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ABSTRACT17

Intrinsic timescales characterize dynamics of endogenous fluctuations in neural activity. Variation18

of intrinsic timescales across the neocortex reflects functional specialization of cortical areas, but19

less is known about how intrinsic timescales change during cognitive tasks. We measured intrinsic20

timescales of local spiking activity within columns of area V4 while monkeys performed spatial21

attention tasks. The ongoing spiking activity unfolded across at least two distinct timescales, fast22

and slow. The slow timescale increased when monkeys attended to the receptive fields location and23

correlated with reaction times. By evaluating predictions of several network models, we found24

that spatiotemporal correlations in V4 activity were best explained by the model in which mul-25

tiple timescales arise from recurrent interactions shaped by spatially arranged connectivity, and26

attentional modulation of timescales results from an increase in the efficacy of recurrent interac-27

tions. Our results suggest that multiple timescales arise from the spatial connectivity in the visual28

cortex and flexibly change with the cognitive state due to dynamic effective interactions between29

neurons.30
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The brain processes information and coordinates behavioral sequences over a wide range of timescales1–3.31

While sensory inputs can be processed as fast as tens of milliseconds4–7, cognitive processes such as de-32

cision making or working memory require integrating information over slower timescales from hundreds33

of milliseconds to minutes8–10. These differences are paralleled by the timescales of intrinsic fluctuations34

in neural activity across the hierarchy of cortical areas. The intrinsic timescales are defined by the ex-35

ponential decay rate of the autocorrelation of activity fluctuations. The intrinsic timescales are faster in36

sensory areas, intermediate in association cortex, and slower in prefrontal cortical areas11. The hierarchy37

of intrinsic timescales is observed across different recording modalities including spiking activity11, 12,38

intracranial electrocorticography (ECoG)13, 14, and functional magnetic resonance imaging (fMRI)15, 16.39

The hierarchy of intrinsic timescales reflects the specialization of cortical areas for behaviorally rele-40

vant computations, such as the processing of rapidly changing sensory inputs in lower cortical areas and41

long-term integration of information (e.g., for evidence accumulation, planning, etc.) in higher cortical42

areas17.43

In addition to ongoing fluctuations characterized by intrinsic timescales, neural firing rates also change44

in response to sensory stimuli or behavioral task events. These stimulus or task-induced dynamics are45

characterized by the timescales of trial-average neural response18, 19 or encoding various task events46

over multiple trials12, 20. The task-induced timescales also increase along the cortical hierarchy12, 14, 20–22.47

However, task-induced and intrinsic timescales are not correlated across individual neurons in any corti-48

cal area12, suggesting they may arise from different mechanisms. Indeed, the timescales of trial-average49

response increase through the mouse visual cortical hierarchy, whereas the intrinsic timescales do not50

change22. Moreover, the task-induced and intrinsic timescales can depend differently on task condi-51

tions. For example, for a fixed trial-average response in a specific task condition, the intrinsic timescale52

of neural dynamics varies substantially across trials and these changes are predictive of the reaction53

time in a decision-making task23. While task-induced timescales relate directly to task execution, less is54

known about how intrinsic timescales change during cognitive tasks. Intrinsic timescales measured with55

ECoG exhibit a widespread increase across multiple cortical association areas during working memory56

maintenance, consistent with the emergence of persistent activity in this period13. However, whether in-57

trinsic timescales can change with temporal and spatial specificity in local neural populations processing58

specific information during a task has not been tested. It is also unclear whether intrinsic timescales can59

flexibly change in sensory cortical areas and in cognitive processes other than memory maintenance.60

The mechanism underlying the diversity of intrinsic timescales across cortical areas can be related to61

differences in the connectivity. The hierarchical organization of timescales correlates with the gradients62

in the strength of neural connections in different cortical areas24, 25. These gradients exhibit an increase63

through the cortical hierarchy in the spine density on dendritic trees of pyramidal neurons26, 27, gray64

matter myelination13, 28, expression of N-methyl-D-aspartate (NMDA) and gamma-aminobutyric acid65

(GABA) receptor genes13, 29, strength of structural connectivity measured using diffusion MRI16, or66

strength of functional connectivity15, 16, 30–32.67

The relation between the connectivity and timescales is further supported by computational models.68

Differences in timescales across cortical areas can arise in network models from differences in the69

strength of recurrent excitatory connections27, 33. These models matched the strength of excitatory con-70

nections to the spine density of pyramidal neurons27 or to the strength of structural connectivity33 in71
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different cortical areas. Moreover, models demonstrate that the topology of connections in addition to72

the connection strength can affect the timescales of network dynamics. For example, slower timescales73

emerge in networks with clustered connections compared to random networks34, or heterogeneity in74

the strength of inter-node connections gives rise to diverse localized timescales in a one dimensional75

network35. Thus, network models can relate dynamics to connectivity and generate testable predictions76

to identify mechanisms underlying the generation of intrinsic timescales in the brain.77

We examined how the intrinsic timescales of spiking activity in visual cortex were affected by the trial-78

to-trial alterations in the cognitive state due to visual spatial attention. We analyzed spiking activity79

recorded from local neural populations within cortical columns in primate area V4 during two different80

spatial attention tasks and a fixation task. In all tasks, the autocorrelation of intrinsic activity fluctuations81

showed at least two distinct timescales, one fast and one slow. The slow timescale was longer on82

trials when monkeys attended to the receptive fields of the recorded neurons and correlated with the83

monkeys’ reaction times. We used recurrent network models to test several alternative mechanisms84

for generating the multiplicity of timescales and their flexible modulation. We established analytically85

that spatially arranged connectivity generates multiple timescales in local population activity and found86

support for this theoretical prediction in our V4 recordings. In contrast, heterogeneous biophysical87

properties of individual neurons alone cannot account for both temporal and spatial structure of V488

correlations. Thus, the V4 timescales arise from spatiotemporal population dynamics shaped by the89

local spatial connectivity structure. The model indicates that modulation of timescales during attention90

can be explained by a slight increase in the efficacy of recurrent interactions. Our results suggest that91

multiple intrinsic timescales in local population activity arise from the spatial network structure of the92

neocortex and the slow timescales can flexibly adapt to trial-to-trial changes in the cognitive state due93

to dynamic effective interactions between neurons.94

Results95

Multiple timescales in fluctuations of local neural population activity. We analyzed spiking activ-96

ity of local neural populations within cortical columns of visual area V4 from monkeys performing a97

fixation task (FT) and two different spatial attention tasks (AT1, AT2)36, 37 (Fig. 1a-c, Supplementary98

Fig. 1). The activity was recorded with 16-channel linear array microelectrodes from vertically aligned99

neurons across all cortical layers such that the receptive fields (RFs) of neurons on all channels largely100

overlapped. In FT, the monkey was rewarded for fixating on a blank screen for 3 s on each trial (Fig. 1a).101

During AT1, the monkeys were trained to detect changes in the orientation of a grating stimulus in the102

presence of three distractor stimuli and to report the change with a saccade to the opposite location103

(antisaccade, Fig. 1b). On each trial, a cue indicated the stimulus that was most likely to change, which104

was the target of covert attention, and the stimulus opposite to the cue was the target of overt atten-105

tion due to the antisaccade preparation. During AT2, the monkey was rewarded for detecting a small106

luminance change in a grating stimulus in the presence of a distractor stimulus placed in the opposite107

hemifield. The monkey reported the change by releasing a bar. An attentional cue on each trial indicated108

the stimulus where the change should be detected, which was the target of covert attention (Fig. 1c).109
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Fig. 1. Computing autocorrelations of spiking activity in V4 columns during fixation and attention
tasks. (a) In the fixation task (FT), the monkey was rewarded for fixating a central fixation point (FP)
on a blank screen for 3 s on each trial. (b) In the attention task 1 (AT1), monkeys were trained to detect
an orientation change in one of four peripheral grating stimuli, while an attention cue indicated which
stimulus was likely to change (yellow spotlight). Monkeys reported the change with a saccade to the
stimulus opposite to the change (black arrow). The cued stimulus was the target of covert attention,
while the stimulus opposite to the cue was the target of overt attention. (c) In the attention task 2
(AT2), the monkey was rewarded for detecting a small luminance change in one of two grating stimuli,
directed by an attention cue. The monkey responded by releasing a bar. The brown frame shows the
blank screen in the pre-stimulus period. In all tasks, epochs marked with brown frames were used for
analyses of spontaneous activity and epochs marked with orange frames were used for the analyses of
stimulus-driven activity. The cue was either a vertical line (AT1) or two small dots (AT2). The dashed
circle denotes the receptive field locations of recorded neurons (V4 RFs) and was not visible to the
monkeys (see Supplementary Fig. 1 for details). (d) Multi-unit spiking activity (black vertical ticks) was
simultaneously recorded across all cortical layers with a 16-channel linear array microelectrode. The
autocorrelation of spike-counts in 2 ms bins was computed from the spikes pooled across all channels
(green ticks). (e) The autocorrelation (AC) computed from the pooled spikes on an example recording
session. Multiple slopes visible in the autocorrelation in the logarithmic-linear coordinates indicate
multiple timescales in neural dynamics.

