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A pan-grass transcriptomereveals patterns
of cellular divergencein crops
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Different plant species within the grasses were parallel targets of domestication,
givingrise to crops with distinct evolutionary histories and traits'. Key traits that

distinguish these species are mediated by specialized cell types?. Here we compare
the transcriptomes of root cells in three grass species—Zea mays, Sorghum bicolor and
Setariaviridis. We show that single-cell and single-nucleus RNA sequencing provide
complementary readouts of cell identity in dicots and monocots, warranting a
combined analysis. Cell types were mapped across species to identify robust,
orthologous marker genes. The comparative cellular analysis shows that the
transcriptomes of some cell types diverged more rapidly than those of others—driven,
in part, by recruitment of gene modules from other cell types. The data also show that
arecent whole-genome duplication provides arich source of new, highly localized
gene expression domains that favour fast-evolving cell types. Together, the cell-by-cell
comparative analysis shows how fine-scale cellular profiling can extract conserved
modules from a pan transcriptome and provide insight on the evolution of cells that
mediate key functionsin crops.

Single-cell mRNA profiling has enabled new opportunities to study
cellular evolution by comparing gene expression in specialized cells
across species®*. In plants, high-resolution cellular profiling also has
the potential to associate cell-level transcriptional regulation with key
agricultural traits, many of which are mediated by specialized cells’.

Z.mays (maize) is astaple crop and . bicolor (sorghum) is animpor-
tantdryland crop and biofuel candidate that is closely related to maize,
sharinga common ancestor about 12 million years ago®’. However, the
two species differ substantially in key traits such as drought and chilling
tolerance, and release of root exudates that shape soil interactions®°.
The importance of the two crops, their evolutionary proximity, and
their functional differences present an opportunity for comparative
analysis of cellular evolution in plants™?, In addition, 5 to 12 million
years ago, subsequent to the shared ancestry with sorghum, maize
underwent awhole-genome duplication (WGD), probably following a
hybridization” (allopolypoidy). Comparing patterns of gene expres-
sionat the celllevel inmaize, sorghumand outgroup S. viridis (Setaria)
provides an opportunity to examine cellular evolution and the role of
gene duplications, including the paralogous genes generated by the
WGD™ (homeologues).

Cells provide depth and nuclei provide breadth

Single-cell analyses in plants have relied on the generation of proto-
plasts by enzymatic digestion of cell walls®. However, certain tissues
and some species, including sorghum, are recalcitrant to digestion.
Thereisalso historic concernabout the effects of protoplast generation

on the cellular transcriptome, leading to a growing interest in nuclear
profiling'®8, To assess the fidelity of nuclear profiling in detail across
dicots and monocots, we first compared single-cell profiles (hereaf-
ter referred to as cell profiles) with single-nucleus profiles (hereafter
referred to as nucleus profiles) in Arabidopsis thaliana (a dicot model
with plentiful resources, 15,967 cells and 17,373 nuclei) and Z. mays
(amonocotmodel, 4,235 cells” and 2,668 nuclei) (Supplementary Table1).

The number of unique molecular indices (UMIs) was ten times
(Arabidopsis) and six times (Z. mays) higher in cell profiles thanin
nucleus profiles (Extended Data Fig. 1a), similar to animal studies®.
Accordingly, the average number of genes detected was 2.7 times
(Arabidopsis) and 1.4 times (Z. mays) higher in cell profiles than in
nucleus profiles (Extended Data Fig. 1b and Supplementary Table 1).
However, despite the lower mRNA content, nucleus profiling detected
89% (Arabidopsis) and 88% (Z. mays) of the total genes present in cell
profiles (Supplementary Table1).

‘Pseudo-bulked’ transcriptomes derived from both celland nucleus
profiles displayed a high correlation to whole-root transcriptomes
(r=0.7-0.8; Extended Data Fig. 1c), confirming that both sampling
methods generally reflected the expression patterns in intact tissue.

