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ABSTRACT

Deep neural networks (DNNs) hold promise for functional genomics prediction, but their generalization capability may be
limited by the amount of available data. To address this, we propose EvoAug, a suite of evolution-inspired augmentations that
enhance the training of genomic DNNs by increasing genetic variation. However, random transformation of DNA sequences can
potentially alter their function in unknown ways. Thus, we employ a fine-tuning procedure using the original non-transformed
data to preserve functional integrity. Our results demonstrate that EvoAug substantially improves the generalization and
interpretability of established DNNs across prominent regulatory genomics prediction tasks, offering a robust solution for
genomic DNNs.

Uncovering cis-regulatory elements and their coordinated interactions is a major goal of regulatory genomics. Deep
neural networks (DNN5s) offer a promising avenue to learn these genomic features de novo through being trained to take DNA
sequences as input and predict their regulatory functions as output'=. Following training, these DNNs have been employed to
score the functional effect of disease-associated variants*>. Moreover, post hoc model interpretability methods have revealed
that DNNs base their decisions on learning sequence motifs of transcription factor (TF) binding sites and dependencies with
other TFs and sequence context® 0.

For DNNs, generalization typically improves with more training data. However, the amount of data generated in a high-
throughput functional genomics experiment is fundamentally limited by the underlying biology. For example, the extent to
which certain TFs bind to DNA is constrained by the availability of high-affinity binding sites in accessible chromatin.

To expand a finite dataset, data augmentations can provide additional variations on existing training data'!-!>. Data
augmentations act as a form of regularization, guiding the learned function to be invariant to symmetries created by the data
transformations' 4. This approach can help prevent a DNN from overfitting to spurious features and improve generalization'.
The main challenge with data augmentations in genomics is quantifying how the regulatory function changes for a given
transformation. With image data, basic affine transformations can translate, magnify, or rotate an image without changing
its label. However, in genomics, the available neutral augmentations are reverse-complement transformation'® and small
random translations of the input sequence'”-'8. With the finite size of experimental data and a paucity of augmentation methods,
strategies to promote generalization for genomic DNNs are limited.

Here we introduce EvoAug, an open-source PyTorch package that provides a suite of evolution-inspired data augmentations.
We show that training DNNs with EvoAug leads to better generalization performance and improves efficacy with standard
post hoc explanation methods, including filter interpretability and attribution analysis, across prominent regulatory genomics
prediction tasks for well-established DNNs.

Results and Discussion

Evolution-inspired data augmentations for sequence-based genomic DNNs

To enhance the effectiveness of sequence-based models, data augmentations should aim to increase genetic diversity while
maintaining the same biological functionality. Evolution provides a natural process to generate genetic variability, including
random mutations, deletions, insertions, inversions, and translocations, among others'®. However, these genetic changes
often have functional consequences that expand phenotypic diversity and aid in natural selection. While the addition of
homologous sequences to a dataset could achieve the goal of increasing sequence diversity while preserving biological function,
identifying regulatory regions with similar functions throughout the genomes across species is difficult. Alternatively, synthetic
perturbations that do not alter the function can be applied, but it is crucial to have prior knowledge to ensure that features
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such as motifs and their dependencies are not affected. Therefore, formulating new data augmentation strategies for genomics
remains a significant challenge.

In this study, we present a suite of evolution-based data augmentations and a two-stage training curriculum to preserve
functional integrity (Fig. 1a). In the first stage, a DNN is trained on sequences with EvoAug augmentations applied stochastically
online during training, using the same training labels as the wild-type sequence. The goal is to enhance the model’s ability to
learn robust representations of features, such as motifs, by exposing it to expanded (albeit synthetically generated) genetic
variation. While each augmentation has the potential to disrupt core motifs in any given perturbation, we expect the overall
effect to preserve motifs on average. However, the specific data augmentations employed may introduce a bias in how these
motif grammars are structured. Thus, in the second stage, the DNN is fine-tuned on the original, unperturbed data to refine these
features and guide the function towards the observed biology, thereby removing any bias introduced by the data augmentations
(see Methods).

