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a b s t r a c t 

Background and Objective: Histopathology is the gold standard for diagnosis of many cancers. Recent 

advances in computer vision, specifically deep learning, have facilitated the analysis of histopathology 

images for many tasks, including the detection of immune cells and microsatellite instability. However, 

it remains difficult to identify optimal models and training configurations for different histopathology 

classification tasks due to the abundance of available architectures and the lack of systematic evaluations. 

Our objective in this work is to present a software tool that addresses this need and enables robust, 

systematic evaluation of neural network models for patch classification in histology in a light-weight, 

easy-to-use package for both algorithm developers and biomedical researchers. 

Methods: Here we present ChampKit (Comprehensive Histopathology Assessment of Model Predictions 

toolKit): an extensible, fully reproducible evaluation toolkit that is a one-stop-shop to train and evalu- 

ate deep neural networks for patch classification. ChampKit curates a broad range of public datasets. It 

enables training and evaluation of models supported by timm directly from the command line, with- 

out the need for users to write any code. External models are enabled through a straightforward API 

and minimal coding. As a result, Champkit facilitates the evaluation of existing and new models and 

deep learning architectures on pathology datasets, making it more accessible to the broader scientific 

community. To demonstrate the utility of ChampKit, we establish baseline performance for a subset of 

possible models that could be employed with ChampKit, focusing on several popular deep learning mod- 

els, namely ResNet18, ResNet50, and R26-ViT, a hybrid vision transformer. In addition, we compare each 

model trained either from random weight initialization or with transfer learning from ImageNet pre- 

trained models. For ResNet18, we also consider transfer learning from a self-supervised pretrained model. 

Results: The main result of this paper is the ChampKit software. Using ChampKit, we were able to sys- 

temically evaluate multiple neural networks across six datasets. We observed mixed results when evalu- 

ating the benefits of pretraining versus random intialization, with no clear benefit except in the low data 

regime, where transfer learning was found to be beneficial. Surprisingly, we found that transfer learning 

from self-supervised weights rarely improved performance, which is counter to other areas of computer 

vision. 

Conclusions: Choosing the right model for a given digital pathology dataset is nontrivial. ChampKit pro- 

vides a valuable tool to fill this gap by enabling the evaluation of hundreds of existing (or user-defined) 

deep learning models across a variety of pathology tasks. Source code and data for the tool are freely 

accessible at https://github.com/SBU-BMI/champkit . 
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. Introduction 

Histopathology is the gold standard for cancer diagnosis. 

athologists review tissue slides visually, often alternating among 

ifferent magnifications and fields of view. However, examining 

he entirety of a slide at its highest resolution (e.g., 40x) and 

xamining a large number of slides for a study are very chal- 

enging tasks, due to the sheer amount of time required. There 

s growing interest in computer-assisted analysis of histopathol- 

gy images with deep learning. Physical pathology slides can 

e digitized at high resolution, in a process known as digital 

athology, thanks to advanced tissue scanners. Digital pathology 

s at its core a big data problem, as these images are large 

e.g., 10 0,0 0 0 by 80,0 0 0 pixels) and take up several gigabytes of

torage. 

There is significant interest in developing deep learning com- 

uter vision algorithms for digital pathology images in order to 

abel digital pathology images at high resolutions [3–12] . Digi- 

al pathology images are too large for conventional deep learn- 

ng algorithms and hardware, so the images are separated into 

atches for use with deep learning algorithms. There are sev- 

ral types of computer vision approaches for digital pathology, in- 

luding slide-level classification, patch-based semantic segmenta- 

ion, patch-based object detection, and patch-based classification. 

n this manuscript, we focus exclusively on patch-based classifi- 

ation tasks. Many studies in digital pathology have introduced 

atch-based deep learning algorithms that seek to characterize dig- 

tal pathology images. Owing in large part to large-scale, pub- 

icly available, multi-cancer projects like The Cancer Genome Atlas, 

atch classification has been explored in a large number of can- 

ers, including breast [13–15] , lung [16–18] , pancreas [19–23] , and 

rostate [24,25] cancers to name a few. Other well-studied applica- 

ions of digital pathology patch classification include detecting mi- 

rosatellite instability [6,26–29] , tumor cells [30–35] , and tumor- 

nfiltrating lymphocytes [36–42] . 

While deep learning can be a powerful tool, planning a deep 

earning study in digital pathology is nontrivial [43] . There are 

everal challenges, including how to choose the best deep learn- 

ng model for the task, how to choose hyperparameters of mod- 

ls, and how to curate training and evaluation data. The choice of 

odels is a high-dimensional problem. There are hundreds of neu- 

al network architectures to choose from, and within each there 

re hyperparameters that can greatly affect classification perfor- 

ance [43] . Model repositories exist that facilitate the use of neu- 

al networks pretrained on common natural image datasets like 

mageNet. One such repository is timm [1] , which contains dozens 

f model architectures and hundreds of sets of pretrained weights. 

ther examples include the PyTorch and TensorFlow model hubs. 

owever, there is an unmet need for digital pathology, because 

hese repositories do not contain pathology-specific models , though 

odels trained on pathology data using self-supervision have re- 

ently come online [44–46] . Tools also exist to run benchmarking 

xperiments [47–49] but these do not curate data specific to digital 

athology. 