We analyzed the timescales of fluctuations in local spiking activity by computing the autocorrelations110

(ACs) of spike counts in 2 ms bins. Previous laminar recordings showed that the neural activity is111

synchronized across cortical layers alternating spontaneously between synchronous phases of high and112

low firing rates36, 38. Therefore, we pooled the spiking activity across all layers (Fig. 1d) to obtain more113

accurate estimates of the spike-count autocorrelations. The shape of spike-count autocorrelations in our114

data deviated from a single exponential decay. In logarithmic-linear coordinates, the exponential decay115

corresponds to a straight line with a constant slope. The spike-count autocorrelations exhibited more116
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than one linear slope, with a steep initial slope followed by shallower slopes at longer lags (Fig. 1e).117

The multiple decay rates in the autocorrelations indicate the presence of multiple timescales in the118

fluctuations of local population spiking activity.119

To verify the presence of multiple timescales and to accurately estimate their values from autocorrela-120

tions, we used a method based on adaptive Approximate Bayesian Computations (aABC, Methods)39.121

This method overcomes the statistical bias in autocorrelations of finite data samples, which undermines122

the accuracy of conventional methods based on direct fitting of the autocorrelation with exponential123

decay functions. The aABC method estimates the timescales by fitting the spike-count autocorrelation124

with a generative model that can have single or multiple timescales and incorporates spiking noise. The125

method accounts for the finite data amount, non-Poisson statistics of the spiking noise, and differences126

in the mean and variance of firing rates across experimental conditions. The aABC method returns a127

posterior distribution of timescales that quantifies the estimation uncertainty and allows us to compare128

alternative hypotheses about the number of timescales in the data.129

We fitted each autocorrelation with a one-timescale (M1) and a two-timescale (M2) generative model130

and selected the optimal number of timescales by approximating the Bayes factor obtained from the131

posterior distributions of the fitted models (Fig. 2a, Supplementary Fig. 2, Methods). The majority of132

autocorrelations were better described by the model with two distinct timescales (M2) than with the133

one-timescale model (Fig. 2a,b). The presence of two distinct timescales (fast τ1 and slow τ2) was134

consistent across both spontaneous (i.e. in the absence of visual stimuli, τ1,MAP = 8.87 ± 0.78 ms,135

τ2,MAP = 85.82 ± 15.9 ms, mean ± s.e.m. across sessions, MAP: Maximum a posteriori estimate136

from the multivariate posterior distribution) and stimulus-driven activity (τ1,MAP = 5.05 ± 0.51 ms,137

τ2,MAP = 135.87 ± 9.35 ms, mean ± s.e.m.), and across all monkeys, while the precise values of138

timescales were heterogeneous reflecting subject- or session-specific characteristics (Fig. 2c). Although139

it is possible that autocorrelations contained more than two timescales, with our data amount, the three-140

timescale model did not provide a better fit than the two-timescale model (Supplementary Fig. 3). Thus,141

the two-timescale model provided a parsimonious description of neural dynamics in our data.142

Slow timescales are modulated during spatial attention. Next, we examined whether the intrinsic143

timescales of spiking activity were modulated during spatial attention. We compared the timescales144

estimated from the stimulus-driven activity on trials when the monkeys attended toward the RFs location145

of the recorded neurons (attend-in condition, covert or overt) versus the trials when they attended outside146

the RFs location (attend-away condition). In this analysis, we included recording sessions in which the147

autocorrelations were better fitted with two timescales in both attend-away and attend-in (covert or overt)148

conditions. We compared the MAP estimates of the fast τ1 and slow τ2 timescales between attend-in149

and attend-away conditions across recording sessions.150

We found that the slow timescale was significantly longer during both covert and overt attention relative151

to the attend-away condition (covert: mean τ2,att-in = 140.69 ms, mean τ2,att-away = 115.07 ms, p =152

3×10−4,N = 32; overt: mean τ2,att-in = 141.31 ms, mean τ2,att-away = 119.58 ms, p = 7×10−4,N = 26;153

two-sided Wilcoxon signed-rank test) (Fig. 3), while there was no significant change in the fast timescale154

during attention (covert: mean τ1,att-in = 5.53 ms, mean τ1,att-away = 5.54 ms, p = 0.75, N = 32; overt:155

mean τ1,att-in = 3.42 ms, mean τ1,att-away = 4.12 ms, p = 0.39, N = 26; two-sided Wilcoxon signed-rank156
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Fig. 2. Two timescales in ongoing spiking activity within V4 columns. (a) Comparison between
the two-timescale (M2) and one-timescale (M1) generative models for three example recording sessions
(rows). The models were fitted to autocorrelations of V4 spiking activity using the adaptive Approxi-
mate Bayesian Computations (aABC). The shape of the neural autocorrelation (AC) is reproduced by the
autocorrelation of synthetic data from the two-timescale model with the maximum a posteriori (MAP)
parameters, but not by the one-timescale model (left panels). Autocorrelations are plotted from the
first time-lag (t = 2 ms). Marginal posterior distribution of the timescale estimated by fitting M1 is in
between the posterior distributions of timescales estimated by fitting M2 (middle panels). Cumulative
distribution of errors CDFMi

(ε) between the autocorrelations of V4 data and synthetic data generated
with parameters sampled from theM1 orM2 posteriors (right panels). M2 is a better fit since it produces
smaller errors (i.e. Bayes factor = CDFM2(ε)/CDFM1(ε) > 1, Methods). (b) In most recording ses-
sions, the autocorrelations during spontaneous and stimulus-driven activity were better described with
two distinct timescales (M2) than a single timescale (M1). For a few fits the model comparison was
inconclusive as the observed statistics were insufficient to distinguish between the models. The total
number of fitted autocorrelations for each monkey (G, R, B) was NG = 5, NR = 18 for spontaneous,
and NG = 57, NR = 24, NB = 39 for stimulus-driven activity. (c) MAP estimates for the fast and
slow timescales were heterogeneous across recording sessions during spontaneous and stimulus-driven
activity. Violin plots show the distributions of timescales for the autocorrelations that were better fitted
with two timescales. The distributions were smoothed with Gaussian kernel densities. The white dot
indicates the median, the black box is the first to third quartiles. Inset shows a zoomed range for the fast
timescale.
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Fig. 3. Slow timescales increase during spatial attention. (a) Autocorrelations of neural data with
two-timescale fits (left) and the corresponding posterior distributions (right) during covert attention
and attend-away condition for an example recording session. The fitted lines are autocorrelations of
synthetic data from the two-timescale model with MAP parameters. The posterior distribution of the
slow timescale (τ2) has significantly larger values in attend-in than in attend-away condition. Statistics:
two-sided Wilcoxon rank-sum test. (b) The increase of the slow timescale (τ2, right) during attention
was visible on most sessions (points - MAP estimates for individual sessions, error bars - the first and
third quartiles of the marginal posterior distribution, dashed line - the unity line). If the MAP estimate
was smaller than the first or larger than the third quartile, the error bar was discarded. Larger error bars
indicate wider posteriors, i.e. larger estimation uncertainty. Number of included sessions from the total
fitted sessions for each monkey: NG = 13/19, NB = 13/13, NR = 6/12. Color of the dots indicates
different monkeys. (c) Across sessions, the fast timescale (τ1, left) did not change, while the slow
timescale (τ2, right) significantly increased during covert attention relative to the attend-away condition.
Bar plots show the mean ± s.e.m of MAP estimates across sessions. Statistics: two-sided Wilcoxon
signed-rank test. ns., **, *** indicate p > 0.05/4, p < 10−2, p < 10−3, respectively (Bonferroni
corrected for 4 comparisons). (d-f) Same as (a-c) but during the overt attention for a different example
session. Number of included sessions (pairs) from the total fitted sessions for each monkey: NG =

14/19, NB = 12/12.

test). The increase in the slow timescale with attention was evident on individual recording sessions157

when comparing the marginal posterior distributions of τ2 for attend-in versus attend-away conditions158

(Fig. 3a,d). The significant increase of τ2 was observed in 24 out of 32 individual sessions during covert159

attention, and 22 out of 26 individual sessions during overt attention. Both fast and slow timescales160
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varied across sessions, but were not significantly different between covert and overt attention (p > 0.05161

for both τ1 and τ2, two-sided Wilcoxon signed-rank test, Supplementary Fig. 4). The increase in τ2 was162

not due to increase in the firing rate with attention, since the aABC method accounts for the differences163

in the firing rate across behavioral conditions (Methods), and τ2 was not correlated with the mean firing164

rate of population activity (Supplementary Fig. 5). The increase of slow timescales during attention is165

consistent with the reduction in the power of low-frequency fluctuations in local field potentials37, 40–42
166

and spiking activity43 (Supplementary Note 1, Supplementary Fig. 6, 7). The modulation of the slow167

timescale was consistent across both attention tasks (AT1 and AT2) and each monkey, and appeared168

in response to trial-to-trial changes in the cognitive state of the animal directed by the attention cue.169

These results suggest that different mechanisms control the fast and slow timescales of ongoing spiking170

activity, and the mechanisms underlying the slow timescale can flexibly adapt according to the animal’s171

behavioral state.172

To test whether attentional modulation of timescales was relevant for behavior, we analyzed the re-173

lationship between timescales and monkeys’ reaction times in the attention tasks. We quantified the174

relationship between the average reaction times of monkeys’ responses in each session (see Supple-175

mentary Fig. 1 for details of experiment) and the MAP estimated timescales of spiking activity using176

linear mixed-effects models fitted separately in attend-in and attend-away conditions (Fig. 4, Methods,177

Supplementary Table 1, 2). The linear mixed-effects models had a separate intercept for each monkey to178

account for individual differences between the monkeys and attention tasks (AT1 and AT2). The reac-179

tion times were negatively correlated with the slow timescales in attend-in condition (combined covert180

and overt) (slope = −0.16 ± 0.066, mean ±95% CIs; p = 9 × 10−6, F-test; N = 58, R2 = 0.62), but181

not in attend-away condition (slope = 0.015 ± 0.12, p = 0.79, N = 32, R2 = 0.69). Fast timescales182

were not correlated with the reaction times (attend-in: slope = 0.0016 ± 0.86, p = 0.997, N = 58,183

R2 = 0.46; attend-away: slope = 0.53± 0.94, p = 0.26, N = 32, R2 = 0.70). Thus, on average mon-184

keys responded to a stimulus change faster in sessions with longer slow timescales of neurons with the185

receptive fields in the attended location. The spatial selectivity of this effect suggests that the increase186

in the slow timescale may contribute to behavioral benefits of selective spatial attention.187

Mechanisms for generating multiple timescales in local population dynamics. What mechanisms188

can generate multiple timescales in the local population activity? One possibility is that multiple189

timescales reflect biophysical properties of individual neurons within a local population. For example,190

two timescales can arise from mixing heterogeneous timescales of different neurons44, 45 or combin-191

ing different biophysical processes, such as a fast membrane time constant and a slow synaptic time192

constant46. Alternatively, multiple timescales in local population activity can arise from spatiotemporal193

population dynamics in networks with spatially arranged connectivity47.194

Analyses of well-isolated single-unit activity (SAU) would be ideal for testing whether multiple timescales195

in local V4 population activity reflect mixing heterogeneous timescales of individual neurons or dynam-196

ics shared by the population. However, due to low firing rates, SUA did not yield sufficient data for197

conclusive model comparison. We fitted autocorrelations of SUA during the fixation task (which had198

the longest trial duration of 3 s and thus the largest data amount) and performed the model comparison199

to determine the number of timescales. While some single units clearly showed two distinct timescales,200

the model comparison was inconclusive for most units because autocorrelations were dominated by201
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Fig. 4. Slow timescales predict behavioral performance. Average reaction times of monkeys for each
session were negatively correlated with the MAP estimates of slow timescales in attend-in condition
(left, slope = −0.16 ± 0.066, mean ±95% CIs, p = 9 × 10−6, F-test, N = 58, R2 = 0.62) but not
attend-away condition (right, slope = 0.015 ± 0.12, p = 0.79, N = 32, R2 = 0.69). Each point
represents one recording session, symbols indicate different monkeys. Error bars denote ± s.e.m. Gray
lines show the estimated fixed-effect parameters (slope and intercept) of the fitted mixed-effects model
(Methods, Supplementary Table 1).