In both Arabidopsis and maize, cell and nucleus profiles enabled
the generation of UMAP clusters corresponding to all the major cell
identities” (Fig. 1a-c and Extended Data Figs. 2 and 3). However, in
both species, the nuclear dataset generated fewer distinct clusters
and frequently could not distinguish between closely related or
subcellular identities (Extended Data Figs. 2 and 3). For example,
in maize, stele cells contained a subcluster that we identified as
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Fig.1|Cell and nucleus profilesidentify the same markers but show
different sensitivities and artifacts. a,b, Uniform manifold approximation
and projection (UMAP) of combined Arabidopsis cell and nucleus transcriptomic
profiles, with clusters coloured according to assigned cell identity (a) or cell
profile versus nucleus profile origin (b). ¢, Dot plots of Arabidopsis marker
genesincellor nucleus profiles, showingall the cell types defined from clusters
inthisstudy.d, Heat maps of the 10 highest-scoring marker genes for each cell
type found using Seurat (Methods). Top, the highest-scoring markersin the

xylem cells, whereas no such subcluster was apparent in the nuclear
cluster analysis (Extended Data Fig. 3). Using a down-sampling
approach on each dataset, a general rule of thumb emerged whereby
twice as many nuclei were needed to discover the same number of
clusters as cells or protoplasts (Extended Data Fig. 4a,b). Thus,
the shallower depth of nucleus profiles provides less resolution
for classification of cell identity—a drawback that down-sampling
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single-cell dataset (left) and their expressionin the single-nucleus dataset
(right). Bottom, the highest-scoring markersin the single-nucleus dataset (left)
and their expressioninthe single-cell dataset (right). e, Proportion of cell
profiles versus nucleus profiles presentin each cell-type cluster. f, The difference
inthe prevalence of Gene Ontology (GO) terms among differentially expressed
genesineach cluster between cell (top) and nucleus (bottom) profiles. Col,
columella; LRC, lateral root cap; QC, quiescent centre.

showed we could rectify, at least in part, by increasing the number
of nuclei.

Combined and independent analysis of single-cell and single-nucleus
transcriptomes generated clusters that reflected the same underly-
ing biological patterns (Fig. 1a—c and Extended Data Fig. 4c,d). The
highest-scoring markers extracted from nucleus profiles generally
matched the highest-scoring ones extracted from cell profiles (Fig. 1c,d
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Fig.2|Mapping cellidentities from maize to sorghum and gene duplicate
analysis. a, UMAP of combined maize single-cell and single-nucleus
transcriptomic profiles. Clusters are coloured and labelled according to cell
identity. b, Insitu hybridizationin maize (top) and sorghum (bottom). The
maize phloem marker is orthologous to the sorghum phloem marker. Bottom,
green colouration corresponds to asorghum endodermal marker that
highlights the stele boundary. The minimum and maximum values for each
channelinthe fluorescenceimages have been adjusted to show the localization
moreclearlyinthe mergedimage. UMAPs next to theimages show the respective
expression of each gene in the maize-sorghum co-clustered cell profiles,

and Extended DataFig. 4d). In addition, the assignment of cells to spe-
cific clusters was stable whether celland nucleus profiles were clustered
alone or together (Supplementary Table 2).

One advantage of nucleus profiles was their ability to capture cells
from tissues that are recalcitrant to enzymatic digestion, improving
therepresentation of cell identities (Fig. 1e and Extended Data Fig. 3d).
Forexample, inmaize, we detected aunique cluster innucleus profiling
thatwas not detected in cell profiling, which we confirmed as columella
cells using previously published RNA-sequencing (RNA-seq) profiles
of hand-sectioned root tissue®.