There are several sources of public digital pathology data, and 

t would be greatly beneficial to the digital pathology community to 

urate these data in one location and prepare them for immediate use 

ith deep learning workflows . Although the pieces required to eval- 

ate patch-based digital pathology models exist as part of sepa- 

ate studies, a user would have to perform a complex process to 

urate relevant data, prepare reference implementations of neu- 

al network architectures, download pretrained weights, and im- 

lement relevant performance metrics. A better solution is a toolkit 

hat streamlines these components for researchers [43] . The result- 

ng framework should also be reproducible and simple for users to 

un, to mitigate any potential difference in results from differences 
2 
n how the code was run. Finally, while there has been progress 

n developing such a toolkit to evaluate slide-level classification 

50] , there does not yet exist a reproducible, extensible toolkit cou- 

led with a comprehensive set of benchmark datasets for patch-level 

nalysis . 

To address these unmet needs in digital pathology, we in- 

roduce ChampKit (Comprehensive Histopathology Assessment of 

odel Predictions toolKit), an easy-to-use toolkit that focuses on 

he evaluation of neural network models for computational pathol- 

gy image analysis ( Fig. 1 ). The target users of ChampKit are (1)

ethods research groups interested in systematically and quickly 

valuating their deep learning methods against a set of state- 

f-the-art (SOTA) methods with different pretraining and transfer 

earning configurations, and (2) biomedical research groups inter- 

sted in finding and fine-tuning the best models to analyze a col- 

ection of whole slide images. Both research communities would 

enefit from the ability to quickly and systematically evaluate a 

et of SOTA (pre-trained) methods, and Champkit enables these 

wo use cases in an easy-to-use package. In Section 4 , we recount 

ow our group has used ChampKit to identify optimal models for 

leason grade classification. Importantly, ChampKit complements 

xisting tools. It makes use of the timm model repository and ex- 

ends it with the addition of pathology-specific pretrained mod- 

ls. Transfer learning has shown inconsistent benefits in digital 

athology [51–53] , so one use of ChampKit could be to compre- 

ensively characterize the impact of transfer learning across mod- 

ls and pathology datasets. ChampKit also curates multiple public 

atasets for patch-based classification. The toolkit and datasets ad- 

ere to FAIR principles [54,55] , which enhances the reusability and 

eproducibility of this work. ChampKit is meant to simplify the 

raining and evaluation of deep learning models for patch-based 

lassification. 

The main contribution of this paper is the ChampKit soft- 

are. To demonstrate the utility of ChampKit, we perform a 

tudy that establishes baseline performance of several exist- 

ng models across six diverse classification tasks across vari- 

us cancers through publicly available datasets curated by the 

oolkit. 

.1. Related work 

Benchmarking of deep neural networks is a well-studied field, 

nd multiple solutions exist in this space. BIAFLOWS is a bench- 

arking and deployment platform for microscopy image work- 

ows. It supports many problem types, including object segmen- 

ation and particle tracking [56] , and it implements metrics spe- 

ific to each supported problem type. OpenML is another plat- 

orm that allows for the creation and sharing of machine learning 

enchmarks and emphasizes community contributions of bench- 

ark results [57] . Ludwig is a benchmarking toolkit that en- 

bles configurable, personalized benchmarking [49] . ShinyLearner 

s a tool to benchmark classification of tabular data [58] . Weights 

nd Biases [2] provides many methods for hyperparameter search, 

xperiment logging, and experiment visualization, all of which 

re useful for benchmarking. The Python package timm [1] al- 

ows easy access to hundreds of deep learning models for im- 

ge classification, many of which are pretrained on ImageNet 

59] , and thus can facilitate analysis across many models. To our 

nowledge, however, there are few benchmarking solutions de- 

igned specifically for histopathology. The work of Laleh et al. 

50] , for example, provides a benchmark for weakly-supervised, 

pecimen-level classification in digital pathology. These related 

rojects have inspired the development of ChampKit as a bench- 

arking toolkit specific to patch-based classification in digital 

athology. 
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Fig. 1. Overview of ChampKit. ChampKit enables systematic comparisons of model architectures and transfer learning across several patch-based image classification datasets. 

First, users select a model and pretrained weights from those available in timm [1] or a custom model with specfication of pretrained weights or random initialization. 

Second, the models are trained on multiple tasks using identical training hyperparameters. Third, the trained models are evaluated on held-out test data for each task. 

Performance is tracked with Weights and Biases [2] . 
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. Materials and methods 

.1. ChampKit 

ChampKit is a one-stop-shop for systematic exploration of deep 

earning architectures, training strategies, and transfer learning 

cross patch-level histopathology classification tasks. Research in 

eep learning architectures moves quickly, so ChampKit integrates 

he timm [1] model repository to provide access to hundreds 

f (pretrained) deep learning models, enabling evaluation across 

ifferent transf er learning schemes from ImageNet [59] or from 

elf-supervision on histopathology images [46,60] or training from 

cratch. ChampKit enables rapid evaluation of hyperparameters us- 

ng Weights & Biases [2] and neural network architectures through 

imm [1] and torchvision [61] . Users can incorporate their own 

atasets and models as well. Importantly, ChampKit does not re- 

uire any coding — users can use configuration files and command 

ine programs to run training and evaluation. Detailed instructions 

o use and extend ChampKit are available in the GitHub reposi- 

ory. 1 

Toolkit There are two main use cases for ChampKit: 1) to iden- 

ify an optimal classification model for one’s own patch classifica- 

ion dataset, and 2) to benchmark models across multiple datasets, 

ncluding those that are downloaded with ChampKit. For both use 

ases, the toolkit includes scripts to perform an end-to-end anal- 

sis: prepare datasets, download pretrained models, train models, 

nd evaluate them on held-out test data. Weights and Biases [2] is 

sed to log experiment parameters, visualize results across mul- 

iple models and training configurations, and orchestrate hyperpa- 

ameter searches. Three hyperparameter search strategies are avail- 

ble currently via Weights and Biases, and from most to least ef- 

cient they are Bayesian, random, and grid search [62,63] . Users 

an design their own hyperparameter searches to find the opti- 

al model for their own dataset, and the search configurations 

ncluded in our code repository can be used as a starting point. 

n the following sections, we discuss how one can identify opti- 
1 https://github.com/SBU-BMI/champkit 

(

d

a

t

3 
al models, use their own datasets, and use other models with 

hampKit. 

