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ABSTRACT

Higher cortical areas carry a wide range of sensory, cognitive, and motor signals supporting com-
plex goal-directed behavior. These signals are mixed in heterogeneous responses of single neurons
tuned to multiple task variables. Dimensionality reduction methods used to analyze neural re-
sponses rely merely on correlations, leaving unknown how heterogeneous neural activity arises
from connectivity to drive behavior. Here we present a framework for inferring a low-dimensional
connectivity structure—the latent circuit—from high-dimensional neural response data. The la-
tent circuit captures mechanistic interactions between task variables and their mixed representa-
tions in single neurons. We apply the latent circuit inference to recurrent neural networks trained
to perform a context-dependent decision-making task and find a suppression mechanism in which
contextual representations inhibit irrelevant sensory responses. We validate this mechanism by
confirming the behavioral effects of patterned connectivity perturbations predicted by the latent
circuit structure. Our approach can reveal interpretable and causally testable circuit mechanisms
from heterogeneous neural responses during cognitive tasks.

Cognitive functions depend on higher cortical areas, which integrate diverse sensory and contex-
tual signals to produce a coherent behavioral response. These neural signals arise from excitatory and
inhibitory interactions in cortical circuits. Traditionally, hand-crafted neural circuit models were used to
pose specific mechanistic hypotheses about how behavioral responses arise from excitation and inhibition
between a few neural populations representing task variables1–11. By linking connectivity, activity, and
function, these models can predict changes in behavioral performance under perturbations of the circuit
structure (e.g., excitation-inhibition balance12) and thus can be validated in experiments13–15. However,
hand-crafted circuit models come short of capturing the complexity and heterogeneity of single-neuron
responses in the cortex.

Single neurons in areas such as the prefrontal cortex (PFC) show heterogeneous tuning to multiple
task variables16–21. Similar responses arise in recurrent neural network (RNN) models optimized to
perform cognitive tasks19, 22–24. Yet, the complexity of the RNN activity and connectivity obscure the
interpretation of circuit mechanisms in these networks. Heterogeneous neural responses are usually

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.23.477431doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477431
http://creativecommons.org/licenses/by/4.0/


analyzed with dimensionality reduction methods to reveal how latent behavioral variables become mixed
within neural populations21, 25–27. These methods seek low-dimensional projections of neural activity
which correlate with specific task variables (Fig. 1a,b). However, these correlation based methods are not
constrained by any explicit mechanistic hypotheses. Therefore, it remains unclear whether the inferred
latent variables have behavioral significance and how solutions found by RNNs relate to mechanisms
posed by circuit models.

The glaring gap between these two perspectives is apparent in recent studies of the PFC role
in context-dependent decision making. Context-dependent decision making requires flexible trial-by-
trial switching between alternative stimulus-response mappings. Most circuit models hypothesize a
relatively simple mechanism based on inhibition of sensory representations irrelevant in the current
context8–10, 28, 29. In contrast, dimensionality reduction methods applied to PFC data or RNN activity
show minimal suppression of irrelevant sensory responses19, 21, seemingly invalidating the inhibitory
circuit mechanism. However, since dimensionality reduction methods bear no links to the underlying
network connectivity, whether the two perspectives are incompatible remains an open question.

We bridge these two perspectives by developing a modeling framework at the intersection of di-
mensionality reduction and network connectivity inference. Our framework infers a low-dimensional
connectivity structure—the latent circuit—from high-dimensional neural response data. The latent cir-
cuit captures mechanistic interactions between task variables and their heterogeneous mixing in single-
neuron responses. We applied latent circuit inference to RNNs optimized on a context-dependent decision-
making task and found a circuit mechanism based on inhibition of irrelevant sensory representations. We
validated this mechanism by confirming the behavioral effects of patterned perturbations of the RNN ac-
tivity and connectivity predicted by the latent circuit model. In contrast, a linear decoder fitted to RNN
activity identified a subspace where irrelevant sensory representations were not suppressed, but pertur-
bations within this subspace had no behavioral effects. Our latent circuit framework enables mechanistic
interpretation of heterogeneous neural responses and opens the possibility of causal testing of inferred
mechanisms in perturbation experiments.

Results

Latent circuit model. To bridge the gap between dimensionality reduction, circuit mechanisms and
single-neuron heterogeneity, we develop a latent circuit model (Fig. 1c). Similar to other dimensionality
reduction methods, we model high-dimensional neural responses y ∈ RN (N is the number of neurons)
during a cognitive task using low-dimensional latent variables x ∈ Rn as:

y = Qx, (1)
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where Q ∈ RN×n is an orthonormal embedding matrix and n� N . The latent variables x in our model
are constrained to be nodes in a neural circuit with dynamics

ẋ = −x+ f(wrecx+ winu), (2)

where f is a non-linear activation function. The choice of non-linearity f presents a tradeoff between
model complexity and interpretability. We choose f to be a rectified linear function. The latent nodes in
the circuit interact via the recurrent connectivity wrec and receive external task inputs u through the input
connectivity win. We also require the latent circuit to implement the behavioral task, i.e. we can read out
the task outputs z from the circuit activity via the output connectivity wout:

z = woutx. (3)

The latent circuit model captures task-related neural activity in the low-dimensional subspace spanned
by the columns of Q, with dynamics within this subspace generated by the neural circuit Eq. 2.

