to simplify the comparison between tools with
different levels of optimization, and allows us to focus simply on the ability of these
approaches to correctly perform the task at hand. However, some details on the over-
head of the index-based approaches can be found in Additional file 1: Table 6, and com-
parisons between the runtime of selected index- and alignment-based approaches can
be found in Additional file 1: Table 7. These results highlight the wide range in practical
requirements between even highly similar approaches, further emphasizing why we have
chosen to focus on accuracy as the key metric for comparison.

As before, accuracy in classification experiments is measured as the number of reads
correctly classified as from the microbial genomes they were drawn from, and accuracy
in contaminant detection experiments is measured as the number of human and micro-
bial reads identified as human or from any microbial genome respectively.

Alignment‑based

To test the effectiveness of alignment-based approaches to read classification, we test
Minimap2 [21] and Winnowmap [38]. Minimap2 uses query minimizers as seeds for
the alignment, while Winnowmap2 adds a preprocessing step to downweight repeti-
tive minimizers to reduce the chance of them being selected. In both approaches, we
align our read sets against the genomes of the selected community, and calculate the
predicted source of the read as the sequence to which it is mapped. For microbial
classification, we find that both these tools perform slightly better than our Min-
Hash and minimizer based approaches. Compared to an accuracy of 77% and 79% in
our MinHash and minimizer approaches with two shared hashes every 100 bp, Mini-
map2 and Winnowmap both achieve an accuracy of 81% (Table 3). Both alignment
approaches achieve low accuracy on the same genomes that our sketching and sam-
pling approaches struggle on; namely, genomes with high-similarity relatives in the

Page 17 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

Ta
bl

e
3

Pe
rf

or
m

an
ce

 o
f e

xi
st

in
g

to
ol

s

Fo
r g

en
om

e-
le

ve
l c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

, w
e

fin
d

th
at

 a
lig

nm
en

t b
as

ed
 m

et
ho

ds
 p

er
fo

rm
 b

es
t,

du
e

to
 th

ei
r a

bi
lit

y
to

 c
om

pa
re

 a
ga

in
st

 th
e

en
tir

e
se

qu
en

ce
 in

st
ea

d
of

 a
 re

du
ce

d
or

 in
de

xe
d

fo
rm

, a
llo

w
in

g
th

em
 to

 id
en

tif
y

m
in

ut
e

di
ffe

re
nc

es
 b

et
w

ee
n

hi
gh

ly
 s

im
ila

r g
en

om
es

. I
nd

ex
-b

as
ed

 a
pp

ro
ac

he
s

st
ru

gg
le

 to
 p

er
fo

rm
 g

en
om

e-
le

ve
l c

la
ss

ifi
ca

tio
n

be
tw

ee
n

hi
gh

ly
 s

im
ila

r g
en

om
es

, w
ith

 a
 s

ig
ni

fic
an

t n
um

be
r o

f r
ea

ds
 b

ei
ng

 c
la

ss
ifi

ed
 o

nl
y

to

a
lo

w
es

t c
om

m
on

 a
nc

es
to

r o
f s

ev
er

al
 p

os
si

bl
e

so
ur

ce
 g

en
om

es
. A

ll
to

ol
s

pe
rf

or
m

 s
im

ila
rly

 in
 c

on
ta

m
in

an
t d

et
ec

tio
n,

 w
ith

 th
is

 ta
sk

 le
ss

 a
ffe

ct
ed

 b
y

hi
gh

er
 e

rr
or

 ra
te

s

Cl
as

si
fic

at
io

n
A

cc
ur

ac
y

(%
) a

t E
rr

or
 R

at
e

X
%

 o
f H

um
an

 (H
) a

nd
 C

on
ta

m
in

an
t (

C)
 R

ea
ds

 id
en

tifi
ed

 a
t E

rr
or

 R
at

e
X

X
=

 1
%

X
=

 5
%

X
=

 1
0%

X
=

 1
%

X
=

 5
%

X
=

 1
0%

H
C

H
C

H
C

N
ov

el

A
pp

ro
ac

he
s

(2

00
 T

M
s)

