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MOTIVATION Gene fusions play a key role as driver oncogenes in tumors, and their reliable discovery and
detection are important for cancer research, diagnostics, prognostics, and guiding personalized therapy.
While discovering gene fusions from genome sequencing can be laborious and costly, the resulting fusion
transcripts can be recovered from RNA-sequencing data of tumor and normal samples. However, alleged
and putative fusion transcripts can also arise from multiple sources other than chromosomal rearrange-
ments, including cis- or trans-splicing events, experimental artifacts during RNA sequencing, or computa-
tional errors of transcriptome reconstructionmethods. Understanding how to discern, interpret, categorize,
and verify predicted fusion transcripts is essential for consideration in clinical settings and prioritization for
further research.
SUMMARY
Here, we present FusionInspector for in silico characterization and interpretation of candidate fusion tran-
scripts from RNA sequencing (RNA-seq) and exploration of their sequence and expression characteristics.
We applied FusionInspector to thousands of tumor and normal transcriptomes and identified statistical
and experimental features enriched among biologically impactful fusions. Through clustering and machine
learning, we identified large collections of fusions potentially relevant to tumor and normal biological pro-
cesses. We show that biologically relevant fusions are enriched for relatively high expression of the fusion
transcript, imbalanced fusion allelic ratios, and canonical splicing patterns, and are deficient in sequencemi-
crohomologies between partner genes. We demonstrate that FusionInspector accurately validates fusion
transcripts in silico and helps characterize numerous understudied fusions in tumor and normal tissue sam-
ples. FusionInspector is freely available as open source for screening, characterization, and visualization of
candidate fusions via RNA-seq, and facilitates transparent explanation and interpretation of machine-
learning predictions and their experimental sources.
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INTRODUCTION

Gene fusions are intensely studied for their relevance to disease

and normal cellular biology. In cancer, gene fusions typically

result from chromosomal rearrangements, including well-known

drivers of cancer, such as BCR::ABL1 in chronic myelogenous

leukemia (CML),1,2 TMPRSS2::ERG in prostate cancer,3,4 and

SS18::SSX1 or SS18::SSX2 in synovial sarcoma.5,6 Charting

the diversity of fusion transcripts present in tumor and normal tis-

sue is important for our basic understanding of the complexity

and biological function of the transcriptome in normal and

disease states, molecular diagnostics of cancer patients, and

neoantigen discovery for targeting in personalized immuno-

therapy with cancer vaccines or T cell therapy.7,8

The structural rearrangements leading to gene fusions can be

detected or inferred through whole-genome sequencing (WGS)

or from the presence of ‘‘fusion transcripts’’ in whole-transcrip-

tome RNA sequencing (RNA-seq).9,10 Given the easier and less

costly nature of RNA-seq compared with WGS, and the effective

methods for transcript assembly, RNA-seq has emerged as a

leading experimental method for fusion transcript discovery

and detection in both cancer research and molecular diagnos-

tics. Dozens of computational tools have been developed to

mine fusion transcripts from RNA-seq data (as referenced in

Haas et al.11), and there have been multiple efforts to build

catalogs of fusions across tumor and normal tissues.12–17 In gen-

eral, tumor-specific fusion transcripts are presumed to derive

from chromosomal rearrangements, whereas fusions identified

in normal samples are more likely to be derived from normal

karyotypes, thus reflecting other underlying causes, such as

read-through transcription and cis- or trans-spliced products.

Nevertheless, predicting fusions from RNA-seq data is chal-

lenging, and the various methods developed to predict fusion

products from RNA-seq vary tremendously in their accuracy

for fusion detection, leading to both false positives and false

negatives.11,18,19 False positives can be due to experimental

artifacts that arise during reverse transcription or PCR amplifica-

tion or computational mismapping of reads to target gene

sequences,20 as well as specific differences in prediction tools.

Moreover, as sequencing depth increases, the probability of de-

tecting rare reads that support a fusion transcript prediction in-

creases, due to either lab artifacts or real, low-rate trans-splicing

of questionable functional relevance. Thus, there is an urgent

need to understand the features that drive fusion detection and

to generate high-quality catalogs of well-supported fusions.

Here we describe FusionInspector (Figure 1), a method to

assess and document the evidence for fusions. While other

methods have previously been developed for fusion visualiza-

tion,21–25 FusionInspector includes modules for supervised

detection of fusion transcripts and comparing fusion transcripts

with corresponding unfused fusion partners, and aims to differ-

entiate likely biologically relevant fusions from likely experi-

mental or bioinformatic artifacts. FusionInspector reassesses

the read alignment evidence supporting targeted candidate

fusion transcripts, comparing the relative alignment evidence

for a fusion transcript with counter-evidence for its unfused part-

ner transcripts. FusionInspector further evaluates the fusion

transcript breakpoints in relation to sequence features represen-
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tative of likely experimental and bioinformatic artifacts,26,27

including canonical splicing sequences, reference exon gene

structures, and regions of microhomology between partner

genes. Through reports, interactive visualizations, and classifi-

cation, FusionInspector aims to in silico assess fusions for their

likely validity and assist researchers in reasoning about the quan-

tity and quality of the evidence supporting predicted fusions, to

differentiate likely artifacts from fusions with characteristics

similar to biologically relevant fusions known to occur in tumor

and normal tissues. While potential oncogenicity and structural

rearrangements may often be implied by tumor vs. normal sam-

ple prevalence and chromosomal loci for fusion gene partners,

respectively, FusionInspector makes no assertions regarding

oncogenicity or mechanism (genome rearrangement vs. cis- or

trans-splicing) by which biologically relevant fusions may be

derived.

We applied FusionInspector to assess recurrently predicted

fusions in tumor and normal tissues, gathering insights into

fusion transcript diversity and devising machine-learning

methods for fusion classification (Figure S1A). We first applied

FusionInspector to examine recurrently predicted fusions in tumor

andnormal tissues tocomputesequenceandexpression features,

from which we next generated clusters of fusion variants with

similar characteristics. We then identified fusion clusters that are

enriched for known biologically relevant fusions, and others as

likely artifacts. From these fusion clusters, we trained a

classifier to automatically predict fusion instances as likely biolog-

ically relevant, likely artifactual, or other type. Finally, we applied

FusionInspector on additional predicted instances of fusion tran-

scripts that were clustered with biologically relevant fusions and

explored, classified, and prioritized these transcripts to identify

additional relevant candidates in tumor and normal transcrip-

tomes. Our application discovered a cluster of fusion transcripts

heavily enriched for known cancer fusions and other fusions of in-

terest. FusionInspector is freely available asopen-source software

at https://github.com/FusionInspector/FusionInspector/wiki.

RESULTS

Development of FusionInspector for in silico evaluation
of predicted fusion transcripts
FusionInspector (Figure 1) performs a supervised in silico evalua-

tion of a specified set of candidate fusions, predicted from either

RNA-seq data or from a user-defined panel. FusionInspector cap-

tures all read alignments in the RNA-seq that provide evidence for

the specified fusions or for the unfused partner genes, and further

explores the candidate fusiongenes for regions ofmicrohomology

(defined as short identical sequence matches of length k [here k =

10]), and the proximity of microhomologies to putative fusion

breakpoints.

To capture evidence supporting candidate fusions,

FusionInspector identifies those reads that align concordantly be-

tween fusion genes as juxtaposed in their fused orientation and

provide concordant alignments that span the two genes in this re-

arranged context. There are two types of fusion-supporting align-

ments: (1) split reads that define the fusion breakpoint, and (2)

spanning fragments, where each paired-end read aligns to an

opposite partner gene and the fragment bridges the fusion

https://github.com/FusionInspector/FusionInspector/wiki


Figure 1. FusionInspector overview

Top: lists of fusion candidates derived from predictions of one ormultiple fusion detectionmethods, or from a screening panel, are provided to FusionInspector as

input along with RNA-seq in fastq format. For each candidate fusion gene, fusion contigs are generated by fusing the full-length gene candidates as collinear on a

single contig. Intronic regions are by default each shrunk to 1 kb. RNA-seq reads are then aligned to a reference consisting of the entire genome supplemented

with fusion contigs. Fusion-derived reads that would normally align discordantly as chimeric alignments in the reference genome (top example) instead align

concordantly in the fusion contig context (bottom example).

