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Abstract
Some protein binding pairs exhibit extreme specificities that functionally insulate them from homologs.
Such pairs evolve mostly by accumulating single-point mutations, and mutants are selected if their
affinity exceeds the threshold required for function1–4. Thus, homologous and high-specificity binding
pairs bring to light an evolutionary conundrum: how does a new specificity evolve while maintaining the
required affinity in each intermediate5,6? Until now, a fully functional single-mutation path that connects
two orthogonal pairs has only been described where the pairs were mutationally close enabling
experimental enumeration of all intermediates2. We present an atomistic and graph-theoretical
framework for discovering low molecular strain single-mutation paths that connect two extant pairs and
apply it to two orthogonal bacterial colicin endonuclease-immunity pairs separated by 17 interface
mutations7. We were not able to find a strain-free and functional path in the sequence space defined by
the two extant pairs. By including mutations that bridge amino acids that cannot be exchanged through
single-nucleotide mutations, we found a strain-free 19-mutation trajectory that is completely functional in
vivo. Despite the long mutational trajectory, the specificity switch is remarkably abrupt, resulting from
only one radical mutation on each partner. Each of the critical specificity-switch mutations increases
fitness, demonstrating that functional divergence could be driven by positive Darwinian selection. These
results reveal how even radical functional changes in an epistatic fitness landscape may evolve.

Main
Cellular signaling and metabolism rely on high interaction specificity8. Achieving high specificity may
appear particularly challenging among pairs of proteins that exhibit sequence and structural similarity.
Yet, such homologous pairs are, in fact, often functionally isolated, thereby establishing multiple
orthogonal interactions7,9,10. The challenge to understanding how orthogonality is achieved among
homologous pairs is exacerbated when considering that the evolution of a functionally orthogonal pair
requires changes that destabilize interactions between the derived pair and its ancestor. To avoid being
purged by evolutionary selection, however, the changes that destabilize the interaction with the ancestral
partners must accumulate in an order that maintains binding between the two members of the derived
pair following every change11. How the proteins in a pair coevolve to exhibit high affinity while disabling
their interactions with the ancestral proteins remains a key question in understanding diversification of
gene families and protein interaction networks12–14.

Some commonly used approaches to address questions on the evolution of binding pairs use ancestral-
sequence reconstruction, laboratory evolution, and deep mutational scanning2,3,12,15–21. These strategies
provided important insights on some of the constraints that shape evolutionary trajectories that lead to
new or improved activities12,22,23. To date, however, reconstruction of an evolutionary path among
orthogonal pairs has been challenging and accomplished only when the number of mutations between
the pairs was small enough to allow complete experimental enumeration2. Thus, fundamental questions
in molecular evolution of orthogonal pairs have remained understudied11,24,25, among them: Do
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mutations on one side of the interface enable mutations on the other? Do evolutionary intermediates
present dual-specificities or are the intermediates specific as observed in the extant pairs? Do specificity
switches occur gradually through the accumulation of many mutations or abruptly through a handful?
And how, despite the need to accumulate destabilizing mutations, are inactive intermediates avoided?

We focused on bacterial colicin endonuclease/immunity pairs7. The colicins are SOS-induced nonspecific
DNA endonuclease toxins (ColE) that coexpress with cognate high-affinity immunity proteins (Im) that
protect the producing cell from degradation of its genomic DNA. Following secretion of this complex from
the producing cell, the ColE receptor-binding domain attaches to the outer-membrane target receptor of a
neighboring cell. Next, the cytotoxic endonuclease domain (E) is unfolded, dissociating from the
protective Im protein, and is then translocated to the host cytoplasm. In the host cytoplasm, the E refolds
and degrades DNA, killing the host cell unless the host harbors a cognate and protective Im7,26. Cognate
E/Im pairs exhibit ultrahigh binding affinity (KD ≤ 10− 14 M) and Im proteins that bind E at KD > 10− 10 M

are not protective27. During evolution, the colicins have diversified to four homologous pairs that exhibit
ultrahigh specificities of 5–10 orders of magnitude with respect to one another6,27,28. Thus, the four Im
proteins protect the producing cell against the toxicity of their cognate E proteins but provide no
protection against the homologous noncognate E proteins presenting a clear example of functional
orthogonality under strong evolutionary selection. Due to their remarkably high affinities and specificities,
the colicin E/Im pairs have served as model systems to study evolutionary dynamics3,29 and
biomolecular recognition in protein engineering and design6,30–35. Insights from these studies and the
straightforward approach to test the evolutionary fitness of pairs in vivo within their native host attracted
us to use this system to study the coevolution of orthogonal binding pairs. Because only four E/Im pairs
are known7,36, however, ancestral sequences cannot be reliably reconstructed as in other systems4,13,21,22.
Here, we develop an atomistic strategy that models the stability of each possible intermediate in the
complete combinatorial binding landscape and searches for a single-mutation path between the extant
pairs while minimizing molecular strain that may arise from protein instability or incompatible
interactions between the partners.