In the latent circuit model, the heterogeneity of single-neuron responses has three possible sources:
mixing of task inputs to the latent circuit via win, recurrent interactions between latent nodes via wrec, and
linear mixing of representations in single neurons via the embedding Q. The orthonormality constraint
on Q has a geometric interpretation for the latent circuit embedding, that is we only allow rigid embed-
dings which rotate the circuit but do not deform it. This constraint implies that the projection defined
by the transpose matrix QT is a dimensionality reduction, in which projection onto the i-th column of Q
correlates with the activity of the i-th node in the latent circuit. Conversely, the image of each latent node
i is a high-dimensional activity pattern given by the column qi of the matrix Q. Thus, the latent circuit
provides a dimensionality reduction which incorporates an explicit mechanistic hypothesis for how the
resulting low-dimensional dynamics are generated.

We can infer the latent circuit from the high-dimensional neural activity y by minimizing the
loss function L =

∑
k,t ‖y − Qx‖2, where k and t index trials and time within a trial, respectively

(Methods). The latent circuit model is therefore a linear regression in which the predictor variables
arise as the activity of nodes in a non-linear neural circuit. Accordingly, the minimization of L is a
non-linear least-squares optimization problem30, in which we simultaneously search for a projection
of the high-dimensional activity and a low-dimensional neural circuit which generates dynamics in the
projection. We find the latent circuit parameters Q, wrec, win, and wout using stochastic gradient descent
and backpropagation through time.

In general, it is not obvious under what circumstances we can satisfactorily fit a latent circuit model
to the responses of a high-dimensional system. If, for example, solutions to cognitive tasks that emerge
in large systems are qualitatively different from mechanisms operating in small circuits, then we should
not be able to adequately fit task-related dynamics of the large system with a low-dimensional circuit
model. However, the existence of a low-dimensional circuit solution that accurately captures dynamics
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of the large system would suggest that this circuit mechanism may be latent in the high-dimensional
system.

Interpreting latent connectivity. The advantage of the mechanistic model for latent dynamics is that
we can interpret the latent connectivity and relate it to the connectivity of the high-dimensional system.
In this context, RNNs optimized to perform a cognitive task provide an ideal setting for testing and
validating the latent circuit inference. RNNs mimic the heterogeneity and mixed selectivity of neural re-
sponses in the cortex during cognitive tasks, while providing a full access to each unit’s activity, network
connectivity, and behavioral outcomes.

To interpret the latent connectivity, we differentiate the embedding Eq. 1 to obtain the correspon-
dence between vector fields of the high-dimensional and low-dimensional dynamical systems (Fig. 1d,
Methods):

V (y) = Qv(x). (4)

Here ẏ = V (y) is the vector field of the high-dimensional system, and ẋ = v(x) is the vector field of the
latent circuit (Eq. 2). This equation states that the subspace spanned by the columns of Q is an invariant
subspace of the high-dimensional system, i.e. the vector field at any point in this subspace lies entirely
in this subspace. Using the orthonormality of Q, we then derive the relationship:

QTV (Qx) = v(x), (5)

which asserts that the latent vector field v(x) describes dynamics of the high-dimensional system in this
invariant subspace.

For RNNs, we can further derive an explicit relationship between connectivity matrices of the
high-dimensional network and low-dimensional latent circuit. We substitute the dynamical equations for
the RNN and latent circuit into Eq. 5 and linearize near the origin to obtain (Methods):

QTWrecQ = wrec, QTWin = win. (6)

Here Wrec and Win are the recurrent and input connectivity matrices in the RNN, respectively (Methods).
This relationship between connectivity matrices relies on the form of dynamical equations for the RNN
and latent circuit, in which the connectivity gives a linear approximation of the vector field near the
origin. Although we obtained these equalities by linearizing dynamics near the origin, Eq. 6 holds in
general, because it is a statement about fixed connectivity structures of a non-linear RNN and the latent
circuit.

The relation Eq. 6 shows that the latent circuit connectivitywrec can be viewed as a low-dimensional
structure in the connectivity of high-dimensional network, which captures interactions between the latent
variables defined by the columns of Q. The form of Eq. 6 does not necessarily imply that the recurrent
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connectivity Wrec is low rank31. Rather, it is a weaker condition that the linear subspace defined by Q
is invariant for the high-dimensional network. In practice, we search for the latent circuit by minimiz-
ing the loss function L. If L is not exactly equal zero, then Eq. 1 and consequently Eq. 6 hold only
approximately.

The relation between connectivity matrices has the powerful consequence that we can validate the
latent circuit mechanism directly in the RNN connectivity. First, if the latent circuit faithfully describes
the mechanism operating in the RNN, by conjugating the RNN connectivity matrix with Q (Eq. 6), we
expect to find low-dimensional connectivity structure similar to the latent circuit connectivity. Such an
agreement is nontrivial, because the latent circuit inference uses only RNN activity without knowledge of
the RNN connectivity. Second, Eq. 6 enables us to translate connectivity perturbations in the latent circuit
onto the connectivity perturbations in the RNN. Specifically, a change in the connection δij between
nodes i and j in the latent circuit maps onto a patterned perturbation of the RNN connectivity matrix
(Fig. 1e, Methods):

δij → QδijQ
T . (7)

Since the latent circuit is an interpretable mechanistic model of the cognitive task, it inherits the abil-
ity of traditional neural circuit models to predict interpretable changes in behavioral performance under
specific perturbations of the circuit structure. By translating latent connectivity perturbations onto the
RNN, we can verify whether these connectivity perturbations affect RNN behavioral performance as
predicted by the latent circuit model. Such verification can ultimately validate the latent circuit mech-
anism directly in the RNN by bridging all the way from RNN connectivity to behavioral performance.
The validation of inferred circuit mechanisms via RNN perturbations is critical, because the fit quality
alone does not guarantee that the inferred model captures the correct mechanism that generated data32.
Moreover, it is generally uncertain whether interpretable circuit mechanisms exist in RNNs optimized
to perform cognitive tasks. Thus, confirming predicted behavioral effects of connectivity perturbations
serves as a proxy for ground truth when establishing the existence of the inferred circuit mechanism in
the RNN.