Middle: FusionInspector identifies split-read alignments (light blue) and spanning pairs (purple) supporting the gene fusion in addition to read alignments that

overlap the breakpoints and instead support the unfused fusion partners (fusion counter-reads).

Bottom: for those fusions where FusionInspector captures RNA-seq read support (‘‘in silico validation’’), it reports fusion sequence and expression character-

istics, interactive visualizations (Figure S1B), and predicted classifications as COSMIC-like, potential artifact, or other category (STAR Methods).
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breakpoint (Figure 1). FusionInspector leverages the STAR

aligner,28 which we enhanced here to support FusionInspector’s

mode of action. As input to STAR, we provide the entire reference

genome along with a set of fusion contigs constructed by

FusionInspector (based on the list of specified fusion candidates),
and STAR aligns reads to the combined genome targets and re-

ports those aligned to the fusion contigs for further evaluation by

FusionInspector (STAR Methods).

Next, FusionInspector computes several features that are

associated with the fusion based on these alignments to assist
Cell Reports Methods 3, 100467, May 22, 2023 3
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Figure 2. Detection of experimentally validated fusions in breast cancer cell lines BT474, MCF7, KPL4, and SKBR3

FusionInspector detects each of 46 experimentally validated fusions previously shown to be predicted by any of 24 different methods.11 FusionInspector results

are highlighted as shown. While each sample was subject to inspecting identical lists of fusion candidates (STAR Methods), fusions were specifically identified

only in the cell lines for which they are known to exist.

See also Table S1.
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in their evaluation. First, it uses the normalized number of reads

exclusively supporting each fusion variant as a proxy for the

expression of the fusion transcript (similarly, read alignments

overlapping the fusion breakpoint and exclusively supporting

the unfused partner genes are a proxy for the expression levels

of the unfused partner genes). Second, it computes the fusion

allelic ratio (FAR) for the fusion with respect to each (50 or 30) part-
ner transcript (50-FAR and 30-FAR) as the ratio of mutually exclu-

sive reads supporting the fusion variant vs. each unfused partner

gene (Figures 1 and S1C). Third, it examines fusion breakpoints

inferred from the read alignments for canonical dinucleotide

splice sites at boundaries of the breakpoints in each partner

gene and for agreement with available reference gene structure

annotations. When there is evidence that supports multiple

fusion transcript variants for a given fusion gene occurrence,

FusionInspector uses an expectation-maximization-based

algorithm to fractionally assign mutually compatible spanning

fragments to the corresponding variants (STAR Methods). It

then filters fusion variant candidates according to minimum evi-

dence requirements (default settings require at least one split

read to define the junction breakpoint, and at least 25 aligned ba-

ses supported by at least one read on both sides of the fusion

breakpoint; STAR Methods). Finally, it captures microhomolo-

gies between putative fusion genes and determines the prox-

imity of a fusion breakpoint to the nearest site of microhomology.

For clarity, we will use the following definitions when reporting

on fusions cataloged among samples. ‘‘Fusion’’ refers to two

genes, geneA and geneB, where there exists a fusion transcript

involving exons from geneA and geneB, ordered respectively,

and written as geneA::geneB according to the Human Genome

Organization’s (HUGO) Gene Nomenclature Committee (HGNC)

nomenclature for fusion genes.29 A ‘‘fusion occurrence’’ corre-

sponds to a fusion identified in an individual sample, defined by

the tuple (fusion, sample). A ‘‘fusion transcript’’ or ‘‘fusion variant’’

(used interchangeably) represents a fusion occurrence with a

unique breakpoint (e.g., splicing isoform), defined by the unique
4 Cell Reports Methods 3, 100467, May 22, 2023
tuple (fusion, sample, breakpoint coordinates). The primary

fusion variant is defined as the variantwith the highest expression

level within an occurrence. Fusion occurrences and primary

fusion variants are considered equivalent, and these terms are

used interchangeably.

Assessment of fusions using FusionInspector
By evaluating alignments to the modeled fusion contigs,

FusionInspector demonstrates high sensitivity and specificity

in supervised fusion detection, as we show for validated fusions

in four well-studied breast cancer cell lines: BT474, KPL4,MCF7,

and SKBR3. In our earlier study, 46 experimentally validated fu-

sions were correctly predicted by at least one of 24 different

fusion prediction methods.11When FusionInspector was applied

to the same data, it correctly identified each of these fusions in

the relevant sample (Figure 2 and Table S1), with no false

positives.

Using sequence and expression attributes of fusions and

known characteristics of biologically relevant fusions (see

below), FusionInspector further predicts whether each in silico

validated fusion variant candidate (i.e., a fusion candidate evalu-

ated by FusionInspector as having fusion read support evidence)

is likely to be biologically relevant or alternatively has features

consistent with experimental or bioinformatic fusion artifacts.

We illustrate these features in the context of two contrasting

examples of fusion types (Figure 3). Fusion EML4:ALK, a known

cancer driver prevalent in lung adenocarcinoma,30,31 has evi-

dence of multiple transcript variant structures, and while micro-

homologies are found between the EML4 and ALK genes they

tend to be distal from the fusion variant breakpoints (Figure 3A).

The EML4::ALK fusion variant breakpoints are all found at

consensus dinucleotide splice sites that coincide with exon

boundaries of reference gene structure annotations. In contrast,

FusionInspector captures many reads supporting a putative

fusion KRT13::KRT4, but the breakpoints inferred from split-

read alignments mostly have non-consensus dinucleotide splice
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Figure 3. Features of fusion genes distinguish reliable and likely artifactual fusions

Fusion variant expression level (dot size), splice type (dot color), and splice junction dinucleotide (dot shape) at each fusion breakpoint position involving the 50 (x
axis) and 30 (y axis) partners of (A) EML::ALK (in COSMIC) and (B) KRT13::KRT4 (likely artifactual) fusions. Black dots: positions of microhomology (10 base exact

match). Structures of collapsed splicing isoforms for fusion partner genes are drawn along each axis.
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sites and coincidewith sites ofmicrohomology; additionally, split

reads with consensus dinucleotide splice sites mostly do not

coincide with reference exon boundaries (Figure 3B). Because

KRT13 and KRT4 are only distantly related with no easily de-

tected nucleotide-level sequence conservation, their fusion

may not be discarded by many fusion transcript predictors.

However, given that most fusion evidence coincided with sites

of microhomology and the lack of consensus splicing at break-

points, FusionInspector infers most putative KRT13::KRT4

fusion variants to be artifactual. Another particularly compelling

example of a similarly misleading and likely artifactual fusion is

COL1A1::FN1, which is detected as prevalent in cancer-associ-

ated fibroblast cell lines (Figure S2). Further consideration of

fusion and partner gene expression levels can aid in evaluating

and prioritizing fusion candidates for further study, as we pursue

below.

Clustering of recurrent fusion transcripts via
FusionInspector attributes resolves COSMIC-like and
artifact-like fusions
We first applied FusionInspector to examine recurrent fusion tran-

scriptsbasedonpoly(A)-strandedRNA-seq fromtumors (fromThe

CancerGenomeAtlas [TCGA]32) and corresponding healthy tissue

(from TCGA and Genotype-Tissue Expression [GTEx]33). To

generate an initial comprehensive catalog of fusion variants in tu-

mor and normal tissues, we predicted fusion transcripts with

STAR-Fusion (v1.7) across 9,426 tumor and 707 normal samples

from TCGA, and 8,375 normal samples from GTEx (Table S2).

We initially applied lenient fusion evidence requirements to

maximize sensitivity (STAR Methods). As a result, putative fusion

transcripts were detected in nearly all tumor and normal samples.

After applying a minimum expression level threshold (0.1 fusion

fragments per million [FFPM]), we detected a significantly higher

numberof fusionoccurrences in tumorsvs. pairednormal samples

in several TCGA tumor types (Figure S3A), although there were
similarmedian numbers of predicted fusion occurrences per sam-

ple type in TCGA tumor and GTEx normal samples (t test, p = 0.5,

Figure S3B). We readily identified known cancer fusions included

in the COSMIC fusion collection34,35 (‘‘COSMIC fusions,’’ Fig-

ure 4A) according to known disease associations and prevalence,

such as TMPRSS2::ERG identified in roughly half of prostate can-

cers,3 FGFR3::TACC3 in glioblastoma,36 and PML::RARA in the

acute promyelocytic leukemia subtype of acute myeloid leukemia

(AML).37 COSMIC fusions were more highly expressed than most

predicted fusions, which had low estimated expression levels and

few supporting reads (Figures 4B–4D).