Orthogonality and structural incompatibilities

We used the two most homologous E/Im pairs, known as pairs 2 and 9, as the subjects of our study (PDB
entries, 3u43 and 1emv, respectively). In these pairs, the interaction hotspot region, comprising E:Phe86
and Im:Tyr54-Tyr55 (Fig. 1A), is responsible for a large portion of the binding energy and is conserved in
sequence and conformation (amino acid numbering according to E2/Im234). Conversely, other interfacial
positions contribute less to affinity but determine binding specificity and are therefore the focus of our
analysis27,35. Some of these positions exhibit dramatic changes in their physicochemical properties. For
instance, in E9/Im9, interfacial positions surrounding the hotspot include Val98, Tyr83 (E9) and Leu33
and Val34 (Im9) compared respectively to Arg, Lys, Asp, and Asn in E2/Im2 (Fig. 1A). The overall effect of
these four radical mutations is a striking change from a polar and charged interface in E2/Im2 that is
mediated by a buried interfacial electrostatic interaction between E:Arg98 and Im:Asp33 to a largely
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hydrophobic one in E9/Im9 (Fig. 1A & B). Additionally, the Im protein backbone differs in two unstructured
regions connecting helices 1 and 2 and helices 3 and 4 (Fig. 1C), both containing critical specificity-
determining positions27,34. Thus, despite the high sequence and structure similarity between the two
pairs, there are significant spatial and electrostatic differences in the binding interfaces that underlie the
ultrahigh specificity barrier between them. These physicochemical differences also highlight the
remarkable challenge that natural selection must have overcome in finding a mutational path that
exchanged mutually incompatible networks of molecular interactions across two sides of a binding
interface while minimizing molecular strain in every intermediate.

Finding minimum-strain paths

We develop an atomistic modeling framework to discover coevolutionarily plausible (single-amino acid
change) paths that connect two extant binding pairs through functional intermediates. The interfaces of
E2/Im2 and E9/Im9 differ by 17 interfacial positions (7 and 10 positions on E and Im, respectively)
(Fig. 1D and Table S1). The sequence space that encompasses both wild type pairs comprises all
combinations of mutations at these interfacial positions, for a total of 217 (approximately 131,000)
possible mutants. In an evolutionarily plausible path, each intermediate must exhibit low molecular strain
to be functional and confer viability on the producing cell. Therefore, we score each mutant according to
its system and binding energies using the Rosetta all-atom energy function37. These energies are then
transformed using a logistic function into values between 0 and 1 that approximate the likelihood that
the proteins are stable and exhibit high affinity, and these values are combined into a composite score
through a “fuzzy”-logic AND gate32 that estimates whether both energies are sufficiently favorable. To
partly address the possibility that the backbone deforms due to mutations, we model each mutant in the
context of the two wild type molecular structures (which differ mainly in two interfacial Im loops; Fig. 1C)
and choose the best-scoring model to represent each mutant (Fig. 1E, step I). Finally, to represent all
mutational paths that traverse the sequence landscape, we construct a directed graph in which the nodes
represent all mutants and edges connect nodes that are separated by a single mutation. The edges are
weighted according to the negative logarithm of the composite score of the predecessor node (Fig. 1E,
step II). Thus, any path that connects the terminal nodes representing the extant pairs is a single-
mutation trajectory by construction, and the sum of edge weights represents molecular strain along the
path (lower weights correspond to lower strain). We then use a shortest-path algorithm38 to find
minimum-strain paths (see Methods).

In addition to the 17 interfacial mutations, the two colicin pairs differ by 33 mutations outside the
interface. To establish a common genetic background for assessing the evolutionary intermediates, we
tested a variant of E9/Im9 that encodes all of the E2/Im2 mutations outside the binding interface (termed
E9/Im9chimera) (Table S2). We confirmed that E9/Im9chimera was as viable as E9/Im9 (Fig. S3) and that its
endonuclease toxicity remained equivalent to that of the two wild type pairs (Fig. S2). Additionally, the
chimeric Im protein maintained and even exhibited somewhat improved neutralization of E9 and E9chimera
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(Fig. S3). From this point, we used wild type E2/Im2 and E9/Im9chimera as the genetic backgrounds for
testing intermediates, allowing us to focus only on the interfacial mutations.

As a first test of the computational framework, we generated three graphs comprising only the sequence
space defined by the two extant colicin pairs (binary sequence space; see Methods). We scored the
mutants using the Rosetta talaris energy function39 and computed minimum-strain paths. All the paths
exhibited unfavorable energies in several intermediates relative to the extant endpoints (Fig. S4)
suggesting that some strain might be inevitable in the binary sequence space. Experimental viability
screening in E. coli, which probes the ability of the bacteria to produce a high-affinity complex (Fig. 1E,
step III), demonstrated that in each path, at least seven intermediates were nonviable (Fig. S4). We
concluded that these paths do not represent evolutionarily plausible trajectories.

Codon-bridging mutations reduce molecular strain

We therefore expanded the allowed sequence space beyond the identities observed in the two extant
pairs. Since simultaneous multinucleotide mutations are less likely to occur in evolution compared to
single-nucleotide mutations40, we assessed whether some interface mutations require several nucleotide
exchanges. We found that seven out of the 17 interfacial mutations required at least two nucleotide
exchanges between the identities in the two pairs (Table S1) suggesting intermediate mutations that
could have bridged the two extant identities. We analyzed homologs of colicin pairs 2 and 9 to find
indications for bridging identities but found almost no interface mutations in the natural diversity of
homologs (Table S3 and S4). We therefore chose the codon bridges based solely on physicochemical
properties. As the sequence space that includes all codon bridges is too large for atomistic modeling (> 
108 intermediates), we selected at each position one bridging mutation that was physicochemically
intermediate between the two extant identities (Table S1); for example, in position E:98, we added Met to
the two extant identities, Arg and Val, and in E:73, we added Ala to the extant identities, Gly and Pro
(Fig. 2A). We did not force the paths to go through the bridging mutations, however; instead, we retained
direct connections representing all amino acid substitutions and at these seven positions, added edges
through the single-nucleotide bridging mutations. To compute stability and binding energy, we used the
newer ref15 energy function, which embodies a physically more accurate description of polar
interactions41 than talaris. We also computed a reference path using this energy function but without
including the codon bridges in the graph (Fig. S5).