In Arabidopsis, we found that 14% of total genes (3,218) were dif-
ferentially expressed between cell profiles and nucleus profiles in
a cluster-by-cluster analysis (Supplementary Table 3). Cell profiles
showed a higher proportion of stress-related genes (Fig. 1fand Extended
DataFig. 5a,b). A similar analysis in maize, sorghumand Setaria also sup-
ported alower stress response in nucleus profiles than in cell profiles
(Supplementary Table 3). However, most of the differences between
celland nucleus profiles appeared to be related to compartmental RNA
stability. For example, mRNAs enriched in nucleus versus cell profiles
significantly overlapped with transcripts shown to have higher decay
rates in the cytoplasm? (P=1.98 x 10™"; Extended Data Fig. 5¢). We
conclude that combining cell and nucleus profiles has the advantage
of uncovering cell type-specific protoplast responsive genes, while
also providing depthin transcriptional readouts.

Conserved cell-type markersin cereals

Given the comprehensive coverage of a combined analysis, we gen-
erated cell and nucleus profiles to investigate cellular evolution in
the maize-sorghum-Setaria clade. Thus, we generated profiles for

which were used initially to determine their expression pattern. ¢, Molecular
cartography, showing markers used for the cell-cluster annotation of clusters
inmaize.d, Conceptual schematic of hypothetical expression patterns between
duplicate gene pairs following a metric on the following scale: fulldominance, -1;
equal co-expression, O; regulatory subfunctionalization, 1. Example
intermediate states are also shown. Blue shows regulatory neofunctionalization.
e.f, Distribution of duplicate gene expression patterns using the metric
describedind for WGD homeologues (e) and dispersed duplicate pairs (f)
having asimilar median Ks (synonymous substitution rate). Number of genes:
WGD homeologues, 10,104; dispersed duplicates, 7,552.

sorghum (3,510 cells and 7,620 nuclei) and Setaria (10,613 cells and
12,192 nuclei) (Supplementary Table 1). We took advantage of previ-
ous comparative genomic sequence analyses in maize, sorghum and
Setaria that mapped orthologues among the three species, including
the homeologues created by WGD in maize™ " (hereafter referred to
subgenome M1and M2to refer to maize’s two parental genomes arising
from hybridization). We used a set of single-copy orthologues in the
three speciesto cluster all cellular and nuclear profiles togetherinasin-
gle step and then predicted cell identity using known cell type-specific
marker genes for maize® (Fig. 2a, Supplementary Table 1and Methods).

To validate the mapping, we: (1) performed an independent
MetaNeighbor analysis, which uses neighbour voting to quantify
the similarity of cell clusters across datasets using a given marker
set of genes and their orthologues; (2) used an additional machine
learning-based clustering method, scGen, to confirm the cluster
membership? (Extended Data Fig. 6); (3) conducted whole-mount
in situ hybridizations in maize and sorghum (Fig. 2b and Extended
Data Figs. 7 and 8); and (4) performed spatial transcriptomics in
maize (Fig. 2c and Extended Data Fig. 7), altogether confirming the
maize-to-sorghum-to-Setaria mapping of cellidentities. Thus, we could
use the well-annotated maize cell-type map for rapid generation of a
high-confidence cellular-resolution ‘pan-transcriptome’ of these key
crop species, including hundreds of new cell type-specific marker genes
(Supplementary Table 4).

One potential use of cell type-specific pan-transcriptome datais to
search for highly localized and conserved gene expression modules.
We used MINI-EX toidentify cell type-specific networks across the three
grassspecies®. The analysis revealed 15 transcription factors and puta-
tive targets (regulons) that were conserved in specific cell types across
all three species (Extended Data Fig. 9a and Supplementary Table 5).
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withratios of orthologous gene expression in maize and sorghumin the two
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orthologueisexpressedinthesame celltype as asingle maize homeologue
(either M1or M2). The third and fourth box plots represent cases in which both
homeologues are expressed in the same cells. The fifth box plot shows the
ratiowhenbothofthe co-expressed homeologues areadded in the numerator
over sorghum expression level in the denominator. Dosage compensationis
inferred from a patternin whichlone expression of ahomeologueis higher
than expression of co-expressed homeologues. b, Tau (7) value reflecting the
degree of cell specificity in different expression categories within a cell, if
MlorMz2is dominantorifMland M2 are co-expressed. ¢, Ka (non-synonymous
substitution rate)/Ks distribution of WGD homeologues: when either M1or M2
isdominantinacell type, the dominant homeologue displays stronger purifying
selection than the non-dominanthomeologue. d, The conservation rate of
Cis-regulatory elements (CREs) between duplicate pairsinintronssplitinto