EvoAug data augmentations introduce a modeling bias to learn invariances of the (un)natural symmetries generated by the
augmentations. For instance, random insertions and deletions assume that the distance between motifs is not critical, whereas

a Evolution-inspired augmentations Stage 1: pre-training

/ Mutation Deletion Insertion \ data augment model training

) - : > == ->
s [ 2 [ o ] e - : - - . o >

Translocation Inversion

Stage 2: fine-tuning Downstream applications

}
I
|

o ’ i i generalization
\ e i . —_— e / —_ < model interpretability
variant effect prediction
C

0.62 Generalization = Filter Interpretability
° T o
g T = 0.701
S 0.591 ‘ﬁ =
< = £0.651 Oé
c O% = o ©
2 0.56 &= - < = 0.60 1
© - - o < ) o
= o & B Standard 5 0.55 T °
0 0.531 _= I Augment E Ij B F
O ° @ Finetune 0.50 1 __é ____________________________________
o o [e]
B ———— 0.45 1
0.25
s 5} 0204 o© ﬁ
©
© El = e — S R
020 ! -ﬁ 2018 = ﬁ .er?j
S o &0.16 o
g (<] =
® == % = = =] £0.14
®© 0.15 o ° Z
; =0.121
o o
@ ——‘——————----!—----I!'L --------------------------------- 0.10 2= %il
[§) [¢]
0101 ° 5 O o
w w w w w 2 Qo S N
> L e & & S S LD O S I O I S o
Q&b( N %o\(a -&,’?‘;} ° c,ée ° \Q}'}o 0&0 faXQ_ v \_’b(\b eo 0\'{2}\ \Odb e\e\ Q}‘\ \“%x
@ S O ¢S 2 ’ LIRS &
& & N i
< S N

Figure 1. EvoAug improves generalization and interpretability of Basset models. (a) Schematic of evolution-inspired data
augmentations (left) and the two-stage training curriculum (right). (b) Generalization performance (area under the
precision-recall curve) for Basset models pretrained with individual and combinations of augmentations, i.e., Noise+Ins+RC
(Gaussian noise, insertion, reverse-complement) and all augmentations (Gaussian noise, reverse-complement, mutation,
translocation, deletion, insertion), and fine-tuned on Basset dataset. Standard represents no augmentations during training. (c)
Comparison of the average hit rate of first-layer filters to known motifs in the JASPAR database (top) and the average g-value
of the filters with matches (bottom). (d) Comparison of the average Pearson correlation between model predictions and
experimental data from CAGIS5 Challenge. (b-d) Each box-plot represents 5 trials with random initializations.
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random inversions and translocations promote invariances to motif strand orientation and the order of motifs, respectively.
Nevertheless, the bias created by the augmentations can lead to poor generalization when the introduced bias does not accurately
reflect the underlying biology. Therefore, the fine-tuning stage is critical as it provides an avenue to unlearn any biases not
supported by the observed data.

EvoAug improves generalization and interpretability of genomic DNNs
To demonstrate the utility of EvoAug, we analyzed several established DNNs across three prominent types of regulatory
genomic prediction tasks that span a range of complexity.

First, we applied Evoaug to the Basset model and dataset>’, which consists of a multi-task binary classification of chromatin
accessibility sites across 161 cell types/tissues. We trained the Basset model with each augmentation applied independently
and in various combinations. We conducted a hyperparameter sweep to determine the optimal settings for each augmentation
(Supplementary Figs. 1-5). From hyperparameter sweeps, we observed that the inversion augmentation improved performance
up to the sequence length, which is essentially a reverse-complement transformation (Supplementary Figs. 1, 3, and 4). Hence,
inversions were excluded to reduce redundancy.

Remarkably, EvoAug-trained DNNs outperformed standard training with no augmentations (Fig. 1b). The best results were
achieved when multiple augmentations were used together. Additionally, we found that fine-tuning on the original data further
improved performance, even when augmentation hyperparameters were poorly specified (Supplementary Fig. 1). Notably,
specific EvoAug augmentations, such as random mutations and combinations of data augmentations, had a profound impact on
improving the motif representations learned by the first-layer convolutional filters (Fig. 1c). The convolutional filters capture a
wider repertoire of motifs and their representations better reflect known motifs, both quantitatively and qualitatively, when
compared with convolutional filters of models trained without augmentations. This suggests that EvoAug augmentations can
help DNNSs learn more accurate and informative representations of the sequence motifs.