The energy profiles of the optimal path with bridging mutations were substantially lower than those of
any of the other four paths without codon bridges (the reference path and the three paths that were built
using talaris) (Fig. 2B, S4, and S5). Throughout most of this trajectory, the computed energies were lower
than those of the wild type pairs, rising slightly above them in the few final mutants that adopt the
backbone conformation of E9/Im9 (Fig. 2B). Remarkably, we found that all 18 intermediates were viable,
and that all endonuclease intermediates retained toxicity towards naive JM83 cells (Fig. S6). We
concluded that the minimum-strain path with the bridging mutations is an evolutionarily plausible
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trajectory linking the two wild type orthogonal colicin pairs through fully functional single-point
mutations.

An abrupt specificity switch

To investigate whether the specificity switch between the two colicin pairs occurs gradually through many
small-effect mutations or abruptly through a few strong-effect mutations, we built a functional
quantitative specificity map between E and Im variants along the viable path. We applied the eight
intermediate ColE mutants, the wild type ColE2 and ColE9chimera in tenfold serial dilutions to JM83 cells
transformed with the nine Im intermediates, wild type Im2, and Im9chimera. We then visually estimated
how protective each Im protein was with respect to each ColE according to the minimal inhibitory
concentration (MIC; the tenfold dilution of ColE in which no clear zones were observed; Fig. 2C) and
integrated the results into a functional specificity map (Fig. 2D). We also verified that all purified ColE/Im
complexes exhibited similar concentrations (approx. 3 mg/ml) (Fig. S7) and that Im intermediates were
similarly expressed (approx. 2 mg/ml) and stable up to 50 ℃ (Fig. S8). The specificity map shows that,
in addition to the computed minimum-strain path, there are > 3,500 single-mutation paths that cross high-
viability regions (colored red, see Methods for details on the calculation of the number of paths through
these regions). All these paths differ in the order in which E and Im are mutated before and after reaching
a particular pair, Im:Arg24Asn/E:Arg98Met (Fig. 2D), which constitutes a bottleneck. Strikingly, the map
reveals that orthogonality is preserved along most of the steps in the evolutionary path, and that as few
as three substitutions are sufficient to induce a complete switch in specificity. Two of these substitutions
take place at consecutive positions in the immunity protein (Asn34Val and Asp33Leu) and one in the E
protein (Arg98Met). Im:Asn34Val abrogates a hydrogen bond to E:Arg98 and acts as an enabling
mutation, allowing the mutated Im to bind the E:Arg98Met mutant (Fig. 2E). E:Arg98Met completely
switches the specificity pattern of the endonuclease, interacting strongly with Im9-like variants but
substantially less with the ancestral Im2-like variants (Fig. 2D). Subsequently, Im:Asp33Leu, a known
specificity determinant27,34, eliminates the Im protein recognition of E2-like endonucleases in favor of E9-
like variants and completes the functional transition (Fig. 2D).

These results offer several insights that may generalize to other coevolving systems. First, the dramatic
specificity switch occurs in only a few evolutionary steps — similar to observations in several molecular
systems, though the path reconstructed here is much longer than any that have been previously
characterized4,21,25. Second, in Supplemental Information, we study general molecular mechanisms that
produce orthogonal binders, concluding that they can be classified by the minimal number of mutations
that are required for the emergence of orthogonality (Fig. S9). The mechanism of orthogonality in the
experimentally validated path is what we call “2:1 orthogonality” (Fig. 2F). In this model, orthogonality
necessarily evolves through a strict order of mutations starting with a mutation on one partner, then the
other, and finally a mutation in the first partner that interacts with the first mutation, as observed in the
empirical path (Im:Asn34Val→E:Arg98Met→Im:Asp33Leu) (Fig. 2E and 2F). Consistent with this
proposed mechanism, the two interacting sites in the same molecule (Im:33 and Im:34) form an
intramolecular epistatic interaction and are indeed spatially close (Fig. 2E). The specificity switch,
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however, is more complex when viewed relative to the four E mutants that contain the Met98 codon-
bridging mutation. Following the E:Arg98Met mutation and until the E:Met98Val mutation (E9 identity),
the endonucleases present a reduced specificity barrier for the Im proteins, though they maintain nearly
equal toxicity when applied to naive JM83 cells (Fig. S6). Thus, although the Im intermediates close to
Im2 are less protective than those close to Im9 against endonucleases that carry Met98, the former
nonetheless present a significant level of protection (Fig. 2D). The Met98-containing endonucleases are,
therefore, multispecific relative to the very strict functional orthogonality observed in all the other
endonucleases. E:Arg98Met is thus not only a specificity watershed but may also be an enabling
mutation, lowering the specificity barrier and allowing the accumulation of additional E and Im
mutations. Once the Val mutation is fixed, the specificity barrier is, once again, extremely strict. The case
presented in this evolutionary trajectory is one in which a minimal number of large-effect mutations (two)
establishes a specificity watershed, yet many surrounding mutations are needed to stabilize and enable
the pair of mutations42.