Latent circuit mechanism in RNN model of context-dependent decision making. We applied our la-
tent circuit inference to RNNs optimized to perform a context-dependent decision-making task. Context-
dependent behavior requires flexible trial-by-trial switching between alternative stimulus-response map-
pings. Context-dependent decision-making tasks have been extensively used to study the role of PFC
and other cortical areas in cognitive control29. We used a specific version of the task, which requires
to discriminate either the color or motion feature of a sensory stimulus depending on the context cue19

(Fig. 2a). At the beginning of each trial, the context cue briefly appears to indicate either the color or
motion context for the current trial. After a short delay, a sensory stimulus appears which consists of
motion and color features. The right motion and red color are associated with the right choice, and the
left motion and green color with the left choice. The strength of motion and color stimuli varies from
trial to trial as quantified by the motion and color coherence. In the color context, the choice should be
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made according to the color and ignoring motion stimulus, and vice versa in the motion context.

We trained an RNN to perform this context-dependent decision-making task (Fig. 2b, Methods).
The RNN consisted of 50 recurrently connected units, 40 excitatory and 10 inhibitory22. The RNN re-
ceived six time-varying inputs u: two inputs indicating the color and motion context, and four inputs
representing motion (left and right) and color (red and green) stimuli. We trained the RNN to report its
decision by elevating one of two outputs z, corresponding to the left versus right choice. After training,
the psychometric functions confirm that the RNN successfully learns the task, i.e. makes choices accord-
ing to the relevant stimulus and ignores the irrelevant stimulus in each context (Fig. 2c). Single units in
the RNN show heterogeneous mixed selectivity for multiple task variables. The connectivity matrix of
the trained RNN appears complex, and the connectivity structure responsible for generating the correct
behavioral outputs is not immediately obvious (Fig. 2d).

To reveal the circuit mechanism for context-dependent decision-making in the RNN, we fitted the
latent circuit model to the responses of RNN units during the task. The latent circuit model consisted of
eight nodes corresponding to the eight task variables: two context nodes, four sensory nodes, and two
choice nodes. Each node inherits its identity from the input it receives or the output it sends out, which
makes the latent circuit model interpretable. This choice of the latent circuit dimensionality is consistent
with the observation that the dimensionality of RNN responses after training is usually close to the total
number of inputs and outputs (first eight principal components accounted for 97.9% of total variance in
RNN responses). The fitted latent circuit model captured an overwhelming amount of variance in the
RNN activity (coefficient of determination r2 = 0.96 on test data).

The inferred recurrent connectivity wrec of the latent circuit revealed an interpretable mechanism
for context-dependent decision making (Fig. 3a,b). In the latent circuit, sensory nodes representing
stimuli associated with the left choice (left motion and green color) have excitatory connections to the
left choice node, and sensory nodes representing stimuli associated with the right choice (right motion
and red color) have excitatory connections to the right choice node. This pattern of connections from
sensory to choice nodes implements the alternative stimulus-response mappings in the task. Further,
the color context node has inhibitory connections to the sensory nodes representing motion, and the
motion context node has inhibitory connections to sensory nodes representing color. This pattern of
connections from the context to sensory nodes implements a suppression mechanism which inhibits
the irrelevant stimulus-response mapping in each context. Since the irrelevant sensory representation is
suppressed, it does not drive the decision output. This suppression mechanism based on inhibition of
irrelevant representations is qualitatively similar to mechanisms for context-dependent decision-making
hypothesized in previous hand-crafted neural circuit models8, 9.

We verified whether signatures of the suppression mechanism are evident in the RNN activity. We
projected RNN responses onto the columns of Q, which are representations of the latent nodes in the
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RNN (Fig. 3d). These projections reveal RNN activity patterns that are correlated with the activity of
nodes in the latent circuit. First, by projecting RNN responses onto the difference of two columns of
Q corresponding to the context nodes, we obtain a one-dimensional latent variable correlated with the
activity difference of the motion-context and color-context nodes in the latent circuit. This projection
shows RNN trajectories diverging into opposite directions in state space according to context immedi-
ately after onset of the context cue. The activity along this axis then slowly decays, persisting through
the stimulus duration. Next, the choice axis is the difference of two columns of Q corresponding to the
left and right choice nodes in the latent circuit. Projection of the RNN activity onto the choice axis shows
trajectories separating according to choice regardless of context. Finally, the motion axis is the difference
of columns of Q corresponding to the left and right motion nodes, and the color axis is the difference
of columns of Q corresponding to the red and green color nodes. Projections of the RNN activity onto
the motion and color axes reveal representations of relevant sensory stimuli, while representations of
irrelevant stimuli are suppressed. In particular, along the color axis, RNN trajectories separate according
to color coherence only on color context trials, whereas on motion context trials, the activity along this
axis is suppressed. Similarly, activity along the motion axis is suppressed on color context trails. The
persistence of context representations and suppression of irrelevant sensory representations in the RNN
activity are consistent with the inhibitory mechanism revealed in the latent circuit connectivity wrec.

We then used the connectivity relationships Eqs. 6,7 to directly validate the inferred latent circuit
mechanism in the RNN. We conjugate the RNN connectivity matrix with the embedding matrix Q. The
resulting connectivity matrices closely match the connectivity structure in the latent circuit (Fig. 3c,
correlation coefficient r = 0.89). This agreement confirms that the latent connectivity structure indeed
exists in the RNN.