Next, we used FusionInspector to examine the sequence and

expression features of fusion transcripts that were recurrently

detected across tumor and/or normal samples in order to distin-

guish biologically impactful fusions (akin to the COSMIC fusions)

from experimental or computational artifacts, or from low levels

of cis- or trans-splicing from highly expressed genes. To this end,

we analyzed all 53,240 predicted fusion variants (38,591 fusion

occurrences plus 14,649 alternative fusion variants) from 628

TCGA and 530 GTEx representative samples (STAR Methods).

For each fusion candidate, FusionInspector identified the num-

ber of reads supporting the fusion variant and those supporting

the unfused partner genes at putative breakpoints, identified re-

gions of microhomology between partner genes, and deter-

mined the following features: inferred fusion expression level

(FFPM), 50 and 30 fusion allelic ratios (50-FAR, 30-FAR), 50 and 30

unfused gene expression levels (50-counter-FFPM and

30-counter-FFPM), presence of consensus vs. non-consensus

dinucleotide splice sites at fusion breakpoints, agreement or

disagreement with reference gene structure exon boundaries

at splice junctions, number of microhomologies observed be-

tween the two partner genes, and the distance of each inferred

fusion breakpoint to the nearest site of microhomology.

To distinguish fusion artifacts from those with features consis-

tent with biologically impactful fusions, we clustered fusion
Cell Reports Methods 3, 100467, May 22, 2023 5
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Figure 4. COSMIC fusions show distinctive properties among STAR-Fusion predictions across TCGA and GTEx

(A) Tissue and tumor composition. Percentages of TCGA tumor or GTEx normal samples (y axis) with corresponding predicted COSMIC fusions (x axis). TCGA

study abbreviation codes as in National Cancer Institute Genomic Data Commons.38

(B and C) COSMIC fusions are more highly expressed than other predicted fusions.

(B–D) Expression levels. (B) Distribution of fusion expression levels (y axis, FFPM; right-truncated at 1 FFPM) for all fusions predicted in TCGA tumors (purple),

TCGA normal (blue), GTEx (green), and COSMIC (red). (C) Cumulative fraction (y axis) of all predicted fusions at each minimum fusion expression (x axis, FFPM).

(D) Distribution of fusion expression levels (y axis, FFPM) for each predicted COSMIC fusion (x axis).

For (A)–(D), fusions are restricted to the single highest expressed fusion variant per sample occurrence, require reference annotation splice agreement at

breakpoints, and have mitochondrial, HLA, and immunoglobulin-gene-containing fusions filtered.

See also Table S2.
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variants by their feature profiles (Figures 5A and S4; Table S3;

STAR Methods). Clustering produced 61 high-granularity clus-

ters, each containing an abundance of fusions identified in

both TCGA and GTEx samples and distinguishable by feature

attributes (Figures S5A–S5L). We further grouped these

fusion variant clusters by hierarchical clustering according to

median fusion attribute values in each fine cluster (Figure 5B).

We then focused on examining clusters enriched for COSMIC fu-

sions as a proxy for biologically impactful fusions, exploring
6 Cell Reports Methods 3, 100467, May 22, 2023
those fusions with sequence and expression characteristics

similar to those of COSMIC fusions, irrespective of potential

genome rearrangement characteristics or known oncogenic

roles.

One fusion cluster (C4) was significantly enriched with

COSMIC fusions, harboring 57% of our detected instances of

COSMIC fusion occurrences among these samples, but only

4%of all fusion occurrences (p < 10�90, Fisher’s exact one-sided

test) (Figure 5B). Fusion variants in this cluster had splice
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cluster. Red label: cluster C4.
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right), and fraction of COSMIC fusions (x axis, right) for each fusion cluster (rows). Heatmap shows median scaled intensity values for each feature (color bar).

See also Table S3.
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breakpoints consistent with consensus splice sites and match-

ing known reference gene structure exon boundaries, were rela-

tively highly expressed, and were deficient in microhomologies

between fusion partner genes. Most of the COSMIC fusions in

C4 also have a 30-FAR that exceeds the 50-FAR, consistent
with the fusion transcript being driven from an active 50 partner’s
promoter and a 30 unfused partner expressed at lower levels (Fig-

ure S5M). Sixteen additional clusters, all but one (C10) of which

are members of one large hierarchical cluster with related fea-

tures, had at least two COSMIC fusion occurrences per cluster
Cell Reports Methods 3, 100467, May 22, 2023 7
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and spanned 34% of the fusion occurrences overall, including

37% of all COSMIC fusion occurrences.

Conversely, other fusion clusters, spanning 3% of all fusion

occurrences and no COSMIC fusion occurrences, had features

indicative of experimental or computational artifacts, especially

enrichment in microhomologies that could confound alignment

or contribute to reverse transcriptase mispriming. We thus

consider those fusion variants as putative artifacts. Of the 3%

of all fusion occurrences encompassed by these clusters, two-

thirds (2% of all fusion occurrences) hadmoderately to highly ex-

pressed partner genes, suggesting origination from reverse tran-

scriptase mispriming, and the remainder had little evidence for

partner gene expression, suggesting read misalignment arti-

facts. The low portion of such presumed artifacts is a testament

to STAR-Fusion’s rigorous filtering.11 A further 1% of fusions

involved highly expressed partner genes, where the detected

fusion represented a small fraction of the total expression from

these loci. These fusions may result from low levels of cis- or

trans-splicing from the highly expressed partner genes.

A fusion classifier allows targeted screening of
predicted COSMIC-like fusions
We reasoned that the set of 1,511 predicted fusion occurrences

(835 distinct fusions) that weremembers of theCOSMIC-enriched

cluster C4 are likely enriched for fusions of functional significance

and should be prioritized for further study. Some are already

known to be relevant to cancer but not yet included in the

COSMIC database, such as EGFR::SEPT14,39, PVT1::MYC,40–42

and TPM3::NTRK1.43 Others are reciprocal fusions for COSMIC

fusions that could result from balanced translocations, including

reciprocal ABL1::BCR1 of COSMIC BCR1::ABL1, BRAF::SND1

of COSMIC SND1::BRAF, and PPARG::PAX8 of COSMIC

PAX8::PPARG. This fusion cluster is also enriched for fusions

exclusively identified in pancreatic tissue (explored below).

To gain further insights into the characteristics of theCOSMIC-

like fusions in C4, we first screened additional TCGA and GTEx

samples to characterize additional occurrences of C4 represen-

tative fusions. We refocused FusionInspector on 236 C4+ key fu-

sions (231 C4 recurrent fusion gene pairs including 26 recurrent

COSMIC fusions, plus another five recurrent COSMIC fusions

having all occurrences localized outside of C4; STAR Methods

and Table S4,44). We screened each of 2,764 TCGA and 1,009

GTEx representative samples for these 236 fusions (STAR

Methods), collecting FusionInspector in silico validations and at-

tributes for 37,211 additional fusion occurrences (Figures 6 and

S6A–S6E; Table S4), and ranked fusions by the difference in their

initial detected prevalence in tumors vs. normal samples.

To determine whether additional occurrences of these fusions

have characteristics consistent with COSMIC-like C4 fusions,

are artifact-like, or belong to another category, we trained a

random forest classifier to predict the labels of each of the

earlier-defined61Leidenclustersandapplied it topredict theclus-

ter labels of fusion variants examined in this expanded targeted

survey.We thencategorized each fusionoccurrenceby theoverall

categoryof thehierarchicalcluster towhich theLeidencluster label

it was classified to belongs (e.g., ‘‘COSMIC-like’’ for C4 predic-

tions) (Figure 6A and STAR Methods). Evaluation of this random

forest classifier using 5-fold cross-validation and application to
8 Cell Reports Methods 3, 100467, May 22, 2023
biological replicates demonstrates high prediction accuracy,

with most clusters yielding >90% prediction accuracy and

mispredicted fusion variants or biological replicate fusion

variants assigned to fusion clusters with highly similar features,

effectively discriminating artifact-like fusions from others (Fig-

ure S7). This fusion classification was further incorporated

into FusionInspector for routine application in discriminating

COSMIC-like fusions from artifacts or other types.