Stepwise resolution of epistatic interactions

Next, we examine the minimum-strain path with respect to a computed fitness landscape of all possible
E/Im pairs. To generate this fitness landscape, we used the empirical data from the specificity map
(including cognate and noncognate pairs from Fig. 2D) to calibrate a predictor of normalized MIC scores
(Fig. 2C) based on the Rosetta binding energy of each pair (Pearson r = 0.68 in leave-one-out cross-
validation, Fig. S10, see Methods). We then predicted normalized MIC scores for all 2.2 million possible
E/Im pairs (including all codon bridges) and applied a technique for visualizing fitness landscapes43 to
produce a low dimensional representation in which distances between pairs approximate the time it may
take for a population to evolve from one pair to another under purifying selection for high normalized MIC
score (see Methods).

The visualization reveals that the predicted fitness landscape is shaped by three main sets of molecular
interactions that separate sequences along the “diffusion axes” (see methods) that define our low
dimensional representation (Fig. 3A). The first interaction spreads sequences diagonally across Diffusion
axes 1 and 2 and is mainly explained by incompatibilities between mutations in the specificity-switching
positions E:98, Im:33 and Im:34 revealed by the experimental specificity map (Fig. 2D). Averaging out
mutations in all other positions (Fig. 3B) shows that several possible fit combinations of mutations link
the E2/Im2 sequence E:Arg98/Im:Asp33,Asn34 to the combination E:Met98/Im:Leu33,Val34 that has
E9/Im9-like specificity in the empirical specificity map (Fig. 2D). By contrast, other combinations are
predicted to have low average function, e.g. E:Met98/Im:Asp33,Asn34, a combination which was
experimentally observed to be nonfunctional (Fig. 2D). Such low-function combinations separate the
high-functioning ones in the landscape. Note that that E:Met98/Im:Leu33,Val34 is predicted to be the
fittest possible subsequence at these positions (Fig. 3B), explaining why the minimum-strain path
constructs this combination early and maintains it for most of its length.
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The second interaction also spreads sequences diagonally across Diffusion axes 1 and 2, separating the
fitness landscape into three main groups of sequences due to an incompatibility between mutations at
positions E:97 and Im:38. In E2/Im2, these positions (E:Glu97/Im:Arg38) form another saltbridge across
the interface (Fig. S11A), whereas in pair 9 (E:Lys97/Im:Thr38) there is a polar contact between the
sidechains (Fig. S11A). This separation is driven by the very low average fitness of variants with one of
the intermediate mutational states, i.e., E:Glu97/Im:Thr38, where E:Glu97 is not paired to a countercharge
and therefore strained (Fig. 3C & S11A). Finally, the third interaction spreads sequences vertically along
Diffusion axis 2 due to an intramolecular high-order epistatic interaction involving positions E:72 and
E:73. The E9 identities (Asn72, Pro73) are highly deleterious in most sequence backgrounds (Fig. 3D, left).
Structure models show that this pair of identities is compatible only with the backbone and rigid-body
orientation observed in E9/Im9 and in a sequence context characterized by E9 and Im:Leu33-Val34-Thr38
(Fig. 3D, center and Fig. S11B). In this latter context, however, all possible intermediate states are
nonviable, resulting in a fitness valley that can only be avoided in the E9/Im9 context and conformation
(Fig. 3D, right and S11B). The E:Asn72-Pro73 pair of mutations can only be implemented once almost all
positions have been mutated to the E9/Im9 identities, enabling the backbone change to E9/Im9. While
our analysis was performed assuming a quantitative fitness function (normalized MIC score), the
characterized genetic interactions remain robust even when using a threshold-like fitness function along
the whole range of reasonable cutoffs on the normalized MIC score or potential inaccuracies in
identifying the truly functional sequences (Fig. S13). This robustness is likely due to the fact the major
aspects of the landscape structure depend primarily on a small set of grossly incompatible combinations
of mutations (such as E:Glu97/Im:Thr38), and that correctly identifying these incompatibilities does not
depend strongly on the details of the molecular force fields or the precise choice of fitness function.

The global view of the predicted fitness landscape offers several insights that were elusive in the
empirical specificity map of Fig. 2D. First, we find that the empirically validated path changes specificity
abruptly after a few mutations (Fig. S12) and minimizes strain by having at most one marginally stable
region of the complex at a time rather than superimposing incompatibilities (Fig. 3A, see also Fig. 2D).
Second, by overlaying pairs that are orthogonal with respect to E2/Im2 or E9/Im9, we find that each
forms a contiguous sequence subspace that would serve as an entry point to orthogonality (Fig. 3E,F),
regardless of the thresholds used to define orthogonality (Fig. S14-15). The entrance into orthogonal
sequence subspaces suggests that once the specificity switching mutations are implemented, many
different paths can lead to the orthogonal endpoint. Third, understanding how orthogonal E/Im pairs are
arranged relative to each other in sequence space can help us characterize co-existing mechanisms that
result in orthogonality beyond the one shown in the empirical path (see Supplementary Information, Fig.
S9). Overall, these results shed light on the global structure of the fitness landscape and the constraints
that shape the evolution of orthogonality in pairs of interacting molecules, including predicted epistatic
interactions that were not apparent from the experimental analysis of the empirical path (i.e., E:97/Im:38,
E:72–73).

Adaptive mutations may drive functional divergence
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The atomistic and graph-based calculations we employed are based solely on the physical constraints
that a generic protein pair must meet to retain binding affinity. If these were the only determinants of
fitness, we would expect natural populations to mutate neutrally among functional pairs. The fact that
the pair forms a toxin-antitoxin system, however, can influence how populations evolve and functionally
diverge. In this case, fitness depends not only on the ability of the immunity protein to neutralize its
cognate endonuclease, but also on whether the immunity protein can neutralize other endonucleases
existing in the population and whether the cognate endonuclease can escape recognition by other
immunity proteins, killing competing strains.