M
in

H
as

h
77

.8
75

.6
73

.0
99

.5
99

.5
99

.4
99

.1
98

.8
98

.5

M
in

im
iz

er
79

.6
77

.3
74

.1
99

.5
99

.5
99

.4
99

.1
98

.9
98

.5

U
ni

fo
rm

74
.5

72
.3

69
.9

99
.5

99
.4

99
.2

99
.0

98
.7

98
.4

M
in

im
ap

2
81

.3
77

.9
74

.1
99

.5
99

.5
99

.2
99

.0
98

.5
97

.9

W
in

no
w

m
ap

81
.3

77
.9

74
.1

99
.5

99
.5

99
.2

99
.0

98
.5

98
.0

Kr
ak

en
2

(R
ef

Se
q

D
B)

72
.0

66
.0

58
.0

99
.3

99
.2

98
.8

98
.1

97
.2

96
.5

Kr
ak

en
2

(C
us

to
m

 D
B)

72
.2

66
.1

58
.0

99
.3

99
.3

98
.8

98
.1

97
.2

96
.5

Ce
nt

rif
ug

e
(R

ef
Se

q
D

B)
72

.2
67

.5
62

.1
99

.3
99

.2
98

.8
98

.4
97

.8
97

.2

Ce
nt

rif
ug

e
(C

us
to

m
 D

B)
72

.4
67

.5
62

.1
99

.3
99

.3
98

.8
98

.4
97

.8
97

.2

C
LA

RK
73

.5
68

.5
65

.4
99

.5
99

.5
99

.1
98

.9
99

.0
98

.1

M
as

hM
ap

74
.5

70
.8

67
.3

99
.5

99
.4

98
.9

98
.1

97
.7

96
.6

Page 18 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

community. These misclassifications are amplified at higher error rates, where the
ability to distinguish between similar genomes is reduced. For contaminant detec-
tion, both tools are able to correctly distinguish 99.5% of the human and contami-
nant reads at a 1% sequencing error rate, and over 98% at higher error rates.

Index‑based

Kraken2 [25] and Centrifuge [27] use a preprocessed index of shared k-mers or
compressed genomes respectively to determine the source of a query sequence.
Each k-mer in the query sequence is classified to an element in the index, and we
determine the source of the query as the element to which a plurality of k-mers
are assigned.When using both a pre-built RefSeq database and a custom database
built over our test community, we find that genome level identification is difficult
between the highly similar members (Table 3). We observe large numbers of mis-
classifications between reads from these similar genomes, as well as classifying
many of these reads only to higher taxa, and not to one of the specific genomes. For
genomes without similar members in the community, the majority of their reads are
correctly classified, giving Kraken2 and Centrifuge an overall classification accuracy
of 72% with 1% error reads. At higher error rates, this performance drops sharply,
with more reads left unclassified due to a lack of matched k-mers to the generated
index. When distinguishing between human and microbial reads, both methods are
able to correctly identify > 95% of the reads, even at high error rates.

CLARK [26] uses a pre-compiled list of discriminative k-mers for the community
it is indexing, and performs classification based on query similarity to this list. While
there are still misclassifications and unclassified reads at rates comparable to other
tools, CLARK’s use of discriminative k-mers slightly reduces the impact of highly similar
genomes in the community, allowing it to identify the few differences between them,
achieving a classification accuracy of 73.5% with 1% error reads, and making it more
resilient against misclassification at higher error rates (Table 3). For contaminant detec-
tion, CLARK is also able to distinguish over 97% of both human and microbial reads
across a range of error rates.

Sketching‑based

MashMap [14] computes alignments by estimating k-mer based Jaccard similar-
ity between query sequences with MinHash sketches. We find that MashMap per-
forms worse than classic alignment-based approaches, and similarly to our MinHash
approaches, with 74.5% classification on 1% error reads and steady decreases at higher
error rates. Alignment boundaries in MashMap are determined through the Jaccard
similarities of sketches. As a result, just as in the MinHash approach, it is susceptible to
misclassifications between highly similar genomes. For contaminant detection, Mash-
Map is able to distinguish more than 96% of the human and microbial reads, even at
higher error rates (Table 3).