A major downstream application of genomic DNNGs is to score the functional consequences of non-coding mutations. By
evaluating the zero-shot prediction capabilities of each DNN on saturation mutagenesis data of 15 cis-regulatory elements from
the CAGI5 Challenge?®!, we found that models trained with EvoAug outperformed their standard training counterpart (Fig. 1d).
Notably, Basset’s performance was comparable to other DNNs based on binary predictions'”; however, its overall performance
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Figure 2. Generalization of EvoAug on additional models and datasets. (a) Box-plot of regression performance for
DeepSTARR models pretrained with individual or combination of augmentations (i.e. insertion + translocation + deletion; all
augmentations) and fine-tuned on original STARR-seq data for two promoters: developmental (top) and housekeeping (bottom).
Standard represents no augmentations during training. (b) Box-plot of classification performance (area under the
receiver-operating-characteristic curve) for DNNs trained on ChIP-seq datas. (c¢) Average classification performance for
ChIP-seq experiments downsampled to different dataset sizes. Shaded region represents the standard deviation of the mean.
(a-b) Each box-plot represents 5 trials with random initializations.
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was lower than more sophisticated DNNs and top competitors in the CAGI5 challenge?. Interestingly, we observed that DNNs
pretrained with Gaussian noise or random mutagenesis augmentations did not perform well. These augmentations impose
flatness locally in sequence-function space, effectively reducing the effect size of nucleotide variants. However, fine-tuning
these models improved their variant effect predictions beyond what was achieved with standard training, thus demonstrating the
effectiveness of the two-stage training curriculum.

To further demonstrate the benefits of EvoAug, we trained DeepSTARR models as a multi-task quantitative regression
to predict enhancer activity from self-transcribing active regulatory region sequencing (STARR-seq) data®, where each task
represents a different promoter from a developmental or housekeeping gene in Drosophila S2 cells. Most EvoAug augmentations
resulted in improved performance, except for reverse-complement and random mutations (Fig. 2a and Supplementary Figures
3-5). As before, we observed additional performance gains when augmentations were used in combination. Furthermore, the
attribution maps generated by EvoAug-trained models were more interpretable, with identifiable motifs and less spurious noise
(Supplementary Fig. 6).

In addition, we found that the EvoAug-trained DNNs consistently outperformed DNNs with standard training on various
single-task binary classification tasks for TF binding across multiple chromatin immunoprecipitation sequencing (ChIP-seq)
datasets (Fig. 2b). Interestingly, we did not observe any significant improvement in performance after fine-tuning, suggesting
that the implicit prior imposed by EvoAug augmentations was appropriate for these tasks; the underlying regulatory grammars
for these TFs are not complex.

To further investigate the impact of EvoAug on small datasets, we retrained each DNN on down-sampled versions of two
abundant ChIP-seq datasets. We found that EvoAug-trained DNNs exhibit a greater improvement in performance for smaller
datasets compared to standard training (Fig. 2c). This result suggests that EvoAug can be particularly useful in scenarios where
the available training data is limited.

Training with EvoAug adds a computational cost, depending on the augmentations chosen and their settings (Supplementary
Tables 2 and 3). Nevertheless, EvoAug stabilized training (Supplementary Fig. 7), leading to smoother convergence and
improved generalization overall.

Conclusion

EvoAug greatly expands the set of available data augmentations for genomic DNNs. Our study demonstrated that EvoAug’s
two-stage training curriculum is effective in improving generalization performance. Moreover, EvoAug-trained models learned
better representations of consensus motifs, as evidenced by filter visualization and attribution analysis.

Our findings support previous arguments for using evolution as a natural source of data augmentation’?. Interestingly,
the impact of synthetic evolutionary perturbations was not excessively disruptive, and performance even improved before
fine-tuning in most cases. This functional robustness appears to be a characteristic of the non-coding genome>’.

Data augmentations are a commonly used technique to balance bias and variance in machine learning models. However,
their effectiveness is expected to decrease as the dataset size increases. Nevertheless, EvoAug still improved performance
on the already large Basset dataset. Other methods that can enhance generalization include multitask learning”*, contrastive
learning?>?%, and language modeling®’. Even though Basset and DeepSTARR are already trained in a multitask framework,
EvoAug improved their performance. Multitasking can introduce class imbalance, but EvoAug provides additional examples
with pseudo-positive labels, which can mitigate this issue. EvoAug also provides different views of the data, which can be
useful for contrastive learning. Importantly, EvoAug is a lightweight and effective strategy that only requires the original data.