FusionInspector-screened occurrences of knownCOSMIC fu-

sions weremostly tumor enriched with few to no normal samples

identified with evidence (noting that all 1,009 GTEx normal sam-

ples were screened by FusionInspector for an identical list of

COSMIC fusions). All but 31 of the 236 fusions had occurrences

classified as C4. Only seven fusions had at least 10% of their oc-

currences predicted to clusters with high counter-evidence (C49

or C51), suggesting the fusion transcripts may reflect low levels

of cis- or trans-splicing of more highly expressed normal fusion

partner genes. Only nine fusions had any occurrences predicted

as artifacts, found in both TCGA and GTEx as pancreas-specific

fusions (further discussed below).

This analysis highlighted intriguing, well-supported fusions for

further study. For example, while the top-ranked tumor-enriched

fusion, FGFR3::TACC3 (rank 1, 70 tumor samples, 0 normal) is a

known oncogenic driver,36 other top-ranking fusions, such as

CCAT1:CASC8 (rank 2, 42 tumors—mostly lung and stomach

cancers, 0 normal) and VCL::ADK (rank 3, 36 tumors—also

mostly lung and stomach cancers, 0 normal) have not yet been

extensively studied. CCAT1::CASC8 was only recently reported

in the fusion catalog generated by DEEPEST fusion,17 and

VCL::ADK was only previously reported in a study of cancer

cell lines.12

Because our initial selection of samples for FusionInspector

exploration of recurrent fusion transcripts did not strictly require

COSMIC fusions, only 31 of the 58 knownCOSMIC fusions initially

discovered by our comprehensive survey with STAR-Fusion

were further characterized above. We thus further applied

FusionInspector to 46 additional samples with instances of the re-

maining 27 COSMIC fusions. Over 80% of these COSMIC fusion

occurrences were predicted to other COSMIC fusion-containing

clusters, none as likely artifacts, and 11 (41%) of these had

occurrences predicted to the COSMIC-enriched cluster C4 (Fig-

ure S8A and Table S5), including KLK2::ETV1, LMNA::NTRK1,

RUNX1::RUNX1T1, FUS::DDIT3, TMPRSS2::ETV5, MYB::NFIB,

TFG::NTRK1, TRIM27::RET, MKRN1::BRAF, INTS4::GAB2, and

NUP214::ABL1.

Some fusion transcripts are prevalent in normal tissues
and may not be oncogenic
Approximately one-third (86) of the 236 C4+ targeted fusions in

our analysis were robustly detected in normal tissues (found in

at least five normal samples); these may not be particularly rele-

vant to cancer biology but may play a role in normal biological

processes. Of these, 61 fusions are broadly expressed across

at least five tissues, involve intrachromosomal pairs of genes,

and can be largely explained by read-through transcription, local

rearrangements, or trans-splicing of neighboring transcripts.

Some other putative fusions that are prevalent in normal

tissues may in fact represent normal structural variation in the
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Figure 6. Characteristic properties of recurrent TCGA and GTEx COSMIC and COSMIC-like fusions can distinguish biologically meaningful

fusions and fusion instances

Two hundred thirty-six selected COSMIC-like (C4) and additional COSMIC fusions (columns/x axis) rank ordered by tumor enrichment and shownwith fraction of

the instances of each fusion in each category based on predicted Leiden cluster labels (A, rows, top) or corresponding to presumed impact on coding sequence

(A, rows, bottom); fusion structure type based on the fusion partner’s chromosomal location (B); fraction of instances that is in each tumor or tissue type in TCGA

and GTEx (C, rows); presence in COSMIC (D, purple); significantly higher expression in tumors vs. normal tissues (E, Wilcoxon rank-sum test applied to FFPM

requiring a minimum of three tumor and three normal samples, Benjamini-Hochberg FDR < 0.05 and median tumor FFPM > median normal FFPM, orange);

number of tumor (sea green) or normal (light red) samples (F, y axis) predicted by STAR-Fusion to contain the fusion, rank ordered by tumor enrichment (F, x axis,

(STAR Methods, gray).

Computations in (A), (B), and (D) are output by FusionInspector.

See Figures S6A–S6E for each fusion pair. See also Table S4.
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human genome, which is not accounted for when performing

read alignment to a single human reference. For example, Fusion

KANSL1::ARL17, which would require a local rearrangement

in the human reference genome, is prevalent across both

tumor and normal tissues (median of 31% of individuals,

Figure S8B), and is known to correspond to a common haplotype

involving a locally rearranged genomic region observed in

populations of European descent.45 An earlier report identified

KANSL1::ARL17 in diverse tumor samples and proposed that it

may be a cancer predisposition germline fusion specific to Euro-

peans.46 Note, however, that no specific human genetic associ-

ation evidence was shown for predisposition thus far, and we

observe slightly higher prevalence of KANSL::ARL17 among

GTEx normal samples than in tumors from TCGA (Figure S8B).

Another normal fusion due to a rarer germline structural variation

is TFG::GPR128, previously associated with a copy number

variation and a haplotype frequency estimated at around 2%

of individuals of European descent.47 Consistently, we find

TFG::GPR128 broadly expressed across tumor and normal tis-

sues and represented similarly at a median of 2% of all tissues

examined (Figure S8C). As more evidence of common structural

variation becomes available, other prevalent fusions found in

normal tissues may be more easily explained.

Another set of fusions that are lesseasilyexplained involve those

we found only in normal pancreas and pancreatic carcinoma (Fig-

ures 6 and S6), involving various pairwise combination of CPA1,

CPA2, CLPS, CELA2A, CELA3A, CTRB1, CTRB2, and CTRC

(e.g., CELA3A::CPA2, CELA3B::CELA2A, and CELA3A::CELA2A)

fused to generate in-frame fusion products. These genes are

among the highest expressed in pancreas and mostly reside on

different chromosomes, suggesting that trans-splicing may be

the predominant underlying mechanism. While the initially de-

tected transcripts were within the COSMIC-peak-enriched fusion

cluster, the random-forest-based fusion classifier did not predict

the additional instances as COSMIC-like, and some of them

(e.g., CELA3A::CTRC) have high fractions of occurrences pre-

dicted to ‘‘high-counter-evidence’’ clusters or ‘‘artifact-like’’ types

(Figures 6 and S6E; Table S4).

Some well-established oncogenic fusions are also
reliably detected in normal samples
Several of the COSMIC fusions or other tumor-enriched fusions

withknown ties to cancerwere surprisingly identified inboth tumor

and normal samples. For example, the prostate cancer fusion

TMPRSS2::ERG, identified as our fourth most tumor-enriched

fusion (182of 465 TCGAprostate tumor samples), is also detected

in six normal prostate samples (five TCGA and one GTEx)

(Figure S6A). Each of the five TCGA prostate normal samples

containing TMPRSS2::ERG were found with TMPRSS2::ERG in

their matching prostate tumor samples, likely due to tumor-in-

normal contamination. TMPRSS2::ERG was only identified by

FusionInspector in prostate tumors or normal prostate, reflecting

both this fusion’s high tissue specificity and FusionInspector’s

high specificity of fusion calling.

In another example, COSMIC fusion PVT1:MYC was originally

identified by STAR-Fusion in 20 samples (14 TCGA tumor, 1

TCGA normal, and 5 GTEx samples). Interactions between PVT1

and MYC including their fusion are well-known contributors to
10 Cell Reports Methods 3, 100467, May 22, 2023
tumorigenesis.40–42 Through subsequent screening ofPVT1::MYC

with FusionInspector, we identify a total of 32 samples (+9 TCGA

tumor, +1 TCGA normal, and +3, �1 GTEx). Most (21/32) are ex-

pressed at low levels (below 0.1 FFPM), and we do not find strong

evidence for expression to be generally higher in tumor samples

than in normals (p < 0.07, Wilcoxon rank-sum test). However, 5

of the 32 PVT1::MYC occurrences were identified in cervical can-

cer tumors, and all were significantly more highly expressed than

the other samples (p < 0.001), with the most highly expressed at

19 FFPM (Figure S8D). PVT1 and MYC are co-localized to a prox-

imal region in the bottomarmof chromosome8, and aPVT1::MYC

fusionwould likely involve local restructuring at the locus in tumors

to generate the fusion product. Interestingly, this chromosome 8

region is a known hotspot for insertion of human papilloma virus

(HPV),48 the leading cause of cervical cancer (>90% of cases).