Page 19 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

Analysis of genuine metagenomics sequencing data

To test the accuracy of our approaches on real sequencing data, we analyzed PacBio
HiFi reads from the Human Gut Microbiome Pooled Standards [39] with the CGR com-
munity database. For this analysis, we used one omnivore and one vegan dataset, with
1.79 M and 1.90 M reads respectively of length ~ 10 Kb and median quality of ~ Q40.
We first align these reads to the CGR community database using Minimap2, and find
that 78% of the reads from the vegan dataset and 85% of the reads from the omnivore
dataset align at all. Of these alignments, 56% of reads from the vegan dataset and 63% of
reads from the omnivore dataset have alignments that span > 50% of the read (Table 4),
with this fraction dropping to 44% and 48% respectively when looking for alignments
that span > 90% of the read length (Additional file 1: Fig. 2). For reads with alignments to
multiple genomes, we take the sequence with the longest alignment to be their predicted
source. This is less of a concern for reads with longer alignments, which we find are less
likely to be mapped to multiple genomes.

We then classify these reads using our sketching and sampling approaches against a
generated screen of the CGR community, built for 10 Kb, 1% error reads and 100 shared

Table 4 Performance on real sequencing data

Comparison of the classification of our sketching and sampling approaches against Kraken2 and Minimap2 classifications
across two PacBio HiFi Gut Microbiome datasets. The addition of a threshold requiring that > 50% of a read is aligned seems
to remove a number of more spurious or insignificant calls, increasing concordance between Minimap2 and the other
benchmarked approaches

Total number
of reads
classified

Number
of reads
classified
to multiple
genomes

Number of
unclassified
reads

Number of reads with
same prediction as
Minimap2

No Threshold > 50%
of read
aligned

Vegan (1.90 M
Reads)

Minimap2 (No
threshold)

1,490,713
(78.3%)

485,233 (25.4%) 413,446 (21.7%) N/A

Minimap2
(> 50% of read
aligned)

1,069,306
(56.1%)

23,199 (1.2%) 834,853 (43.9%) N/A

Kraken2 1,399,341
(73.5%)

562,744 (29.6%) 504,818 (26.5%) 827,572 816,331

MinHash 1,032,396
(54.2%)

261,732 (13.7%) 871,763 (45.8%) 890,766 821,556

Minimizer 1,029,996
(54.1%)

262,514 (13.8%) 874,163 (45.9%) 891,388 820,493

Uniform 1,021,555
(53.6%)

264,867 (13.9%) 882,604 (46.7%) 883,465 819,017

Omnivore
(1.79 M Reads)

Minimap2 (No
threshold)

1,530,795
(85.4%)

490,501 (27.4%) 261,351 (14.6%) N/A

Minimap2
(> 50% of read
aligned)

1,144,452
(63.8%)

24,271 (1.3%) 647,694 (36.2%) N/A

Kraken2 1,442,671
(80.5%)

578,113 (32.2%) 349,475 (19.5%) 855,670 835,888

MinHash 1,111,102
(62.0%)

275,344 (15.4%) 681,044 (38.0%) 915,634 873,901

Minimizer 1,105,356
(61.7%)

278,654 (15.5%) 686,790 (38.3%) 916,998 872,955

Uniform 1,098,244
(61.3%)

281,745 (15.7%) 693,902 (38.7%) 911,554 871,675

Page 20 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

matches per read. We consider a read to be classified if it has at least 5 shared hashes
with a genome, and unclassified if it does not share 5 hashes with any genome. With this
threshold, approximately 60% of all reads are classified in each of the approaches, with
approximately 25% of the classified reads tied between multiple sources (Table 4).

We compare these classification results against the alignments generated with Mini-
map2. Our classification results agree with approximately 60% of the reads classified
by Minimap2 with no minimum alignment length, and approximately 76% of reads
who have an alignment > 50% of their read length. (Table 4). This increase in consist-
ency is expected, as this threshold limits Minimap2 classification to reads that share a
significant amount of sequence with potential source genomes, and are therefore more
likely to share a significant amount of similarity with elements in the screen. Without
this threshold, some reads are classified based on small, potentially unreliable, regions of
alignment, and any similarity with elements in the screen must come from shared hashes
drawn from these short aligned regions; such reads are likely to be misclassified between
multiple low scoring genomes, or not classified at all. An alternate threshold would be
to require the alignment to be over a particular length (e.g. 5 Kb), but the variance in
read length causes this to be skewed against well-aligned shorter reads (Additional file 1:
Fig. 3). Investigating the classifications that still do not agree with Minimap2, we see
that almost 90% of these reads are instead classified to genomes that are > 95% similar to
Minimap2’s predicted source.