Identifying optimal models ChampKit includes a Python script to 

valuate trained models on unseen data. This script calculates var- 

ous performance metrics, including area under the receiver oper- 

ting characteristic curve (AUROC), accuracy, F1 score, and a con- 

usion matrix, and it also saves plots of these values across mod- 

ls. These evaluations support binary and multi-class classifica- 

ion tasks and will show the performance results per class. This 

s especially helpful in unbalanced datasets, so that one can de- 

ermine whether the trained models perform well on the under- 

epresented class(es). The evaluation script then identifies the best 

odel per evaluation metric and prints these results. The evalu- 

tion scores for each model are saved to a spreadsheet so that 

ne can perform further processing if desired. Using this tool in 

hampKit, one can choose the optimal model for one’s patch clas- 

ification dataset. 

Datasets ChampKit has currently curated six patch-based image 

lassification tasks for: (1) tumor (versus no tumor) classification, 

2) tumor-infiltrating lymphocyte detection, (3–5) microsatellite in- 

tability detection across different cancers and/or preparations, and 

6) precancerous versus benign classification. These datasets repre- 

ent a wide variety of tissue types, cancers, tasks, and sample sizes 

see Table S1). This diversity represents a starting point for bench- 

arking patch classification in digital pathology and enables users 

o explore models that might generalize across these datasets or 

e ideal for certain data characteristics. In addition to serving as 

uilt-in datasets for exploration, these datasets serve to demon- 

trate the capabilities of ChampKit as a benchmarking toolkit. In 

ection 3 , we describe the performance of several models on each 

ataset. ChampKit includes reproducible scripts to download all 

atasets, with the exception of the MHIST dataset [64] , which re- 

uires completing an online form (an automated email is then 

ent with a download URL). The datasets for each task are cu- 

ated from different studies [64–68] and were selected using the 

ollowing guidelines: (1) designed for patch-based classification, 

2) accessible without the need to make an online account, (3) 

ataset is versioned, (4) sufficient size (at least a few thousand im- 

ges), (5) diversity of tasks, and (6) in our judgement, important 

o the biomedical community. Five of the six datasets are hosted 

https://github.com/SBU-BMI/champkit
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(

n Zenodo, which stores static copies of the data. If these datasets 

re updated, the updated datasets can easily be incorporated into 

hampKit. Each dataset was split into training, validation, and test- 

ng partition (see Table S1). Models were trained on the training 

et and the validation set was used to evaluate performance at 

he end of each epoch. Final models were chosen based on per- 

ormance on the validation set. The test sets were used for final 

valuation, and all results are reported on the test set. All data are 

ownloaded when the user initializes the ChampKit repository, ac- 

essible without any requirements for registration. 

Using a new dataset Beyond the six benchmark datasets, Champ- 

it allows for integration with custom datasets that are framed as 

inary or multi-class patch classification. Datasets must be orga- 

ized in an ImageNet-like directory structure, in which the top- 

evel directory contains directories train , val , and test , and 

ach of those contains sub-directories of the different classes (e.g., 

umor-positive , tumor-negative ) with the corresponding 

atches. Images can be of any size and will be resized during train- 

ng and evaluation – the size is configurable. Indeed, we demon- 

trate the creation and use of a new dataset in Section 3.5 . 

Preparing a dataset from annotated whole slide images ChampKit 

xpects a dataset of patches in PNG or JPEG format. If one has a 

et of annotated whole slide images, where the annotations indi- 

ate regions in the slide that belong to a label (e.g., ”normal ep- 

thelium”), then existing tools can be used to export patches from 

hese labeled regions. These tools include QuPath [69] , OpenSlide 

70] , and Large Image [71] . When exporting patches, users should 

onsider the physical resolution of the patches and should use 

 consistent resolution for all patches. For example, a user may 

hoose to extract patches of 224 × 224 pixels at 0.5 μm per 

ixel. Patches are also assumed to have mutually exclusive la- 

els, so it is important to ensure that a patch is not a mem- 

er of two annotated regions with different labels. Next, the ex- 

racted patches must be split into training, validation, and test sets 

to avoid data leakage, patches from any single specimen or pa- 

ient should not be a member of multiple subsets). As described 

n the preceding paragraph, all images that belong to a particu- 

ar class should be placed in a class-specific directory. If, for ex- 

mple, the task is binary classification between ”normal epithe- 

ium” and ”neoplastic epithelium”, the directories for the train- 

ng set would be named train/normal_epithelium/ and 

rain/neoplastic_epithelium/ , and the directories would 

ontain all training images of normal epithelium and neoplastic 

pithelium. This would be repeated for the validation and test 

ubsets. After the dataset is prepared in this fashion, one can 

se ChampKit to identify optimal classification models for the 

ataset. Section 3.5 describes the creation of a patch classification 

ataset from annotated whole slide images in the PANDA dataset 

f prostate biopsies [72] . 