The optimal combination of augmentations and their hyperparameter choices depends on the model and dataset. While we
performed hyperparameter grid searches in this study, more advanced search strategies such as population-based training”® using
Ray Tune® could improve efficiency. In the future, we plan to investigate EvoAug’s potential in cross-dataset generalization
and variant effect predictions, including expression quantitative trait loci.

EvoAug is a PyTorch package that is open-source, easy to use, extensible, and accessible via pip (https://pypi.
org/project/evoaug) and GitHub (https://github.com/p-koo/evoaug), with full documentation provided
on ReadtheDocs.org (https://evoaug.readthedocs.io.). In time, we plan to extend EvoAug functionality to
TensorFlow®" and JAX3!. We anticipate that EvoAug will have broad utility in improving the efficacy of sequence-based DNNs
for regulatory genomics.

Methods

Models and Datasets

Basset. The Basset dataset’” consists of a multi-task binary classification of chromatin accessibility sites across 161 cell
types/tissues. The inputs are genomic sequences of length 600 nt and the output are binary labels (representing accessible or
not accessible) for 161 cell types measured experimentally using DNase I hypersensitive sites sequencing (DNase-seq). We

4/10


https://pypi.org/project/evoaug
https://pypi.org/project/evoaug
https://github.com/p-koo/evoaug
https://evoaug.readthedocs.io.
https://doi.org/10.1101/2022.11.03.515117
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.03.515117; this version posted March 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

filtered sequences that contained at least one N character and the data splits (training; validation; test) reduced from (1,879,982;
70,000; 71,886) to (437,478; 16,410; 16,703). This “cleaned” dataset was analyzed using a Basset-inspired model, which is
given according to:

L]

BatchNorm represents batch normalization32, and dropou

Input x € {0, 1}509%4 (one-hot encoding of 600 nt sequence)
1D convolution (300 filters, size 19, stride 1)
BatchNorm + ReLLU

Max-pooling (size 3, stride 3)

1D convolution (200 filters, size 11, stride 1)
BatchNorm + ReLLU

Max-pooling (size 4, stride 4)

1D convolution (200 filters, size 7, stride 1)
BatchNorm + ReLU

Max-pooling (size 2, stride 2)
Fully-connected (1000 units)

BatchNorm + ReLLU

Dropout (0.3)

Fully-connected (1000 units)

BatchNorm + ReLLU

Dropout (0.3)

Fully-connected output (161 units, sigmoid)

t*3 rates set the probability that neurons in a given layer are

temporarily removed during each mini-batch of training.

DeepSTARR. The DeepSTARR dataset’ consists of a multi-task regression of enhancer activity for two promoters, well-known
developmental and housekeeping transcriptional programs in D. melanogaster S2 cells. The inputs are genomic sequences of
length 249 nt and the output is 2 scalar values representing the activity of developmental enhancers and housekeeping enhancers
measured experimentally using STARR-seq. Sequences with N characters were also removed, but this minimally affected the
size of the dataset (i.e., reduced it by approximately 0.005%). This dataset was analyzed using the original DeepSTARR model,
given according to:

L]

Input x € {0, 1}2494

1D convolution (256 filters, size 7, stride 1)
BatchNorm + ReLLU

Max-pooling (size 2, stride 2)

1D convolution (60 filters, size 3, stride 1)
BatchNorm + ReLLU

Max-pooling (size 2, stride 2)

1D convolution (60 filters, size 5, stride 1)
BatchNorm + ReLLU

Max-pooling (size 2, stride 2)

1D convolution (120 filters, size 3, stride 1)
BatchNorm + ReLU

Max-pooling (size 2, stride 2)
Fully-connected (256 units)

BatchNorm + ReLLU

Dropout (0.4)

Fully-connected (256 units)

BatchNorm + ReLLU

Dropout (0.4)

Fully-connected output (2 units, linear)

