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Abstract

The availability of long-reads is revolutionizing studies of structural variants (SVs). However, 

because SVs vary across individuals and are discovered through imprecise read technologies and 

methods, they can be difficult to compare. Addressing this, we present Jasmine and Iris (https://

github.com/mkirsche/Jasmine), for fast and accurate SV refinement, comparison, and population 

analysis. Using an SV proximity graph, Jasmine outperforms six widely-used comparison 

methods, including reducing the rate of Mendelian discordance in trio datasets by more than 

five-fold, and reveals a set of high-confidence de novo SVs confirmed by multiple technologies. 

We also present a unified callset of 122,813 SVs and 82,379 indels from 31 samples of diverse 

ancestry sequenced with long reads. We genotype these variants in 1,317 samples from the 1000 

Genomes Project and GTEx with DNA and RNA sequencing data and assess their widespread 

impact on gene expression, including within medically relevant genes.
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Introduction

Structural variants (SVs) are defined as large-scale genomic mutations affecting more than 

50 basepairs, and include insertions, deletions, duplications, inversions, and translocations 
1,2. Such variants are responsible for more divergent basepairs across human genomes 

than any other class of variation 3, and have been associated with many major diseases 

and phenotypes, including cancer 4,5 and autism 6. They have also been shown to have 

phenotypic effects in other species, such as altered growth under stress in yeast 7. However, 

much of the impact of structural variants remains unknown because of the inability of SVs 

in complex regions to be accurately identified by short reads which make up the majority of 

existing genomic sequencing data 8,9. In a similar manner, indels larger than 30bp in length, 

while not typically considered to be SVs under the 50bp threshold, have been shown to be 

similarly associated with changes in phenotypes 1 and also suffer from an inability to be 

mapped and resolved in short-read genomic data 10–12. Therefore, while the main focus of 

our analysis is on SV calling, we also demonstrate how our methods can be applied to indels 

which affect at least 30bp as well. Throughout this manuscript, we use “SVs” to refer to 

variants affecting at least 50 basepairs, but use “SVs and indels” to refer collectively to all 

variants affecting 30 or more basepairs.

In recent years, the emergence of long-read genomic sequencing technologies 13–16 and 

the development of specialized software for alignment 17–19 and variant calling 18,20 

have enabled the characterization of complex structural variants which were difficult or 

impossible to study from short reads alone 8. For this reason, many population variant 

inference studies include long-read sequencing data for multiple individuals instead of or in 

addition to short-read data 21–23.

Because there are multiple sequencing technologies, aligners, and SV callers that could 

be used, SV-processing pipelines for population-scale studies are frequently optimized for 

the particular dataset being analyzed 7,23, making it difficult to compare SVs called in 

different studies or to accurately screen newly sequenced samples for known variants. In 

addition, existing tools for comparing SV callsets from different samples have issues such as 

collapsing multiple variants in the same individual, including variants of different types, and 

producing callsets that vary substantially when the order of the input samples is changed. 

As the cost of long-read sequencing continues to fall and the number of population-scale 

SV studies continues to rise, there is an increasingly apparent need for methods which can 

accurately compare variants across a range of datasets.

To address this need, we introduce an optimized software pipeline for accurately detecting 

SVs and comparing these variant calls across large numbers of individuals (Figure 1). 

This pipeline enhances existing methods for alignment 17 and variant calling 18 with 

new methods for refining the sequences and breakpoints of SV calls, and for comparing 

variant calls between different individuals to achieve a unified callset. Using a combination 

of simulated and real datasets, we show that this pipeline produces more accurate SV 

calls than several widely used methods across a variety of metrics. First, by applying our 

methods to a HiFi dataset from the HG002 Genome-In-A-Bottle (GIAB) Ashkenazim trio, 

we illustrate that our approach achieves a five-fold reduction in the number of Mendelian 
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discordant variants, while identifying multiple high-confidence de novo variants in the child 

supported by three independent sequencing platforms. We also analyze this trio to identify 

signatures of variants specifically derived from each particular technology. This enables us 

to establish recommended variant calling parameters for different sequencing technologies 

which minimize Mendelian discordance as well as false merges. We next show that Jasmine 

improves SV merging and addresses the major issues that other methods encounter when 

scaling up to large cohorts. We call variants with our pipeline from publicly available long-

read data for 31 samples, and generate a panel of long-read SV and indel calls which can 

be used for screening further samples. Finally, we genotype this variant panel in 444 high-

coverage short-read samples from the 1000 Genomes Project 24 along with 873 samples 

from GTEx 25 and discover thousands of previously undetected SV associations with gene 

expression. Many of these SVs have CAVIAR posterior probabilities of causality that exceed 

those of previously reported SNPs, indicating likely functional relevance, including within 

medically relevant genes.

Results

Optimized SV refinement, comparison, and population analysis with Iris and Jasmine

Addressing the need for accurate SV refinement, comparison, and population analysis we 

introduce two methods, Iris and Jasmine. The first method, Iris, refines variant calls by 

using Racon 26 to polish the variant sequence from reads supporting the alternate allele and 

realigning this polished sequence to the reference with minimap2 19.The second method, 

Jasmine, compares and merges calls in different individuals corresponding to the same 

variant. Jasmine represents variants as points in space based on their breakpoints and 

lengths and constructs a graph of SV proximity, where edges represent pairs of SVs with 

a small Euclidean distance between them. Jasmine then treats the comparison/merging 

problem as one of finding a minimal-weight acyclic subgraph of the proximity graph 

which satisfies constraints such as user-specified distance thresholds and the avoidance of 

intrasample merging. Jasmine solves this problem with a constrained version of Kruskal’s 

algorithm for minimum spanning trees 27, and avoids the high time and memory overhead of 

computing and storing the entire graph by using a KD-Tree 28 to dynamically locate nearby 

variant pairs and implicitly detect low-weight edges. This optimization is key to Jasmine’s 

performance, as it enables it to implicitly consider the entire SV proximity graph and 

prioritize merges which encompass edges of globally-minimal weight. This is in contrast 

to prior methods, which often perform sub-optimal merging because they utilize heuristics 

to consider smaller subgraphs of the variant proximity graph and potentially disregard 

minimum-weight edges which would be included in the optimal merging. Both Iris and 

Jasmine are available as stand-alone software packages and are available within bioconda as 

well as within Galaxy 29.

Reduced Mendelian Discordance in an Ashkenazim Trio

A common application of SV and other variant inference methods is the identification of 

de novo variants, or variants which are present in an individual but neither of their parents. 

Such variants have been associated with autism 30 and cancer 31, and de novo variant 

analysis is frequently used as a starting point for identifying the cause of genetic diseases 
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or other phenotypes of interest 32. However, because of shortcomings in SV inference and 

comparison methods, identifying de novo SVs and indels remains a difficult problem. For 

example, one widely used pipeline consisting of ngmlr, sniffles 18, and SURVIVOR 7 gives 

thousands of candidate de novo SVs when applied to high-accuracy HiFi sequencing data 

from the HG002 Ashkenazim trio (Figure 2a). Because the number of de novo SVs is 

typically estimated to be less than ten per generation on average 33, almost all of these 

variant calls are either false positives in the child, false negatives in one or both parents, or 

errors in merging the callsets. Collectively, we refer to these false outcomes as Mendelian 

discordant variants.