Most of the TCGA cervical cancer samples we identified with

PVT1::MYC have HPV insertions at this hotspot (see Table S3 of

the study by TCGA Research Network48). Thus, we hypothesize

that HPV insertion contributes to the formation of the PVT1::MYC

fusions. We did not find evidence for HPV insertion in the breast

cancer sample with similar levels of PVT1::MYC expression (data

not shown).

COSMIC fusion VTI1A::TCF7L2, originally identified as an

oncogenic fusion in colorectal cancer,49 was most abundant in

stomach, colon, and esophageal carcinoma samples but was

also detected in seven individual GTEx normal samples (brain,

whole blood, tibial nerve, tibial artery, prostate, and breast)

(Table S4). While VTI1A::TCF7L2 was not enriched for detection

in tumors vs. normal, only those fusions in colon cancer were

highly expressed (>0.15 FFPM), whereas other tumor and normal

instances were lowly expressed (<0.05 FFPM; many at the limit

of detection; Figure S8E), supported by a single split read

defining the fusion breakpoint (Table S4). This could be consis-

tent with a very low proportion of cells in the normal tissue ex-

pressing the fusion, compared with a large clone in the tumor.

Interestingly, COSMIC fusion BCR::ABL1 was not tumor en-

riched in our analysis, likely due to paucity of the relevant tumors

in TCGA. In particular, BCR::ABL1 occurs in >95% of CML

cases,1,2 but TCGA lacks CML samples. Indeed, the four TCGA

tumors with BCR::ABL1 likely correspond to a subtype of AML

defined with this fusion.50 Three of these AML tumors also have

evidence of the reciprocal ABL1::BCR fusion, and the oncogenic

BCR::ABL1 is expressed at higher levels than the reciprocal

counterpart in each sample. Interestingly, we detected eight in-

stances of the oncogenic BCR::ABL1 fusion (and none of the

reciprocal) in six different GTEx normal tissues (one each of adi-

pose, breast, nerve, prostate, and thyroid, and twopancreas) and

one TCGA normal kidney sample. We observed no sequence or

expression features distinguishing these fusions from those we

identified in AML, and fusion transcript breakpoints for those in

GTEx normal tissues are identical to those found in AML. In gen-

eral,whenwefindCOSMIC fusions inGTExnormal samples, they

are found at low frequencies (<1% prevalence in a tissue type).

FusionInspector analysis of fusion transcripts in
pediatric cancers
Tohighlight the utility of FusionInspector,weapplied it to the 1,366

RNA-seq datasets from 1,230 participants across seven pediatric
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cancer projects in the Therapeutically Applicable Research to

Generate Effective Treatments (TARGET) resource.51 These

include acute lymphoblastic leukemia (ALL; 666 tumors), AML

(217 tumors and 20 normal samples), clear cell sarcoma of the

kidney (CCSK; 13 tumors), neuroblastoma (NB; 157 tumors), oste-

osarcoma (OS; 88 tumors), rhabdoid tumor (RT, 63 tumors and 6

normal), and Wilms’ tumor (WT; 130 tumors and 6 normal).

STAR-Fusion identified 213,786 fusion occurrences involving

108,661 distinct fusion gene pairs (Table S6) with 3 (RT) to 19

(CCSK) median fusions detected (minimum 0.1 FFPM) per tumor

sample, and2.5–3.5median fusionsper normal sample (similar to

normal samples in TCGA or GTEx). Eighty-six percent of the

STAR-Fusion predicted occurrences were in silico supported

by FusionInspector, yielding 182,807 fusion occurrences with

217,614 fusion variants involving 88,307 distinct fusion gene

pairs (Table S6), including 30 COSMIC fusion gene pairs. Some

of the most prevalent included known pediatric cancer fusions

RUNX1::RUNX1T1 (15% AML participants), KMT2A::MLLT3/

MLLT10 (12% AML), TCF3::PBX1 (4.4% ALL), and ETV6::

RUNX1 (2.4% ALL). Of these 30 TARGET COSMIC fusions, 22

were only found among the TARGET pediatric tumors with the

remaining eight also found among TCGA samples (Fig-

ure S9A–S9C).

The random forest classifier classified 1.6% of the 217,614

fusion variants as COSMIC-like and 1.2% as artifact-like.

The fusion variants partitioned into 79 clusters, one of which

(C21TARGET), containing 3,091 occurrences of 910 fusions,

was significantly enriched for COSMIC fusions (p < 10�150, one-

sided Fisher’s exact test) (Figures 7A and S9D), including 22

of the 30 COSMIC fusions. These included hallmark fusions

RUNX1::RUNX1T1, TCF3::PBX1, ETV6::RUNX1, and several

KTM2A-partnered fusions. Some samples had evidence of recip-

rocal fusion partners, including BCR::ABL1 and ABL1::BCR (Fig-

ure 7B). The fusions in C21TARGET had sequence and expression

features consistent with the COSMIC-enriched cluster C4 of

TCGA and GTEx fusions, especially high fusion expression, and

30-FAR generally exceeding 50-FAR (Figure 7A).

WeexaminedC21TARGET fusions to identify other fusions poten-

tially relevant to pediatric cancer. Of 910 fusions, 108 recurrent

fusion candidates were present in at least three samples and ab-

sent fromnormal samples (Figure 7B and Table S6). These include

fusions not yet reported in the COSMIC oncogenic fusion data-

base but otherwise known as drivers or highly relevant to pediatric

oncology,51,52 such as TCF3::HLF,53–55 ZNF384::EP300,56 and
Figure 7. TARGET pediatric cancer fusion clusters and attributes

(A) TARGET pediatric fusion clustering by sequence and expression features y

variants yielded 79 clusters. Cluster 21 was enriched for known COSMIC fusion

fusions, counts of COSMIC fusion occurrences per cluster, counts of clustered f

fusions, and fraction of occurrences with predicted fusion cluster attribute based

(B) Recurrent TARGET COSMIC and COSMIC-like fusions include additional fusio

108 selected recurrent fusions from cluster C21TARGET. Fusion cluster distribu

C21TARGET fusion occurrence representation; Fusion coding effect, impact of fus

involving noncoding regions at fusion occurrence breakpoints; Chromosome struc

COSMIC (purple) indicates presence in COSMIC; ALL Driver Gene (cyan) indicates

(as per Brady et al.52); reciprocal (dark blue) indicates whether the fusion gene

representation: fraction of pediatric cancer tumors with corresponding fusion occ

fraction of pediatric cancer type prevalence.

See also Table S6.
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CBFB::MYH11.57 Many of the 108 fusions (51 fusions = 47%)

involve a known ALL driver as one or both partners,52 such as

KMT2A (eight fusions); PAX5, ZNF384, and MLLT10 (five fusions

each); and NUP98, TCF3, and ETV6 (four fusions each). Most

driver-gene-containing fusions (28/51 = 55%) involve reciprocal

fusion arrangements. Other fusion partners frequently found

among this set that may be potentially relevant to pediatric cancer

include PTMA (seven fusions), EIF4A1 and the EIF4A1 locus-

derived RP11-186B7.4 (seven unique fusions), and SEPT14 (three

fusions).

While our version of FusionInspector was not compatible

with exploration of immunoglobulin heavy chain gene (IGH) fu-

sions given the large IGH locus size (1.3 Mb vs. our 100 kb

maximum intron length; STAR Methods), 12 (1.8%) TARGET

ALL samples had evidence of IGH::CRLF2 fusions, a common

oncogenic IGH fusion.58We also found the oncogenic ALL fusion

P2RY8::CRLF259 in 25 (3.8%) ALL participants. These were

members of C10TARGET, likely due to consensus splice break-

points that did not coincide with reference gene structure exon

boundaries, highlighting the relevance of other clusters as

sources of biologically relevant fusions with alternative non-arti-

factual attribute profiles.