510


https://doi.org/10.1101/2022.11.03.515117
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.03.515117; this version posted March 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ChlIP-seq. Transcription factor (TF) chromatin immunoprecipitation sequencing (ChIP-seq) data was processed and framed
as a binary classification task. The inputs are genomic sequences of length 200 nt and the output is a single binary label
representing TF binding activity, with positive-label sequences indicating the presence of a ChIP-seq peak and negative-label
sequences indicating a peak for a DNase I hypersensitive site from the same cell type but one that does not overlap with any
ChIP-seq peaks. Nine representative TF ChIP-seq experiments in a GM 12878 cell line and a DNase-seq experiment for the
same cell line were downloaded from ENCODE?; for details, see Supplementary Table 1. Negative sequences (i.e., DNase-seq
peaks that do not overlap with any positive peaks) were randomly down-sampled to match the number of positive sequences,
keeping the classes balanced. The dataset was split randomly into training, validation, and test set according to the fractions 0.7,
0.1, and 0.2, respectively.
A custom convolutional neural network was employed to analyze these datasets, given according to:

* Input x € {0,1}200x4

¢ 1D convolution (64 filters, size 7, stride 1)
e BatchNorm + ReLU

* Dropout (0.2)

* Max-pooling (size 4, stride 4)

¢ 1D convolution (96 filters, size 5, stride 1)
* BatchNorm + ReLU

* Dropout (0.2)

* Max-pooling (size 4, stride 4)

¢ 1D convolution (128 filters, size 5, stride 1)
¢ BatchNorm + ReLU

* Dropout (0.2)

* Max-pooling (size 2, stride 2)

¢ Fully-connected layer (256 units)

¢ BatchNorm + ReLU

* Dropout (0.5)

¢ Fully-connected output layer (1 unit, sigmoid)

Evolution-inspired Data Augmentations
EvoAug is comprised of a set of data augmentations given by the following:

e Mutation: a transformation where single nucleotide mutations are randomly applied to a given wild-type sequence.
This is implemented as follows: (1) given the hyperparameter of the fraction of nucleotides in each sequence to mutate
(mutate_frac), the number of mutations for a given sequence length is calculated; (2) a position along the sequence
is randomly sampled (with replacement) for each number of mutations; and (3) the selected positions are mutagenized
to a random nucleotide. Since our implementation does not guarantee that a nucleotide selected will be mutated to a
different nucleotide than it originally was, we take approximate account for silent mutations by dividing the user-defined
mutate_frac by 0.75 so that on average the fraction of nucleotides in each sequence mutated to a different nucleotide
is equal tomutate_frac.

 Translocation: a transformation that randomly selects a break point in the sequence (thereby creating two segments) and
then swaps the order of the two sequence segments. An equivalent statement of this transformation is a “roll”—shifting
the sequence forward along its length a randomly specified distance and then reintroducing the part of the sequence shifted
beyond the last position back at the first position. This is implemented as follows: (1) given the hyperparameters of the
minimum distance (shift_min, default 0) and maximum distance (shift_max) of the shift, the integer-valued shift
length is chosen randomly from the interval [-shift_max,—shift_min|U[shift_min,shift_max], where a
negative value simply denotes a backward shift rather than a forward shift; and (2) the shift is applied to the sequence
witha roll () function in PyTorch.

¢ Insertion: a transformation where a random DNA sequence (of random length) is inserted randomly into a wild-type
sequence. This is implemented as follows: (1) given the hyperparameters of the minimum length (insert_min, default
0) and maximum length (insert_max) of the insertion, the integer-valued insertion length is chosen randomly from

6/10


https://doi.org/10.1101/2022.11.03.515117
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.03.515117; this version posted March 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the interval between insert_min and insert_max (inclusive); and (2) the insertion is inserted at a random position
within the original sequence. Importantly, to maintain a constant input sequence length to the model (i.e., original length
plus insert_max), the remaining amount of length between the insertion length and insert_max is split evenly
and placed on the 5’ and 3’ flanks of the sequence, with the remainder from odd lengths going to the 3’ end. Whenever
an insertion augmentation is employed in combination with other augmentations, all sequences without an insertion
are padded with a stretch of random DNA of length insert_max at the 3’ end to ensure that the model processes
sequences with a constant length for both training and inference time.