To address the large number of discordant variants, our optimized pipeline offers a number 

of improvements which reduce the rate of Mendelian discordance by more than a factor 

of five with <1% (279/32,215 = 0.009) of merged SVs being discordant (Figure 2b). At 

the same time, our pipeline enabled the discovery of 10–20% more SVs than existing 

methods, with a size distribution and indel balance similar to prior work (Figure 2c, 

Supplementary Figure 1). The methodological improvements include double thresholding 

(see Methods: Double Thresholding) which mitigates threshold effects in variant detection 

(Supplementary Figure 2), improved variant calling parameters (Supplementary Figure 3), 

and using Jasmine for SV merging. Furthermore, we compared Jasmine to six existing 

methods for SV comparison between samples (Figure 2d; Supplementary Figure 4): 

dbsvmerge 34, SURVIVOR 7, svpop 35, svtools 36, sv-merger 23, and svimmer 37. For each 

software, we merged the unfiltered callset from each of the three samples, and after merging 

filtered the variants based on the read support, length, and breakpoint precision of the 

corresponding input SV calls. We found that Jasmine achieves the lowest rate of discordance 

and correctly avoids merging variants of different types or variants from the same sample. 

This is largely due to its ability to detect and merge the closest pair of variants among all 

variant pairs, which is in contrast to other methods that use heuristics to reduce the number 

of mergeable pairs beforehand, leading to suboptimal merging. In addition, Jasmine avoids 

merging mismatched variants corresponding to partial inversions or translocations, which is 

particularly important when resolving complex nested SVs (Supplementary Figure 5). The 

resulting reduction in Mendelian discordant variants is an important step towards the rapid 

identification of de novo variants, as it is typically necessary to screen all discordant variants 

manually when searching for true de novo variants.

We also evaluated the discordance rate among SVs overlapping tandem repeats (TRs), and 

found that the discordance of SVs overlapping tandem repeats was similar to the overall rate 

(195/22,626 = 0.0086 overlapping TRs; 84/9,589 = 0.0088 outside TRs). However, manual 

inspection revealed a large number of discordant variants where the true SV was within 

a tandem repeat, but disrupted alignment and variant calling resulted in an SV call just 

outside of the repeat region. We investigated discordance among SVs near TRs and found 

that there was a higher discordance rate for SVs within 500bp of tandem repeats (252/26,300 

= 0.0096 within 500bp of TRs; 27/5,915 = 0.0046 at least 500bp outside TRs). Because the 

discordance is so much lower in regions at least 500bp away from TRs (<0.5%), we refer to 

these regions as non-TR regions.
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SV Analysis Across Sequencing Technologies

Improved methods for comparing multiple SV callsets also enable the comparison of 

variants identified in a single individual from different sequencing technologies. We 

evaluated three different technologies applied to HG002: Pacific Biosciences Continuous 

Long Reads (CLR), Pacific Biosciences High-Fidelity (HiFi) circular consensus sequencing 

and Oxford Nanopore long reads (ONT) basecalled with Guppy 4.2.2. Variants were called 

separately from each technology, and the resulting callsets were merged with Jasmine. The 

three callsets were largely in agreement, with 18,778 out of 28,348 SVs being supported 

by all three technologies (Figure 3a and 3b; Supplementary Figure 6). The set of technology-

concordant variants, shown in Figure 3c, shows that insertion and deletion calls are largely 

balanced, with a slight enrichment of insertions, shown in previous studies to be caused by 

missing sequence in the human reference genome 22, as well as a tendency for deletions 

to be more deleterious 38. There is also an increased number of variants around sizes of 

300bp and 6–7kbp (Supplementary Figure 7), corresponding to SINE and LINE elements 

respectively.

We also examined variants that were identified only by a single technology, as these 

may reveal systematic biases in variant calling caused by each technology’s error model, 

particularly in CLR and ONT, which have higher rates of sequencing error. Of the 499 

variants identified exclusively in CLR data (Figure 3d), there were 244 insertions and 155 

deletions, with an excess of insertions in the size range 750 to 1000, corresponding to 

a known error characteristic of CLR sequencing 18. Of the 3,329 ONT-only variant calls 

(Figure 3e), there were 539 insertions and 2,652 deletions, with an enrichment of small 

deletions less than 50 basepairs in length. In addition, we found that many of the variants, 

particularly deletions, unique to ONT or HiFi are in centromeric regions or satellite repeats 

(Supplementary Figures 8-9). We also called and merged SVs separately for each technology 

across the HG002 trio and measured the discordance among the SVs discovered by the 

individual technologies. We found that ONT and HiFi data result in similar discordance rates 

(279/32,215 = .0087 in HiFi; 295/34,062 = .0087 in ONT), while CLR-derived calls have a 

higher rate of discordance (310/19,206 = 0.0161).

De Novo Variant Discovery

We next leveraged our methods, as well as data from all three technologies listed above, to 

screen the HG002 trio for de novo SVs and indels. We called variants from each of the three 

technologies in HG002 as well as both parents, for a total of nine callsets. We merged these 

nine callsets with Jasmine and filtered out any variants which were present in one or more of 

the six parent callsets. Of the remaining variants, we stratified them by which technologies 

supported their presence in the child and found that there were 16 which were supported by 

all three technologies (Figure 4a), with an additional 35 that were supported by HiFi and at 

least one other technology, a 43-fold reduction in candidates compared to evaluating HiFi 

data alone with prior methods (Supplementary Figure 10).

Upon manual inspection, six of these were high-confidence de novo variants (Figure 4b), 

while the remaining candidates were in noisy regions that displayed split read alignments, 

but we could not be certain whether the alignments were correct (Supplementary Figure 11). 
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One of the high-confident candidates, a 107bp deletion at chr17:53340465 (Figure 4c), was 

previously identified as a de novo SV in an effort to characterize the variants in HG002 39. 

Another example, a 537bp insertion at chr14:23280711, consists of a microsatellite repeat 

expansion on the paternal haplotype, a known class of mutations often caused by replication 

slippage 40 (Figure 4d). These and other examples (Supplementary Figures 11-13) show 

that our approach can correctly identify known de novo SVs as well as identify potential 

de novo variants which were previously undiscovered, and that these variants are supported 

by multiple independent sequencing technologies. This ability coupled with the reduced 

number of discordance demonstrates a major step towards automated de novo variant 

detection.

Population SV Inference

As the cost of long-read sequencing has continued to decrease in recent years, long-read 

studies including large cohorts have become more prevalent 23,34. As this trend is expected 

to continue 41, it is particularly important for SV inference methods to be able to scale to 

many samples. To compare Jasmine to existing approaches, we called SVs and indels in 

31 publicly available long-read samples (Supplemental Table 2) and observed the results 

of merging these callsets with each method. We attempted to run all six prior methods, 

although sv-merger did not terminate after 72 hours, and so was excluded from this analysis. 