To further validate that this latent connectivity structure supports the behavioral task performance,
we tested whether patterned perturbations of the RNN connectivity (Eq. 7) produced the same behavioral
effects as predicted by the latent circuit model. We consider two perturbations designed to test the in-
hibitory mechanism suggested by the latent circuit model. The first perturbation corresponds to “turning
off” the context mechanism by weakening the inhibitory connections from a context node to sensory
nodes representing irrelevant stimuli in that context (Fig. 4a). In the RNN, this perturbation maps onto
a patterned change in the recurrent connectivity (Fig. 4b). From interpretability of the latent circuit
model, we expect that weakening the inhibitory connections from the motion-context node to sensory
nodes representing color should make the circuit sensitive to irrelevant color information on motion con-
text trials. Indeed, weakening these connections in the latent circuit produced the predicted behavioral
effect in the psychometric function, visible as a rotation of the decision boundary on motion context
trials (Fig. 4a). Perturbations of the RNN connectivity along the corresponding pattern produced similar
behavioral effects (Fig. 4b), thus confirming that this connectivity pattern implements suppression of
irrelevant sensory representations in the RNN.
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The second perturbation corresponds to “turning off” one of the stimulus-response mappings by
weakening the excitatory connection from a sensory node to the choice node. From the interpretable
latent circuit model, we expect that weakening the excitatory connection from the red color node to the
right choice node (Fig. 4c) should impair the network’s ability to make right choices on the color context
trials. Weakening this connection in the latent circuit indeed decreased the frequency of right choices on
color context trials (Fig. 4c). This perturbation maps onto a patterned connectivity perturbation in the
RNN, which produced similar behavioral effects as predicted by the latent circuit (Fig. 4d). This result
confirms both the behavioral relevance of the latent sensory representation and the excitatory mechanism
by which it drives choices in the RNN.

Together, these results confirm that the RNN utilizes the suppression mechanism in which persis-
tent contextual representations inhibit irrelevant sensory representations. This mechanism is reflected
in the low-dimensional dynamics revealed by projecting RNN activity onto axes defined by the embed-
ding Q. We identified this mechanism as latent low-dimensional structure in the RNN connectivity and
ultimately validated it by confirming behavioral effects of the RNN connectivity perturbations.

Representations of irrelevant stimuli. Our finding that the RNN uses the inhibitory mechanism for
context-dependent decision-making appears in conflict with previous work, which suggested that in both
PFC and RNNs, irrelevant sensory responses are not significantly suppressed19, 21, 33. This conclusion
was derived using dimensionality reduction methods which extract low-dimensional projections that
best correlate with task variables (Fig. 1a). However, because these dimensionality reduction methods
do not incorporate any explicit mechanistic constraints, it is unclear whether the absence of suppression
in these projections is incompatible with the inhibitory mechanism we identified.

To answer this question, we compared projections of the RNN activity onto axes obtained from
the latent circuit model and a linear decoder. We trained a linear decoder to predict the signed motion
coherence on each trial from the RNN activity (Methods). The decoding weights provide an axis in
the RNN state space such that a projection onto this axis correlates with the motion coherence. By
projecting RNN responses onto the decoder axis, we find a strong representation of irrelevant motion
stimulus on color context trials without noticeable suppression (Fig. 5a). Thus, in our RNN, irrelevant
sensory representations appear not suppressed along the decoder axis, whereas they appear suppressed
along the axis obtained from the latent circuit model (Fig. 5b). This difference arises from the distinct
objectives of each projection: an axis in which stimulus activity is suppressed on half the trials does
not meet the objective of the decoder which tries to maximize the stimulus decoding accuracy across all
trials. Thus, the linear decoder is biased toward an axis which does not show suppression, providing a
misleading picture of dynamics. In principle, we could account for this bias by fitting a linear decoder to
restricted data from trials on which the stimulus is relevant, but this procedure would presume knowledge
of the mechanism which we are trying to discover in the first place.
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How can we reconcile these qualitatively distinct perspectives on representations of irrelevant stim-
uli within a single RNN? We hypothesized that the appearance of irrelevant stimulus representations is
possible because the linear decoder compromises behavioral relevance and variance explained for de-
coding accuracy. To test this idea, we stimulated RNN units with activity patterns aligned with the axes
obtained from the linear decoder and the latent circuit model. If the corresponding activity patterns are
behaviorally relevant, we expect the stimulation to have a significant effect on psychometric functions.
Specifically, stimulating the representation of the right motion stimulus should increase the proportion
of right choices, shifting the decision boundary on motion context trials. As expected, driving RNN ac-
tivity along the motion axis of the latent circuit model shifted the decision boundary on motion context
trials (Fig. 5d). In contrast, stimulation of the same magnitude along the decoder axis had little effect
on the psychometric function (Fig. 5c). This result suggests that the decoder rotates its axis away from
the behaviorally relevant latent circuit axis to achieve better decoding of motion coherence across all
trials. The irrelevant stimulus representations exist along the decoder axis but do not drive the behavioral
output. For context-dependent decision-making, we conclude that the dynamics revealed by the decoder
have little behavioral significance and thus do not invalidate the inhibitory mechanism identified by the
latent circuit model.

The projection axes obtained via our latent circuit model do not necessarily “demix” task vari-
ables. These projections inherit their interpretation from the corresponding nodes in the latent circuit,
and nodes are defined by both by their external inputs and recurrent interactions with other nodes. For
example, both motion and color axes are modulated by sensory input as well as input from the context
nodes. In contrast, other dimensionality reductions methods seek low-dimensional projections that de-
code individual task variables in orthogonal dimensions, i.e. demix task variables19, 21, 26. Our results
indicate that “demixing” may be not the right objective for identifying behaviorally relevant patterns in
the heterogeneous neural activity.