* Deletion: a transformation where a random, contiguous segment of a wild-type sequence is removed, and the shortened
sequence is then padded with random DNA sequence to maintain the same length as wild-type. This is implemented
as follows: (1) given the hyperparameters of the minimum length (delete_min, default 0) and maximum length
(delete_max) of the deletion, the integer-valued deletion length is chosen randomly from the interval between
delete_min and delete_max (inclusive); (2) the starting position of the deletion is chosen randomly from the valid
positions in the sequence that can encapsulate the deletion; (3) the deletion is performed on the designated stretch of the
sequence; (4) the remaining portions of the sequence are concatenated together; and (5) random DNA is used to pad the
5’ and 3’ flanks to maintain a constant input sequence length, similar to the procedure for insertions.

L]

Inversion: a transformation where a random subsequence is replaced by its reverse-complement. This is implemented
as follows: (1) given the hyperparameters of the minimum length (invert_min, default 0) and maximum length
(invert_max) of the inversion, the integer-valued inversion length is chosen randomly from the interval between
invert_min and invert_max (inclusive); (2) the starting position of the inversion is chosen randomly from the
valid position indices in the sequence; and (3) the inversion (i.e., a reverse-complement transformation) is performed on
the designated subsequence while the remaining portions of the sequence remain untouched.

* Reverse-complement: a transformation where a full sequence is replaced with some probability rc_prob by its
reverse-complement.

Gaussian noise: a transformation where Gaussian noise (with distribution parameters noise_mean=0and noise_std)
is added to the input sequence; a random value drawn independently and identically from the specified distribution is
added to each element of the one-hot input matrix.

Pretraining with data augmentations. Training with augmentations requires two main hyperparameters: first, a set of
augmentations to sample from; and second, the maximum number of augmentations to be applied to a sequence. For each
mini-batch during training, each sequence is randomly augmented independently. The number of augmentations to be applied
to a given sequence has two possible settings in EvoAug: (1) hard, always equal to the maximum number of augmentations;
or (2) soft, randomly select the number of augmentations for a sequence from 1 to the maximum number. Our experiments
with Basset and DeepSTARR use the former setting, while our experiments with ChIP-seq datasets use the latter setting. Then,
the subset of augmentations to be applied to the sequence is sampled randomly without replacement from the user-defined set
of augmentations. After a subset of augmentations is chosen, the order in which multiple augmentations are applied to a single
sequence is given by the following priority: inversion, deletion, translocation, insertion, reverse-complement, mutation, noise
addition. Each augmentation is then applied stochastically for each sequence.

For the Basset and DeepSTARR models, each augmentation has an optimal setting that was determined from a hyperparame-
ter search independently using the validation set (Supplementary Figs. 1, 3, and 4). For the Basset models, the hyperparameters
were set to:

e mutation: mutate_frac=0.15

¢ translocation: shift _min =0, shift_max =30
e insertion: insert_min=0, insert_max =30
¢ deletion: delete_min=0,delete_max =30

e reverse-complement: rc_prob =0.5

e noise: noise_mean =0, noise_std (standard deviation) = 0.3

For the DeepSTARR models, the hyperparameters were set to:

e mutation: mutate_frac =0.05
¢ translocation: shift_min =0, shift_max =20

e insertion: insert_min=0, insert_max =20
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e deletion: delete_min=0,delete_max =30
* reverse-complement: rc_prob =0

e noise: noise_mean =0, noise_std=0.3

When augmentations were used in combinations, the maximum number of augmentations was set to 3 for Basset and 2 for
DeepSTARR. The same hyperparameter settings used in DeepSTARR analyses with all augmentations were used for the
ChIP-seq analysis. For models trained with combinations of augmentations, the hyperparameters intrinsic to augmentations
were set at the values identified above and the maximum number of augmentations per sequence was also determined through a
hyperparameter sweep for each dataset (Supplementary Figs. 2 and 5).

Unless otherwise specified, all models were trained (with or without data augmentations) for 100 epochs using the Adam
optimizer®® with an initial learning rate of 1 x 10~ and a weight decay (L, penalty) term of 1 x 10~%; additionally, we employed
early stopping with a patience of 10 epochs and a learning rate decay that decreased the learning rate by a factor of 0.1 when
the validation loss did not improve for 5 epochs. For each model trained, the version of the model with the highest-performing
weights during its training, as measured by validation loss, is the version of the model whose performance is reported here.