All other methods produced a population-level callset within a few hours with 24 threads 

on a modern 4GHz server with 192GB of RAM, but the callsets produced by existing 

approaches suffer from a number of issues. In addition to the invalid merges mentioned 

above (Figure 2d), several of the existing methods use algorithms which give different 

merging results, and consequently different numbers of total variant calls, based on the 

input order of the sample callsets (Figure 5a). This problem only worsens as the number 

of samples grows and the number of possible sample orderings increases exponentially. 

Conversely, Jasmine’s algorithm, which merges variant pairs in increasing order of their 

breakpoint distances irrespective of the input order, produces identical results after any 

permutation of input files. Jasmine additionally offers the lowest median breakpoint range 

within merged variants (Figure 5b, Supplementary Figure 14) and avoids merging variants 

from the same sample. Finally, there is an abundance of low-confidence likely false positive 

variant calls in samples sequenced with CLR (Supplementary Figures 15-16), and methods 

which use a constant breakpoint distance threshold incorrectly merge these calls with high-

confidence variant calls in other samples to obtain an unreasonable trimodal allele frequency 

distribution (Supplementary Figures 17-18).

Using our SV inference pipeline, we created a panel of long-read 122,813 SVs and 82,379 

indels from these 31 samples. The datasets we used include individuals from a wide range 

of ancestral backgrounds, as well as sequencing data from multiple technologies. Variants 

were called in each sample separately and merged with Jasmine to create a unified callset. 

The allele frequency distribution is monotonically decreasing as expected, except an excess 

of variants at 100% corresponding to errors and/or minor alleles in the reference 22 (Figure 

5d). The cumulative number of variants increases with the number of samples, but at a 

decreasing rate (Figure 5e). The indels are approximately balanced (Figure 5f), with a slight 

bias towards insertions, and there are spikes in the size distribution around 300bp and 6–
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7kbp for SINE and LINE elements (Supplementary Figure 19). There is also an enrichment 

of SVs in the centromeres and telomeres (Figure 5g; Supplementary Figure 20), likely due to 

a combination of missing reference sequence, repetitive sequence which is difficult to align 

to, and greater recombination rates 22. We also filtered our callset by the non-TR regions 

defined above (>500bp away from tandem repeats), and found that 22,132 SVs and 13,615 

indels are contained in these regions.

Measuring Effects of SVs on Gene Expression

Previous expression quantitative trait loci (eQTL) studies have shown that SVs often have 

large effects on gene expression and that they are causal at 3.5–6.8% of eQTLs 3,42. To 

investigate this with our enhanced catalog of SVs, we first used Paragraph 43 to genotype 

each SV in 444 individuals from the 1000 Genomes Project (1KGP) for which gene 

expression data is publicly available 44, after removing SVs that were inconsistent with 

population genetics expectations based on the Hardy-Weinberg equilibrium (Supplementary 

Figure 21a). Following the prior studies, we mapped SV-eQTLs by pairing common (MAF 

≥ 0.05) SVs to genes within 1 Mbp using gene expression data in lymphoblastic cell lines 

from the GEUVADIS consortium 44. Each SV-gene pair was considered independently. We 

then fit a linear model to measure the effect sizes of these SVs on gene expression, and 

found that 5,456 pairs passed a significance threshold with 10% FDR (matching previous 

studies of this dataset 44), which is substantially higher than the 478 pairs that we observe 

among short-read SVs using the same FDR. These associations occur for both deletions and 

insertions, and both have approximately the same effect size distribution (Supplementary 

Figure 21b). These data suggest that many of the SVs that are only visible through 

genotyping long-read-based variant calls have large effects on gene expression and thus 

are potentially functionally relevant.

In order to evaluate which SVs are likely to have causal effects on their associated genes, we 

used the fine-mapping tool CAVIAR 45 to measure the posterior probability that any given 

SV is causal compared to nearby SNPs within a 1 Mbp window, taking into account possible 

linkage disequilibrium (LD) between variants. We found that SVs had high posterior scores 

(>0.1) at 68 genes out of 1,863 genes examined (3.65%). Additionally, when compared to 

existing databases of SNP-eQTLs from the GTEx project 3,25, SVs had a higher CAVIAR 

posterior than reported SNPs for 53.5% of genes with an SV-eQTL (Supplementary Figure 

21c). This shows that previously undetected SVs are likely causal at a large number of 

sites where the effects on gene expression were reported as SNP-eQTLs instead. Inspecting 

all SV-gene pairs with a CAVIAR posterior greater than that of any previously reported 

SNP-eQTL for that gene (and greater than 0.2 overall), we identified several potentially 

functional SVs in high linkage disequilibrium (LD) with reported SNPs (Supplementary 

Figures 22-23). Several of our top candidates have been reported by other studies as 

SV-eQTLs, which serves to validate our overall approach and increase confidence in our 

discoveries.

To further demonstrate the application of merging variants with Jasmine for SV-eQTL 

discovery, we next genotyped and analyzed the long-read reference SV set in the GTEx 

dataset 3,25. The GTEx dataset contains short-read WGS from over 800 individuals with 
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matched RNA-seq data in up to 49 non-diseased tissues. We first genotyped 26,377 common 

SVs detected in the reference SV set with Paragraph43 within the NHGRI AnVIL Terra 

platform 46 in 873 GTEx individuals. Here we focused on common SVs with minor allele 

frequency of at least 0.05 that pass conservative Hardy-Weinberg filtering at genome-wide 

significant p-value. Using this approach we discovered over two-fold more variants per 

individual than previous efforts by the GTEx consortium 3 in identifying SVs exclusively 

using the short read data (Figure 6a).

We subsequently obtained gene expression measurements and technical covariates from 

GTEx for these individuals from 48 tissues (those with at least 70 individuals) and computed 

eQTLs using the same cis-eQTL calling framework as previously described in GTEx v8 
25. As GTEx contains more individuals than GEUVADIS and provides gene expression 

measurements across dozens of tissue types, we used a 5% FDR rate, which is even more 

conservative than previous studies 47. At 5% FDR, we identified 111,291 significant eGenes 

across 48 tissues, including 11,046 SVs affecting the same genes in multiple tissues (Figure 

6b). Among the eGenes, we intersected the SV-only eGenes with previously reported SNP-

based eGenes, and conservatively estimated the new number of cases where an SV-eQTL is 

the top variant to be 10,436, which is over 2,000 more examples than previously reported 

even when using the stricter threshold 47. We next repeated the CAVIAR analysis on 

gene expression as with the 1000 Genomes dataset but scaled the analysis to all tissues. 

Overall, we find 5,580 SV-eQTLs where an SV has the highest CAVIAR score for the 

eGene, including 750 SVs affecting genes in two or more tissues (Figure 6b). The median 

proportion of significant eGenes with SV as lead causal variant within each tissue is 5.7%, 

and across all tissues, a SV is the top CAVIAR predicted causal variant in approximately 

5% of the cases, consistent with our estimate from the 1000 Genome-Geuvadis SV-QTL 

dataset of 3.5–6.8%. We evaluated the SV eGenes with SV length <100,000 bp across 

all tissues available for enrichment and found a highly significant 9.5-fold enrichment 

(p-value=8.5e-10, Fisher Exact Test) for coding SVs to have high CAVIAR posteriors.