DISCUSSION

We developed FusionInspector to enable exploration of the

evidence supporting candidate fusions, flag likely artifacts, and

identify those fusions with sequence and expression features

similar to known biologically relevant fusion transcripts irrespec-

tive of oncogenicity or potential genome structural rearrange-

ments. Given a list of candidate fusions, FusionInspector captures

RNA-seq read alignments that support either the fused genes or

the unfused partner genes. From the fusion and partner gene

expression evidence coupled with sequence features relating to

the fusion breakpoint, FusionInspector helps the user to reason

about the nature and quality of any target fusion transcript.

Clustering TCGA and GTEx fusions by shared sequence and

expression features identified a cluster of fusions highly enriched

for COSMIC fusions. Fusions in the COSMIC-enriched cluster

had relatively high fusion expression with 30-FAR generally

exceeding 50-FAR, suggesting oncogenic activity from the

30-fused transcript. Analysis initiated by fusions in the COSMIC-

enriched cluster highlighted several putative or less appreciated

oncogenic fusions, including CCAT1::CASC8 and VCL::ADK,
ields a COSMIC-enriched fusion cluster. Leiden clustering of 217,614 fusion

occurrences. From left to right: median scaled attribute features for clustered

usion occurrences, fraction of fusion occurrences corresponding to COSMIC

on the earlier-trained random forest predictor.

ns potentially relevant to pediatric cancer. Fusion characteristics are shown for

tion, fractions of predicted COSMIC-like or OTHER and observed fractional

ion on the coding region leading to in-frame coding regions, frameshifting, or

ture, fusion structure type based on the fusion partner’s chromosomal location.

whether either fusion gene partner is an earlier-defined ALL cancer driver gene

is found in reciprocal form within an individual participant. TARGET sample

urrences. Fusions are shown ranked from left to right according to cumulative
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based on their feature similarity to other well-known tumor-en-

riched fusions. Only�3% of initially predicted fusions were mem-

bers of clusters likely enriched for artifacts based on features such

as high partner gene expression or sites of microhomology at or

near the fusion breakpoint. The low artifact rate is likely due to

the strong filtering of the initial input catalog from STAR-Fusion.

We obtained similar results when applying FusionInspector to

the TARGET pediatric cancer cohorts, with a single COSMIC-en-

riched cluster of fusion occurrences with relatively high fusion

expression and 30-FAR, containing known cancer drivers and

yielding a source of additional potential fusion genes for future

study. These additional fusions included gene partners PTMA,

EIF4A1, and SEPT14, eachwith known roles in cancer (e.g., Frat-

tini et al.,39,60,61 Kumar et al.,39,60,61 and Wu et al.39,60,61) but yet

to be further characterized as pediatric cancer fusion transcripts.

While we focused on fusions identified in COSMIC-enriched

clusters, other fusion clusters also harbor important oncogenic

fusions. For example, the COSMIC fusions SS18::SSX1 and

SS18::SSX2, known drivers of synovial sarcoma,5,62 are in other

clusters (C38 and C39), due in part to their higher 50-FAR.
Another fusion of interest, FSIP1::RP11-624L4.1, is present in

240 (22%) of breast tumors analyzed and in 16 normal breast tis-

sues samples, where it is expressed at significantly lower levels

in normal tissues (Figure S10). While the individual fusion

partners have cancer associations,63,64 any role for this likely

read-through/cis-spliced fusion transcript deserves consider-

ation in further exploring the roles of both genes in disease.

Insomecases, fusions thatwere found inboth tumorandnormal

tissuesmight reflect a low level of oncogenic events. For example,

hallmark driver fusions including TMPRSS2::ERG and BCR::ABL1

were also detected in GTEx normal tissue samples, which

may reflect a low proportion of premalignant or transformed

cells.65–67 We also detected COSMIC fusion VTI1A::TCF7L2

across multiple tumor and normal tissue types (consistent with

Nome et al.68), but only highly expressed in colon cancer samples

where it is a postulated oncogenic driver.49,69 Whether such a

fusion could contribute to tumorigenesis in a different tissue with

different cellular circuitry remains unknown.While weare intrigued

by evidence of oncogenic fusions in normal tissue RNA-seq data,

we have not ruled out explanations such as tumor-in-normal

contamination70 or potential cross-sample sequencing read

contamination.71

Fusions that were prevalent among normal tissues can mostly

be explained by read-through transcription and cis-splicing of

co-linear genes, but some may simply reflect natural germline

structural variations that may exist in the population. With

ongoing advancements in methods for detecting and cataloging

of structural variants,72,73 we may soon better understand the

structural basis for many naturally occurring fusion transcripts.

Access to matched RNA-seq and WGS of the same samples

across individuals would greatly facilitate such efforts.

Pancreas stood out as a clear outlier among all normal tissues

explored for fusions. While we suspect some of the putative fu-

sions detected in pancreas are derived from reverse transcrip-

tion or alignment artifacts, several did have features consistent

with trans-splicing of highly expressed partner genes, with

trans-spliced products yielding in-frame proteins. In general,

these fusion occurrences do not have COSMIC-like sequence
and expression features. Trans-spliced in-frame fusion tran-

scripts have the potential to expand functional diversity from

our otherwise linear genomes,74 and even if these pancreas-spe-

cific candidates failed to ultimately reach our COSMIC-like prior-

itization status, they may be worth additional studies.

FusionInspector opens the way to further explore the biolog-

ical impact of the predicted fusions and the tissues and gene

expression networks in which they are phenotypically relevant.

FusionInspector helps illuminate the evidence supporting fu-

sions in RNA-seq or to screen for relevant fusions sensitively

and accurately in samples of interest. While expression attribute

analysis and fusion class prediction by FusionInspector

should require poly(A)-stranded RNA-seq, the supervised fusion

variant identification could leverage alternative RNA-seq

methodologies.

Becauseshort reads remain limited in their capacity to represent

full-length fusion transcripts, FusionInspector further integrates

Trinity75,76 for de novo reconstruction to optionally reconstruct

more full-length fusion transcripts from RNA-seq data aligned to

each fusion contig. FusionInspector is available as a stand-alone

application for screening lists of candidate fusion transcripts and

is also incorporated into STAR-Fusion for in silico validation or

visualization of STAR-Fusion-predicted fusion transcripts. This fa-

cilitates analysis of fusions from both bulk and single-cell RNA-

seq, as we have recently demonstrated.77

Long-read transcriptome sequencing may eventually obviate

short-read sequencing for fusion detection, thus removing the

need for de novo reconstruction of full-length fusion tran-

scripts.78,79 Full-length single-molecule direct RNA-seq80

should also avoid reverse transcription amplification artifacts.

Conversely, other features scored by FusionInspector, such

as expression characteristics of fusion transcripts with respect

to partner genes, will remain relevant and easily adapted for

long-read RNA-seq.

Machine learning is likely toplayan increasingly important role in

biomedical science and its clinical applications. In this paper we

emphasize an important companiondirection tomachine learning,

namely generating transparent and interpretable predictions,

loosely referred to as explanations. The area of explanations and

causal interpretation is growing rapidly in artificial intelligence.81

Weneed tokeepa reproducible traceof facts, predictions, andhy-

potheses from gene to function in the era of big data.

We hope that the practical applicability of FusionInspector

will help drive transparency and other explanatory efforts in

predictive areas in genomics and personalized medicine

more generally, including screening and reassessment of

evidence supporting fusion predictions, and visualization of

the evidence via interactive reports (Figures 1 and S1B).

FusionInspector can be easily leveraged as an add-on

component to any fusion transcript prediction pipeline, and

is directly incorporated into STAR-Fusion to facilitate execu-

tion as part of the Trinity Cancer Transcriptome Analysis tool-

kit.82 The FusionInspector software is freely available as open

source on GitHub (key resources table), provided in container

form via Docker and Singularity, and accessible on the Terra

cloud computing framework for secure and scalable applica-

tion across large compendia of sample collections or pa-

tient-derived RNA-seq data.
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Article
ll

OPEN ACCESS
Limitations of the study
FusionInspector as implemented here requires read alignment

overlap with exons of reference gene structure annotations, and

hence fusions restricted to intronic regions of either fusion partner

or neighboring intergenic regions presently go undetected.