Using custom models While ChampKit provides access to a wide 

ange of deep learning architectures and pre-trained models via 

imm [1] , it may still be desirable to tweak an existing model, em- 

loy a custom model, or use pre-trained weights from pathology- 

pecific models. Image classification models specific to pathol- 

gy are being published regularly, and a user may want to ap- 

ly these models to their own datasets. In many cases, pathology- 

pecific models use architectures found in timm , but the weights 

ill be specific to a pathology dataset. In that case, one can pro- 

ide the name of the network architecture, the image normaliza- 

ion parameters, and a path to the pre-trained weights (an exam- 

le of this is provided in the ChampKit code repository). If the 

etwork is not one found in timm , one can include the PyTorch 

73] implementation of the architecture as well as image normal- 

zation parameters. The ChampKit code repository includes an ex- 

mple of using pretrained weights from a pathology-specific model 

60] , and we report results using this model in this manuscript. 
4 
he self-supervised model uses the ResNet18 architecture and was 

rained on a large histopathology dataset in a self-supervised fash- 

on. ChampKit itself does not support pretraining of models, but it 

oes leverage pretrained models from published literature. Future 

ersions of ChampKit may include other pathology-specific mod- 

ls, and the authors welcome community contributions of these 

odels, which can be made through a pull request to our GitHub 

epository. 

Criteria for reproducibility We strive to achieve the silver stan- 

ard of reproducibility as defined by [74] . The silver standard has 

hree criteria: 

1. Software dependencies are all prepared with a single command, 

2. Documentation of how to run scripts and in which order, 

3. Random elements must be made determinisitic. 

ChampKit satisfies all three requirements. All dependencies 

re installed using the conda Python environment manager, and 

atasets are downloaded with a single command. The README of 

he source code includes extensive documentation of how to run 

he training and evaluation scripts, and the random number gener- 

tors used during training are seeded, so that with the same seed, 

esults will be identical or almost identical. Dataset preparation is 

lso designed to be reproducible, meaning that when one initial- 

zes ChampKit, one is guaranteed to have exactly the same copy 

f the data as was reported in this manuscript. This is accom- 

lished in two ways: 1) five of the six datasets in ChampKit are 

osted on Zenodo, which preserves immutable versions of data; 

nd 2) the MD5 hashes of the downloaded data are validated at 

ownload time to ensure that the user has the intended version 

f the dataset. In some cases, the downloaded dataset is mini- 

ally curated, including moving image patches into an appropriate 

irectory structure and splitting the dataset into training, valida- 

ion, and test splits. These splits are done with seeded pseudoran- 

om number generators so that the results are deterministic. Data 

ownload and curation is all done automatically when one initial- 

zes the ChampKit repository with the setup.sh script. 

.2. Experiments 

The main purpose of this work is to introduce ChampKit as a 

oolkit to rapidly evaluate deep neural networks on histopathol- 

gy patch classification tasks. To demonstrate the utility of Champ- 

it, we systematically trained several models commonly used in 

istopathology, namely ResNet18 and ResNet50 [75] , to estab- 

ish baseline performance for each benchmark task. We also in- 

lude a hybrid vision transformer (R26-ViT) [76] , which has shown 

romise at image classification in smaller data regimes. All mod- 

ls included comparisons of transfer learning from image classifi- 

ation on ImageNet-1K [59] and training from random weight ini- 

ialization. ResNet18 comparisons also included transfer learning 

rom a model trained using self-supervision on histopathology data 

46,60] . (ChampKit is designed to benchmark existing architectures 

rom existing weights, and thus it does not support pretraining 

f models.) All models were implemented in timm using PyTorch, 

nd pretrained ImageNet weights were accessed via timm , while 

he weights from self-supervised pre-training for ResNet18 were 

ownloaded from [60] . The AdamW optimizer was used with a 

earning rate of 0.001 [77] , and models optimized cross entropy 

oss. The learning rate was warmed up from 1e-6 to 0.001 over the 

rst 10 epochs, followed by cosine decay set for 500 epochs. Early 

topping was enabled after 30 epochs based on validation cross en- 

ropy loss with a patience of 20 epochs. All models used a dropout 

ate of 0.3. Each experiment was run on a single NVIDIA Quadro 

TX 80 0 0 GPU with 48GB of video memory. 

Data processing RGB channels were normalized with means 

0.485, 0.456, 0.406) and standard deviations (0.229, 0.224, 0.225); 
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Fig. 2. Sample tumor negative and tumor positive images from PatchCamelyon 

dataset [68] . The yellow arrows point to examples of tumor cells. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Table 1 

Results on task 1. AUROC = area under the re- 

ceiver operator characteristic curve. FNR = false 

negative rate. Values shown are means across 

three runs. 

Model Pretraining AUROC FNR 

ResNet18 None 0.929 0.243 

ResNet18 ImageNet 0.933 0.250 

ResNet18 SSL 0.943 0.239 

ResNet50 None 0.921 0.249 

ResNet50 ImageNet 0.943 0.217 

R26-ViT None 0.943 0.271 

R26-ViT ImageNet 0.962 0.191 
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hese values are the means and standard deviations of the Im- 

geNet training set. When using the R26-ViT or self-supervised 

esNet18, images were transformed to range [ −1 , 1] to match the 

ormalization used in the pretraining. Images were resized to 

24 × 224 with bicubic interpolation for R26-ViT and ResNet50, 

nd bilinear interpolation for ResNet18. During training, images 

ere randomly flipped horizontally or vertically. 

Evaluation Final models were chosen based on lowest cross en- 

ropy loss on the validation set. AUROC, F1-score (threshold = 0.5), 

alse negative rate, false positive rate, true negative rate, and true 

ositive rate were calculated using torchmetrics [78] . Champ- 

it includes a script to perform this evaluation automatically using 

 single command (see Section 2.1 ). 