One notable example of an SV-eQTL identified using our Jasmine-Paragrah pipeline in 

GTEx is a deletion of 168bp within chromosome 3 in an intron of HACL1 (2-Hydroxyacyl-

CoA Lyase 1), a gene associated with multiple metabolic diseases48. The deletion is not 

previously reported by GTEx or other major databases of variants but is strongly supported 

by the long read sequencing and genotyping results. Based on the GTEx expression data, 

we identified it as an eQTL in testis tissues with a log2 allelic fold change of 1.11 (Figure 

6c). We also computed the t-statistic as the beta effect size divided by the variance of 

beta and found that both the p-value and t-statistic values are substantially stronger for 

the deletion than any flanking SNPs (Figure 6d, Supplementary Figure 24). The deletion 

is more common in the population than a non-deletion, indicating the reference genome 

itself carries a minor allele insertion variant. Consequently the direction of effect for the 

deletion is opposite the top SNP, as they are in linkage disequilibrium with an r2 of −0.6. 

Overall, the stronger CAVIAR score, p-value, and t-statistic suggests the SV is more likely 

than the flanking SNPs to be causal and the top SNP is effectively a marker for the SV. 

Another example of an SV-eQTL we discovered using our approach is a 37kbp deletion on 

chromosome 22 near the gene DDTL (D-Dopachrome Tautomerase Like), a paralog of the 

gene DDT, which has been associated with the chronic autoimmune disease Discoid Lupus 
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Erythematosus 49. The deletion was previously reported by the 1000 Genomes Consortium, 

although previous reports did not report it as an SV-eQTL. Within Whole Blood, a log2 

allelic fold change of 1.46 is observed, and as with HACL1, the p-value, t-statistic, and 

CAVIAR posterior are strongest for the SV compared to flanking SNPs (Figure 6e, f, 

Supplementary Figure 25). Interestingly, we find the SV-eQTL is putatively causal with 

CAVIAR posterior >0.9 for 36 tissues, and the tissue log p-value distribution is significantly 

higher (p-value= 1.1e-8, one-sided Wilcoxon rank sum test) than the top SNP associations 

in the same tissues (Supplementary Figure 26). A third significant SV-eQTL is a 60bp 

insertion on chromosome X that is an SV-eQTL of the gene ASMTL (Acetylserotonin 

O-Methyltransferase Like), a gene associated with Melanotic Neurilemmoma and other rare 

tumor types 50, in GTEx heart left ventricle tissue (Supplementary Figure 27). Overall, our 

eQTL and causal SV-QTL analysis broadly agrees with our analysis with 1000 Genome 

Project and previous GTEx analysis 3,47, although our Jasmine-Paragraph workflow enables 

us to genotype and analyze more SVs than previous approaches. Consequently, with 

our more accurate and complete SV catalog, we are able to discover substantially more 

significant and putatively causal eQTLs than in any previous analysis.

Discussion

Here we introduced Iris and Jasmine. Iris improves the sequence fidelity of SVs by 

computing the consensus of the reads that span each SV. Jasmine is a fast and accurate 

method for population-level structural variant comparison and analysis. It improves upon 

existing methods and achieves highly accurate results by merging pairs of variants in 

increasing order of their breakpoint distance, while maintaining favorable scaling qualities 

(Supplementary Figure 28) through the use of a KD-tree to efficiently locate nearby variant 

pairs. Jasmine also separately processes the SV calls by chromosome and SV type and 

strand to enable built-in parallelization, while many alternative methods incorrectly combine 

SVs of different types. By combining Jasmine with additional novel methods and carefully 

optimizing existing methods, we produced an SV-calling pipeline that reduces the rate of 

Mendelian discordance by more than a factor of five over prior pipelines, while at the same 

time being applicable to large cross-technology cohorts and resolving a number of issues 

encountered when using other methods. Finally, by calling SVs and indels in 31 publicly 

available long-read samples with our pipeline we developed and released a database of 

human structural variants. By genotyping these variants in 444 short-read samples from 

the 1000 Genomes Project and 873 samples from GTEx, we cataloged thousands of novel 

eQTLs across the human genome, including in medically relevant genes, and including 750 

variants affecting multiple tissues.

While Jasmine offers highly accurate population SV analysis, we remain limited by the 

sequencing data that is available. A major challenge we faced when applying our methods 

to a cohort consisting of samples from multiple sequencing technologies was the additional 

noise in the samples sequenced with high-error CLR reads (Supplementary Figures 16 and 

29). While we mitigated this noise through computational means, we expect that even more 

accurate SV calls could be obtained by using HiFi or ONT sequencing for all samples. We 

also found that the rate of discordance among SVs within 500bp of tandem repeats, while 

less than 1%, was more than double the discordance rate of SVs outside these regions. Other 
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methods have mitigated this by separately processing and normalizing the breakpoints of 

these variants 23, and integrating these or similar modules with Jasmine’s merging algorithm 

could significantly improve SV analysis. In addition, there were systematic anomalies 

in the SV calls in highly repetitive regions such as the centromere and satellite repeats 

(Supplementary Figures 30-32) and an overall excess of variants that are found in all 

samples. There has recently been work to improve the reference genome to more accurately 

reflect these regions 51, and this reference has been shown to substantially improve long-

read alignment and SV calling including improved indel balance, a reduction in uniform 

SVs, and SV calls in previously inaccessible regions of the genome 52. As tools for aligning 

to and calling variants in these regions continue to mature, we expect the accuracy of these 

calls to even further improve. Finally, while we have detected a large number of SVs in 

the 31 samples we studied, there is still much to be discovered. As the costs of long-read 

genome sequencing continue to decrease, we expect to apply these methods to even larger 

populations, as well to other species, to deepen our understanding of the role of SVs in 

disease, development, and evolution.

Methods

Refined Variant Breakpoints and Sequences with Iris

Many existing long-read SV callers identify variants from read alignments based on 

signatures such as an extended gap in the alignment or a segment of the read which aligns 

to a distant region of the genome 18,20. In the widely used variant caller sniffles 18, a variant 

is called when multiple reads show similar signatures that cluster together based on their 

type, span, and location. However, when reporting the variant’s breakpoints and sequence, 

the alignment from a single representative read (chosen arbitrarily) is used to infer this 

information. This is particularly problematic for insertions, where the novel sequence being 

inserted is taken directly from the single read. Since some read technologies, such as CLR 

and ONT have error rates of 5% or higher, it is expected that the sequence reported will 

have a sequence with a similar or higher rate of divergence from the true insertion sequence 

(Supplementary Figure 33). When comparing across samples, especially those sequenced 

with different technologies with different error models, this may cause the same variant in 

both individuals to be falsely identified as two separate variants.