noise due to low data amount (Supplementary Note 2, Supplementary Fig. 8). We therefore turned to202

computational modeling for testing possible alternative mechanisms for generating multiple timescales.203

To determine which mechanism, local biophysical properties or spatial network interactions, is consis-204

tent with neural dynamics in V4, we developed three recurrent network models each with a different205

mechanism for timescale generation (Fig. 5). We implemented all mechanisms within the same model-206

ing framework. The models consist of binary units arranged on a two-dimensional lattice corresponding207

to lateral dimensions in the cortex (Fig. 5a-c). Each unit represents a small population of neurons, such208

as a cortical minicolumn48, 49, and is connected to 8 other units in the network. The activity of unit i at209

time-step t′ is described by a binary variable Si(t′) ∈ {0, 1} representing high (1) and low (0) firing-rate210

states of a local population36. The activity Si(t′) stochastically transitions between states driven by the211

self-excitation (probability ps), excitation from the connected units (probability pr), and the stochastic212

external excitation (probability pext � 1) delivered to each unit (Methods). The self-excitation probabil-213

ity describes intrinsic dynamics of a unit in the absence of network interactions, arising from biophysical214

properties of neurons or reverberation within a local population (via the vertical connectivity within a215

minicolumn). The self-excitation generates a timescale τself, which is the autocorrelation timescale of a216

two-state Markov process: τself = (−ln(ps))
−1 (Methods, Supplementary Note 3). The recurrent exci-217

tation pr accounts for horizontal interactions between units. The sum of all interaction probabilities is218

the local branching parameter: BP = ps + 8pr, describing the expected number of units activated by a219

single active unit i.220

The models differ in the mechanism generating multiple timescales in the local population activity. In221

two models, connectivity is random and multiple timescales arise locally from biophysical properties222

of individual units. In the third model, connectivity is spatially organized and multiple timescales arise223

from recurrent interactions between units47.224

The first model assumes that two timescales in local population activity reflect aggregated activity of dif-225
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ferent neuron types with distinct (fast and slow) biophysical timescales (e.g., membrane time constants),226

which we modeled as two types of units (A and B) each with a different self-excitation probability (ps,A,227

ps,B, Fig. 5a). We placed two units, A and B, on each vertex of the lattice and summed their activity to228

obtain a local population activity as in the columnar recordings. Connections between units of any type229

are random. As expected, the autocorrelation of local population activity exhibits two distinct timescales230

corresponding to the self-excitation timescales of the two unit types (Fig. 5d).231

The second model assumes that two timescales arise from two local biophysical processes, e.g., a fast232

membrane time constant and a slow synaptic time constant (Fig. 5b)46. We modeled the membrane233

time constant with the fast self-excitation timescale, and the synaptic time constant as a low-pass filter234

of the input to each unit with a slow time-constant τsynapse (Methods)46. The connectivity between235

units is random. The autocorrelation of individual unit’s activity in this model exhibit two timescales236

corresponding to the membrane (τself) and synaptic (τsynapse) time constants (Fig. 5e).237

Finally, in the third model, multiple timescales arise from recurrent dynamics shaped by the spatial238

network connectivity, akin to the horizontal connectivity in primate visual cortex49. Each model unit is239

connected to 8 nearby units (Fig. 5c). Although each unit has only a single self-excitation timescale, the240

unit’s autocorrelation exhibit multiple timescales with a fast decay at short time-lags and a slower decay241

at longer time-lags (Fig. 5f). The fast initial decay corresponds to the self-excitation timescale. The slow242

autocorrelation decay is generated by recurrent interactions among units in the network. In simulations,243

the slow autocorrelation decay closely matches the autocorrelation of the net recurrent input received244

by a unit from its neighbors (excluding the self-excitation input).245
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Fig. 5. Mechanisms for generating multiple timescales in local population activity. (a)-(c) Network247

models consist of units (circles) arranged on a two-dimensional lattice (thin grey lines). Each target unit248
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(large circle) receives inputs from 8 other units in the network (thick grey lines). The connectivity is249

random (models in a,b) or spatially arranged with each unit connected to its nearest neighbors (model250

in c). The model with heterogeneous cell types (a) assumes that a local population at each lattice node251

(dashed circle) consists of two cell types, A and B, with distinct timescales (self-excitation probabili-252

ties ps,A = 0.88 and ps,B = 0.976). The model with two local biophysical processes (b) assumes that253

each local population has a fast membrane time constant (modeled as ps = 0.88) and a slow synaptic254

time constant (modeled as τsynapse = 41 ms). The spatial network model (c) assumes only a single self-255

excitation timescale (ps = 0.88) for each unit. (d)-(f) All models reproduce two distinct timescales in256

the autocorrelations of local population activity. In the model with two cell types (d), the timescales257

correspond to the self-excitation timescales of two unit type (τself,A, τself,B, pink lines). In the model258

with synaptic filtering (e), the timescales correspond to the self-excitation and synaptic timescales (τself,259

τsynapse, blue lines). In the spatial network model, the unit’s autocorrelation exhibits multiple timescales260

and is well captured by the analytical derivation (purple). The fast autocorrelation decay corresponds to261

the self-excitation timescale (τself, blue). The slower decay is captured by the autocorrelation of recur-262

rent inputs received by each unit in simulations (gray) and an analytical effective interaction timescale263

(τint, dashed line). (g)-(i) In the models with random connectivity, cross-correlations between activity of264

local populations do not depend on distance (d) between units on the lattice (two cell types in g; synaptic265

filtering in h). In contrast, in the spatial network model, cross-correlations depend on distance d and266

exhibit multiple timescales (i). The strength of cross-correlations decreases with distance, and slower267

interaction timescales (lower spatial frequency modes) dominate cross-correlations at longer distances.268

To compute cross-correlations, we sampled the same number of randomly selected units for each dis-269

tance. For all models: BP = 0.99, pext = 10−4. (j) Auto- and cross-correlations of V4 spiking activity270

recorded on different channels overlaid with correlations of synthetic data with MAP parameters (mon-271

key G, FT). The strengths of cross-correlations is smaller than the auto-correlation and decreases with272

RF-center distance (dRF,L > dRF,S). (k) Posterior distributions of timescales from fitting correlations in273

j. Cross-correlations have slower timescales than the autocorrelation, and slower timescales dominated274

cross-correlations at larger RF-center distances. Statistics: two-sided Wilcoxon rank-sum test, *** in-275

dicate p < 10−3. Number of samples in each posterior N = 100. Correlations are plotted from the first276

time-lag (t = 2 ms).277

278

To understand how recurrent interactions generate slow timescales, we analytically computed the au-279

tocorrelation timescales of the unit’s activity in the network with spatial connectivity, using the master280

equation for binary units with Glauber dynamics50 (Methods, Supplementary Note 4, details in47). We281

found that the slow decay of the autocorrelation contains a mixture of interaction timescales τint,k. Each282

τint,k arises from recurrent interactions on a different spatial scale, characterized by the modes of corre-283

lated fluctuations with different spatial frequencies k in the Fourier space (Methods). For each spatial284

frequency k, the interaction timescale depends on both the probability of horizontal interactions (pr) and285

the self-excitation probability (ps) (Methods, Eq. 24). Shorter interaction timescales arise from higher286

spatial frequency modes (larger k) which correspond to persistent activity in local neighborhoods, and287

longer timescales are generated by more global interactions (smaller k)47. The longest timescale in the288

network is characterized by the global interaction timescale related to the zero spatial frequency mode289

(Methods, Eq. 25). We can approximate the slow decay of the autocorrelation with a single effective290
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interaction timescale (τint) defined as a weighted average of all interaction timescales (Methods, Eq. 27).291

Therefore, the autocorrelation shape is well approximated with two timescales: the fast self-excitation292

timescale and the slow effective interaction timescale.293

Generating multiple timescales in spatial networks does not require strictly structured connectivity. Sys-294

tematically changing the connectivity from structured to random reveals that networks with an interme-295

diate level of local connectivity also exhibit multiple timescales in local dynamics (Fig. 6, Supplemen-296

tary Note 5). However, by getting closer to a random connectivity, most interaction timescales become297

smaller and close to the self-excitation timescale, and only the global timescale does not depend on the298

network structure. Hence networks with different connectivity have the same global timescale (Fig. 6,299

inset). In fully random networks, the autocorrelation of a unit’s activity effectively exhibits only two dis-300

tinct timescales: the self-excitation timescale and the global interaction timescale. However, the global301

timescale has a very small relative contribution in local autocorrelations (scaled with the inverse number302

of neurons in the network) and is hard to observe empirically as it requires data with excessively long303

trial duration.304

While all three mechanisms account for multiple timescales in V4 autocorrelations, they can be distin-305

guished in cross-correlations between local population activity at different spatial distances. In mod-306

els with random connectivity, cross-correlations do not depend on distance between units on the lattice307

(Fig. 5g,h). In contrast, the model with spatial connectivity predicts that both the strength and timescales308

of cross-correlations depend on distance (Fig. 5i). Specifically, the zero time-lag cross-correlations de-309

crease with distance. Moreover, cross-correlations contain multiple timescales equal to the interaction310

timescales in autocorrelations (Methods), but no self-excitation timescale since self-excitation is inde-311

pendent across units. With increasing distance, the weights of timescales generated by local interactions312

(high spatial frequency modes) decrease, and timescales generated by more global interactions (low313

spatial frequency modes) dominate cross-correlations. Thus, cross-correlations become weaker and314

dominated by slower timescales at longer distances (analytical derivations in Methods, details in47).315

Approximating the shape of auto- and cross-correlations with two effective timescales, the theory pre-316

dicts that both timescales in cross-correlations are larger than in the autocorrelation and increase with317

distance. Therefore, by measuring timescales of cross-correlations at different distances, we can deter-318

mine which mechanism, spatial network interactions or local biophysical properties, is more consistent319

with neural dynamics in V4.320

To test these model predictions in our V4 recordings, we computed cross-correlations between popu-321

lation activity on different channels during spontaneous activity (monkey G in FT, monkey R in AT2),322

which had the longest trial durations for better detection of slow timescales (Methods). Columnar323

recordings generally exhibit slight horizontal displacements which manifest in a systematic shift of re-324

ceptive fields (RFs) across channels51. We used distances between the RF centers (RF-center distance)325

as a proxy for horizontal cortical distances51. For each monkey, we divided the cross-correlations into326

two groups with larger (dRF,L) and smaller (dRF,S) RF-center distances than the median distance (monkey327