Becausegenome-level fusioneventsoftenoccuroutsideofexons,

FusionInspector is largely ineffective with whole-genome or

whole-exome sequencing data, instead necessitating RNA-seq.
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E.P., and Troelsen, J.T. (2018). The VTI1A-TCF4 colon cancer fusion pro-

tein is a dominant negative regulator of Wnt signaling and is transcription-

ally regulated by intestinal homeodomain factor CDX2. PLoS One 13,

e0200215. https://doi.org/10.1371/journal.pone.0200215.

70. Taylor-Weiner, A., Stewart, C., Giordano, T., Miller, M., Rosenberg, M.,

Macbeth, A., Lennon, N., Rheinbay, E., Landau, D.A., Wu, C.J., and

Getz, G. (2018). DeTiN: overcoming tumor-in-normal contamination. Nat.

Methods 15, 531–534. https://doi.org/10.1038/s41592-018-0036-9.

71. Nieuwenhuis, T.O., Yang, S.Y., Verma, R.X., Pillalamarri, V., Arking, D.E.,

Rosenberg, A.Z., McCall, M.N., and Halushka, M.K. (2020). Consistent

RNA sequencing contamination in GTEx and other data sets. Nat. Com-

mun. 11, 1933. https://doi.org/10.1038/s41467-020-15821-9.

72. Collins, R.L., Brand, H., Karczewski, K.J., Zhao, X., Alföldi, J., Francioli,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

TCGA RNA-seq http://Terra.bio dbGaP: phs000854

Breast cancer cell lines RNA-seq for BT474,

KPL4, MCF7, and SKBR3

SRA SRA:SRP003186

GTEx RNA-seq http://Terra.bio dbGaP: phs000424

TARGET RNA-seq http://Terra.bio dbGaP: Acute Lymphoblastic Leukemia:

phs000463, phs000464; Acute Myeloid

Leukemia (AML): phs000465; Clear Cell

Sarcoma of the Kidney (CCSK): phs000466;

Neuroblastoma (NB): phs000467;

Osteosarcoma (OS): phs000468; Rhabdoid

Tumor (RT): phs000470; Wilms Tumor (WT):

phs000471

Software and algorithms

FusionInspector v2.4.0 This paper https://github.com/FusionInspector/

FusionInspector/releases/tag/

FusionInspector-v2.4.0 or https://doi.org/

10.5281/zenodo.7791682

STAR-Fusion v1.7 GitHub https://github.com/STAR-Fusion/

STAR-Fusion/releases/tag/v1.7.0

STAR-Fusion v1.9.1 GitHub https://github.com/STAR-Fusion/

STAR-Fusion/releases/tag/v1.9.1

Other

Supplementary code This paper https://github.com/broadinstitute/

FusionInspectorPaper or https://doi.org/

10.5281/zenodo.7791682
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources or code should be directed to lead contact Brian Haas (bhaas@broadinstitute.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table.

d All original code has been deposited at GitHub and Zenodo and is publicly available as of the date of publication. URLs and

DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Initial comprehensive fusion transcript survey for TCGA and GTEx via STAR-Fusion
Fusions were predicted for TCGA and GTEx samples using STAR-Fusion (v1.7). First, the STAR (v2.6.1a) aligner was used to align

RNA-seq reads from each sample to the human genome as follows:
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"STAR –genomeDir ctat_genome_lib_build_dir/ref_genome.fa.star.idx –outReadsUnmapped None –chimSegmentMin 12

–chimJunctionOverhangMin 12 –chimOutJunctionFormat 1 –alignSJDBoverhangMin 10 –alignMatesGapMax 100000

–alignIntronMax 100000 –alignSJstitchMismatchNmax 5 -1 5 5 –runThreadN 16 –outSAMstrandField intronMotif –outSAMun-

mapped Within –outSAMtype BAM Unsorted –readFilesIn reads_1.fastq reqds_2.fastq –outSAMattrRGline ID:GRPundef

–chimMultimapScoreRange 10 –chimMultimapNmax 10 –chimNonchimScoreDropMin 10 –peOverlapNbasesMin 12 –peO-

verlapMMp 0.1 –genomeLoad NoSharedMemory –twopassMode Basic.

The resulting Chimeric.out.junction files generated by STAR containing candidate chimeric reads were then analyzed by STAR-

Fusion like so "STAR-Fusion -J Chimeric.out.junction -O $output_dir/STARF –genome_lib_dir $ctat_genome_lib –min_FFPM 0 –

no_annotation_filter" leveraging CTAT genome library GRCh38_gencode_v22_CTAT_lib_Sept032019.

The parameters used here eliminated any filtering of fusions according to fusion expression levels or based on fusion annotations,

to retain any fusions known to frequently occur in normal samples in both the normal and the tumor samples for further study. All

STAR-Fusion predictions are provided in Table S2.

Fusion tumor enrichment was computed for each fusion according to ( (# tumor with fusion + 1) / (total tumor samples)) / ( (# normal

with fusion + 1) / (total normal samples) ).

FusionInspector method and implementation
FusionInspector takes as input a list of candidate fusions and RNA-seq files in fastq format, with each fusion formatted as "geneA::

geneB" indicating a candidate fusion between geneA (5’) and geneB (3). Leveraging the companion CTAT genome library set of

genomic resources (identical to that used with STAR-Fusion, including the human reference genome, gene structure annotations,

and STAR genome index), FusionInspector constructs fusion contigs by extracting the genomic sequences for each geneA and

geneB, and concatenating each geneA and geneB pair into a single contig in collinear transcribed orientation. Gene structure anno-

tations for fusion genes are similarly restructured to match the position and orientation of the corresponding genes in the fusion con-

tigs. By default, long introns are shrunk to 1 kb in length by removing central regions of intron sequences, reducing the alignment

search space and simplifying downstream visualizations.

RNA-seq reads are aligned to the fusion contigs along with the whole reference genome by running STAR with both inputs,

including the pre-indexed whole genome and a fasta file containing the fusion contigs. STAR first loads the whole reference genome

index into RAM, then builds an index for the fusion contigs, and incorporates the fusion contig index into the whole genome index.

Only those reads that align concordantly to the fusion contigs, while considering all alignments to the combined targets, are reported.

Note, that in the fusion context, all fusion-supporting reads are aligned concordantly, but will align partially to one gene and partially to

the adjacent gene. This functionality was implemented in STAR since version 2.5.0a to support FusionInspector functionality. STAR-

Fusion directly executes STAR to align reads like so " STAR –runThreadN 4 –genomeDir ctat_genome_lib_build_dir/ref_genome.fa.s-

tar.idx –outSAMtype BAMSortedByCoordinate –twopassMode Basic –alignSJDBoverhangMin 10 –genomeSuffixLengthMax 10000

–limitBAMsortRAM 47271261705 –alignInsertionFlush Right –alignMatesGapMax 100000 –alignIntronMax 100000 –readFilesIn

reads_1.fastq.gz reads_2.fastq.gz –genomeFastaFiles finspector.fa –outSAMfilter KeepAllAddedReferences –sjdbGTFfile finspec-

tor.gtf –alignSJstitchMismatchNmax 5 -1 5 5 –scoreGapNoncan �6 –readFilesCommand ’gunzip -c’ ", where ’finspector.fa’ and

’finspector.gtf’ correspond to the fusion contigs sequence and structure annotation files.

FusionInspector examines the aligned reads output by STAR and identifies read alignments supporting fusions between gene pairs

represented by the fusion contigs. Candidate fusion breakpoints are identified by split read alignments having partial alignments that

anchor to exons of the neighboring fusion genes. Spanning fragments are identified as paired-end reads having each read mapping

entirely on opposite sides of the breakpoint. Alignments must meet minimum criteria to be counted as evidence, requiring at least

98% sequence identity and no more than 10 bases unaligned at their ends (soft- or hard-clipped bases). For split reads, at least

10 bases must align adjacent to each breakpoint (anchor), and each anchor region must have sufficient sequence complexity,

requiring entropyR 1.2. For spanning fragments, each paired-end read sequencemust have sufficient complexity, requiring entropy

R 1.2. Preliminary fusion predictions are defined based on candidate fusion breakpoints and sets of compatible spanning fragments.