Addressing this, we introduce Iris, a method for refining the breakpoints and novel sequence 

of SV calls by aggregating information from multiple reads which support each variant 

call (Figure 1). Iris refines each variant call separately, but supports the processing of 

multiple variants in parallel. In the case of an insertion variant call, Iris starts with an 

initial sequence consisting of the variant sequence plus flanking sequence from the reference 

genome (default 1kb on each side of the variant). Then, it gathers all of the reads which 

support the variant’s presence - indicated by the RNAMES field in the output of sniffles - 

and aligns those reads to the initial sequence with minimap2 19. These alignments are used 

as input to the polishing software racon 26, which polishes the initial sequence. Finally, the 

polished sequence is aligned to the reference with minimap2 and the CIGAR string is parsed 

to extract the insertion in the polished sequence relative to the reference which most closely 

resembles the original insertion call. If such an insertion is found, the variant call is refined 
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to reflect the updated sequence and breakpoints. Iris also supports the refinement of deletion 

breakpoints, which is of particular interest when the sequencing technology being used has a 

biased error model in favor of either insertions and deletions. These are handled similarly to 

insertions, with the initial sequence instead consisting of the concatenation of the reference 

sequences immediately before and after the deleted region. Iris is available as a standalone 

tool at https://github.com/mkirsche/Iris.

Simulation Results: To test the performance of Iris on simulated data, we simulated 

400 indels with uniformly random lengths - 200 with length [50, 200] and 200 with 

length [900, 1100] - in a 5 Mbp segment of chr1 (chr1:20000000–24999999). Then, 

we used SURVIVOR 7 with a read error and length model trained on HG002 Oxford 

Nanopore reads to simulate 30x coverage of long reads. We aligned these reads back 

to the unmodified segment of chromosome 1 with winnowmap2 17 and called SVs with 

sniffles 18. From the insertion SV calls, we measured the similarity scores of the reported 

sequences to the ground truth using the formula: Similarity(S, T) = (1 - EditDistance(S, T) / 

max(length(S), length(T)). We also refined these variant calls with Iris and measured the 

similarity score of the updated insertion sequences (Supplementary Figure 34a). The average 

sequence similarity score increased from 94.7% to 98.6%, demonstrating that Iris refinement 

significantly improves insertion sequence accuracy.

Real Results in HG002: While this simulated experiment demonstrated that Iris is able 

to improve sequence accuracy in simulation conditions, we wanted to ensure that it also 

improves the novel sequences of true genomic variants, where the novel sequences are 

typically more repetitive and the alignments noisier than when the insertions are random 

basepairs. To do this, we used the cell line HG002, which was sequenced with multiple 

technologies, notably including both ONT and HiFi. While the ONT reads have a high 

error rate around 8%, the HiFi reads have approximately 99.5% accuracy 15, so even 

novel insertion sequences taken from only a single HiFi read are expected to be highly 

accurate. Therefore, we used winnowmap and sniffles for variant calling as in the simulated 

experiment, but used the HiFi SV calls’ sequences in place of a ground truth. For each ONT 

SV call, we matched it with the nearest HiFi call if it was within 1 kbp, they shared at least 

50% sequence identity, and no other ONT call had already matched with it. This resulted 

in 13,467 matched ONT calls before and 14,401 after refinement, with 12,978 having a 

matching HiFi call both before and after refinement. Among these, 9,522 (73.37%) had 

been changed by Iris. The average sequence identity among these 9,522 SVs increased from 

91.6% before Iris to 96.2% after Iris, and the distributions of sequence accuracy scores are 

shown in Supplementary Figure 34b.

We also investigated the impact of Iris refinement on Mendelian discordance in the 

HiFi-derived SV and indel calls for the HG002 trio. To measure this effect, we called 

and merged variants in this trio with our SV calling pipeline but with Iris refinement 

disabled and compared the discordance to the results from the full pipeline shown in 

Supplementary Figure 35. Without refinement the discordance was 484/47,561 = 1.02%, 

while the discordance with our full pipeline was 404/47,326 = 0.85%.
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Comparing Variant Calls at Population Scale with Jasmine

In order to perform SV inference at population scale and identify variants associated with 

diseases or phenotypes, it is important to identify when multiple individuals share the same 

(or functionally identical) variants. However, the same variant call can manifest differently 

in unique samples because of sequencing error or samples being processed with different 

sequencing technologies, levels of coverage, or upstream alignment and variant calling 

software. These differences, along with the increasing availability of long-read sequencing 

data for many individuals, highlight the need for careful variant comparison when analyzing 

SVs in multiple samples.

We refer to the problem of consolidating multiple variant callsets into a single set of variants 

as the “SV merging problem”. This is because the problem consists of identifying variant 

calls in separate samples which correspond to the same variant and merging them into a 

single call which is annotated with the samples in which it is present. A number of methods 

already exist for SV merging, but each has major issues such as invalid merges, results 

which vary significantly based on the order of input samples, or high levels of Mendelian 

discordance when evaluated on trio datasets.

Jasmine Methods: We introduce Jasmine, a novel method which solves the SV merging 

problem. Jasmine takes as input a list of VCF files consisting of the variant callsets for each 

individual, and produces a single VCF file in which each variant is annotated with a list of 

samples in which it is present (as well as the IDs of the input calls which correspond to that 

variant).

Jasmine first separates the variants by their chromosome (or chromosome pair in the case 

of translocations), variant type, and strand. Each of these groups is processed independently 

with an option for parallelization because no two variants in different groups could be 

representations of the same variant. When processing a group of variants, Jasmine represents 

each variant as a 2-D point in space representing the start position and length of the variant. 

When represented this way, variants which are closer together along the genome (and are 

therefore more likely to represent the same variant) have a smaller Euclidean distance 

between them. Consequently, each pair of variants can be assigned a quantitative distance 

which reflects how dissimilar they are.

After projecting these variants into 2-D Euclidean space, Jasmine implicitly builds a variant 

proximity graph, or a graph in which nodes are individual variants and each pair of variants 

has an edge between them with a weight corresponding to the Euclidean distance between 

them. Then, the SV merging can be framed as selecting a set of edges (merges) making up a 

forest which is a subgraph of the variant proximity graph, and which minimizes the sum of 

edge weights chosen subject to a few constraints:

1. No intra-sample merging: No connected component of the forest contains 

multiple variants from the same individual because they have already been 

identified as different variants. Note that Jasmine enables this constraint to be 

disabled with the command line flag --allow_intrasample, which is useful if a 
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single VCF has callsets from multiple SV discovery methods within a single 

individual.

2. Distance threshold: No chosen edge has a weight greater than the user-chosen 

distance threshold (default max(100bp, 50% of variant length))

3. Maximality: To prevent the trivial solution of no edges, we require that given a 

set of chosen edges, no additional edges can be added to the solution while still 

satisfying the other constraints.

Jasmine seeks to solve this optimization problem with a greedy algorithm similar in design 

to Kruskal’s algorithm for finding a minimum spanning tree. In this algorithm, the set of 

chosen edges is initially empty, and each edge is considered in order of non-decreasing edge 

weight. If adding the edge to the solution would violate any of the above constraints given 

the previously added edges, it is ignored; otherwise, it is added to the solution. When the 

edges being considered start to exceed the distance threshold, the algorithm terminates.