We also classified these reads using Kraken2, with the predicted source of a read
being the sequence to which a plurality of its k-mers are assigned. We find that approxi-
mately 77% of reads are classified by Kraken2, but approximately 40% of classified reads
are only classified to a lowest common ancestor (LCA) instead of a single genome; we
count these reads as classified to multiple genomes. We find that Kraken2’s classifica-
tion results agree with approximately 56% of the reads classified by Minimap2 with no
alignment threshold, and approximately 75% of the reads classified by Minimap2 with
the > 50% read length alignment threshold (Table 4). As expected, Kraken2 classified
very few reads that fall below the 50% read length alignment threshold Minimap2 align-
ments, leaving those reads unclassified or only classified to a LCA; the majority of Krak-
en2’s classifications being reads that have significant similarity to a single genome. The
remaining reads that do not agree with Minimap2 are either classified only to a LCA, or
classified to genomes that are highly similar to Minimap2’s predicted source. As with the
sketching and sampling approaches, we find that almost 90% of these reads are classi-
fied to genomes that are > 95% similar genome-wide. The remaining mis-classified reads
originate from localized regions of the target genome showing high similarity to other
genomes.

Conclusions and discussion
In this work, we presented and analyzed a range of sketching and sampling approaches
for read classification, designed to reduce the space and time overhead for accurate clas-
sification across large collections of genomes. Overall, we find sampling and sketching
are highly effective compared to index-based approaches, and are within a few percent
accuracy of alignment-based approaches. Alignment-based approaches have the advan-
tage that they can assess the entire input sequence, although this increases runtime.

Page 21 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

Minimizers generally lead to improved accuracy over MinHash-based approaches,
chiefly because there is a stronger guarantee on the distance between selected k-mers.
Among MinHash-based techniques, weighted MinHash enabled modest but measur-
able improvements while Ordered MinHash enabled minimal performance gains. All
approaches correctly distinguished reads from dissimilar genomes but struggled with
the classification of reads from highly similar genomes.

Sketching and sampling approaches are able to perform well, however there are still
scenarios where these approaches are challenged. The current methods are best suited
for longer, low-error reads, and incur a higher footprint and decreased performance
when classifying shorter, higher error rate reads. Consequently, a major need for future
work is the continued development of sketching and sampling techniques better suited
for high error rate environments. This includes the use of approaches such as gap k-mers
[40] to increase error tolerance, or the use of more auxiliary information, such as pre-
computed indexes of unique k-mers [41] or augmented MinHash or minimizer-based
methods [42, 43], to distinguish between similar sequences.

Abbreviations
MH MinHash
WMH Weighted MinHash
OMH Order MinHash
CGR Culturable genome reference
LCA Lowest common ancestor

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 022- 05014-0.

Additional file 1. Additional details and results related to the experiments in this manuscript.

Acknowledgements
We would like to thank Benjamin Langmead, Daniel Baker and Bohan Ni for their help and discussions.

Authors’ information
AD is a Ph.D. student in the Department of Computer Science at Johns Hopkins University, Baltimore, MD, USA.
MCS is a Bloomberg Distinguished Professor of Computer Science and Biology at Johns Hopkins University, Baltimore
MD, USA.

Author contributions
Software implementation and computational experiments and analysis were performed by AD, under the supervision of
MCS. AD and MCS wrote this manuscript. All authors read and approved the final manuscript.

Funding
This work was supported in part by National Science Foundation (NSF) grants DBI-1627442, IOS-1732253, and IOS-
1758800, National Institutes of Health (NIH) grant U01CA253481, the Mark Foundation for Cancer Research (19-033-ASP),
and the Human Frontier Science Program (RGP0025) to M.C.S. This work utilized the computational resources of the
Maryland Advanced Research Computing Center (https:// www. marcc. jhu. edu/).