In 5 out of the 15 cases, mutants in predicted transcription factors
or direct Arabidopsis orthologues have been shown to exhibit cell
type-specific phenotypes corresponding to the conserved regulon
localization® %, These results highlight the ability of comparative
cell-type analyses to reveal conserved cellular mechanisms across
species and connect specific genes to specific cellular functions.

The effect of maize WGD on cellular identity

The cellular map across species also provided the opportunity to exam-
ine how homologous cell types have diverged over the millions of years
since the three species split. We first focused on the effects of gene
duplication, comparing homeologues from the WGD to several other
duplicate classes not identified as within WGD segments: gene pairs
that arose from tandem, transposon-mediated, proximal (separated
by up totengenes) and dispersed (separated by more than ten genes)
duplicate pairs" (Methods).

Weused concordance betweensorghumand Setariatoinfer ancestral
expression domains for each duplicate gene pair. We then developed
asimple metric to represent the degree of overlap versus comple-
mentarity in cellular domains between duplicate pairs, ranging from
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co-expressed and dominant categories. e, GO terms that are enriched within
each expression category.S,M1and M2, unique expression of the sorghum
orthologue or one maizehomeologue; S + Mland S + M2, one maize homeologue
isexpressedinthesame cell type as the sorghum orthologue. S + M1+M2, both
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dispersed,n=1,448tandem.a,b, One-way ANOVA followed by Tukey test for

all pairwise comparisons. Groups that do notshare aletter are significantly
different fromeach other,unmarked letters refer to tests between WGD
categoriesdescribedinaand letters with prime symbol refer to tests between
proximal duplicate categories (P< 0.05). ¢, Two-sided Wilcoxon test.d, Two-
sided Wilcoxon signed-rank test, with Benjaminiand Hochberg adjusted Pvalue.
Inboxplots, the centrelineis the median, the top and bottom hinges correspond
tothefirstand third quartiles, respectively, whiskers extend to quartiles +1.5 x
interquartile range and dots show potential outliers. NS, not significant.

consistently higher expression of one homeologue (dominance), to
co-expression and thento regulatory subfunctionalization of homeo-
logue pair expression®** (Fig. 2d). We thenidentified duplicated genes
that expanded their expression domain to new cell types compared
with ancestral domains®?? (regulatory neofunctionalization; Fig. 2d
and Methods). We note that we cannot determine whether differences
in gene expression between duplicated genes occurred in the parent
genomes or, more probably, after WGD™****, Here we use the terms neo-
and subfunctionalization to refer strictly to patternsin transcriptional
domains at the cell-type level.

Overall, WGD homeologues made a more prevalent contribution
to expression domain expansion (neofunctionalization) than other
classes of duplicates. This was because they included a relatively low
proportion of the co-expressed category, which showed no neofunc-
tionalization (Fig. 2e,f and Extended Data Fig. 9b-d). Rather, WGD
homeologues were enriched in dominance and subfunctionalized
categories, both of which exhibited high levels of neofunctionalization
innew cell types (Fig. 2e,fand Extended Data Fig. 9b-d). This trend did
notappear tobe drivenby the age of the duplication as other duplicate
classes had similar mean Ks values to WGD* (Methods, Extended Data
Fig.9b-h).
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In keeping with genome balance models, we observed that
co-expressed WGD homeologues showed expression patterns indic-
ative of dosage compensation®**, whereas this pattern was weaker
or non-existent in other duplicate classes (Fig. 3a and Extended Data
Fig.10a-c).