Space of latent circuit mechanisms. We next asked whether RNNs optimized to perform the same task
can arrive at different latent circuit mechanisms for context-dependent decision-making. We trained an
ensemble of 550 RNNs with randomly initialized connectivity to the same level of task performance.
After training, there was little variation in behavioral accuracy across these networks (r2 = 0.92± 0.01,
coefficient of determination for the RNN and target outputs, mean±s.d.). For each of these RNNs, we
fitted an ensemble of latent circuit models starting with random initializations of the latent connectivity
parameters and embedding Q. To analyze the space of inferred latent circuit mechanisms, we examined
the variability within the set of latent recurrent connectivity matrices wrec. We applied the principal
component analysis (PCA) to the flattened connectivity matrices and projected the data onto the first
two principal components (Fig. 6a). We found that the set of latent circuit mechanisms lies on a curved
one-dimensional manifold with three major clusters. Specifically, the majority of circuits fall within a
single cluster, while relatively fewer circuits fall within one of two other clusters branching off of the
main cluster. Moreover, the ensemble of latent circuit solutions fitted to responses of a single RNN fall
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within a close proximity of each other, which indicates the uniqueness of the latent circuit mechanism in
each particular network.

To understand how the circuits vary within this manifold, we computed the mean latent connec-
tivity matrix for each cluster by fitting data with a Gaussian mixture model with three components.
The resulting mean connectivity matrices reveal a continuum of circuits that all show signatures of the
suppression mechanism in which context nodes inhibit irrelevant sensory nodes (Fig. 6b). In the main
cluster, the circuits are balanced and symmetric, with approximately equal strength of excitation or in-
hibition between nodes representing different contexts and stimulus-response mappings. This balance
is reflected in dynamics and the representations of stimuli (Fig. 6c). In the two other clusters, the cir-
cuits show asymmetry in the connectivity, with stronger inhibition from context to some sensory nodes,
counterbalanced by stronger self-excitation for these sensory nodes. These assymetries are consistently
reflected in dynamics and the representations of stimuli, which show a bias toward the left or right stim-
ulus representations depending on the cluster. Although these extreme solutions exploit assymetries in
the representations of sensory evidence, they still operate by an inhibitory mechanism in which irrele-
vant responses are suppressed. Thus, the space of latent circuit solutions found by RNN models of the
context-dependent decision-making task can be characterized by a common suppression mechanism.

Discussion

Single neurons in higher cortical areas, in particular prefrontal cortex, show heterogeneous responses
during cognitive tasks, with complex mixed selectivity for multiple sensory, contextual, and motor vari-
ables. We developed a latent circuit model which accounts for single-neuron heterogeneity via dimen-
sionality reduction that incorporates explicit neural circuit dynamics in its latent variables. The latent
circuit can be interpreted as a low-dimensional connectivity structure that supports the behavioral task
performance in a high-dimensional system. This latent connectivity structure can be inferred from neural
responses and causally tested via connectivity perturbations in the high-dimensional system.

Previous work highlighted the importance of incorporating dynamics into dimensionality reduction
methods34–38. However, these methods do not provide a supervised approach for understanding encoding
and transformation of task variables and are only rarely constrained by behavioral performance33, 39. In
contrast, the latent circuit model infers an explicit mechanistic hypothesis for how task variables interact
to drive behavioral outputs. Additionally, there is extensive work on inferring low-dimensional effective
circuits from response data using dynamic causual models (DCMs)40–42. Unlike DCMs, our latent circuit
model simultaneously infers the dynamics and embedding of the low-dimensional circuit, thus bridging
the gap between dimensionality reduction, circuit mechanisms, and single-cell heterogeneity.

Our results have important implications for inference approaches which aim to reconstruct con-
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nectivity from neural response data43, 44. These methods require large volumes of data to recover full
connectivity in large networks. We show that if the responses arise from low-dimensional behavior, then
what can be recovered is not the full connectivity, but a latent low-dimensional connectivity structure
capturing how the network acts on a low-dimensional activity subspace. From this perspective, a latent
circuit model is a framework for inferring low-dimensional latent connectivity. This perspective im-
plies that our approach does not provide a way of constructing high-dimensional models with low-rank
solutions31, because it is not possible to uniquely recover the high-dimensional connectivity from the
low-dimensional latent connectivity structure which is inferred from low-dimensional neural responses.

Using a latent circuit model, we found an interpretable circuit mechanism in RNNs performing a
context-dependent decision-making task. The inferred latent circuit connectivity revealed a suppression
mechanism in which context nodes inhibit irrelevant sensory nodes. This latent connectivity structure
is consistent with low-dimensional dynamics observed in the projections of RNN activity onto the low-
dimensional subspace spanned by the embedding Q. In these projections, stimulus representations are
suppressed when they are irrelevant. The inhibitory mechanism exist as a latent low-dimensional con-
nectivity structure in the RNN, and we causally validated this mechanism via perturbations of the RNN
connectivity. The inhibitory mechanism revealed by the latent circuit model is qualitatively similar to
previous neural circuit models of how prefrontal cortex flexibly switches between alternative stimulus-
response mappings8–10, 28, 29. We find that RNNs do not find qualitatively distinct solutions to this task
and that complex selectivity of single neurons has a simple explanation as a linear mixing of the low-
dimensional latent inhibitory circuit mechanism. Our results suggest that similar interpretable mecha-
nisms may underlie the complex responses of prefrontal neurons during context-dependent behavior.