G: 0 < dRF,S < 2.08, 2.08 < dRF,L < 5, monkey R: 0 < dRF,S < 0.77, 0.77 < dRF,L < 2.25, all328

distances are in degrees of visual angle, dva) and averaged the cross-correlations within each group. For329

comparison, we also computed the average auto-correlation of population activity on individual chan-330

nels (i.e. without pooling spikes across channels). The differences between auto- and cross-correlations331
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of V4 data appeared smaller than in the model since horizontal displacements between channels were332

relatively small, sampling mainly within the same or nearby columns51.333

The cross-correlations of V4 activity exhibited distinct fast and slow decay rates as predicted by the334

spatial network model (Fig. 5j, Supplementary Fig. 9, left). In agreement with the spatial network model,335

zero time-lag cross-correlations decreased with increasing RF-center distance (monkey G: mean for336

dRF,S = 0.047, dRF,L = 0.040, p = 4×10−4,N = 152; monkey R: mean for dRF,S = 0.022, dRF,L = 0.013,337

p = 0.001, N = 128, two-sided Wilcoxon rank-sum test), consistent with the reduction of pairwise338

noise correlations with lateral distance in V451, 52. The shapes of V4 auto- and cross-correlations were339

well approximated by fitted two-timescale generative models (Fig. 5j, Supplementary Fig. 9, left), and340

the estimated posterior distributions allowed us to compare auto- and cross-correlation timescales at341

different distances (Fig. 5k, Supplementary Fig. 9, right). Both fast and slow timescales were smaller342

in autocorrelations than in cross-correlations (Fast timescale: monkey G, mean τ1,AC = 10.11 ms,343

τ1,CC,S = 12.24 ms, τ1,CC,L = 14.19 ms; monkey R, mean τ1,AC = 4.93 ms, τ1,CC,S = 12.18 ms,344

τ1,CC,L = 12.34 ms; Slow timescale: monkey G, mean τ2,AC = 75.46 ms, τ2,CC,S = 83.94 ms, τ2,CC,L =345

101.94 ms; monkey R, mean τ2,AC = 26.53 ms, τ2,CC,S = 358.07 ms, τ1,CC,L = 552.70 ms; number346

of samples in each posterior N = 100, all p-values < 10−10, two-sided Wilcoxon rank-sum test). Both347

fast and slow timescales of cross-correlations increased with the RF-center distance in both monkeys,348

but the increase in the fast timescale did not reach statistical significance in monkey R (τ2: p < 10−10,349

τ1: pG < 10−10, pR = 0.36, two-sided Wilcoxon rank-sum test), possibly due to narrower range of RF-350

center distances in monkey R compared to monkey G (median dRF,R = 0.77, dRF,G = 2.08 dva). Thus,351

predictions of the spatial network model, but not the models with random connectivity, were borne out352

by the data.353

These results suggest that multiple timescales in local population activity in V4 arise from the recurrent354

dynamics shaped by the spatial connectivity of the primate visual cortex and not from local biophys-355

ical processes alone. Local biophysical mechanisms can also contribute to generating multiple neural356

timescales. For example, spatial connectivity combined with synaptic filtering can give rise to multiple357

autocorrelation timescales (Supplementary Fig. 10). The dependence of cross-correlation timescales on358

distance indicates that dominant timescales in the local population activity reflect the spatial network359

structure.360

Changes in the efficacy of network interactions modulate local timescales. We used the spatial net-361

work model to investigate which mechanisms can underlie the modulation of the slow timescales during362

attention. We matched the timescales between the model with local connectivity (r = 1) and experimen-363

tal data to determine which changes in the model parameters can explain the attentional modulation of364

timescales in V4. We matched the self-excitation and effective interaction timescales of a model unit to,365

respectively, the fast and slow timescales of V4 activity (mean timescale± s.e.m., Methods) for both the366

attend-away and attend-in (averaged over covert and overt) conditions (Fig. 7). We used a combination367

of analytical approximations and model simulations to find parameters that produce timescales similar368

to the V4 data (Methods).369

We found that to reproduce the timescales in V4, the model needs to operate close to the critical point370

BP = 1 (Fig. 7b). At the critical point, each unit activates one other unit on average resulting in371
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Fig. 6. Dependence of local but not global timescales on the spatial network structure. (a)
Schematic of local (r = 1) and dispersed (r > 1) spatial connectivity in the network model. Each unit
(blue) is connected to 8 other units (pink) selected randomly within the connectivity radius r (brown
line). (b) Shape of the autocorrelations of individual units (AC) reflect the underlying local connectiv-
ity structure. Interaction timescales disappear and the self-excitation timescale (τself) dominates local
autocorrelations when the connectivity radius increases while the connection strengths are kept constant
(ps = 0.88, 8pr = 0.11, pext = 10−4). The autocorrelation of the the global network activity (ACglobal,
inset) does not depend on the connectivity structure.

self-sustained activity53. Close to this regime, the timescales are flexible, such that small changes in372

the network excitability give rise to significant changes in timescales. To increase the slow timescale373

during attention, the total excitability of the network interactions should increase, shifting the network374

dynamics closer to the critical point. The overall increase in the interaction strength can be achieved by375

increasing the strength of either the self-excitation (ps) or the recurrent interactions (pr). Increasing pr376

while keeping ps constant allows for substantial changes in the slow timescale and a nearly unchanged377

fast timescale consistent with the V4 data. The increase of ps in the model produces a slight increase378

in the fast timescale (τ1) (∼0.4 ms on average), but such small changes in τ1 would be undetectable379

with our available data amount (the uncertainty of τ1 MAP estimate is ±0.9 ms on average, Fig. 3b,e).380

The increase in ps can also be counterbalanced by a reduction in pr to produce the observed changes of381

timescales.382

Several mechanisms can account for changes in the strength of recurrent interactions during attention.383

For example, the increase in ps is consistent with the observation that interactions between cortical layers384

in V4 increase during attention42, when ps is interpreted as the strength of vertical recurrent interactions385

within cortical mini-columns. A reduction in pr can be mediated by neuromodulatory effects that reduce386

the efficacy of lateral connections in the cortex during attention54. In addition, our analytical derivations387

show that in the model with non-linear recurrent interactions, the effective strengths of recurrent inter-388

actions can also change by external input (Methods, details in51). The input alters the operating regime389

of network dynamics changing the effective strength of recurrent interactions. Thus, with non-linear390

interactions, timescales can be modulated by the input to the network, such as top-down inputs from391

higher cortical areas during attention51, 55. Altogether, our model suggests that attentional modulation392

of timescales can arise from changes in the efficacy of recurrent interactions in visual cortex that can be393
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Fig. 7. Modulation of the slow timescale during attention is mediated by an increase in the effi-
cacy of network interactions. (a) Effect of connectivity parameters on local timescales in the model.
The fast timescale (τ1, right) mainly depends on the self-excitation probability (ps), whereas the slow
timescale (τ2, left) depends on both the self-excitation (ps) and recurrent horizontal interactions (pr).
The dashed rectangles indicate the range of parameters reproducing V4 timescales (mean ± s.e.m. of
MAP estimates, Methods). (b) The slow timescale increases with the network excitability (ps + 8pr,
left panel). Green and magenta dots indicate the parameters reproducing attend-away and attend-in
timescales, respectively. Filled dots show examples of experimentally observed∼20% increase in τ2 for
three possible scenarios based on different changes in ps or pr (right panels). Larger changes of param-
eters in scenarios (2) and (3) are due to coarser grid of ps used to fit the timescales. A similar change
of τ2 can be achieved also with smaller changes in ps and pr (e.g., for all 0.74 < ps < 0.745 in scenario
2). (c) Example autocorrelations (ACs) from the model simulations with the attend-in and attend-away
parameters for the scenario (2) in b. We fitted unbiased autocorrelations from the model simulations
with double exponential functions (green and pink lines) to estimate the two timescales (Methods).

mediated by neuromodulation or top-down attentional inputs.394

Discussion395

We found that ongoing spiking activity of local neural populations within columns of the area V4 un-396

folded across fast and slow timescales, both in the presence and absence of visual stimuli. The slow397

timescale increased when monkeys attended to the receptive fields location, showing that local intrinsic398

timescales can change flexibly from trial to trial according to selective attention. Furthermore, the slow399
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timescales of neurons with RFs in the attended location correlated with the monkeys’ reaction times400

suggesting that the increase in the slow timescale may contribute to behavioral benefits of selective401

spatial attention. To understand the mechanisms underlying the multiplicity and flexible modulation402

of timescales, we developed network models linking intrinsic timescales to biophysical properties of403

individual neurons or the spatial connectivity structure of the visual cortex. Only the spatial network404

model correctly predicted the distance-dependence of spatiotemporal correlations in V4, indicating that405

multiple timescales in V4 dynamics arise from the spatial connectivity of primate visual cortex. The406

model suggests that slow timescales increase with the effective strength of recurrent interactions.407

Multiple intrinsic timescales in neural activity. Previous studies characterized the autocorrelation of408

ongoing neural activity with a single intrinsic timescale11, 13, 15, 16. The intrinsic timescale was usually409

measured for neural populations either by averaging autocorrelations of single neurons in one area11
410

or using coarse-grained measurements such as ECoG13 or fMRI15, 16. Thus, ongoing dynamics in each411

area were described with a single intrinsic timescale that varied across areas. We extended this view412

by showing that, within one area, local population activity exhibits multiple intrinsic timescales. These413

timescales reflect ongoing dynamics on single trials and are not driven by task events. Our results414

suggest that the multiplicity of timescales is an intrinsic property of neural activity arising from inherent415

cellular and network properties of the cortex.416

We show that multiple timescales in local dynamics can emerge from the spatial connectivity structure417

in a recurrent network model. The presence of two dominant timescales (τself, τint) in local dynamics418

depends on the combination of the structured connectivity and strong, mean-driven interactions between419

units. Networks with random connectivity (Fig. 6,b) or weak, diffusion-type interactions51 exhibit only420

one dominant timescale in local activity (Supplementary Note 6). Moreover, local biophysical properties421

alone cannot explain the dependence of spatiotemporal neural correlations on lateral distance in the422

cortex, highlighting the importance of spatial network interactions for generating multiple timescales in423

local population activity.424

In our network model with local spatial connectivity, recurrent interactions across different spatial scales425

induce multiple slow timescales. To generate multiple slow timescales, our network operates close to a426

critical point. Spiking networks with spatial connectivity can generate fast correlated fluctuations that427

emerge from instability at particular spatial frequency modes56. Slow fluctuations of firing rates can428

also arise in networks with clustered random connectivity, but interactions between clusters induce only429

a single slow timescale34. We show that more local spatial connectivity (smaller r) leads to slower430

dynamics and modifies the weights and composition of timescales in the local activity. The timescale431

of the global activity, on the other hand, is the same across networks with distinct local timescales432

and different connectivity structures. These results show that local temporal and spatial correlations of433

neural dynamics are closely tied together.434

In our model, integrating activity over larger spatial scales leads to disappearance of faster interaction435

timescales (higher spatial frequencies) leaving only slower interaction timescales (lower spatial fre-436

quencies) in the coarse-grained activity. At the extreme, the global network activity exhibits only the437

slowest interaction timescale (the global timescale). This mechanism may explain the prominence of438

slow dynamics in meso- and macroscale measures of neural activity such as LFP or fMRI57, while faster439
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dynamics dominate in local measures such as spiking activity. The model predicts that the slowest in-440

teraction timescales have very small weights in the autocorrelation of local neural activity and thus can441

be detected in local activity only with excessively long recordings. Indeed, infraslow timescales (on the442

order of tens of seconds and minutes) are evident in the cortical spiking activity recorded over hours58.443