One issue with this algorithm is that in order to sort the edges by weight, they may need to 

be loaded into memory. This is problematic because some population datasets, with tens to 

hundreds of thousands of SVs per sample, include millions of variants, with the number of 

edges potentially scaling quadratically with the variant count. This is prohibitive even with 

existing datasets, and will only be more of a problem as even larger datasets are produced. 

Therefore, Jasmine instead stores the edges implicitly, making use of a KD-tree to quickly 

find the next smallest edge in the variant proximity graph.

To avoid storing the entire graph in memory, Jasmine maintains a list of a small number 

of nearest neighbors (initially 4) for each node, which are computed by forming a KD tree 

with all of the variant points, a data structure which supports k-nearest neighbor queries 

with a logarithmic runtime with respect to the number of variants. Then, the edge to the 

single nearest neighbor of each variant is stored in a minimum heap, and it is guaranteed 

that the first entry removed from this heap will be the edge with the smallest weight in the 

entire graph. When an edge is processed, the node for which it was the minimum-weight 

incident edge has its next nearest neighbor added to the heap based on the next entry in 

its nearest neighbor list. If the list of nearest neighbors for a node becomes empty, the 

KD-tree is queried for a set of twice as many nearest neighbors, and the list is refilled. In 

this manner, the next smallest edge in the graph will always be the edge removed from the 

heap, and the data structures Jasmine uses help to maintain this property without requiring 

a prohibitively large amount of time or memory. The pseudocode for this algorithm can be 

found in Supplemental Note 1.

Jasmine Distance Threshold: When merging variants, it is important to determine 

for a given variant pair whether or not the two variants are sufficiently close together in 

terms of their breakpoints to be considered the same variant. In Jasmine, this is based 

on a distance threshold - if the distance between them (according to the chosen distance 

metric) is above the threshold they will be considered two different variants, while if their 

distance is less than or equal to the threshold they will be a candidate for merging. Jasmine 

offers a number of classes of distance thresholds, including constant thresholds, thresholds 
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which vary based on a fixed proportion of each variant’s size, or even per-variant distance 

thresholds. By default, the distance threshold for Jasmine is max(100bp, 50% of variant 

length). We measured the difference in merging when using different values for the min_dist 
parameter, which is 100 by default, (Supplementary Figure 36), and found that while larger 

values for this parameter offer lower Mendelian discordance, these more lenient thresholds 

perform poorly in a cross-technology cohort setting because of false merges, and 100bp 

offers a good balance in performance across use cases.

Building an SV Inference Pipeline

Our SV inference pipeline is implemented in Snakemake, and supports multithreaded as 

well as multi-node execution. It takes as input a list of FASTQ files for each sample being 

studied as well as a reference genome, and produces as its final output a VCF file containing 

population-level SV calls. It is highly customizable, supporting unique configurations for 

alignment and variant calling on a per-sample or per-sequencing-technology level. It also 

enables the user to specify the alignment software to use - ngmlr, winnowmap, and 

minimap2 - and separately sets recommended default parameters for samples sequenced 

with each specific technology. On each sample we processed, the pipeline took about a day 

to run on a single Intel Cascade Lake 6248R compute node with 48 cores and 192GB RAM 

at 3.0GHz. The Snakemake files to run the pipeline are included in the Jasmine repository: 

https://github.com/mkirsche/Jasmine/tree/master/pipeline.

Evaluating Mendelian Discordance

When performing de novo variant analysis, we are particularly interested in Mendelian 

discordant variants, or variants which are called as present in the child of a trio but neither 

parent. This includes genuine de novo variants, but in practice most of these calls are 

actually false de novo variants caused by errors in variant calling or merging. Accordingly, 

one major goal of trio SV inference is to reduce the number of discordant variants while 

retaining any true de novo variants in that set.

To measure Mendelian discordance, we called variants in the Ashkenazim individual HG002 

as well as their parents HG003 (46,XY) and HG004 (46,XX). We merged these three callsets 

with Jasmine (or other merging software when comparing them to Jasmine), and counted 

the number of variants which were identified in HG002 but not merged with any variants 

from either parent. We then filtered these variants by confidence by requiring that they be 

supported by at least min(10, 25% of average coverage) of the reads and have a length 

of at least 30. In addition, we filtered out any variants which were not marked with the 

PRECISE INFO field by the sniffles variant calling. The discordance rate was calculated as 

the quotient of the number of discordant variants over the total number of variants in the 

merged and filtered trio callset.

Optimized Sniffles Variant Calling Parameters

As shown in Supplementary Figure 3, we used Mendelian discordance to measure the effects 

of different variant calling parameters in HiFi data for HG002. We varied the max_dist 
parameter when running Sniffles for variant calling and measured the number of variants 
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and discordance for each trio callset; based on these results we used max_dist=50 for calling 

variants from HiFi data.

Similar to the HiFi analysis, we used Mendelian discordance to measure the effects of 

different variant calling parameters in CLR data for HG002. We varied the max_dist 
parameter when running Sniffles for variant calling and measured the number of variants 

and discordance for each trio callset. Supplementary Figure 37 shows the effect of this 

parameter on these metrics, and based on these results we used max_dist=50 for calling 

variants from CLR data.

Next, to optimize variant calling parameters in ONT data from HG002, we repeated the 

experiment used for HiFi and CLR data, varying the max_dist variant calling parameter in 

Sniffles and measuring the number of variants and discordance for each trio callset. These 

results are shown in Supplementary Figure 38, and based on them we used max_dist=50 

for calling variants from ONT data. While this doesn’t give the lowest discordance rate, all 

settings examined yielded less than 1% discordance, so we used a value of 50 to enable a 

high degree of variant discovery and consistency across technologies.

Double Thresholding

To reduce the impact of threshold effects on variant calling, our pipeline uses two different 

variant calling thresholds: a highly specific, strict high-confidence threshold and a highly 

sensitive, more lenient low-confidence threshold. To be a high-confident call, a variant must 

be at least 30bp long supported by a number of reads greater than or equal min(10, 25% of 

average coverage over that sample); otherwise a variant is called with low confidence if it is 

at least 20bp long and supported by at least two reads. All of the variants that meet either 

threshold are used as input to Jasmine’s cross-sample merging, and any low-confidence 

variants that do not get merged with any high-confidence variants are discarded. This allows 

variants which are close to the strict threshold to be properly detected in all of the samples in 

which they are present (Supplementary Figures 39-41).

When evaluating the impact of double thresholding, we consider the SV and indel calls in 

the HG002 trio which were identified as being present in HG002 and group them into one of 

four categories:

• Discordant: Variants which were present only in HG002, regardless of whether 

we used double thresholding or only a single stricter threshold

• Not discordant: Variants which were present in HG002 as well as one or both 

parents, regardless of whether we used double thresholding or only a single 

stricter threshold

• Rescued from absence: Variants which were present in HG002 as well as one or 

both parents, but the call in HG002 had low enough length or read support that it 

would have been missed in that sample if just the stricter threshold were used.

• Rescued from discordance: Variants which were present in HG002 as well as 

one or both parents, but the call in the parents had low enough length or read 
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support that it would have been called only in HG002, and therefore discordant, 

if just the stricter threshold were used.