Given these considerations, we re-examined the functional specificity map (Fig. 2D) to investigate the
direction, if any, in which the experimental path is adaptive or maladaptive. We tracked how the relative
MIC score (Methods) changes along the path with respect to each extant pair. In this simplified analysis,
an intermediate exhibits high fitness relative to the parental population if its Im protein resists the
parental endonuclease and its endonuclease escapes resistance by the parental Im protein (Equation in
Fig. 4). While any sequence in the path could act as a hypothetical ancestor, we started by assuming that
evolution begins at the E2/Im2 pair or mutants that are phenotypically similar, and that it proceeds in a
population dominated by such pairs (Fig. 4, purple line, Step 1). After a series of neutral mutations that do
not affect binding specificity, the enabling mutation Im:Asn34Val expands the repertoire of
endonucleases that the Im can neutralize, including E:Met98. At the same time, Im:Asn34Val maintains
binding affinity towards the ancestral E2. The following mutation, E:Arg98Met (Step 2), introduces an E
variant that is, for the first time, cytotoxic towards the parental bacteria harboring an Im2-like protein
while its cognate Im protein protects against E2-like endonucleases (Fig. 2D). Thus, the E:Arg98Met
mutation is not only tolerated but may have an adaptive advantage that would allow it to penetrate,
persist and spread within the parental population. The E:Arg98Met mutant, however, does not form an
optimal interaction with the Im protein prior to incorporating the Im:Asp33Leu mutation, and the Met98-
containing endonucleases are only partially cytotoxic towards Im2-containing hosts (Fig. 2D). Thus,
Im:Asp33Leu improves the viability of this pair relative to the E:Arg98Met, and in Step 3, the codon-
bridging mutation is resolved to the E9 identity through E:Met98Val. At this point, the endonuclease gains
high cytotoxicity against the Im2-like harboring bacteria and completes the functional transition. In
contrast, in a population dominated by an E9/Im9-like pair, the reverse trajectory passes through at least
one maladaptive step (Fig. 4, gray line): Im:Leu33Asp reduces viability relative to the Im9-like proteins and
is strongly susceptible to killing by parental E9-like endonucleases (Fig. 2D). In this simplified analysis,
the adaptive mutations may provide a “ratchet”-like mechanism in which each adaptive step reduces the
likelihood of the reverse mutation and increases the likelihood of accumulating further function-switching
mutations.

There are limitations to our analyses, however. Although viability was measured in vivo and in the native
host, experimental measures of functionality may not be completely faithful to viability in a wild
population in nature. Despite these limitations, our results provide an example of how the specific nature
of a protein-protein interaction, i.e., a toxin-antitoxin system, may influence evolutionary paths,



Page 10/24

transforming what are a priori neutral mutations (with respect to binding) into adaptive or deleterious
ones depending on the dominant genotypes in the population.

Discussion
We showed how a charged protein-protein interface could transform, one-mutation-at-a-time, into a
largely hydrophobic one without compromising stability, affinity and catalytic activity below their
functional threshold in any intermediate step. To achieve this, we found that a codon-bridging mutation
temporarily reduces the specificity barriers, permitting mutations that would otherwise reduce stability or
binding affinity. Unlike previously reconstructed specificity switches where the intermediates were
promiscuous "generalist" binders2, however, here the specificity switch occurs suddenly, with the key
bridging mutation E:Arg98Met eliminating the interaction with Im2 and creating a new interaction with
Im9 in a single step. While the structure of the genetic code is known to constrain the possible paths to
evolve a new specificity12, our results provide an example in which the extra biochemical diversity
provided by bridging mutations is actually essential to obtain a viable path between the orthogonal pairs.

A key question in the evolution of orthogonal binding pairs is how ultrahigh specificity evolves by a
single-mutation trajectory without crossing a fitness valley. Our results provide a case-study in which
each of the specificity-switching mutations are not only tolerated but may endow their host with a
selective advantage relative to the parental population. This polarizes the function-altering evolutionary
process, increasing the likelihood of selecting a long series of mutations, whereas the reverse mutations
are counterselected. In other words, the functional asymmetry in the toxin-antitoxin system suggests
preferred directions for the evolutionary process depending on specific environmental conditions.

This work introduces energy-based modeling as an approach to study both the overall shape and the fine
details of a highly epistatic fitness landscape. The approach is general and can be implemented, in
principle, to suggest evolutionarily plausible trajectories that link wild type proteins or inferred ancestral
states, complementing and extending existing experimental and computational methods2,3,12,15–19. It
may provide detailed mechanistic insights on the evolution of microbial resistance mutations and the
evolution of new activities in enzymes and binders.
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Methods
Atomistic modeling

We enumerated all possible combinations of mutations and modeled them in Rosetta on the backbones
of E2-Im2 and E9-Im9 (PDB codes: 3u43 and 1emv, respectively). Each mutant was modeled using all-
atom Rosetta calculations, including combinatorial sidechain packing, and backbone and side chain
minimization subject to harmonic restraints on the Cα coordinates44. Each mutant was modeled on the
structures of both E2-Im2 and E9-Im9. All intermediates were ranked according to a composite score
based on “fuzzy”-logic design (W)32 (Eq. 1) accounting for the difference of all-atom energy ( ) and
difference of binding energy (  compared to the two wild type sequences.