Functional relevance of neural activity timescales. Intrinsic timescales are thought to define the pre-444

dominant role of neurons in the cognitive processes17. For example, in the orbitofrontal cortex, neu-445

rons with long intrinsic timescales are more involved in decision-making and the maintenance of value446

information44. In the prefrontal cortex (PFC), neurons with short intrinsic timescales are primarily in-447

volved in the early phases of working memory encoding31, while neurons with long timescales play a448

significant role in coding and maintaining information during the delay period31, 45. Our finding that449

intrinsic timescales can flexibly change from trial to trial (and across epochs within a trail13) suggests450

a possibility that task-induced timescales may correspond with intrinsic timescales only during spe-451

cific task phases. These results may explain why the task-induced timescales of single neurons do not452

correlate with intrinsic timescales measured over the entire task duration12.453

We found that timescales of local neural activity changed from trial to trial depending on the attended454

location. A previous ECoG study found that the intrinsic timescale of neural activity in cortical associ-455

ation areas increased after engagement in a working memory task13. Our findings go beyond this earlier456

work by showing that the modulation of timescales can be functionally specific as it selectively affects457

only neurons representing the attended location within the retinotopic map. While changes in timescale458

due to task engagement could be mediated by slow global processes such as arousal, the retinotopically459

precise modulation of timescales requires local changes targeted to task-relevant neurons. Our results460

further show that the modulation of timescales also occurs in sensory cortical areas and cognitive pro-461

cesses other than memory maintenance13 which explicitly requires temporal integration of information.462

The correlation of slow timescales with reaction times during attention may be functionally relevant,463

potentially allowing neurons to integrate information over longer durations.464

Longer timescales during attention in the model are associated with shifting the network dynamics465

closer to a critical point. Shifting closer to criticality was also suggested as a mechanism for the in-466

crease in gamma-band synchrony and stimulus discriminability during attention59. Furthermore, strong467

recurrent dynamics close to the critical point can flexibly control the dimensionality of neural activity60.468

Hence, operating closer to the critical point during attention might help to optimize neural responses to469

environmental cues and improve information processing61.470

Mechanisms for attentional modulation of timescales. Changes in the slow timescale of neural activ-471

ity due to attention occurred from one trial to another. Such swift changes cannot be due to significant472

changes in the underlying network structure and require a fast mechanism. Our model suggests that473

the modulation of slow timescales during attention can be explained with a slight increase in the net-474

work excitability mediated by an increase in the efficacy of horizontal recurrent interactions, or by an475

increase in the efficacy of vertical interactions accompanied by a decrease in the strength of horizontal476

interactions.477

Several physiological processes may underlie these network mechanisms in the neocortex. Top-down478

inputs during attention can enhance the local excitability in cortical networks55. Our analytical deriva-479
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tions show that inputs can increase the effective strength of recurrent interactions between neurons in480

networks with non-linear interactions, similar to previous models18, 62. Similar modulation of timescales481

during covert and overt attention suggests that top-down attentional inputs arrive from brain areas that482

represent both attention-related and saccade-related information. Frontal eye field (FEF) can be a possi-483

ble source for such modulations37, 63, 64. Furthermore, feedback connections from higher visual areas like484

PFC or the temporal-occipital area (TEO) to lower visual areas have broader terminal arborizations than485

the size of the receptive fields in lower areas65, 66. These feedback inputs can coordinate activity across486

minicolumns in V4. Moreover, vertical interactions in V4 measured with local field potentials (LFPs)487

increase during attention42, while neuromodulatory mechanisms can reduce horizontal interactions. The488

level of Acetylcholine (ACh) can modify the efficacy of synaptic interactions during attention in a selec-489

tive manner54. Increase in ACh strengthens the thalamocortical synaptic efficacy by affecting nicotinic490

receptors and reduces the efficacy of horizontal recurrent interactions by affecting muscarinic receptors.491

Decrease in horizontal interactions is also consistent with the proposed reduction of spatial correlations492

length during attention51. These observations suggest that an increase in vertical interactions and a493

decrease in horizontal interactions is a likely mechanism for modulation of the slow timescale during494

attention.495

To identify biophysical mechanisms of timescales modulation, experiments with larger number of longer496

trials are required to provide tighter bounds for estimated timescales. Additionally, detailed biophysical497

models can help distinguish different mechanisms, since biophysical and cell-type specific properties498

of neurons might also be involved in defining neural timescales67, 68. In particular, diverse timescales499

observed across single neurons within one area17, 31, 44, 45, 69 require models considering a heterogeneous500

parameter space and can have computational implications for the brain70. Here, we used the RF-center501

distances as a proxy for spatial distances in the cortex. Experiments with spatially organized recording502

sites would allow to study the relation between temporal and spatial correlations more directly. Fur-503

thermore, developing recurrent network models that perform the selective attention task can help to find504

direct links between the modulation of dynamics and task performance. Finally, perturbation experi-505

ments that modulate selectively top-down inputs or neuromodulatory levels can provide the most direct506

test of the underlying mechanisms.507

Our findings reveal that targeted neural populations can integrate information over variable timescales508

following changes in the cognitive state. Our model suggests that local interactions between neurons via509

the spatial connectivity of primate visual cortex can underlie the multiplicity and flexible modulation510

of intrinsic timescales. Our experimental observations combined with the computational model provide511

a basis for studying the link between the network structure, functional brain dynamics, and flexible512

behavior.513

Methods514

Behavioral tasks and electrophysiology recordings. Experimental procedures were described515

previously36, 37. Experimental procedures for the fixation task and attention task 1 were in accordance516

with NIH Guide for the Care and Use of Laboratory Animals, the Society for Neuroscience Guide-517
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lines and Policies, and Stanford University Animal Care and Use Committee. Experimental proce-518

dures for the attention task 2 were in accordance with the European Communities Council Directive RL519

2010/63/EC, and Use of Animals for Experimental Procedures, and the UK Animals Scientific Proce-520

dures Act.521

In brief, on each trial of the fixation task (FT, monkey G), the monkey was rewarded for fixating a522

central dot on a blank screen for 3 s. In attention task 1 (AT1, monkeys G, B), the monkey detected523

orientation changes in one of the four peripheral grating stimuli while maintaining central fixation.524

Each trial started by fixating a central fixation dot on the screen and after several hundred milliseconds525

(170 ms for monkey B and 333 ms for monkey G), four peripheral stimuli appeared. Following a526

200−500 ms period, a central attention cue indicated the stimulus that was likely to change with∼90%527

validity. Cue was a short line from fixation dot pointing toward one of the four stimuli, randomly528

chosen on each trial with equal probability. After a variable interval (600 − 2200 ms), all four stimuli529

disappeared for a brief moment and reappeared. Monkeys were rewarded for correctly reporting the530

change in orientation of one of the stimuli (50% of trails) with an antisaccade to the location opposite531

to the change, or maintaining fixation if none of the orientations changed. Due to the anticipation of532

antisaccade response, the cued stimulus was the target of covert attention, while the stimulus in location533

opposite to the cue was the target of overt attention. In attend-in conditions, the cue pointed either to534

the stimulus in the RFs of the recorded neurons (covert attention) or to the stimulus opposite to the RFs535

(overt attention). The remaining two cue directions were attend-way conditions.536

In attention task 2 (AT2, monkey R), the monkey detected a small luminance change within the white537

phase of a square wave static grating. The monkey initiated a trial by holding a bar and visually fixating538

a fixation point. The color of the fixation point indicated the level of spatial certainty (red: narrow focus,539

blue: wide focus). After 500 ms a cue appeared indicating the location and focus of the visual field to540

attend to. The cue was switched off after 250 ms. After another second two gratings appeared, one in541

the center of the RFs and one diametrically opposite with respect to the fixation point. The grating at542

the position indicated by the cue was the test stimulus. The other grating served as the distractor. After543

at least 500 ms a small luminance change (dimming) occurred either in the center of the grating (narrow544

focus) or in one of 12 peripheral positions (wide focus). If the dimming occurred in the distractor545

grating first the monkey had to ignore it. The monkey was rewarded for a bar release within 750 ms546

of the dimming in the test grating. The faster the monkey reacted, the larger reward it received. Two547

grating sizes (small and large) were used in this experiment. We analyzed trials with the small grating548

to avoid surround-suppression effects created by the large grating sizes extending beyond the neurons’549

summation area71.550

Recordings were performed in the visual area V4 with linear array microelectrodes inserted perpendic-551

ularly to the cortical layers. Arrays were placed such that receptive fields of recorded neurons largely552

overlapped. Each array had 16 channels with 150 µm center-to-center spacing. In AT1 and FT, all 16553

channels were visually responsive. In AT2, the number of visually-responsive channels per recording554

ranged between 8 and 12 with the median at 9.555

Computing autocorrelations of neural activity. We computed autocorrelations from multi-unit (MUA)556

spiking activity recorded in the presence (stimulus-driven) and absence (spontaneous) of visual stimuli557
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(brown and yellow frames in Supplementary Fig. 1). For spontaneous activity, we analyzed spikes dur-558

ing the 3s fixation epoch in FT, and during the 800 ms epoch from 200 ms after the cue offset until559

the stimulus onset in AT2. For stimulus-driven activity, we analyzed spikes in the epoch from 400 ms560

after the cue onset until the stimulus offset in AT1, and from 200 ms after the stimulus onset until the561

dimming in AT2. For the stimulus-driven activity, trials in both attention tasks had variable durations562