Availability of data and materials
All code used for this project, including reference implementations and all analysis or benchmarking scripts, can be
found at https:// github. com/ arun96/ sketc hing. All data used in this work has been cited, and links to each dataset can
be found at https:// github. com/ arun96/ sketc hing# data- and- code- avail abili ty.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

https://doi.org/10.1186/s12859-022-05014-0
https://www.marcc.jhu.edu/
https://github.com/arun96/sketching
https://github.com/arun96/sketching#data-and-code-availability

Page 22 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

Competing interests
The authors declare that they have no competing interests.

Received: 1 July 2022 Accepted: 27 October 2022

References
 1. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat

Biotechnol. 2017;35(9):833–44.
 2. Jo H. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev.

2004;68(4):669–85.
 3. Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly.

Brief Bioinform. 2019;20(4):1125–36.
 4. Pruitt KD, Katz KS, Sicotte H, Maglott DR. Introducing RefSeq and LocusLink: curated human genome resources at

the NCBI. Trends Genet. 2000;16(1):44–7.
 5. Li W, et al. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model cura-

tion. Nucleic Acids Res. 2021;49(D1):D1020–8.
 6. Sunagawa S, et al. Structure and function of the global ocean microbiome. Science. 2015;348(6237):1261359.
 7. Sunagawa S, et al. Tara oceans: towards global ocean ecosystems biology. Nat Rev Microbiol. 2020;18(8):428–45.
 8. Danko D, et al. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell.

2021;184(13):3376-3393.e17.
 9. Rowe WPM. When the levee breaks: a practical guide to sketching algorithms for processing the flood of genomic

data. Genome Biol. 2019;20(1):199.
 10. Cormode G. Data sketching. Commun ACM. 2017;60(9):48–55.
 11. Broder AZ. On the resemblance and containment of documents. In: Proceedings. Compression and complexity of

SEQUENCES 1997 (Cat. No. 97TB100171). 1997. pp. 21–29.
 12. Ondov BD, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol.

2016;17(1):132.
 13. Ondov BD, et al. Mash screen: high-throughput sequence containment estimation for genome discovery. Genome

Biol. 2019;20(1):232.
 14. Jain C, Dilthey A, Koren S, Aluru S, Phillippy AM. A fast approximate algorithm for mapping long reads to large refer-

ence databases. J Comput Biol. 2018;25(7):766–79.
 15. Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM. Assembling large genomes with single-molecule

sequencing and locality-sensitive hashing. Nat Biotechnol. 2015;33(6):623–30.
 16. Solomon B, Kingsford C. Fast search of thousands of short-read sequencing experiments. Nat Biotechnol.

2016;34(3):300–2.
 17. Sun C, Harris RS, Chikhi R, Medvedev P. Allsome sequence bloom trees. J Comput Biol. 2018;25(5):467–79.
 18. Baker DN, Langmead B. Dashing: fast and accurate genomic distances with HyperLogLog. Genome Biol.

2019;20(1):265.
 19. Breitwieser FP, Baker DN, Salzberg SL. KrakenUniq: confident and fast metagenomics classification using unique

k-mer counts. Genome Biol. 2018;19(1):198.
 20. Marçais G, Solomon B, Patro R, Kingsford C. Sketching and sublinear data structures in genomics. Ann Rev Biomed

Data Sci. 2019. https:// doi. org/ 10. 1146/ annur ev- bioda tasci- 072018- 021156.
 21. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
 22. Jain C, Rhie A, Hansen N, Koren S, Phillippy AM. A long read mapping method for highly repetitive reference

sequences. BioRxiv. 2020. https:// doi. org/ 10. 1101/ 2020. 11. 01. 363887.
 23. Jain C, Rhie A, Hansen NF, Koren S, Phillippy AM. Long-read mapping to repetitive reference sequences using Win-

nowmap2. Nat Methods. 2022. https:// doi. org/ 10. 1038/ s41592- 022- 01457-8.
 24. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol.

2014;15(3):R46.
 25. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20(1):257.
 26. Ounit R, Wanamaker S, Close TJ, Lonardi S. CLARK: fast and accurate classification of metagenomic and genomic

sequences using discriminative k-mers. BMC Genom. 2015;16:236.
 27. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences.

Genome Res. 2016;26(12):1721–9.
 28. Dilthey AT, Jain C, Koren S, Phillippy AM. Strain-level metagenomic assignment and compositional estimation for

long reads with MetaMaps. Nat Commun. 2019;10(1):3066.
 29. Kokot M, Dlugosz M, Deorowicz S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics.