. Results 

The main result of this work is the ChampKit software. Champ- 

it is a toolkit that enables users to evaluate many deep learning 

rchitectures on histopathology patch classification tasks. The soft- 

are is reproducible, curates datasets automatically, and is easy 

o extend with custom datasets and models. In our experiments, 

hampKit facilitated the assessment of three deep neural network 

rchitectures across six datasets, including comparing training from 

andomly initialized weights and transfer learning. Results for all 

asks are available in Figures S1, S2, and S3. In the following sub- 

ections, we report AUROC and false negative rate as these met- 

ics are the most suitable for these tasks. Additional metrics are 

eported in Supplementary Tables S2-S7. 

.1. Task 1: Identification of areas containing tumor cells 

Identification of areas with tumor cells is critical in clinical 

istopathology. Tumor cells can have varied appearances and can 

e challenging to detect. In particular, small nests of tumor cells 

 < 100 cells) might be difficult to detect, and this is one case 

here automated deep learning algorithms can be highly useful. 

his is especially true in sentinel lymph node biopsies, which are 

erformed to determine whether cells from primary tumor have 

etastasized. False negatives are unacceptable in this situation, 

nd so deep learning methods for this task must be rigorously 

valuated. We have included detection of areas containing tumor 

ells as task 1 in our benchmark because of its clinical importance 

79] and already wide-spread application in deep learning. 

Dataset The PatchCamelyon dataset [68] is a processed and cu- 

ated version of the Camelyon16 dataset [80] containing 327,680 

umor and non-tumor images at 96 × 96 pixels ( 10 × magnifica- 

ion) from sentinel lymph node biopsies of breast cancer ( Fig. 1 , 

ig. 2 and Table S1). An image is positively labeled if the cen- 

er 32 × 32 pixel region contains at least one pixel of tumor. The 

atchCamelyon dataset is licensed under Creative Commons Zero 

1.0 Universal and is anonymized. PatchCamelyon is available for 

ownload [81] via Zenodo and is downloaded automatically when 

he ChampKit repository is initialized. 

Results For task 1, most models performed well according to AU- 

OC ( Tables 1 and S2). Because false negatives are an unwanted 

utcome for tumor classification, the FNR is a more relevant met- 

ic, and R26-ViT pretrained on ImageNet had the lowest over- 

ll FNR and the highest overall AUROC. ImageNet pretraining im- 

roved performance in R26-ViT and ResNet50 but pretraining did 

ot improve ResNet18. 

.2. Task 2: identification of areas containing tumor-infiltrating 

ymphocytes 

Tumor-infiltrating lymphocytes (TILs) are clinically useful as 

rognostic biomarkers, related to the degree of immune response 
5

gainst a cancer. TIL quantification is important for predicting sur- 

ival outcomes and guiding treatment decisions [82–85] . TILs tend 

o be 8–12 μm in diameter with a dark, ovoid nucleus and scant 

ytoplasm [86] . Despite the subtle qualitative differences of TILs 

cross image patches, pathologists can identify TILs through visual 

nspection. However, in practice, they tend to characterize only a 

mall number of microscopic fields of view [79] . More detailed 

rognostic patterns can be made by mapping TILs at a whole- 

lide-level [87] . Thus, it would be greatly beneficial to clinicians 

o identify areas that contain TILs across histopathology slides 

36,37,84,88] . Deep learning has the potential to address major 

rawbacks of manual TIL scoring: inter-observer variability and the 

calability of TIL detection. In response, there has been much inter- 

st in applying deep neural networks to this task [36–38,83,89,90] . 

hus, task 2 consists of pan-cancer identification of regions con- 

aining TILs because of its tremendous clinical relevance and pop- 

larity in deep learning. 

Dataset The dataset for task 2 consists of 304,097 TIL-positive 

nd TIL-negative images from [65] , a curated subset of the data 

resented in [36,37] ( Fig. 3 and Table S1). This dataset includes 23 

ifferent cancer types from The Cancer Genome Atlas (TCGA) [91] , 

epresenting a wide distribution of tissue types and stain differ- 

nces. Patches are from formalin-fixed, paraffin-embedded (FFPE) 

hole slide images. Images are 100 × 100 pixels at 0.5 μm / pixel 

nd are positive if they contain at least two TILs. No stain nor- 

alization was applied to the images. The data is licensed un- 

er Creative Commons Attribution 4.0 International. Images are 

nonymized, and there is no overlap in TCGA participants across 

ata splits. This dataset is available for download via Zenodo 
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Fig. 3. Sample images from TILs dataset [65] . The yellow arrows point to exam- 

ples of TILs. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Table 2 

Results on task 2 (TIL detection). Values shown 

are means across three runs. 

Model Pretraining AUROC FNR 

ResNet18 None 0.970 0.252 

ResNet18 ImageNet 0.969 0.256 

ResNet18 SSL 0.967 0.275 

ResNet50 None 0.969 0.241 

ResNet50 ImageNet 0.968 0.253 

R26-ViT None 0.943 0.464 

R26-ViT ImageNet 0.974 0.246 
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Fig. 4. Sample images from MSI datasets. Histologic features of MSI include poorly 

differentiated cells, signet ring cells, mucinous histopathology, cribriforming, and 

lymphocytic infiltrate [92] . FFPE and frozen are two different types of tissue prepa- 

rations. 
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65] and is downloaded automatically when the user initializes 

hampKit. 