(500− 2200 ms). Thus, we computed autocorrelations in non-overlapping windows of 700 ms for AT1563

and 500 ms for AT2. On long trials, we used as many windows as would fit within the trial duration,564

and we discarded trials that were shorter than the window size. The duration of windows were selected565

such that we had at least 50 windows for each condition in each session. 3 out of 25 recording sessions566

in monkey G (AT1) were excluded due to short trial durations. For spontaneous activity, the windows567

were 3 s in FT and 800 ms in AT2.568

We computed the average spike-count autocorrelation for each recording session. On each trial we569

pooled the spikes from all visually-responsive channels and counted the pooled spikes in 2 ms bins. For570

each behavioral condition (stimulus orientation, attention condition), we averaged spike-counts at each571

time-bin across trials, and subtracted the trial-average from the spike-counts at each bin11 to remove572

correlations due to changes in firing rate locked to the task events. We segmented the mean-subtracted573

spike-counts A(t′i) into windows of the same length N , where t′i (i = 1 . . . N ) indexes bins within a574

window. We then computed the autocorrelation in each window as a function of time-lag tj39:575

AC(tj) =
1

σ̂2(N − j)

N−j∑
i=1

(A(t′i)− µ̂1(j))
(
A(t′i+j)− µ̂2(j)

)
. (1)

Here σ̂2 = 1
N−1

∑N
i=1(A(t′i)

2− 1
N2 (
∑N

i=1 A(t′i))
2) is the sample variance, and µ̂1(j) = 1

N−j
∑N−j

i=1 A(t′i)576

and µ̂2(j) = 1
N−j

∑N
i=j+1 A(t′i) are two different sample means. In Eq.(1) for autocorrelation, we577

subtracted window-specific mean to remove correlations due to slow changes in firing rate across trials,578

such as slow fluctuations related to changes in the arousal state. Thus, the range of timescales was579

limited to the trial duration. These timescales reflect the intrinsic neural dynamics within single trials.580

Finally, we averaged the autocorrelations over windows of the same behavioral condition separately for581

each recording session. The exact method of computing autocorrelations does not affect the estimated582

timescales, since we use the same method for computing autocorrelations of synthetic data when fitting583

generative models with the aABC method39.584

In AT1, we averaged autocorrelations over trials with different stimulus orientation for each attention585

condition, since all attention conditions contained about the same number of trials with each orientation.586

For stimulus-driven activity in AT2, we first estimated timescales separately for focus wide and narrow587

conditions and found no significant differences (two-sided Wilcoxon signed rank test between MAP588

estimates, p > 0.05). Thus, we averaged autocorrelations of the focus narrow and wide conditions and589

refitted the average autocorrelations. The same procedure was applied to the spontaneous activity in590

AT2, and since there was no significant differences in timescales between different focus or attention591

conditions (two-sided Wilcoxon signed rank test between MAP estimates for the two-by-two conditions,592

p > 0.05), we averaged the autocorrelations over all conditions and refitted the average autocorrelation.593

For estimating the timescales, we excluded sessions with autocorrelations dominated by noise or strong594

oscillations that could not be well described with a mixture of exponential decay functions. We excluded595
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a session if the autocorrelation fell below 0.01 (log(AC) fell below−2) in lags smaller or equal to 20 ms596

(Supplementary Fig. 11). Based on this criterion, we excluded 3 out of 22 sessions for monkey G in597

AT1, 8 out of 21 sessions during covert attention and 9 out of 21 during overt attention for monkey B598

in AT1, 2 out 20 sessions for spontaneous activity and 8 out 20 sessions for stimulus-driven activity for599

monkey R in AT2. The difference in the number of excluded sessions for monkey R during spontaneous600

and stimulus-driven activity is explained by the larger amount of data available for computing auto-601

correlations during spontaneous activity due to averaging over attention conditions and longer window602

durations (800 ms vs. 500 ms).603

For visualization of autocorrelations, we omitted the zero time-lag (t = 0 ms) (examples with the zero604

time-lag are shown in Supplementary Fig. 11). The autocorrelation drop between the zero and first605

time-lag (t = 2 ms) reflects the difference between the total variance of spike counts and the variance606

of instantaneous rate according to the law of total variance for a doubly stochastic process39. This drop607

is fitted by the aABC algorithm when estimating the timescales.608

Estimating timescales with adaptive Approximate Bayesian Computations. We estimated the au-609

tocorrelation timescales using the aABC method that overcomes the statistical bias in empirical auto-610

correlations and provides the posterior distributions of unbiased estimated timescales39. The width of611

inferred posteriors indicates the uncertainty of estimates. For more reliable estimates of timescales (i.e.612

narrower posteriors), we selected epochs of experiments with longer trial durations (brown and yellow613

frames in Supplementary Fig. 1).614

The aABC method estimates timescales by fitting the spike-count autocorrelation with a generative615

model. We used a generative model based on a doubly stochastic process with one or two timescales.616

Spike-counts were generated from a rate governed by a linear mixture of OrnsteinUhlenbeck (OU)617

processes (one OU process Aτk for each timescale τk)618

AOU(t′) =
n∑
k=1

√
ckAτk(t

′),
n∑
k=1

ck = 1, ck ∈ [0, 1], (2)

where n is the number of timescales and ck are their weights. The aABC algorithm optimizes the model619

parameters to match the spike-count autocorrelations between V4 data and synthetic data generated from620

the model. We generated synthetic data with the same number of trials, trial duration, mean and variance621

of spike counts as in the experimental data. By matching these statistics, the empirical autocorrelations622

of the synthetic and experimental data are affected by the same statistical bias when their shapes match.623

Therefore, the timescales of the fitted generative model represent the unbiased estimate of timescales in624

the neural data.625

The spike-counts s are sampled for each time-bin [t′i, t
′
i+1] from a distribution pcount(s|λ(t′i)), where626

λ(t′i) = AOU(t′i)∆t
′ is the mean spike-count and ∆t′ = t′i+1 − t′i is the bin size. To capture the possible627

non-Poisson statistics of the recorded neurons, we introduce a dispersion parameter α defined as the628

variance over mean ratio of the spike-counts distribution α = σ2
s|λ(t′i)

/λ(t′i). For a Poisson distribu-629

tion α is equal to 1. We allow for non-Poisson statistics by sampling the spike counts from a gamma630

distribution and optimize the value of α together with the timescales and the weights.631

On each iteration of the aABC algorithm, we draw sample parameters from a prior distribution (first632
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iteration) or a proposal distribution (subsequent iterations) defined based on the prior distribution and633

parameters accepted on the previous iteration. Then, we generate synthetic data from the sampled634

parameters and compute the distance d between the autocorrelations of synthetic and experimental data:635

636

d(tm) =
1

m

m∑
j=0

(ACexperimental(tj)− ACsynthetic(tj))
2 , (3)

where tm is the maximum time-lag considered in computing the distance. We set tm to 100 ms to avoid637

over-fitting the noise in the tail of the autocorrelations. If the distance is smaller than a predefined error638

threshold ε, the sample parameters are accepted and added to the posterior distribution. Each iteration639

continued until 100 sample-parameters were accepted. The initial error threshold was set to ε0 = 0.1,640

and in subsequent iterations, the error threshold was updated to the first quartile of the distances for the641

accepted samples. The fraction of accepted samples out of all drawn parameter samples is recorded as642

the acceptance rate accR. The algorithm stops when the acceptance rate reaches accR < 0.0007. The643

final accepted samples are considered as an approximation for the posterior distribution. We computed644

the MAP estimates by smoothing the final joint posterior distribution with a multivariate Gaussian kernel645

and finding its maximum with a grid search.646

The choice of summary statistic (e.g., autocorrelations in the time domain or power spectra in the fre-647

quency domain and the fitting range) does not does not affect the accuracy of estimated timescales and648

only changes the width of the estimated posteriors39. The frequency-domain fitting converges faster649

in wall-clock time than time-domain fitting39. As a control, we also estimated timescales by fitting the650

whole shape of power spectral density in the frequency domain. The results of these fits (Supplementary651

Fig. 7) were in agreement with the time-domain fits with a limited fitting range (Fig. 3).652

We used a multivariate uniform prior distribution over all parameters. For the two-timescale generative653

model (M2), the priors’ ranges were set to654

τ1 : U [0, 60], τ2 : U [0, 400], c1 : U [0, 1], α : U [0.7, 1.3], (4)

and for the one-timescale generative model (M1) they were set to655

τ : U [0, 400], α : U [0.7, 1.3]. (5)

Model comparison with adaptive Approximate Bayesian Computations. We used the inferred pos-656

teriors from the aABC fit to determine whether the V4 data autocorrelations were better described with657

the one-timescale (M1) or the two-timescale (M2) generative models39. First, we measured the good-658

ness of fit for each model based on the distribution of distances between the autocorrelation of synthetic659

data from the generative model and the autocorrelation of V4 data. We approximated the distributions660

of distances by generating 1000 realizations of synthetic data from each model with parameters drawn661

from the posterior distributions and computing the distance for each realization. If the distributions of662

distances were significantly different (two-sided Wilcoxon ranksum test), we approximated the Bayes663

factor, otherwise the summary statistics were not sufficient to distinguish these two models72.664

Bayes factor is the ratio of marginal likelihoods of the two models and takes into account the number of665

parameters in each model73. In the aABC method, the ratio between the acceptance rates of two models666
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for a given error threshold ε approximates the Bayes factor (BF) for that error threshold39:667

BF(ε) =
accRM2(ε)

accRM1(ε)
. (6)

Acceptance rates can be computed using the cumulative distribution function (CDF) of the distances for668

a given error threshold ε,669

CDFMi
(ε) = pMi

(d < ε) = accRMi
(ε), i = 1, 2, (7)

where pMi
(d) is the probability distribution of distances for the model Mi. Thus, the ratio between670

the CDF of distances approximates the Bayes factor for every chosen error threshold. To eliminate the671

dependence on a specific error threshold, we computed the acceptance rates and the Bayes factor for672

varying error thresholds. Since only small errors indicate a well-fitted model, we computed the Bayes673

factor for all error thresholds that were smaller than the largest median of distance distributions of two674

models.675

The M2 model was selected if its distances were significantly smaller than for the M1 model (two-sided676

Wilcoxon ranksum test) and CDFM2(ε) > CDFM1(ε), i.e. BF > 1, for all ε < maxM1,M2 [median(ε)]677

(Supplementary Fig. 2). The same procedure was applied for selecting the M1 model. Although the678