In contrast to the latent circuit model, dimensionality reduction methods which are not constrained
by an explicit mechanistic hypothesis found non-suppressed representations of irrelevant stimuli in PFC
and RNNs during context-dependent decision-making19, 21. We show that such representations can arise
in RNNs which provably implement an inhibitory suppression mechanism. These representations are
possible because they exist along dimensions which do not causally drive choices and thus do not affect
behavior. Moreover, approaches aiming to decode stimulus information whether or not it is relevant ap-
pear to be biased toward finding these behaviorally irrelevant dimensions. Thus, inhibitory mechanisms
for cognitive flexibility are in principle compatible with the existence of irrelevant stimulus represen-
tations in the prefrontal cortex, and decoding approaches may be biased toward not discovering these
mechanisms. Therefore, low-dimensional dynamics obtained by decoding approaches cannot be inter-
preted as causal mechanisms supporting task behavior.

We find that RNNs do not necessarily find qualitatively new solutions to cognitive tasks than mech-
anisms hypothesized in hand-crafted neural circuit models. These mechanisms can be found in large
RNNs if connectivity is viewed in the appropriate basis. In other words, just as dynamics should be
understood in terms of latent variables, it appears connectivity can be understood in terms of interactions
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between these latent variables. These results agree with recent work on low-rank RNNs45 and add to the
growing body of literature suggesting that RNNs trained on cognitive tasks do not find qualitatively dis-
tinct mechanisms from those which can be constructed by hand24, 46. We show that these mechanisms can
be inferred from the high-dimensional responses using a dimensionality reduction which is constrained
by an explicit choice of latent circuit dynamics. Our approach opens new possibilities for causally testing
circuit mechanisms supporting complex behavior in perturbation experiments.

Methods

Fitting a latent circuit model. We fit the latent circuit model Eqs. 1–3 to neural response data y by
minimizing the mean squared error loss function:

L =
∑
k

∑
t

‖ y −Qx ‖2 . (8)

Here k indexes the trials and t indexes the time within a trial. The orthonormal matrixQ is parameterized
by

Q = (I + A)(I − A)−1πn, (9)

where πn represents projection onto the first n columns. A is a skew-symmetric matrix parameterized by

A = B −BT , (10)

where B is an N × n matrix. At each step of the optimization, we generate a set of trajectories x from
the latent circuit dynamics and embed these trajectories using the matrix Q. The parameters B, wrec, win

and wout are then updated to minimize L. We perform this minimization using PyTorch and the Adam
optimizer with default values for the first and second moment estimates, a learning rate of 0.02 and a
weight decay of 0.001. We use a minibatch size of 128 trials. We stop the optimization when the loss
has not improved by a threshold of 0.001 after a patience of 25 epochs.

We initialize the recurrent matrix wrec with zeros, and win with zeros except for positive entries on
connections from inputs u to their corresponding nodes, and wout with zeros except for positive entries
on connections from choice nodes to their corresponding outputs z. We initialize the entries of matrix
B from a uniform distribution on [0, 1]. To test for uniqueness of the latent circuit solution in a single
RNN, we fit an ensemble of latent circuits with random initializations to the same response data y. In
this case, we initialize entries in wrec from a uniform distribution centered on 0 with standard deviation
1/n.

Relationship between connectivity of RNN and latent circuit. We consider RNNs of the form:

τ ẏ = −y + [Wrecy +Winu]+ . (11)
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Here [·]+ is a rectified linear activation function, τ is a time constant, u are external task inputs. Wrec and
Win are the recurrent and input connectivity matrices, respectively. We read out a set of task outputs z
from the network activity via the output connectivity matrix Wout:

z = Wouty. (12)

We derive a relationship between the connectivity matrices of the RNN and latent circuit, which al-
lows us to interpret the latent circuit connectivity as a latent connectivity structure in the RNN. To derive
this relationship, we differentiate the embedding Eq. 1 with respect to time and obtain the relationship
between the vector fields of the RNN and latent circuit:

V (y) = v(x),

QTV (Qx) = v(x).

Here the vector fields V (y) of the RNN and v(x) of the latent circuit are given by Eq. 11 and Eq. 2,
respectively. We then linearize the vector fields in a neighborhood of x = 0 and u = 0 and obtain:

∂V

∂x

∣∣∣∣
0,0

y +
∂V

∂u

∣∣∣∣
0,0

u = (Wrec − I)y +Winu, (13)

∂v

∂x

∣∣∣∣
0,0

x+
∂v

∂u

∣∣∣∣
0,0

u = (wrec − I)x+ winu. (14)

It follows that we have the equality:

QTWrecQx+QTWinu = wrecx+ winu. (15)

If we assume that this equality holds in some open set, then we can equate terms to obtain:

QTWrecQ = wrec, (16)

QTWin = win. (17)

This assumption is likely not fully satisfied in the setting of cognitive tasks, because the sets of inputs
u and latent states x are typically low-dimensional. Therefore, the above equalities may hold only
approximately.

To understand how perturbations of connectivity in the latent circuit map onto the RNN, we view
perturbations as vectors in the space of matrices. We denote A · B the dot product between the matrices
A and B represented as vectors in the space of matrices, i.e. A ·B =

∑
i

∑
j Ai,jBi,j . Using Eqs. 16,17,
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we then translate connectivity perturbations from the latent circuit to the RNN:

wji = w · δji = (QTWrecQ)ji (18)

=
n∑

k=1

Qkj

(
N∑
l=1

WklQli

)
(19)

=
N∑
k=1

N∑
l=1

WklQkjQli (20)

=
N∑
k=1

N∑
l=1

Wkl(qjq
T
i )kl (21)

= W · qjqTi (22)

= W ·Qej(Qei)T (23)

= W ·QδjiQT . (24)

This chain of equalities shows how to translate perturbations of the latent circuit connectivity in the
direction δji onto patterned perturbations in the RNN:

w · δji = W ·QδjiQT . (25)

Thus, to perturb the latent connection wji, we perturb the matrix W in the direction QδjiQT . In other
words, to increase the dot product between W and QδjiQT in the space of matrices, we add multiples of
QδjiQ

T to W . Any perturbation orthogonal to QδjiQT does not change the dot product and hence has
no effect on the latent connection wji.