RNA-seq fragments that span a candidate breakpoint but support transcription from an unfused partner gene are captured, stored as

counter-evidence, and used to compute the partner gene counter FFPM and fusion allelic ratio.

There is often evidence formultiple fusion variants, andwhile the split reads are unique to and define each breakpoint, the spanning

fragments are often compatible with multiple breakpoints and assigned ambiguously. We implemented an expectation maximization

(EM) algorithm based on that described in kallisto83 to fractionally assign RNA-seq evidence fragments to fusion variants according to

maximum likelihood. Fusion expression values (FFPM) are then computed based on estimated RNA-seq fragment counts resulting

from the EM.

Fusion candidates are then filtered according to definedminimum evidence requirement, with defaults set as requiring at least one

split read to define the junction breakpoint, and at least 25 aligned bases supported by at least one read on both sides of the fusion

breakpoint (termed ‘long double anchor support’ or ‘LDAS’). If the breakpoint involves non-consensus dinucleotide splice sites, then

at least three split reads are required to support the breakpoint. A final filter of fusion predictions to exclude those containing overly

promiscuous fusion partners (maximum10) or those involving paralogs ofmore dominantly supported fusions is applied identically as

previously described.84
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Optionally, Trinity de novo assembly75,76 is integrated to de novo reconstruct candidate fusion transcripts based on reads aligning

to the fusion contigs. When employed, Trinity-reconstructed fusion transcripts are identified in the final FusionInspector report, and

the assembled transcripts are available for further study. In addition, FusionInspector integrates IGV-reports85 to generate an inter-

active web-based summary (and fully self-contained html file) of predicted fusions coupled to a web-based interactive genome

viewer to examine the read alignments found as evidence for the fusions (Figure S1B).

Applications of FusionInspector to TCGA, GTEx, TARGET, and cell lines
FusionInspector was run on TCGA v11, GTEx v8, and TARGET via Terra/AnVIL,86 as outlined in our analysis roadmap (Figure S1A).

First, FusionInspector v2.4.0 was used to reexamine a subset of 628 TCGA and 530 GTEx samples identified as containing instances

of recurrent STAR-Fusion (v1.7) predictions. Candidate samples were identified based on individual fusions (a) having minimum 0.1

FFPM, (b) found in tissue types with at least three occurrences, and either (c) comprising at least 10% of samples of that tissue type,

or (d) containing a recurrent COSMIC fusion (ie. (a & b) & (c |d)). Samples were then greedily selected to maximize recurrent fusion

content while minimizing numbers of selected samples, retaining up to 10 samples per fusion. These samples and all fusions pre-

dicted among these samples (not restricted to those recurrent fusions leveraged as sample selection criteria) were reexamined by

executing the current STAR-Fusion (v1.9.1) including FusionInspector (v2.4.0) as a post-process like so: "STAR-Fusion –left_fq

${sample_name}_1.fastq –right_fq ${sample_name}_2.fastq –CPU 16 –genome_lib_dir ctat_genome_lib_build_dir –output_dir

${sample_name} –FusionInspector validate –no_annotation_filter –min_FFPM 0.0 00 leveraging companion CTAT genome library

"GRCh38_gencode_v22_CTAT_lib_Apr032020". The FusionInspector abridged outputs were consolidated and presented as

Table S3. These fusions were subsequently subject to Leiden clustering87 (see Fusion Clustering and Class Prediction section below).

Second, FusionInspector was run in fusion screening mode to explore instances of defined COSMIC-peak-enriched fusions

(Leiden cluster 4 (C4) of the 61 fusion clusters found to be heavily enriched for COSMIC fusions). There were 231 instances of C4

fusions selected according to the following criteria: found in at least 3 samples, at least one fusion occurrence found clustered to

C4, and at least 30% of occurrences found localized to clusters containing at least two known COSMIC fusion occurrences. These

were further supplemented with five recurrent COSMIC fusions that are not members of C4 (ERC1::RET, SLC34A2::ROS1,

SS18::SSX1, SS18::SSX2, and VTI1A::TCF7L2), to a total of 236 fusion gene pairs (Table S4). The 236 fusion gene targets were pro-

vided as input to FusionInspector for screening 2,764 TCGA and 1,009 GTEx samples, each with the same list of 236 candidates.

These samples were selected based on having a STAR-Fusion predicted occurrence of at least one of these fusions (from

Table S2) and selecting a maximum of 50 samples per-fusion gene-pairing (with samples sometimes containing multiple fusion

types), except for pancreatic and prostate cancer (TCGA) and normal pancreas tissue (GTEx) for which all samples were selected

as targets. FusionInspector was executed like so: "FusionInspector –fusions $Table_S4_fusions –genome_lib_dir ctat_genome_lib_

build_dir -O ${sample_name} –left_fq ${sample_name}_1.fastq –right_fq ${sample_name}_2.fastq –out_prefix ${sample_name} –vis"

leveraging companion CTAT genome library "GRCh38_gencode_v22_CTAT_lib_Apr032020", and results for screening of these sam-

ples are provided in Table S5. TARGET RNA-seq samples were processed as above first leveraging STAR-Fusion-v1.10.0 for initial

fusion candidate identification followed by FusionInspector-v2.4.0 for in silico fusion validation.

Using RNA-seq data for breast cancer cell lines BT474, MCF7, KPL4, and SKBR3 as in,11 FusionInspector-v2.4.0 was run on each

sample with a targeted list of 52 experimentally validated fusions (Table S1).

Fusion transcript clustering and attribute class prediction
All 53,240 fusion variants surveyed by FusionInspector from our initial subset of TCGA and GTEx samples were clustered according

to sequence and expression characteristics. Microhomologies defined as exact k-mers with k = 10 were identified between candi-

date fusion gene pairs as represented in the FusionInspector-constructed fusion contigs (with introns shrunk to amax of 1 kb each for

simpler visualizations). The Euclidean distance of each candidate fusion breakpoint to the nearest site of microhomology was deter-

mined in the FusionInspector fusion contig coordinate system. Attributes of interest for clustering fusions were: (1) the fusion expres-

sion level (FFPM), (2,3) partner gene fusion allelic ratios (50-FAR and 30-FAR), (4,5) the left and right unfused partner gene expression

levels expressed as 50- and 3’-counter-FFPM and computed based on the number of counter-reads observed as aligned at each

corresponding gene breakpoint site, (6,7) indicators for consensus dinucleotides and agreement with reference gene structure

exon boundaries at the fusion breakpoints, and (8) the number of microhomologies and (9) distance of the breakpoint to the nearest

microhomology. These numerical values were centered and scaled to Z-scores, truncated within the interval [-2,2] to remove outliers,

and then rescaled so each attribute numerical vector would fill the interval [-2,2] simplifying our evaluation of metrics using a consis-

tent low-to-high range for each attribute type.

We calculated the distance between fusions based on vectors with these values, constructed a k-nearest-neighbor graph (k=50) of

fusions, and clustered the graph by Leiden clustering87 (resolution parameters set as 3 for TCGA & GTEx, and 2 for TARGET). The

impact of the resolution parameter on clustering and COSMIC fusion enrichment was examined (Figure S4), and the parameter with

sufficiently granular set of clusters was selected for further analysis. Clusters were manually reviewed and grouped and annotated

according to median cluster attributes, with cluster annotation term assignments as "COSMIC-like" if predicted as cluster C4, and

categories "High FAR" and "Microhomology RT-induced artifact" to reflect likely bioinformatic or reverse-transcription related arti-

facts (as labeled in Figure 5B).
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A random forest classifier was built to predict Leiden cluster membership based on each fusion variant’s scaled feature attributes.

The classifier was constructed by randomly selecting a maximum of 300 fusions (median cluster size) from each cluster, and

leveraging 2/3 of fusions for training and 1/3 for testing, all performed using Ranger.88 Fusions predicted to be assigned to any cluster

noted earlier with a fusion cluster annotation (e.g., "COSMIC-like") are assigned a prediction according to that fusion cluster anno-

tation term. Such fusion attribute cluster predictions are now incorporated into FusionInspector (v2.8.0).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were performed using R as indicated, with P-values adjusted by Benjamini-Hochberg procedure to control the false

discovery rate. Wilcoxon rank-sum test was restricted to comparisons involving at least three members of each set. All statistical

analyses performed are included within the Supplementary Code (key resources table).
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