Associating Structural Variants to Genes

To obtain genotypes for SV-gene association, we called SVs in 31 long-read samples with 

our inference pipeline and merged them into a unified cohort-level callset with Jasmine. We 

then genotyped these SVs in the 1000 Genomes Collection with Paragraph after filtering 

out translocations and other variants which Paragraph cannot genotype, for a total of 

189,581 genotyped variants across 444 individuals (Supplementary Figure 42). Following 

previous studies 43, we then used the Hardy-Weinberg Equilibrium (HWE) test to filter out 

variants not consistent with population genetic expectations, removing variants found to be 

significant with p < 0.0001 using an exact test of HWE 53. After filtering with HWE and 

additionally removing any variants that were left uncalled in 50% or more of the samples, 

we were left with 138,715 variants across the 444 individuals (Supplementary Figure 43).

We examined common cis-SV-eQTLs by associating our SV genotypes to gene expression 

data in the same cell lines collected by the GEUVADIS consortium 44. We first paired 

each gene with every structural variant that has a MAF ≥0.05 and resides within a window 

of 1 Mbp from the gene’s TSS. We then tested whether the distribution of normalized 

(zero-mean, unit variance) gene expression is different for those individuals with or without 

the variant by using a Wilcoxon rank-sum test for each variant-gene pair with a p-value 

cutoff reflecting a Benjamini-Hochberg multiple testing correction with an FDR of 0.1. For 

genes with multiple SVs tested, each individual SV-gene pair was considered independently. 

After identifying a set of significantly-associated SV-eQTLs, we fit a linear model between 

each variant genotype (where reference is encoded as 0 and the alternate allele is encoded as 

1 if heterozygous and 2 if homozygous) and gene expression in order to determine the effect 

size (β) and the R2 of the association. We then analyzed the relationship between the effect 

size and various features of the SV or gene.

Comparing SVs and SNP-eQTLs with Fine Mapping: We used the dataset of SNP-

eQTLs from the GTEx project for all tissues 3 as a set of known SNP-eQTLs which 

we could use as a benchmark to compare the effects of SVs to SNPs on genes for 

which both may be associated. We examined the set of genes for which there were both 

associated SNP-eQTLs in GTEx (which were also significantly associated in our data) and 

significantly-associated SVs from our callset within a 1MB window. We then collected a set 

of 1,000 most-closely associated variants (SNP or SV) to each gene within the 1MB window 

and computed the Z-score from a linear regression as well as the linkage disequilibrium 

between each pair of variants. We used these values as input to the fine-mapping program 

CAVIAR 45 in order to predict which variants within the set are causal. We used CAVIAR’s 

posterior probability as a measure of how likely a particular variant was to be causal.

Measuring Enrichment of SVs based on CAVIAR Scores: We examined the 

relationship between CAVIAR’s posterior probability for each SV’s most highly associated 

gene and various variant features, such as the distance to various regulatory elements 

(Supplementary Figure 44). We used the bedtools closest function to compute the distance 
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between each SV and the nearest ENCODE candidate cis-regulatory element from the 

UCSC genome browser 54 (Supplementary Figure 44a). Using the Ensembl Regulatory 

Build 55, we performed a similar distance calculation to measure the distance between each 

variant and the nearest Ensembl Regulatory Element (Supplementary Figure 44b). We also 

found that higher CAVIAR posteriors are associated with other regulatory elements, distance 

to the associated gene (as previously reported in 3), as well as to FunSeq high occupancy of 

transcription factor (HOT) regions 56 (Supplementary Figures 44-45).

We also examined the relationship between CAVIAR posterior probability and various 

conservation scores, as well as other sequence features such as GC content. To compute 

conservation scores, inspired by previous works 57, we used pyBigWig to extract regions 

covered by the SV and computed the mean of the top 10 scores of individual bases 

within that region. For insertion variants, we extracted the flanking reference sequence - 

75 basepairs in each direction - to assess the conservedness of the affected context. We 

calculated CADD scores 58, LINSIGHT scores 59, and PhastCons 60 in a similar fashion. 

Based on these prediction scores, we do not observe signs of enrichment of extreme 

pathogenicity or conservation among SVs with high CAVIAR posteriors (Supplementary 

Figures 46-47). We also do not observe a pattern among the GC percentage for SVs 

with high CAVIAR posteriors (Supplementary Figure 47a). However, larger-scale studies 

are needed to make definitive conclusions, as the number of SVs we observed with high 

CAVIAR posterior are limited.

Validating 1000 Genomes eQTL calls in GTEx lymphocyte tissue: We 

implemented a WDL workflow in AnVIL Terra platform 46 to rapidly genotype 

the previously mentioned novel variants using paragraph. The environment is based 

off of the original docker containers provided by https://github.com/Illumina/paragraph/

blob/master/doc/Installation.md. The latest version 2.4a can be found on a docker 

image in “bni1/paragraph:2.4a”. The workflow is available at https://portal.firecloud.org/?

return=terra#methods/run_paragraph/run_paragraph/23. E-QTL calling was performed using 

the OLS module in statsmodel with GTEx expression and covariates publicly available on 

GTEx portal. We also performed fine mapping using CAVIAR with default parameters. 

Preprocessing of the data was performed using the aforementioned scripts.

Among the SV-eQTLs in the 1000 Genomes data is an intronic 3,143bp insertion in NCF4, 

upstream of the associated gene CSF2RB (Supplementary Figure 21e). These two genes 

have previously been shown to be linked to Crohn’s disease 61. We found that a SNP which 

was reported in the GTEx SNP-eQTL dataset to be associated with CSF2RB expression is in 

high LD with the insertion (r2=0.75), but the insertion is more strongly associated with gene 

expression than the reported SNP (Supplementary Figure 21f). To ensure that our finding is 

replicable, we proceeded to genotype this variant in 873 GTEx individuals using Paragraph 
43 within the NHGRI AnVIL Terra platform, and found a similar alternate allele frequency 

of 0.796 in GTEx compared to 0.814 in 1KGP. We then analyzed GTEx publicly available 

expression measurements and expression covariates of the matched tissue, EBV-transformed 

lymphocytes, to evaluate the candidate SV-eQTL, and found the SV is an eQTL with p-value 

of 3.95e-8, which is even more significant than in 1KGP. The SV-eQTL measured in GTEx 

is in high LD (r2=0.79) with the reported SNP-eQTL, and has a more significant p-value 
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than the reported top SNP association (p=1.6e-6). We similarly validated using GTEx data 

two additional strongly supported SV-eQTLs in LRGUK and CAMKMT that were detected 

using our cohort-level Jasmine SV calls. We found both SV-eQTLs to be more significant 

than the SNP-eQTLs reported by GTEx (Supplementary Figures 22-23).