2017;33(17):2759–61.
 30. Marcais G, Kingsford C. Jellyfish: a fast k-mer counter. Tutorialis e Manuais. 2012;1:1–8.
 31. Marçais G, DeBlasio D, Pandey P, Kingsford C. Locality-sensitive hashing for the edit distance. Bioinformatics.

2019;35(14):i127–35.
 32. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage requirements for biological sequence compari-

son. Bioinformatics. 2004;20(18):3363–9.
 33. Marić J, Križanović K, Riondet S, Nagarajan N, Šikić M. Benchmarking metagenomic classification tools for long-read

sequencing data. BioRxiv. 2020. https:// doi. org/ 10. 1101/ 2020. 11. 25. 397729.
 34. Zou Y, et al. 1520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.

Nat Biotechnol. 2019;37(2):179–85.

https://doi.org/10.1146/annurev-biodatasci-072018-021156
https://doi.org/10.1101/2020.11.01.363887
https://doi.org/10.1038/s41592-022-01457-8
https://doi.org/10.1101/2020.11.25.397729

Page 23 of 23Das and Schatz BMC Bioinformatics (2022) 23:452

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 35. Singer E, et al. Next generation sequencing data of a defined microbial mock community. Sci Data. 2016. https:// doi.
org/ 10. 1038/ sdata. 2016. 81.

 36. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic
genomes reveals clear species boundaries. Nat Commun. 2018;9(1):5114.

 37. Schneider VA, et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring
quality of the reference assembly. Genome Res. 2017;27(5):849–64.

 38. Jain C, et al. Weighted minimizer sampling improves long read mapping. Bioinformatics. 2020;36(1):i111–8.
 39. Data release: human microbiome samples demonstrate advances in HiFi-enabled metagenomic sequencing,” Aug.

02, 2021. https:// www. pacb. com/ blog/ data- relea se- human- micro biome- sampl es- demon strate- advan ces- in- hifi-
enabl ed- metag enomic- seque ncing/. Accessed 5 Nov 2021

 40. Ghandi M, Mohammad-Noori M, Beer MA. Robust k-mer frequency estimation using gapped k-mers. J Math Biol.
2014;69(2):469–500.

 41. Zhu K, et al. Strain level microbial detection and quantification with applications to single cell metagenomics.
BioRxiv. 2020. https:// doi. org/ 10. 1101/ 2020. 06. 12. 149245.

 42. Ekim B, Berger B, Chikhi R. Minimizer-space de Bruijn graphs: whole-genome assembly of long reads in minutes on
a personal computer. Cell Syst. 2021;12(10):958-968.e6.

 43. Durbin R. GitHub-richarddurbin/modimizer: a toolset for fast DNA read set matching and assembly using a new
type of reduced kmer. https:// github. com/ richa rddur bin/ modim izer.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/sdata.2016.81
https://doi.org/10.1038/sdata.2016.81
https://www.pacb.com/blog/data-release-human-microbiome-samples-demonstrate-advances-in-hifi-enabled-metagenomic-sequencing/
https://www.pacb.com/blog/data-release-human-microbiome-samples-demonstrate-advances-in-hifi-enabled-metagenomic-sequencing/
https://doi.org/10.1101/2020.06.12.149245
https://github.com/richarddurbin/modimizer.

	Sketching and sampling approaches for fast and accurate long read classification
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Approaches to read classification

	Methods
	Determining sketch and sample size
	Overview of sketching and sampling approaches
	Uniform
	MinHash
	Weighted MinHash (WMH)
	Order MinHash (OMH)
	Minimizer

	Clustering sketches and samples

	Results
	Metagenomics classification
	Classification experiments
	Impact of novel sequences on read classification
	Effect of experimental parameters on read classification
	Read length
	Error rates
	Target number of shared hashes
	K
	Weight
	Order
	Cluster downsampling rate

	Analysis of clustering-based approach
	Host contaminant detection
	Comparison to existing tools
	Alignment-based
	Index-based
	Sketching-based

	Analysis of genuine metagenomics sequencing data

	Conclusions and discussion
	Acknowledgements
	References