Results In general, all of the tested models do well on task 2 

 Tables 2 and S3). ResNet18 and ResNet50 are relatively consis- 

ent across pretraining strategies, though SSL pretraining resulted 

n slightly worse performance. The randomly initialized R26-ViT 

erformed most poorly and had a large spread in AUROC and FNR 

cross three runs. However, pretraining on ImageNet brought per- 

ormance of R26-ViT in line with that of the ResNets, and indeed 

his model was best based on AUROC and FNR. 

.3. Tasks 3–5: Microsatellite instability detection 

Microsatellite instability (MSI) is an important prognostic clin- 

cal biomarker and has generated strong interest in recent years. 

SI causes an abundance of DNA mutations and the formation 

f neoantigens, which activate the immune system, and causes 

hanges in tissue morphology [86,92,93] . MSI is a useful clinical 

iomarker and is an indicator for PD-1/PD-L1 blocking therapies, 

ike pembrolizumab [94–98] . [99] recently found that their PD-1- 

locking therapy led to remission in all 18 study participants. If a 

athologist suspects an MSI phenotype, the standard of care is to 

onduct confirmatory molecular testing. Previously, [26] found that 

hey could potentially avoid the time and cost of molecular testing 

y detecting MSI directly from histopathology. Many similar stud- 

es have been conducted [6,29,100–104] , highlighting the impor- 

ance of and excitement around MSI. We have included MSI detec- 

ion in different cancer types and tissue preparations as tasks 3–5 

ecause of the strong interest in predicting MSI from histopathol- 

gy and the clinical relevance of MSI. 
6 
Dataset MSI data was curated from [26] , which includes images 

rom formalin-fixed, paraffin-embedded samples of colorectal car- 

inoma (CRC) and stomach adenocarcinoma (STAD) [66] and im- 

ges from frozen samples of CRC [67] . All images are 224 × 224 

ixels at 0.5 μm / pixel ( Fig. 4 and Table S1). These datasets are 

ublicly available and licensed under Creative Commons Attri- 

ution 4.0 International, and all images are anonymized. These 

atasets are available for immediate download via Zenodo (task 

 [66] , task 4 [67] , and task 5 [66] ), and ChampKit automatically

ownloads and prepares these datasets. 

Results Overall, MSI detection was the most difficult task in- 

luded in ChampKit ( Table 3 ). In Task 3, the AUROC and FNR of the

esNets were consistent across pretraining strategies (Table S4). 

andomly initialized R26-ViT had the worst AUROC and but was 

mproved significantly by ImageNet pretraining. The FNR of this 

odel was highly variable across the three runs but was made 

ore consistent with ImageNet pretraining. In Task 4, interestingly 

he randomly initialized R26-ViT had the worst AUROC but the best 

NR, and pretraining with ImageNet significantly improved the AU- 

OC but worsened the FNR (Table S5). ImageNet pretraining wors- 

ned AUROC for the ResNets, and SSL pretraining resulted in the 

oorest performance for ResNet18. In Task 5, ImageNet pretraining 

nly helped ResNet50. For all other models, pretraining resulted in 

orse AUROC and FNR (Table S6). 

.4. Task 6: Precancerous versus benign 

Colonoscopies are an important screening test for colorectal 

arcinoma. Polyps are commonly found during the procedure [105] , 

nd these polyps can be benign, precancerous, or cancerous. It is 

ritical to correctly classify a benign polyp from one with cancer- 

us potential because cancerous polyps might indicate need for ad- 

itional treatment, but distinguishing between these remains chal- 

enging [106] . False negatives are unacceptable in this task, and as 

uch, there is significant interest in using deep learning to robustly 

etect precancerous polyps [107–109] . Due to the clinical impor- 

ance of detecting precancerous colorectal polyps and the growing 

nterest in applying deep learning to this problem, we elected to 

se the MHIST dataset [64] for task 6. 

Dataset This dataset includes images of hyperplastic polyps and 

essile serrated adenomas ( Fig. 5 ). Hyperplasia is a benign over- 

rowth of cells, and an adenoma is a precancerous, low-grade dis- 

rdered growth of cells. MHIST consists of 3,152 images colorectal 

olyps. The images were labeled as hyperplastic or adenomas by 

even pathologists, and a binary classification is made by majority 
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Table 3 

Tasks 3–5 results. MSI detection in colorectal carconima (CRC) and stomach adenocar- 

cinoma (STAD) with FFPE or frozen preparations. Values shown are means across three 

runs. 

Task 3 Task 4 Task 5 

(CRC — FFPE) (CRC — frozen) (STAD — FFPE) 

Model Pretraining AUROC FNR AUROC FNR AUROC FNR 

ResNet18 None 0.661 0.628 0.708 0.632 0.710 0.555 

ResNet18 ImageNet 0.666 0.665 0.698 0.657 0.693 0.582 

ResNet18 SSL 0.667 0.652 0.667 0.683 0.696 0.571 

ResNet50 None 0.667 0.619 0.701 0.674 0.705 0.550 

ResNet50 ImageNet 0.668 0.646 0.689 0.677 0.728 0.520 

R26-ViT None 0.531 0.539 0.667 0.407 0.718 0.467 

R26-ViT ImageNet 0.676 0.697 0.732 0.656 0.709 0.586 

Fig. 5. Sample images from MHIST dataset [64] . Colonic crypts are outlined in yel- 

low. Please note the difference in appearance between hyperplasia and adenoma. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Table 4 

Results on task 6 (precancerous versus benign). 

Values shown are means across three runs. 