Fine-tuning. Models that completed training with data augmentations were subsequently fine-tuned on the original dataset
without augmentations. Fine-tuning employs the Adam optimizer with a learning rate of 1 x 10™* and a weight decay (L,
penalty) term of 1 x 107° for 5 epochs. The model that yields the lowest validation loss was used for test time evaluation.

Evaluation. When evaluating models on validation or test sets, no data augmentations were used on input sequences. For
models trained with an insertion augmentation (alone or in combination with other augmentations), each sequence is padded at
the 3’ end with a stretch of random DNA of length insert_max.

Interpretability Analysis

Filter interpretability. We visualized the first-layer filters of various Basset models according to activation-based alignments*¢
and compared how well they match motifs in the 2022 JASPAR nonredundant vertebrates database®’ using Tomtom3®, a
motif search comparison tool. Matrix profiles MA1929.1 and MA0615.1 were excluded from filter matching to remove poor
quality hits; low information content filters tend to have a high hit rate with these two matrix profiles. Hit rate is calculated by
measuring how many filters matched to at least one JASPAR motif. Average g-value is calculated by taking the average of the
smallest g-values for each filter among its matches.

Attribution analysis. SHAP-based®® attribution maps (implemented with Gradient Shap from the Captum package*”)
were used to generate sequence logos (visualized by Logomaker*!) for sequences that exhibited high experimental enhancer
activity for the Developmental promoter (i.e., task O in the DeepSTARR dataset). 1,000 random DNA sequences were
synthesized to serve as references for each GradientShap-based attribution map. A gradient correction*? was applied to
each attribution map. For comparison, this analysis was repeated for a DeepSTARR model that was trained without any
augmentations and a fine-tuned DeepSTARR model that was pretrained with all augmentations (excluding inversions) with two
augmentations per sequence.

CAGI5 Challenge Analysis

The CAGIS5 challenge dataset®>' was used to benchmark model performance on variant effect predictions. This dataset contains
massively parallel reporter assays (MPRAs) that measure the effect size of single-nucleotide variants through saturation
mutagenesis of 15 different regulatory elements ranging from 187 nt to 600 nt in length. We extracted 600 nt sequences from
the reference genome centered on each regulatory region of interest and converted it into a one-hot representation. Alternative
alleles were then substituted correspondingly to construct the CAGI test sequences.

For a given Basset model, the output predictions of two input sequences, one with a centered reference allele and the other
with an alternative allele, are made. The cell type-agnostic approach employed in this study uses the mean across these values
to calculate a single scalar value, functional activity across cell types. The effect size is then calculated with the log-ratio of this
single value for the alternative allele and reference allele, according to: log(alternative value / reference value).

To evaluate the variant effect prediction performance, Pearson correlation was calculated within each CAGIS experiment
between the experimentally measured and predicted effect sizes. The average of the Pearson correlation across all 15 experiments
represents the overall performance of the model.

Data and code availability

EvoAug Python package is deposited on the Python Package Index (PyPI) repository with documentation hosted on https:
//evoaug.readthedocs. io. The open-source project repository is available at GitHub, https://github.com/
p-koo/evoaug. The code to reproduce analyses in this paper is available on GitHub, https://github.com/p-koo/
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evoaug_analysis. Data and model weights are available at Zenodo: doi.org/10.5281/zenodo.7265991 and
doi.org/10.5281/zenodo.7277777.
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Supplementary Table 1. ENCODE ChIP-seq details. Ten representative TF ChIP-seq experiments in GM 12878 cell line
and a DNase-seq experiment (File accession: ENCFF235KUD) for the same cell line were downloaded from ENCODE. Table
shows ENCODE file accession codes for all transcription factor proteins.

PROTEIN ENCODE FILE ACCESSION  CELL LINE
MAX ENCFF083KVY GM12878
BACH1 ENCFF012JXJ GM12878
GABPA ENCFF116EXQ GM12878
ZNF24 ENCFF10300V GM12878
ELK1 ENCFF556JBS GM12878
SRF ENCFF909FRA GM12878
REST ENCFF677KIJB GM12878
ATF2 ENCFF127GYQ GM12878
CTCF ENCFF710VEH GM12878

110


https://doi.org/10.1101/2022.11.03.515117
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.03.515117; this version posted March 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Table 2. Computational cost for Basset models. Table shows the computational cost of EvoAug
augmentations for Basset models, including the number of epochs, time per epoch, and the total training time, on a single
NVIDIA RTX 2080ti GPU. The values represent the average across 5 independent trials and errors represent standard deviation

of the mean.