RNN simulations. We simulate dynamics of time-discretized RNNs using the general framework for
modeling cognitive tasks22. We consider RNNs with positive activity and N = 50 recurrent units. We
obtained the same results with networks consisting of N = 150 units. We discretize the RNN dynamics
Eq. 11 using the first-order Euler scheme with a time-step ∆t and add a noise term to obtain:

yt = (1− α)yt−1 + α

[
Wrecyt−1 +Winut +

√
2

α
σrecξt

]
+

. (26)

Here α = ∆t/τ and ξt ∼ N (0, 1) is a random variable sampled from the standard normal distribution.
We set the time constant τ = 200 ms, the discretization time-step ∆t = 40 ms, and the noise magnitude
σrec = 0.15. The input and output matrices are constrained to have positive entries. The input matrix is
constrained to be orthogonal. The recurrent matrix is constrained to satisfy the Dale’s law with 80% ex-
citatory units and 20% inhibitory units. The RNN simulation and training were implemented in PyTorch
and Skorch.

Context-dependent decision-making task. To model the context-dependent decision-making task, the
network receives six inputs u corresponding to two context cues (um - motion context, uc - color context),
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and sensory evidence streams for motion (um,L - motion left, um,R - motion right) and color (uc,R - color
red, uc,G - color green). Each trial begins with a presentation of a context cue from t = 320 to t =

1, 000 ms. On motion context trials, the cue input is set to um = 1.2 and uc = 0.2, and vice versa on color
context trials. During this epoch, we require that the network does not respond on the outputs by setting
ztarget = 0.2. After another delay of 200 ms, so that the network must maintain a memory of the context
cue, the inputs corresponding to motion and color sensory evidence are presented at t = 1, 200 ms for the
remaining duration of the trial. After 2, 250 ms, the targets are defined by ztarget,1 = 1.2 and ztarget,2 = 0.2

for right choices and vice versa for left choices. The strength of sensory evidence for motion and color
varies from trial to trial randomly controlled by the stimulus coherence. We use motion coherencemc and
color coherence cc ranging from −0.2 to 0.2 chosen from the set {−0.2,−0.12,−0.04, 0.04, 0.12, 0.2}.
For each coherence level, the motion and color inputs are given by:

um,L =
1−mc

2
, um,R =

1 +mc

2
,

uc,G =
1− cc

2
, uc,R =

1 + cc

2
.

With these definitions, positive motion and color coherence provide evidence for the right choice, and
negative motion and color coherence provide evidence for the left choice. At each simulation time step,
we add an independent noise term to each of the inputs unoise =

√
2α−1σinηt, where ηt ∼ N (0, 1) is a

random variable sampled from the standard normal distribution. The input noise strength is σin = 0.01.
A baseline input u0 = 0.2 is added to each of the inputs at each time step.

RNN training. To train the RNN, we minimize the mean squared error between the output z(t) and the
target ztarget(t):

L :=
∑
k

∑
t

‖z(t)− ztarget(t)‖2. (27)

Here k is the trial number and t is the time step within a trial. To encourage the network to integrate
sensory evidence over time, t is taken to be greater than 2, 250 ms so that errors are only penalized in
the last 750 ms of each trial. The training is performed with the Adam algorithm for stochastic gradient
descent. We used the default set of values for the decay rate of the first and second moment estimates,
0.9 and 0.999, respectively. We used a learning rate of 0.01.

The recurrent connection matrix is initialized so that excitatory connections are independent Gaus-
sian random variables with mean 1/

√
N and variance 1/N . Inhibitory connections are initialized with

mean 4/
√
N and variance 1/N . The matrix is then scaled so that its spectral radius is 1.5. To implement

Dale’s law, connections are clipped to zero after each training step if they change sign. During training,
we used mini-batches of 128 trials with 1,800 trials total.

To assess performance, a choice for the RNN was defined as the sign of the difference between
output units at the end of the trial. Psychometric functions were then computed as the percent of choices
to the right for each combination of context, motion coherence and color coherence.
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Linear decoding. To decode motion coherence from RNN responses, we fit a linear regression model:

c = βy + b, (28)

where β ∈ R1×N is the vector of regression coefficients, c ∈ R1×k is the motion coherence on each
trial, b ∈ R is a bias term and y ∈ RN×k is the RNN responses in the stimulus epoch of each trial. To
control for overfitting, we use k-fold cross validation with k = 5. We compared the predictive r2 and
their deviation across folds for each of the k pairs of training and test data. There was no significant
difference between training and test scores, suggesting that the model did not overfit. After fitting,
we used the vector of regression coefficients β to define the decoder axis on which we project RNN
responses.
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Figure 1. Latent circuit model of heterogeneous neural responses during cognitive tasks. (a) A cognitive
task requires producing desired behavioral outputs z prompted by external inputs u. The inputs u and outputs
z are the task variables. (b) Dimensionality reduction based on correlation between neural activity and task
variables. Decoding matrix D defines a projection from neural activity space onto task variables (left). Each
column of D defines an axis in state space such that the projection of neural activity onto this axis correlates
with a specific task variable (right). (c) Latent circuit model. Embedding matrix Q defines a projection from
neural activity space onto nodes of the latent circuit (left). The nodes interact through recurrent dynamics
Eq. 2, are driven by task inputs u, and generate task outputs z (center). Each column of Q defines an axis in
state space such that the projection of neural activity onto this axis correlates with the activity of a node in
the latent circuit (right). (d) Mapping of trajectories gives rise to mapping of vector fields between the latent
circuit model and high-dimensional system. (e) The relationship between connectivity of the latent circuit
and RNN enables us to translate connectivity perturbations. Perturbing connection δij from node j to node i
in the latent circuit maps onto patterned connectivity perturbation QδijQT = qiq