Model Pretraining AUROC FNR 

ResNet18 None 0.885 0.358 

ResNet18 ImageNet 0.919 0.288 

ResNet18 SSL 0.906 0.298 

ResNet50 None 0.823 0.596 

ResNet50 ImageNet 0.921 0.220 

R26-ViT None 0.770 0.608 

R26-ViT ImageNet 0.934 0.176 
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a

i  
ote. All images are 224 × 224 pixels at 8x magnification and are 

eidentified. The MHIST dataset is the smallest dataset included in 

hampKit (Table S1), and this provides a useful test of how well 

ifferent models and pretraining strategies cope with a small data 

egime. To access the dataset, one must complete an online form 

ccepting a dataset use agreement. The user should then receive 

n automated email with a link to download the dataset. Once 

he dataset is downloaded, ChampKit can be used to prepare the 

ataset and train and evaluate models on the data. 

Results Unlike in the previous tasks, pretraining dramatically 

mproved performance across all models ( Tables 4 and S7), con- 

istent with the original MHIST publication [64] . Randomly initial- 

zed R26-ViT had the worst AUROC and FNR of all models, but 

he ImageNet-pretrained model had the best performance over- 

ll. ResNet50 was similar in performance to R26-ViT. ResNet18 was 
7 
est among the randomly initialized models, consistent with [51] . 

e speculate that pretraining was especially important here be- 

ause of the small dataset size. Pretraining might provide useful 

nitializations for other small datasets. SSL pretraining, however, 

id not provide improvements over ImageNet pretraining. 

Hyperparameter search To demonstrate an evaluation of hyper- 

arameters with ChampKit, we conducted a grid search using the 

esNet18 model on Task 6, searching over the following param- 

ters: ImageNet-pretrained (yes, no), learning rate (0.01, 0.001, 

.0 0 01), batch size (16, 32, 64, 128), optimizer (Adam, AdamW, 

GD), freeze encoder (yes, no), augmentation (yes, no; augmenta- 

ion is horizontal and vertical flipping each with probabilities of 

.5), and training with automatic mixed precision (yes, no). “Freeze 

ncoder” means that the original representation learning layers are 

rozen and the appended multilayer perceptron is trainable. Of the 

xplored models, the AUROC ranged from 0.445 to 0.938, and F1 

core ranged from 0.0 to 0.825 (Fig. S4). This demonstrates the ef- 

ectiveness of using ChampKit to aid in hyperparameter search. 

.5. Identifying an optimal model for multi-class patch classification 

rom annotated whole slides 

To demonstrate the use of ChampKit with annotated slides and 

ulti-class classification, we evaluated models on patches sampled 

rom the PANDA dataset [72] . This dataset contains over 10,0 0 0 an-

otated biopsy images and uses the CC BY-SA-NC 4.0 license. In 

bout half of the dataset, regions of benign epithelium and differ- 

nt Gleason grades are segmented (Gleason 3, 4, and 5). The biopsy 

mages and annotations are stored as multi-resolution TIFF images 

 Fig. 6 a). We created a patch classification dataset using a subset 

f the annotated PANDA slides. A limitation of the PANDA dataset 

s that the Gleason segmentations are noisy, and this presents chal- 

enges when attempting to assign labels to extracted patches. We 

ave chosen not to include the patched PANDA dataset in the 

hampKit repository at this point because the noisy labels war- 

ant further cleaning of the data. Despite the limitations, this sec- 

ion demonstrates 1) how one can leverage annotated whole slide 

mages and 2) benchmark multi-class patch classification models 

ith ChampKit. 

Extracting patches from annotated whole slides In Section 2.1 , 

e described how one can prepare a patch classification dataset 

rom annotated whole slides, and we listed several tools. We opted 

o use Large Image [71] in a Python script to extract patches of 

28 × 128 pixels at 0.5 μm / pixel . In essence, we iterated through 

ll non-overlapping patches in an annotation image, and we kept a 

atch if it contained more than 10% of a label (not including back- 

round) and only one label (normal epithelium, Gleason 3, Gleason 

, or Gleason 5). The histology patch was then extracted from the 

ssociated biopsy slide (using the same coordinates as the patch 

n the mask image) and was saved as a PNG file in a label-specific
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Fig. 6. A sample prostate biopsy and extracted patches from the PANDA dataset [72] . This dataset includes over 10,0 0 0 biopsies and many have semantic segmentations of 

Gleason 3, 4, and 5, as well as normal epithelium. The annotations are noisy, as they were created using other machine learning models. For this reason, the patch labels 

are noisy too. 

Table 5 

Classification results for the patched PANDA dataset. The classes in this dataset are “be- 

nign”, “Gleason3 ′′ , and “Gleason 4 or5 ′′ . Values shown are the performance for the indi- 

cated class and are means across three runs. The labels for this dataset are noisy, which 

could explain the high false negative rates. 

Benign Gleason 3 Gleason 4 or 5 

Model Pretraining AUROC FNR AUROC FNR AUROC FNR 

ResNet18 None 0.791 0.048 0.619 1.000 0.865 0.418 

ResNet18 ImageNet 0.847 0.097 0.767 0.636 0.921 0.358 

ResNet18 SSL 0.853 0.095 0.776 0.660 0.919 0.331 

ResNet50 None 0.796 0.044 0.626 0.998 0.870 0.414 

ResNet50 ImageNet 0.835 0.076 0.769 0.695 0.906 0.366 

R26-ViT None 0.802 0.031 0.660 0.996 0.890 0.424 

R26-ViT ImageNet 0.836 0.085 0.766 0.648 0.910 0.383 
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irectory. This was done for over 5,0 0 0 biopsies in the PANDA 

ataset and resulted in a total of 1,621,011 benign, 2,220 Gleason 3, 

,722 Gleason 4, and 401 Gleason 5 patches. We then removed low 

ontrast images, because low contrast could have indicated glass 

r another area that we did not intend to sample. The dataset was 

ighly unbalanced at this point. To remedy this, we merged the 

leason 4 and Gleason 5 labels into a single class, “Gleason 4 or 

”, and we randomly sampled 5,0 0 0 benign patches. Please see 

ig. 6 b for a sample of extracted patches and Table S8 for the final

ataset size. 