(1)

For each sequence, the higher (more favorable) composite score was selected from the two calculations.

Finding a least-frustration path using a graph-theoretical shortest-path algorithm

The sequence space comprised approximately 130,000 sequences in the initial four formulations (using a
binary sequence space) and 2.4 x 106 for the sequence space with codon-bridging mutations. We
computed a truncated graph by taking the top 5% nodes with the highest composite scores. Nodes were
connected by an edge if they differed by one amino acid substitution and contained all the previous
mutations. The weight of each edge was assigned as W (Eq. 1) of the preceding node. Then, the Bellman-
Ford shortest-path algorithm38 was applied to find the path with the lowest sum of scores (least
strained). In the graph that contained amino acids that served as DNA bridging mutations, edges were
added to connect mutants that could not be crossed with single-nucleotide mutations.

ΔΔGs

ΔΔGb)

W = −ln( )− ln( )1

1+e0.7×(ΔΔGs−5)

1

1+e0.7×(ΔΔGb−5)
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In the preliminary work that resulted in the four low-strain paths that were not viable (Fig. S4 and S5), the
graphs were constructed using somewhat different ways but with the same scoring rules as described
above. Briefly, in (1) the interface was divided into three spatially separated modules. Then the shortest
path was found inside each module and between the modules. In (2) intermediates that exhibited more
than 7 R.e.u. difference in system energy were eliminated. (3) intermediates with binding energy
difference to wild type or binding strain difference to wild type above 2.5 and 1.5 R.e.u. respectively were
eliminated and a graph was formed with the remaining nodes. In this trial, we applied another Rosetta
filter, BindingStrain, which calculates the rotameric strain of monomers upon binding45. The intermediate
scores in those three paths were calculated using Rosetta energy function, talaris14. And in (4) the graph
was formed as the graph that contains the bridging mutations, but after eliminating the bridging nodes.
In this fourth graph and the one with bridging mutations we used the new Rosetta energy function, ref15,
to model and rank the intermediates. This energy function improves the treatment of electrostatics and
solvation relative to the talaris14 energy function we previously used for the first three paths37.

Number of viable paths in the experimental specificity map

We compute the number of viable directed, shortest-path (no reversions) evolutionary trajectories based
on the data from the empirical specificity map (Fig. 2D). We note first that the space of viable
intermediates in the specificity map is roughly separated by a bottleneck into two large grid-like blocks (2
x 6 and 8 x 5). Eq. 2 computes the number of paths between two corners of an n by k grid:

(2)

The total number of paths through both blocks is the product of the number of paths in each block. In
addition, another set of paths exit the first block into another intermediate at Im:Asn34Val/E:Arg98Met
after only four substitutions in the Im protein, increasing the number of paths in the first block up to 11.
We thus get a total of

possible paths.

Cloning

pET21d plasmid harboring ColE2 wild type gene (full gene including R, T, and C domains) followed by
Im2 wild type gene (separated by a 2-bp frameshift) with a C-terminal His6-tag34 was used as the basis
for cloning. Synthetic genes for the two wild types and the intermediates of the computed least-strain
path were codon-optimized for efficient E. coli expression and custom synthesized as linear fragments by
TWIST Bioscience. The genes were swapped with the wild type gene by restriction-free (RF) cloning46,47.
The plasmids were transformed into T7 Express lysY/Iq E.coli cells (NEB), and DNA was extracted for

(n+k−2)!

(n−1)!(k−1)!

( + ) × = 11 × 330 = 3,630
(6 + 2 − 2)!

(6 − 1)!(2 − 1)!

(5 + 2 − 2)!

(5 − 1)!(2 − 1)!

(5 + 8 − 2)!

(5 − 1)!(8 − 1)!
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Sanger sequencing to validate accuracy. Validated plasmids of the intermediates were also tested for
viability by transformation to BL21 DE3 E. coli cells. An intermediate pair was considered viable if a lawn
of bacteria was observed in the plate. Three colonies were picked for repeat sequencing to validate that
no additional mutations were introduced. Sequence-validated colonies of BL21 E. coli were stored in
glycerol stock at -80℃ for expression and purification.

Protein expression and purification

BL21 (DE3) cultures were grown in Luria Broth (LB) with 100 mM ampicillin medium at 37°C to OD600 = 
0.6–0.8 and induced with 1 mM IPTG at 16°C for 20 hrs. Cells were harvested and stored at − 20°C. Pellet
was resuspended in 10 ml lysis buffer in 200 ml culture containing 50 mM Tris (pH 8.6), 50 mM NaCl, 10
mM imidazole, 2 mM MgCl2, benzonase (1:500), and protease inhibitor (1:1000) sonicated in 3 cycles of

20 sec On and 40sec Off (1 min On-time) and centrifuged as previously described34. The supernatant
was loaded onto a column packed with 1.2 ml Ni-NTA beads for 200ml culture, equilibrated with lysis
buffer, and incubated at 4°C for 1hr for binding, then washed with lysis buffer containing 20 mM
imidazole, and eluted with lysis buffer containing 500 mM imidazole. Protein complexes were dialyzed
overnight in 50 mM Tris (ph 8.6), 200 mM NaCl, and 2 mM MgCl2. Protein complexes were stored at 4°C
for a week and for longer times at -80°C.

Im proteins were purified using the same protocol as above with minor changes. The pH for the buffers
was adjusted to 7.3, they were grown in 50 ml culture and all quantities were adjusted accordingly.
Melting curves for the purified Im proteins were measured using Tyco NT.6 (Nanotemper Technologies
Inc) at a rate of 30°C/min.