Bayes factor threshold was set at 1, in most cases we obtained BF� 1, indicating strong evidence for the679

two-timescale model. If the distribution of distances for the two models were not significantly different680

or the condition for the ratio between CDFs did not hold for all selected ε (CDFs were crossing), we681

classified the outcome as inconclusive, meaning that data statistics were not sufficient to make the682

comparison.683

Timescales of auto- and cross-correlations of spiking activity on individual channels . We com-684

puted the average auto- and cross-correlations of the multi-unit spiking activity recorded on individual685

channels during spontaneous activity (monkey G in FT, monkey R in AT2). We computed the auto-686

correlation of each channel’s activity using the same procedure described above and then averaged the687

auto-correlations across channels and recording sessions for each monkey. We computed the cross-688

correlations between spike counts on every pair of channels (Aa and Ab) that were at least two channels689

apart (|a− b| ≥ 2 e.g., channels 1 and 3) as a function of time-lag tj690

CCa,b(tj) =
1√

σ̂a
2σ̂b

2(N − j)

N−j∑
i=1

(Aa(t
′
i)− µ̂s(j))

(
Ab(t

′
i+j)− µ̂b(j)

)
. (8)

Here σ̂a2 and σ̂b2 are the sample variances, and µ̂a(j) = 1
N−j

∑N−j
i=1 Aa(t

′
i) and µ̂b(j) = 1

N−j
∑N

i=j+1Ab(t
′
i)691

are the sample means for the activity on each channel. Then, we divided the cross-correlations for each692

monkey in two groups based on the monkey-specific median RF-center distance and averaged over the693

cross-correlations within each group.694

The mapping of RFs was described previously36. RFs were measured by recording spiking responses695

to brief flashes of stimuli on an evenly spaced 6 × 6 grid covering the lower left visual field (FT) or an696

evenly spaced 12×9 grid centered on the RF (AT2). Spikes in the window 0−200 ms (FT) or 50−130 ms697

(AT2) relative to the stimulus onset were averaged across all presentations of each stimulus. First, we698

assessed the statistical significance of a given RF74 and only included channels with a significant RF.699
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Then, we found the RF center as the center of mass of the response map, and estimated the horizontal700

displacements between the channels by computing the distances between their RF centers.701

We estimated the timescales of auto- and cross-correlations using the aABC method. We assumed the702

correlation between channels’ activity can be modeled as a two-timescale OU process shared between703

the two channels. We fitted the cross-correlation shape by the unnormalized autocorrelation of the704

shared OU process, such that the variance of the OU process (i.e. the autocorrelation at lag zero) defines705

the strength of correlations. Thus, we used a two-timescale OU process as the generative model and706

applied the aABC method to optimize the model parameters by minimizing the distance between the707

autocorrelation of synthetic data from the OU process and V4 cross-correlations. The aABC method708

returned a multivariate posterior distribution for timescales, their weights and the variance of the OU709

process. We computed the distances starting from the first time-lag t = 2 ms up to tm = 100 ms.710

For a fair comparison between the auto- and cross-correlations timescales, we used the same procedure711

to estimate the timescales of individual channels’ autocorrelations. For fitting the autocorrelation of712

monkey G, we additionally excluded the second time-lag t = 2 ms, since AC(t = 2) < AC(t = 4),713

potentially related to refractory period of neurons (similar to11, 31, 44).714

Testing correlation between timescales and reaction times with linear mixed-effects models. To715

compute the reaction times for each attention condition, we separated the trials between attend-in (sep-716

arate covert and overt) and attend-away conditions. We computed the average reaction times of the717

monkeys for each recording session and each condition as the average duration between the reappear-718

ance of the stimuli and initiation of the anti-saccade response (AT1, only trials with a change in stimuli719

orientation) or the average duration between dimming in the target stimulus and the bar release (AT2),720

across trials with the same attention condition.721

We quantified the relationship between average reaction times and MAP estimates of the fast and slow722

timescales in each session for two different attention conditions (attend-in and attend-away). For this723

analysis, we pulled the data across covert and overt attend-in conditions, resulting in more samples for724

the attend-in than attend-away condition. For each attention condition, we fitted a separate linear mixed-725

effects model using the “fitlm” function in the MATLAB R2021a. In these models, we consider data726

from each monkey as a separate group (i.e. a random effect) with a separate intercept to account for727

individual differences between the monkeys and between the two response types in the attention tasks728

(anti-saccade versus bar release).729

We fitted two different models that considered either one or two fixed effects for each attention condition.730

First, we fitted models that considered as the fixed effect, either the slow timescale (τ2,cond)731

RT i,m = ω0 + ω1τ2,cond,i + Ω0,m + εi,m, (9)

or the fast timescale (τ1,cond),732

RT i,m = ω0 + ω1τ1,cond,i + Ω0,m + εi,m. (10)

Here the index cond denotes attend-in or attend-away condition, RT indicates the reaction time, i is the733

session index, and m ∈ {G,B,R} indicates three different monkeys. ω0 and ω1 give the intercept and734

slope of the fixed effect with a given p-value. Ω0,m and εi,m are the random effects, where Ω0,m gives a735
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monkey specific intercept and εi,m gives the residuals. We also fitted models that considered both fast736

and slow timescales as fixed effects simultaneously,737

RT i,m = ω0 + ω1τ2,cond,i + ω2τ1,cond,i + Ω0,m + εi,m. (11)

These models return two fixed-effect coefficients ω1,2 with p-values, one for each timescale. The result-738

ing statistics for the two fitted models were consistent (Supplementary Table 1, 2). In the main text, we739

reported statistics from the first model type (Fig. 4, Supplementary Table 1).740

Network model with spatially structured connections. The network model operates on a two-dimensional741

square lattice of size 100× 100 with periodic boundary conditions. Each unit in the model is connected742

to 8 other units taken either from its direct Moore neighborhood (local connectivity, Fig. 6a, top) or743

randomly selected within the connectivity radius r (dispersed connectivity, Fig. 6a, bottom). Activity744

of each unit is represented by a binary state variable Si ∈ {0, 1} (i = 1 . . . N , where N = 104 is the745

number of units). The units act as probabilistic integrate-and-fire units75 following linear or non-linear746

integration rules. States of the units are updated in discrete time-steps t′ based on a self-excitation proba-747

bility (ps), probability of excitation by the connected units (pr), and the probability of external excitation748

(pext � 1). The transition probabilities for each unit Si at time-step t′ are either governed by additive749

interaction rules (linear model):750

p(Si = 0→ 1) = pext + pr

∑
j

Sj,

p(Si = 1→ 0) = 1−

(
pext + ps + pr

∑
j

Sj

)
,

(12)

or multiplicative interaction rules (non-linear model):751

p(Si = 0→ 1) = 1− (1− pext)(1− pr)
∑
j Sj ,

p(Si = 1→ 0) = (1− pext)(1− ps)(1− pr)
∑
j Sj .

(13)

Here,
∑

j Sj indicates the number of active neighbors of unit Si at time-step t′. For the analysis in the752

main text, we used the linear model. The non-linear model generates similar local temporal dynamics753

(Supplementary Fig. 12). In the linear model, the sum of connection probabilities BP = ps + 8pr is the754

branching parameter that defines the state of the dynamics relative to a critical point at BP = 153, 75.755

To compute the average local autocorrelation in the network, we simulated the model for 105 time-steps756

and averaged the autocorrelations of individual units. The global autocorrelations were computed from757

the pooled activity of all units in the network. To compute the autocorrelation of horizontal inputs for758

a unit i, we simulated the network with an additional “shadow” unit, which was activated by the same759

horizontal inputs (pr) as the unit i but without the inputs ps and pext. The shadow unit did not activate760

other units in the network. The autocorrelation of horizontal recurrent inputs was computed from the761

shadow unit activity. We computed the cross-correlations between the activity of each pair of units in762

the network and averaged the cross-correlations over pairs with the same distance d between units. To763

have the same number of sample cross-correlations for each distance, we randomly selected 4 × 104
764

pairs per distance. The spatial distance in the model is defined as the Chebyshev distance on the lattice765

(e.g., d = 1 is the Moore neighborhood). Each simulation started with a random configuration of active766
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units based on the analytically computed steady-state mean activity (Eq. 21). Running simulations for767

long periods allowed us to avoid the statistical bias in the model autocorrelations. We set pext = 10−4,768

but the strength of external input in the linear model does not affect the autocorrelation timescales.769

Network model with different unit types. In this model, two unit-types A and B are placed at each770

node of a two-dimensional square lattice (Fig. 5a). The connectivity between the units is random and771

each unit is connected to 8 other units of any type.772

The activity of each unit is given by a binary state variable Si ∈ {0, 1} with transition probabilities as773

in the spatial linear model (Eq. 12), but with different probabilities for the self-excitation (pself,A, pself,B)774

and recurrent interactions (pr,A, pr,B) for each unit type. In order for both unit types to operate in the775

same dynamical regime, we set pself,A + 8 pr,A = pself,B + 8 pr,B = BP. Simulations were performed as776

for the spatial network, but auto- and cross-correlations were computed using the summed activity of777

two units A and B at each lattice node.778

Network model with synaptic filtering. The model operates on a two-dimensional square lattice,779

where each unit on the lattice is connected to 8 randomly selected units (Fig. 5b). We define the780

discrete-time dynamics of units in this model based on a previously proposed continuous rate model781

with synaptic filtering46. The transition probabilities for each binary unit Si ∈ {0, 1} at time-step t′ are782

governed by783

p(Si = 0→ 1) = pext + f(
∑
j

Sj),

p(Si = 1→ 0) = 1−

(
pext + ps + f(

∑
j

Sj)

)
.