AUGMENTATION EPOCHS TIME PER EPOCH (S) TOTAL TIME (MIN)
STANDARD 140+ 1.3 74 173+ 1.6
NOISE 354 +£9.7 98 57.8 £15.8
RC 254 +5.8 114 48.3+£11.0
MUTATION 52.4+12.5 171 149.3 + 35.625
TRANSLOCATION  25.6 £3.3 125 53.3+£6.9
DELETION 32.2+6.1 172 92.3+17.5
INSERTION 34.0 £ 8.3 174 98.6 £ 24.1
NOISE+RC+INS 87.6 £12.2 219 319.7 £ 44.5
ALL 85.4 £ 15.1 259 368.6 = 65.2
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Supplementary Table 3. Computational cost for DeepSTARR models. Table shows the computational cost of EvoAug
augmentations for DeepSTARR models, including the number of epochs, time per epoch, and the total training time, on on a
single NVIDIA RTX 2080ti GPU. The values represent the average across 5 independent trials and errors represent standard

deviation of the mean.

AUGMENTATION EPOCHS TIME PER EPOCH (S) TOTAL TIME (MIN)
STANDARD 224+ 1.4 62 23.1+1.4
NOISE 45.0£11.1 76 57.0 £ 14.1
MUTATION 49.6 +£ 8.0 138 114.1 +18.4
TRANSLOCATION 58.6 £12.4 108 105.5.1 £22.3
DELETION 56.6 +11.2 149 140.6 +27.8
INSERTION 52.8 £ 13.6 156 137.3 +35.4
NOISE+INS 81.8 £16.0 217 295.8 +57.9
ALL 74.4 +£10.0 264 327.4 +44.0
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Supplementary Figure 1. Hyperparameter sweep of each augmentation method for Basset. Each plot shows the average
classification performance for different hyperparameter values intrinsic to each data augmentation method. Shaded region

represents the standard deviation of the mean. Dashed line represents the performance without augmentations. Values reported
are with n = 5 trials with random initializations.
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Supplementary Figure 2. Sweep in number of applied augmentations for Basset. (a) Box-plot of classification
performance for Basset models pre-trained with two combination strategies of (a) all and (b) insertion + translocation +
deletion, and fine-tuned on original data. All represents reverse-complement, Gaussian noise, insertion, deletion, translocation,
and mutation. Standard represents no augmentations during training. Each number in the x-axis represents the number of
augmentations that are applied to each sequence in combinations during training. Box plots show the first and third quartiles,

central line is the median, and the whiskers show the range of data with outliers removed. Values reported are with n =5 trials
with random initializations.
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Supplementary Figure 5. Sweep in number of applied augmentations for DeepSTARR. Box-plot of regression
performance (Pearson’s r for top row and Spearman correlation for bottom row) for DeepSTARR models pre-trained with all
augmentations—namely, reverse-complement, Gaussian noise, insertion, deletion, translocation, and mutation—for
developmental (left) and housekeeping (right) conditions. Standard represents no augmentations during training. Each number
in the x-axis represents the number of augmentations that are applied to each sequence in combinations during training. Box
plots show the first and third quartiles, central line is the median, and the whiskers show the range of data with outliers

removed. Values reported are with n = 5 trials with random initializations.
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DeepSTARR with Augmentations
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Supplementary Figure 6. Attribution map comparison for DeepSTARR. Sequence logos of SHAP-based attribution maps
for a fine-tuned DeepSTARR model that was pretrained with a combination of all augmentations up to 2 augmentations total
per sequence (top) and DeepSTARR trained without any augmentations (bottom). The number on the y-axis represents the
index of the sequence from the DeepSTARR test set. Sequence logos of GATA and AP1 are shown for visual comparison.
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Supplementary Figure 7. Training performance. The average validation loss at each epoch of training for various
augmentations applied to Basset (left) and DeepSTARR (right). Values reported are with n = 5 trials with random
initializations. Shaded region represents the standard deviation. Due to the different training times for each trial, standard

deviation was calculated for epochs that contained at least 3 values.
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