All protein concentrations were measured using absorbance at 280nm. The concentrations for the
ColE/Im complexes range between 2-3.5 mg/ml and Im protein concentrations range between 1.9-3
mg/ml.

ColE/Im in vivo assay (spot-test)

The biological activities of ColE and Im proteins were determined using a modified form of the spot-test
described in refs. 48,49. Briefly, ColE-sensitive E. coli JM83 (Addgene) cells were transformed with a control
vector (empty pET21d) or one of the Im proteins and incubated in LB containing 100 mM Ampicillin at
37°C overnight. Then, 1 ml of culture was plated on agar plates to create a lawn of bacteria. Purified
ColE/Im complexes (concentration between 2–4 mg/ml) were 6 times diluted in 10-fold serial dilutions
and 8 µl aliquots were dropped on the plates containing bacteria. Plates were incubated overnight at
37°C. Clear zones represent cell death and the absence of clear zones indicates biological protection
conferred by the Im. The minimal inhibitory concentration (MIC; the concentration dilution of ColE in
which no clear zones were observed) was set as the last visually apparent drop (0, 1, 2, 3, 4, 5, or 6). The
normalized MIC score is then computed as the difference between the maximal killing (the number of
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drops against an empty plasmid) and the MIC. All viability assays were conducted using two technical
repeats and averages and standard deviations are shown in Fig. 2D and Table S5.

Calibrating normalized MIC scores against Rosetta binding energies

In this section, we aimed to define a model that allows us to transform the computationally predicted
binding energies for each Im/E pair sequence  into the more biologically relevant scale of the normalized
MIC score that takes into account the order of magnitude increase in the tolerated concentration of E
toxin. Since the Im can only increase but not decrease the tolerance, the normalized MIC score cannot get
lower than 0. To take into account this, we model the expected normalized MIC score ( ) as a function
of the computationally predicted wild-type normalized binding energy :

However, we cannot characterize directly  but rather fit to data that is characterized by some error.
Moreover, as we have data only for six concentrations, our observed normalized MIC score will not be
higher than the number of tested concentrations, but the real underlying score could indeed be larger.
Thus, we define a piecewise likelihood function for dependence on the observed  and the standard
deviation of the measurement errors :

 if 

 if 

 if 

The data from the specificity map computed in Fig. 2D shows consistent normalized MIC scores across
the two biological replicates (Fig. S10A). We fit the model by maximizing the likelihood, that is, by finding
the combination of  that maximize the probability of observing the data under our calibration
model, and find good predictive performance in both training and leave-one-out held out data (Fig.
S10B,C). Moreover, the vast majority of the data lies within the range of binding energies spanned by the
predicted for the experimentally validated data, suggesting that we can effectively interpolate the
normalized MIC scores for nearly the full Im/E sequence space (Fig. S10D). Finally, in order to have
predicted normalized MIC scores in the same range as the empirical path, scores predicted to be higher
than 6 were truncated to 6.

Fitness landscape visualization

Visualization method as previously described43. Briefly, we construct a model of molecular evolution
where a population evolves via single amino acid substitutions and the rate at which each possible
substitution becomes fixed in the population reflects its selective advantage or disadvantage relative to
the currently fixed sequence. More specifically, in our model the rate of evolution from sequence i to any
mutationally adjacent sequence j is given by

i

ȳ i

ΔΔGbinding,i

ȳ i = log(1 + eα+βΔΔGbinding,i)

ȳi

yi
σ

p (yi| ȳi,σ) = p (yi ≥ 6| ȳ ,σ) yi = 6

p (yi| ȳi,σ) = p (yi ≤ 0| ȳ ,σ) yi < 0

p (yi| ȳi,σ) = p (yi| ȳ ,σ) 0 < yi < 6

α,β,σ
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where  is the scaled selection coefficient (population size times the selection coefficient of j relative to
i), time is measured relative to the amino acid mutation rate (each possible amino acid mutation occurs
at rate 1), and the total leaving rate from each sequence i is given by

In the current context, , where  is the predicted normalized MIC score at sequence i.
For this analysis we choose  so that the equilibrium expected viability score is 3, corresponding to a
roughly fivefold increase in the expected normalized MIC score relative to neutrality, which would produce
an expected normalized MIC score of 0.65. Considering genotypes with normalized MIC scores larger
than 3, this strength of selection corresponds to an over tenfold increase in the time spent in those
genotypes with respect to neutral evolution (from 4.61 to 52.84% of the time).

Given the rate matrix  for our evolutionary model, we then construct the visualization by using the
subdominant right eigenvectors associated with the smallest magnitude non-zero eigenvalues of this rate
matrix as coordinates for the low dimensional representation of the landscape, where each such
coordinate defines one of the “diffusion axes” used in the visualization. This produces a visualization
that reflects the long-term barriers to diffusion in sequence space, and, in particular, clusters of sequences
in the visualization correspond to sets of initial states from which the evolutionary model approaches its
stationary distribution in the same manner, and multi-peaked fitness landscapes appear as broadly
separated clusters with one peak in each cluster. Moreover, by scaling the axes appropriately, as is done
here, these axes can be given units of  and it can be shown that the resulting distances reflect
evolutionary times under this model. In particular, using these coordinates the squared Euclidean distance
between arbitrary sequences i and j optimally approximates (in a specific sense) the sum of the expected
time to evolve from i to j and the expected time to evolve from j to i. See ref. 43 for details.
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Figure 1