GTEx SV-eQTL analysis: We used the WDL-based Paragraph workflow described 

above in AnVIL Terra platform to rapidly genotype the SV variants in the GTEx v8 

dataset. For this analysis, we cloned the GTEx data within AnVIL (https://anvil.terra.bio/

#workspaces/anvil-datastorage/AnVIL_GTEx_V8_hg38). To reduce the effect of genotyping 

error, we filtered the variants by whether they significantly deviated from Hardy Weinberg 

Equilibrium at a genome-wide significance threshold. For eQTL analysis, we filtered for 

common variants with MAF>0.05. eQTL calling was performed using the OLS module 

in statsmodel with GTEx expression and covariates publicly available on GTEx portal. 

Gene-level eQTL p-values are obtained by Bonferroni correcting the minimal eQTL p-value 

associated with a gene by a factor of the number of eQTLs for that gene. Subsequently, the 

gene-level p-values are corrected for multiple testing using Benjamini-Hochberg method at 

a FDR rate <5%, yielding 111,291 significant eGenes across 48 tissues. We performed fine 

mapping with CAVIAR, using the top SV eQTL signal with the 1000 strongest SNP eQTLs 

for a gene. Preprocessing of the data was performed using the aforementioned scripts.

Data Availability

The sequencing data used in this study is available from the publications listed in 

Supplemental Table 1 and Supplemental Table 2. All variant calls and associations are 

available at http://data.schatz-lab.org/jasmine/.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: SV Inference Pipeline.
This pipeline produces population-level SV calls from FASTQ files using a number of 

existing methods as well as two novel methods, Iris and Jasmine. Iris uses consensus 

methods to improve the accuracy of the breakpoints and sequence of insertion SVs. Jasmine 

uses a graph of SV proximity and a constrained minimum spanning forest algorithm to 

compare and combine variants across multiple individuals.
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Figure 2. Mendelian Discordance in the HG002 Ashkenazim Trio.
We called SVs from HiFi data for the Ashkenazim trio consisting of HG002 (son - 46,XY) 

and parents HG003 (46,XY), and HG004 (46,XX) using several prior methods as well as 

our pipeline. a.) The number of SVs called in each subset of individuals when using prior 

methods: ngmlr for alignment, Sniffles for SV calling, and SURVIVOR for consolidating 

SVs between samples. b.) The number of SVs called in each subset of individuals when 

using our optimized pipeline. c.) The distribution of variant types and lengths in the HG002 

trio with our pipeline. d.) The rate of discordance when comparing SVs between individuals 

with Jasmine as well as six existing methods for population inference. Jasmine reduces the 

discordance rate while at the same time addressing issues present in other methods such as 

merging variants of different types, variants with the same type but corresponding to unique 

breakpoint adjacencies (mixed strand), or variants within the same sample.

Kirsche et al. Page 23

Nat Methods. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. SV Inference across Sequencing Technologies in HG002.
We called SVs in HG002 separately from Pacbio CLR data, Oxford Nanopore data, and 

Pacbio HiFi CCS data, and used Jasmine to compare the variants discovered by each of 

them. a.) The number of SVs discovered by each subset of technologies. b.) The SV 

type distribution within each subset of technologies. c.) The distribution of types and 

lengths among variants for which all of the technologies agree. d-f.) The type and length 

distributions for variants unique to CLR, ONT, and HiFi respectively.
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Figure 4. De Novo Variant Discovery in HG002.
We called variants in each of HG002, HG003, and HG004 from three different sequencing 

technologies - CLR, ONT, and HiFi - to identify potential de novo variants that were 

called in none of the six parent callsets but one or more of the HG002 callsets. a.) The 

number of SVs and indels which are absent in all six parent callsets whose presence in 

HG002 is supported by each subset of technologies. While we manually inspected all SVs 

supported by HiFi and at least one other technology, both of the examples in (c) and (d) were 

supported by all three technologies. b.) All variants supported by HiFi and at least one other 

technology in HG002 that are absent in all parent callsets. The potential de novo variants we 

identified are highlighted in green, with the microsatellite repeat expansion denoted by an 

arrow. While filters based on length, read support, and breakpoint standard deviation could 

be used to filter out many false de novo candidates, the microsatellite repeat expansion is 

an example of a higher-confidence de novo SV which would be incorrectly filtered out. c.) 
A potential de novo 107bp deletion in HG002 at chr17:53340465. d.) A potential de novo 
microsatellite repeat expansion in HG002 at chr14:23280711.
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Figure 5. Population-Scale Inference from Public Datasets.
We called SVs and indels with our pipeline in a cohort of 31 samples from diverse ancestries 

and sequencing technologies and used Jasmine as well as five prior methods to combine the 

individual samples’ SVs into a population-scale callset. a.) The number of variants obtained 

with each merging software across 100 runs with the list of input VCFs randomly shuffled 

each time. b.) The distribution of the range of breakpoints of variant calls merged into single 

variants by each software, excluding unmerged variants. c.) The number of intrasample 

merges within single merged variants, defined as the number of variants minus the number 

of unique samples, for each software. d.) The allele frequency distribution of variants 

merged by Jasmine. e.) The number of variants discovered by Jasmine as the number of 

samples increases. f.) The distribution of variant types and lengths in the cohort when using 

Jasmine. g.) The number of SVs in the cohort in 1Mbp bins across the human genome.

Kirsche et al. Page 26

Nat Methods. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Functional impact of SVs from Jasmine.
We used Paragraph to genotype SVs and indels from the cohort of 31 samples in 873 

samples from the GTEx Consortium which have RNA-seq data in multiple tissues. We 

used 48 tissues in our analysis with sufficient samples. a.) Number of variants detected 

per sample for genotyped SVs and indels (Jasmine) versus SVs reported in the GTEx 

SV dataset after HWE filtering. Note short read-based SV calls are not available for all 

samples so some samples only display the counts using Jasmine. b.) Distribution of the 

number of tissues an SV-gene pair is found as a significant eQTLs (FDR correction at 5%). 

We further plot the distribution for SV-gene pairs with significant eQTLs where the SV 

has the maximum CAVIAR score compared to all flanking SNPs. c.) Genotype and gene 

expression distribution in GTEx samples with expression in testis for the HACL1-associated 

deletion (n=318). d.) Manhattan plot for SNPs and the novel SV near HACL1, with the 

log10 p-value measured by a generalized linear model accounting for GTEx covariates. The 
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annotated variant is the top variant, 1_0_16114_del, and points are colored by LD to this 

variant. For c,d, we used 318 individuals with both SV calls and RNA seq in testis tissue. 

e.) Genotype and gene expression distribution in GTEx samples with expression in whole 

blood for DDTL-associated deletion (n=666). f.) Manhattan plot for SNPs and the novel SV 

near DDTL, with the log10 p-value measured by a generalized linear model accounting for 

GTEx covariates. The annotated variant is the top variant, 0_0_078802_del, and points are 

colored by LD to this variant. For e,f, we used 666 individuals with both SV calls and RNA 

seq in whole blood samples. Examples c and e were selected based on a two-sided t-test to 

assess nominal p-value of a variant gene pair after gene-level Bonferroni multiple hypothesis 

testing corrections at FDR 5%. Boxplots describes the 1st to 3rd quartile of the expression 

z-score distribution and the whiskers describes 1st quartile - 1.5 * IQR and 3rd quartile + 1.5 

* IQR centered on the mean expression value of each genotype group.
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