Results We performed the same experiment as in Tasks 1–6: 

esNet18, ResNet50, and R26-ViT models were trained with or 

ithout transfer learning, and evaluation metrics were calculated 

n a held out test set. All experimental settings were the same ex- 

ept as in the previous tasks except the number of training epochs. 

odels were trained for a total of 50 epochs. Notably, this task 

ses three classes, whereas Tasks 1–6 are binary classifications. 

esNet18 models pretrained with self-supervised learning or Im- 

geNet performed best overall ( Tables 5 , S9–11). Models trained 

rom random initialization performed markedly worse than trans- 

er learning, often obtaining false negative rates close to 1.0 in 
8 
leason 3 classification. This is consistent with results on Task 6 

MHIST), a similarly small dataset, and further suggests that trans- 

er learning is beneficial in small data regimes. Classification per- 

ormance (specifically false negative rate) varied widely among the 

hree classes, reinforcing the need to evaluate the class-specific 

erformance of models. 

. Discussion and conclusion 

Here we introduce ChampKit, a reproducible toolkit for patch- 

ased image classification in histopathology. We use ChampKit to 

rovide baseline results for multiple models on six histopathology 

atasets. We found that transfer learning can improve classification 

erformance, but this is not consistent across tasks. It remains un- 

lear whether the scale of the histopathology features (i.e., magni- 

cation) plays a role in being amenable to transfer learning based 

n models pretrained on natural images. ChampKit enables the 

ystematic evaluation of transfer learning on patch-based image 

lassification, and we hope that it will greatly advance the knowl- 

dge of transfer learning and modeling innovations in histopathol- 

gy. ChampKit also allows users to identify optimal classification 
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odels for their own datasets. Our own group has used this tool to 

ccelerate our own research. Specifically, we used it to identify the 

est multi-class Gleason grade classification model for a private 

ataset of prostate whole slide images. We trained 33 models in a 

yperparameter search across several model architectures and data 

egularization techniques, which took approximately three days to 

omplete. We then identified the best model using the evaluation 

cript in ChampKit, and we applied this model to whole slides us- 

ng WSInfer [110] to obtain whole-specimen maps of Gleason grade 

or further analysis. The combination of ChampKit and WSInfer ac- 

elerated our work and can be explored further in future work. 

A major goal of ChampKit is to expedite a user’s search for 

n ideal classification model on their digital pathology dataset. 

his work makes use of two main components, namely timm (to 

rovide pre-trained models and training methods) and Weights 

nd Biases (for hyperparameter search, experiment logging, and 

rowser-based visualization of results). Other benchmarking toolk- 

ts exist, as discussed in Section 1.1 , but to our knowledge, no 

oolkit exists specifically for patch-based classification in digital 

athology. Compared to existing tools, we do not expect Champ- 

it to be more efficient in hyperparameter search or model train- 

ng. In fact, we use existing tools to implement these features, and 

s they are developed, they may become more efficient. Addition- 

lly, we do not expect the models developed with ChampKit to be 

ore accurate than models developed with other methods, in so 

ar as a similar hyperparameter space is explored. On the other 

and, the ChampKit training script is derived from timm and in- 

ludes many options that have been used to train state-of-the-art 

mageNet classifiers, and these options may also prove useful in 

igital pathology patch classification. 

ChampKit has several limitations. There are many deep learn- 

ng tasks in digital pathology, and ChampKit addresses only patch- 

ased classification. ChampKit can be modified to support other 

atch-based tasks, like segmentation, though this would require 

he addition of segmentation-specific architectures, data loading 

echanisms, loss functions, and evaluation metrics. If users would 

ike to benchmark semantic segmentation tasks, we refer them 

o OpenMMLab Semantic Segmentation Toolbox and Benchmark 

111] . Similarly, if users have slide-level classification tasks, we re- 

er them to the work of Laleh et al. [50] . Additionally, it is as-

umed that all patches have mutually exclusive labels, though we 

cknowledge that it is possible that patches can potentially have 

ultiple labels. ChampKit also does not perform pre-training on 

nes dataset and does not support self-supervised learning, and 

nstead relies on previously published models for transfer learning. 

his limits the diversity of models that one may evaluate. We en- 

ourage the community to provide feedback, suggest features, and 

ontribute new functionality to ChampKit via our GitHub reposi- 

ory. 

The current study has several limitations as well. The baseline 

omparisons were limited to three network architectures with dif- 

erent pretrained weights, but this is a tiny sample of available ar- 

hitectures accessible to ChampKit. All models in this manuscript 

ere also trained using identical hyperparameters for each dataset 

o make fair comparisons. Nevertheless, further optimization of 

ach model could improve performance but was not explored in 

his study to maintain consistency. Thus, the benchmarks per- 

ormed establish a lower-bound of what is achievable. As the scope 

f this study was to introduce the ChampKit software, a follow up 

tudy using this tool can build upon our work to elucidate model- 

ng choices that are generalizable as part of a more comprehensive 

nalysis. 

In summary, ChampKit enables users to benchmark patch 

lassification models and identify the best model for their 

ataset, which we hope will accelerate deep learning research in 

istopathology. 
9 
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