The structural basis for orthogonal binding specificities in colicin E2/Im2 and E9/Im9 and an energy-
based strategy to discover evolutionarily plausible paths. (A) Four radical mutations between E2/Im2 and
E9/Im9 (PDB entries: 3u43 and 1emv, respectively). The conserved hotspot residues are shown in
spheres. (B) Open-book representation of the two complexes with solvent-accessible surfaces colored
according to electrostatic representation. (C) Aligned structures of E2/Im2 and E9/Im9. Two loops that
exhibit backbone conformation differences are marked in dashed circles. (D) 17 interfacial positions that
differ between E2/Im2 and E9/Im9 are represented as orange spheres on the structure of E2/Im2. (E)
(Step I) Starting from the two wild type pairs, all possible sequences are modeled on both structures. For
each sequence, the modeled backbone with the lowest strain (best score) is selected. (II) An exemplary
subgraph for four positions. Mutants (represented by nodes) are connected if they differ by one mutation.
‘0’ and ‘1’ represent the start and end amino acid identities. The minimum-strain path between the
terminal nodes is marked in green. (III) Two-step experimental validation of the calculated minimum-
strain path. First, we test the growth of bacteria carrying a plasmid encoding a mutant pair ( Fig. S1).
Second, we purify the ColE/Im complex and apply it in tenfold serial dilutions to naive JM83 E. coli cells.
Clear zones of cell death indicate ColE toxicity.
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Figure 2

Experimental validation of an evolutionarily plausible path linking two orthogonal binding pairs. (A)
Examples of codon-bridging mutations. DNA nucleotide mutations are indicated in red. (B) Binding and
stability energy differences of the intermediates in the minimum-strain path relative to the two wild type
pairs. An empty bridge icon represents the introduction of a bridging mutation, and a full bridge icon
represents its resolution. (C) An example of the inferred normalized minimal inhibitory concentration
(MIC). (D) Functional specificity map. Each endonuclease on the viable path was applied to bacteria
harboring each immunity protein. Mutations from E2 accumulate from left-to-right and mutations from
Im2 accumulate from top-to-bottom. A vertical green line marks the specificity switch on E and a
horizontal one marks the specificity switch on Im. The mutations are completely reversible, and arrows
are only visual guides. The MIC scores within the map are normalized to the minimal and maximal killing
(MIC on naive cells) of each E (in each column), and higher viability corresponds to higher normalized
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MIC. The scores within the map are an average of two technical repeats (raw averages and standard
deviations in Table S5). (E) Molecular models of the key mutations producing the orthogonality along the
experimentally validated evolutionary path consistent with the model in panel F. The hotspot is
represented in spheres. (F) General model of orthogonality in a bimolecular fitness landscape involving
two sites in one molecule (Im protein) and one site in the other molecule (E toxin) defining what we call a
2:1 orthogonality model (see Supplementary Information and Fig. S9). The corners of the cube represent
all the possible pairs of sequences, and colors are consistent with panel D. Thick lines represent the
empirical path and dotted lines join the pairs whose fitness determines orthogonality of the pairs for
interacting molecules.

Figure 3
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Computed fitness landscape highlights the potential role of multiple epistatic interactions in effecting the
specificity switch. (A) Visualization of the predicted fitness landscape. Distance between points
represents the time to evolve between E/Im pairs under selection for high normalized MIC scores (see
Methods). Nodes represent each possible protein pair and edges connect pairs that differ by a single
amino acid substitution. Node color indicates normalized MIC score. Sequences with higher scores are
plotted above to emphasize the relationships among functional sequences. Empirical path is highlighted
in black. Inset shows the distribution of predicted normalized MIC scores across all possible pairs
together with the color scale. Interactions between key mutations are marked in the visualization and
simplified in panels B-D depicting the networks of average MIC scores defined by the identities at the key
sets of interacting positions. (B,C) Diagrams representing the average MIC score and average position at
Diffusion axis 1 for each possible subsequence at positions E:98/Im:33-34 (B) and E:97/Im:38 (C). The
path taken by the empirical trajectory across each set of sites is highlighted by a thick line. (D) Diagrams
representing the average MIC score and average position at Diffusion axis 2 for each possible
subsequence at positions E:72-73 on the left, and fixing the specified positions in the center and right
plots. (E,F) Visualization of the fitness landscape with overlaid black dots indicating pairs that are
predicted to be orthogonal to pair E2/Im2 (E) and E9/Im9 (F) (orthogonal to E2/Im2 defined as pairs with
predicted normalized MIC scores above 3.5 but whose combination with both Im2 and E2 had predicted
normalized MIC score below 3 and vise versa for E9/Im9).
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Figure 4

A “ratchet-like” model for the evolution of ultrahigh specificity. The experimentally determined viability of
each cognate pair on the path relative (Fig. 2D) to the extant E2/Im2 (purple line, top x-axis) or E9/Im9
(gray, bottom x-axis). Viability increases in two steps in the direction of accumulating mutations from
E2/Im2 and decreases in the reverse direction. Straight lines are guides to the eye. Higher viability
corresponds to higher normalized MIC score. Relative MIC score (relative viability score) is the difference
in MIC scores between a mutant and the parental wild type: RMi= (ME(i)/Im(i) -ME(i)/Im(wt)) - (ME(wt)/Im(wt) -
ME(wt)/Im(i)), where RM  is the relative MIC score; M is the MIC score (see Methods); i is an index to the
mutant; wt is the parental protein, E2/Im2 or E9/Im9chimera.
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