(14)

Here, f(
∑

j Sj) is a low-pass filter on recurrent inputs to each unit with the time constant τsynapse, which784

evolves in discrete time-steps:785

f(t′ + 1,
∑
j

Sj) = f(t′,
∑
j

Sj) +
pr
∑

j Sj − f(t′,
∑

j Sj)

τsynapse/∆t′
, (15)

where ∆t′ = 1 ms is the duration of each time step. Simulations and computation of auto- and cross-786

correlations were the same as for the spatial network.787

Analytical derivation of local timescales in the spatial network model. For analytical derivations, we788

derived a continuous-time rate model corresponding to the linear probabilistic network model (Eq. 12),789

with the transition rates defined as790

w(Si = 0→ 1) = α1 + β1

∑
j

Sj,

w(Si = 1→ 0) = α2 − β2

∑
j

Sj.
(16)

These equations contain two non-interaction terms α1 = pext

[
− ln(ps)

(1−ps)∆t′

]
and α2 = (1−ps−pext)

[
− ln(ps)

(1−ps)∆t′

]
,791

and two interaction terms β1 = β2 = pr

[
− ln(ps)

(1−ps)∆t′

]
, where ∆t′ = 1 ms is the duration of each792

time step (details in51). For this model, the probability of units to stay in a certain configuration793
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{S} = {S1, S2, ..., SN} at time t′ is denoted as P ({S}, t′). The master equation describing the time794

evolution of P ({S}, t′) is given by50:795

d

dt′
P ({S}, t′) = −P ({S}, t′)

∑
i

w(Si) +
∑
i

P ({S}i∗, t′)w(1− Si) , (17)

where {S}i∗ = {S1, S2, ..., 1− Si, ..., SN}. Using the master equation, we can write the time evolution796

for the first and second moments as797

d

dt′
〈Si〉(t) =

∑
{S}

P ({S}, t′)[w(Si)(1− 2Si)] , (18)

798

d

dt′
〈SiSj〉(t′) =

∑
{S}

P ({S}, t′)[w(Si)(1− 2Si)Sj + w(Sj)(1− 2Sj)Si], (19)

and for the time-delayed quadratic moment at time-lag t as799

d

dt
〈Si(t′)Sj(t′ + t)〉 = 〈Si(t′)(1− 2Sj(t

′ + t))w(Sj(t
′ + t))〉. (20)

By setting the right side of Eq. 18 to zero and averaging across all units, we can compute the steady-state800

mean activity801

S̄ =
1

N

∑
i

〈Si〉 =
α1

α1 + α2 − nβ1

=
pext

1− (ps + 8pr)
, (21)

where n = 8 is the number of incoming connections to each unit.802

We compute the timescales analytically for the network with local connections (r = 1). From Eq. 20,803

we can derive the equation for the average autocorrelation of each unit AC(t) as804

1

α1 + α2

d

dt
AC(t) = −AC(t) +

β1

α1 + α2

∑
x

CC(x, t) . (22)

Here CC(x, t) is the cross-correlation between each unit at location (i, j) and its 8 nearest neighbors805

x = (i ± 1, j ± 1). The cross-correlation term in this equation gives rise to the interaction timescales806

in the autocorrelation. By neglecting the cross-correlation term, we can solve the Eq. 22 to get the807

self-excitation timescale808

τself =
1

α1 + α2

= − ∆t′

ln(ps)
. (23)

Solving the dynamical equation for the time-delayed cross-correlation (Eq. 20) in the Fourier domain809

gives the interaction timescales (Supplementary Note 4, details in47):810

τint,k(k = (k1, k2)) =
τself

1− n
4

β1
α1+α2

[cos(k1) + cos(k2) + 2 cos(k1) cos(k2)]

= − ∆t′

ln(ps)
· 1

1− ps − 2pr[cos(k1) + cos(k2) + 2 cos(k1) cos(k2)]
,

(24)

where k = (k1, k2) are the spatial frequencies in the Fourier space. For each k we get a different inter-811

action timescale. Smaller k (low spatial frequencies) correspond to interactions on larger spatial scales,812

whereas larger k (high spatial frequencies) correspond to interactions on more local spatial scales. The813
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largest interaction timescale (the global timescale) is defined based on the zero spatial frequency mode:814

815

τglobal = τint,k(k = (0, 0)) =
1

α1 + α2 − nβ1

= − ∆t′(1− ps)

(1− ps − 8pr)ln(ps)
. (25)

In these derivations, we defined distances between units as Euclidean distances and discarded the con-816

tributions from third and higher moments.817

Considering the self-excitation and interaction (i.e. cross-correlation) terms, we can write down the818

analytical form of the autocorrelation function as819

AC(t) = A exp

(
− t

τself

)
+

2π(N′/2−1)

N′∑
k1,k2=0

C̃C(k1, k2)

[
exp

(
− t

τint,k(k1, k2))

)]
, (26)

where A is the normalization constant to get AC(t = 0) = 1. N ′ is the number of units in each di-820

mension: N ′ ×N ′ = N . This equation shows that the autocorrelation function contains self-excitation821

timescale τself and N ′2/4 interaction timescales weighted by the amplitude of cross-correlation function822

C̃C(k1, k2) for the given spatial frequency mode (k1, k2). We can approximate the slow decay of the au-823

tocorrelation with an effective interaction timescale τint given by the weighted average of all interaction824

timescales created by different spatial frequency modes47:825

τint =

2π(N′/2−1)

N′∑
k1,k2=0

[
C̃C(k1, k2)

CC(0, 0)

]
τint,k(k1, k2). (27)

Here CC(0, 0) is given by
∑ 2π(N′/2−1)

N′
k1,k2=0 C̃C(k1, k2).826

The analytical approximation of the effective interaction timescale is more accurate when the dynamics827

are away from the critical point. Close to the critical point (BP → 1), the mean-field approximations828

are not valid.829

The self-excitation timescale for the discrete time network model can also be obtained analytically using830

the autocorrelation of a two-state Markov process driven by the self-excitation and external input. Using831

the transition matrix (considering the linear model)832

P =

[
1− pext pext

1− (ps + pext) ps + pext

]
, (28)

we can compute the autocorrelation of the Markov process at time-lag t (Supplementary Note 3):833

AC2SMP(t) = pts. (29)

The decay timescale of this autocorrelation is equivalent to the self-excitation timescale in the network834

model835

τself = −(ln(ps))
−1, (30)

which for ∆t′ = 1 is equivalent to Eq. 23.836
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Analytical derivation of timescales for nonlinear interactions. We can write down the general form837

of transition rates described previously in Eq. 16 as838

ω(0→ 1) = α1 + β′1 F(
∑
j

Sj + I),

ω(1→ 0) = α2 − β′2 F(
∑
j

Sj + I). (31)

F(x) is a non-linear activation function that is a monotonically increasing function of x and satisfies839

F(0) = 0, F(∞) = 1. Here we consider F of the form:840

F(
∑
j

Sj) = 1− exp

(
− θ
n

∑
j

Sj

)
, (32)

where θ is a positive constant that controls the gain of recurrent inputs, and n is the number of connected841

neighbors to each target unit. The activation function with a constant global input current I > 0 can be842

written as:843

F(nS̄ + I) = 1− exp(−θS̄ − I) , (33)

where S̄ is the steady-state mean activity. Here I is a constant input current that uniformly increases844

activation of all units, which is different from pext that provides stochastic and spatially random activation845

of units. We interpret I as the attentional input (e.g., from FEF) to V4 area.846

To compute the timescales in the presence of non-linearity and external input current, we can perform847

Taylor expansion of the interaction terms around the mean activity S̄848

β′1 F(
∑
j

Sj + I) = β′1 F ′(nS̄ + I)

(∑
j

Sj

)
+ β′1F0 = β1

(∑
j

Sj

)
+ β′1F0, (34)

849

β′2 F(
∑
j

Sj + I) = β′2 F ′(nS̄ + I)

(∑
j

Sj

)
+ β′2F0 = β2

(∑
j

Sj

)
+ β′2F0, (35)

where F ′ denotes the derivative of F and F0 is defined as850

F0 = F(nS̄ + I)− nS̄F ′(nS̄ + I) +O([(
∑
j

Sj)− nS̄]2). (36)

Using these expansions, we can rewrite the transition rates as851

ω(0→ 1) = αeff
1 + β1

∑
j

Sj,

ω(1→ 0) = αeff
2 − β2

∑
j

Sj, (37)

where852

αeff
1 = α1 + β′1F0, αeff

2 = α2 − β′2F0, (38)

853

β1 = β′1F ′(nS̄ + I), β2 = β′2F ′(nS̄ + I). (39)

Hence, all non-interaction and interaction terms, as well as the mean activity S̄ depend on the external854

input. Consequently, the self-excitation and interaction timescales become input dependent.855
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The explicit form of the self-excitation timescale and the global interaction timescale are given by856

τself =
1

αeff
1 + αeff

2

=
1

α1 + α2 + (β′1 − β′2)F0

, (40)

and857

τglobal =
τself

1− nβ1
αeff
1 +αeff

2

=
1

α1 + α2 + (β′1 − β′2)[1− (θS̄ + 1)e−θS̄−I ]− β′1θe−θS̄−I
. (41)

When (β′1 − β′2) < 0, increasing the external input I would lead to an increase in the mean activity858

and the self-excitation timescale. This conditions implies that already active units are more excitable859

in the next time step compared to silent units. Moreover, if in addition to (β′1 − β′2) < 0, we have860

−|β′1 − β′2|S̄ + β′1 < 0, the global timescale would also increase. Other interaction timescales increase861

with the input when −|β′1 − β′2|S̄ + c1β
′
1 < 0 (−1 < c1 < 1) (details in47). The changes in the fast862

timescale are smaller than in the slow timescale and can remain undetected with the limited data amount.863

Matching the timescales of the network model to neural data. To match the timescales between864

the model and V4 data, we used the activity autocorrelation of one unit in the network model with865

local connections (r = 1). We searched for model parameters such that the model timescales fell866

within the range of timescales observed in the V4 activity, which was the mean ± s.e.m of the MAP867

timescale-estimates across recording sessions. We computed the range for the fast timescales from the868

pooled attend-in and attend-away conditions, since they were not significantly different: τ1,att-away =869

τ1,att-in = 4.74±0.42 ms. We used this range for the fast timescale in both the attend-in and attend-away870

conditions. For the slow timescales, we computed the ranges separately for the attend-in (averaged871

over covert and overt) and attend-away conditions: τ2,att-away = 117.09 ± 10.58 ms, τ1,att-in = 140.97 ±872

11.51 ms.873

We fitted the self-excitation and dominant interaction timescales obtained from the autocorrelation of874

an individual unit’s activity in the model to the fast and slow timescales of V4 data estimated from875

the aABC method. Using Eq. 30 and Eq. 27, we found an approximate range of parameters ps and876

pr that reproduce V4 timescales. Then, we performed a grid search within this parameter range to877

identify the model timescales falling within the range of V4 timescales during attend-away and attend-878

in conditions. We used model simulations for grid search since the analytical results for dominant879

timescale are approximate. We used very long model simulations (105 time-steps) to obtain unbiased880

autocorrelations and then estimated the model timescales by fitting a double exponential function881

AC(t) = c1e
−t/τ1 + (1− c1)e−t/τ2 , (42)

directly to the empirical autocorrelations. We fitted the exponential function up to the time-lag tm =882

100 ms, the same as used for fitting the neural data autocorrelations with the aABC method.883

Data availability884

All behavioral and electrophysiological data from FT and AT1 are available on Fighshare, respectively,885

at https://doi.org/10.6084/m9.figshare.19077875.v1 and https://doi.org/10.6084/m9.figshare.16934326.v3.886
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Code availability887

Codes for the timescale estimation and Bayesian model comparison with the aABC method are available888

as a Python package at: https://github.com/roxana-zeraati/abcTau. Codes for simulating the spatial889

network model are available at: https://github.com/roxana-zeraati/spatial-network.890
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