T
j in the RNN.
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Figure 2. RNN model of context-dependent decision making. (a) Context-dependent decision-making
task. Each trial begins with a brief baseline period (Hold). Then, a context cue is presented (Context cue).
After a short delay (Delay), the color and motion stimuli are presented (Stimulus) and response can be made
at any time. The same stimulus can map on different responses depending on the context (Response, yellow
circle). (b) Architecture of RNN model. Six external inputs u drive a recurrent network of 50 units. Choices
are readout from the RNN activity at two outputs z. RNN is constrained by Dale’s law with 40 excitatory
and 10 inhibitory units. (c) Psychometric functions show that RNN successfully learns the task: it responds
to relevant stimuli and ignores irrelevant stimuli in each context. (d) RNN connectivity after training appears
complex.
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Figure 3. Latent circuit mechanism in RNN performing a context-dependent decision-making task.
(a) Connectivity matrices of the latent circuit and the embedding matrix Q inferred from the responses of
RNN performing the context-dependent decision-making task. (b) The recurrent connectivity wrec in the
latent circuit reveals an inhibitory mechanism for context-dependent decision making. The pattern of ex-
citatory connections from sensory to choice nodes implements the alternative stimulus-response mappings
(red arrows in the circuit diagram, red squares in the connectivity matrix). The pattern of inhibitory connec-
tions from the context to sensory nodes implements a suppression mechanism which inhibits the irrelevant
stimulus-response mapping in each context (blue arrows in the circuit diagram, blue squares in the connec-
tivity matrix). The schematic of the connectivity matrix (upper left) shows only the eight key connections for
clarity. The circuit diagram depicts the full latent circuit connectivity in a. (c) We extendQ to an orthonormal
basis Q̂ for RN and transform the RNN connectivity into this basis Q̂ (left). The submatrices corresponding
to the first n = 8 rows and columns (black rectangles, enlarged in right panel) closely match the latent circuit
connectivity in a (correlation coefficient r = 0.89). (d) Projections of RNN responses onto low-dimensional
subspace defined by the columns of embedding Q. By construction, the activity along each projection cor-
relates with the activity difference of two nodes in the latent circuit. Projections onto axes corresponding to
motion and color nodes reveal suppression of irrelevant stimulus representations. The grey shading indicates
the duration of cue (context axis) and sensory stimulus (motion and color axis) presentation, and response
period (choice axis).
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Figure 4. Validating circuit mechanism via perturbations of RNN connectivity. (a) Perturbation of
the latent circuit connectivity that weakens the inhibitory connection from the motion context node to the
sensory nodes representing color (left). This perturbation affects behavior making the latent circuit sensitive
to irrelevant color information, which is visible as a rotation of the decision boundary on motion context trials
in the psychometric function (right). (b) The perturbation in a of the latent circuit connectivity maps onto
patterned connectivity perturbation in RNN (left). This perturbation affects the RNN psychometric function
as predicted by the latent circuit model (right). (c) Perturbation of the latent circuit connectivity that weakens
the excitatory connection from the node representing red color to the right-choice node (left). The effect
of this perturbation on behavior is a decrease in the frequency of right choices on color context trials. (d)
Translation of the latent circuit perturbation in c onto patterned perturbation of the RNN connectivity (left)
confirms the predicted behavioral effect in the RNN.
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Figure 5. Representation of irrelevant stimuli in RNN does not drive behavior. (a) Projection of the RNN
responses onto decoder axis reveals representation of motion coherence on both color context and motion
context trials. (b) Projection of the RNN responses onto motion axis from the latent circuit model reveals that
representation of motion coherence is suppressed on color context trials. (c) Patterned stimulation of the RNN
activity along the decoder axis has little effect on the psychometric function. (d) Patterned stimulation of the
RNN activity along the motion axis from the latent circuit shifts the decision boundary in the psychometric
function consistent with enhanced representation of right motion stimulus. These perturbations reveal that
the decoder compromises behavioral relevance for decoding accuracy.
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Figure 6. Space of latent circuit mechanisms for context-dependent decision-making in RNNs. (a) Pro-
jection onto the first two principal components of the set of recurrent connectivity matrices in latent circuits
obtained from 550 RNNs performing the context-dependent decision-making task. For each of these RNNs,
we fitted an ensemble of latent circuits with random initializations. Latent circuits fitted to responses of a
single RNN fall within a close proximity of each other (blue dots). The projection reveals an approximately
one-dimensional manifold of latent circuit solutions with three major clusters. The means of these clusters are
estimated by fitting a Gaussian mixture model with three components. (b) Recurrent connectivity matrices
corresponding to the means of three clusters in a. (c) Dynamics of the activity difference between two nodes
representing motion stimulus in latent circuits with the mean connectivity matrices in b. These dynamics
reveal asymmetric representations of stimuli at the extremes of the manifold of latent circuit solutions.
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