In addition, 66% of all regulatory neofunctionalization cases in the
WGD came from the dominance category, with a slightly higher pro-
portion from the M1subgenome® (Supplementary Table 6). Further-
more, dominant homeologues showed significantly higher cell-type
specificity (r) than co-expressed homeologues (Fig. 3b and Methods).
Together, these trends meant that gene pairs that exhibited dominance
patterns after WGD made the largest contribution to the transcriptional
divergence of cell types.

As found in previous studies***’, dominant members of a homeo-
logue pair showed greater purifying selection (Fig. 3c). In addition, we
found that homeologuesinthe WGD class showed amarked decreasein
the conservation of intronic cis-regulatory sites between the dominant
and non-dominant homeologue compared with homeologues in the
co-expressed class—a feature that is not observed in other duplicate
classesorinpromoters (Fig.3d, Extended DataFig.10d and Supplemen-
tary Table 6). This could represent a possible loss of intron-mediated
expression enhancement in the non-dominant homeologue. These
two genomic features are consistent with previous findings that
suggest that dominant homeologues may have retained ancestral gene
functions®***?, whereas non-dominant homeologues may adopt new
functions or become pseudogenes.

However, pseudogenization appears to be a less likely possibility.
Whenwe analysed the same duplicate homeologue pairsin single-cell
profiles of the maize inflorescence*’, we found that a subset (32%)

Two-sided Hanley McNeil test. *P < 0.05,**P< 0.01, ***P < 0.001. Error bars
indicate standard error. b,c, Heat maps showing expression of mucilage genes
inmaize (b), sorghum (c) and Setaria (d) columella cells and cortex layers.

of non-dominant homeologues in the root were instead dominant
in cells of the inflorescence (Supplementary Table 6). Together, the
relaxed purifying selection and the switch indominance suggests that
non-dominant homeologues may specialize in asubset of developmen-
tal contexts outside the root.

The dominance group showed an enrichment for GO term annota-
tions related to immunity and response to stimulus or stress, even
after removal of all potential protoplast-induced genes (Fig. 3e, Sup-
plementary Table 7and Methods). Thus, new cellular gene expression
driven largely by WGD may contribute to tolerance to environmental
stress, either constitutively or under our experimental conditions.

In addition, although subfunctionalization of cell-type domains
between homeologue pairs was a minor outcome, this category of
homeologues showed the highest rate of neofunctionalization (59%)
compared withany other duplicate class (for example, in Fig. 2e,f and
Extended DataFig. 9b-d). The trend is consistent with modelsin which
subfunctionalizationis a transitory state that facilitates neofunction-
alization*. Ultimately, 34% of all the neofunctionalized homeologues
(thatis, those with new cell-type expression after the WGD) came from
the subfunctionalized category. Thus, although subfunctionalization
viaadopting complementary expression domains wasrelatively rare,
itappeared to provide a high-probability route to cell-type domain
expansion (neofunctionalization). This propensity for neofunctionali-
zation made the subfunctionalized gene pair category asecond major
contributor to cellular divergence.

Finally, certain cell types appeared to be more likely domain-
expansion destinations than others (Fig. 3f). The trends were similar
for all duplicate classes, with the specialized vascular cells and root
cap cells most frequently comprising the new expression domains.

Nature | Vol 617 | 25 May 2023 | 789



Article

Cortex was the least frequent sink for new domains, although it was
one of the most frequent source domains (Fig. 3f and Extended data
Fig.10e-h). Overall, the datashow how gene duplication, particularly
WGD, frequently provides genetic material for the transcriptional
divergence of specific cell types.

Root slime drives cellular divergence

To explore cellular divergence more broadly, we next examined the
entire transcriptome of each cell cluster to determine which cell types
were most substantially changed in maize and sorghum compared
with the outgroup Setaria.For all comparative analyses, we combined
celland nucleus profile datasets, using MetaNeighbor to compare cell
identities across species (Fig. 4a).

The analysis showed thatinboth maize and sorghum, the transcrip-
tomes of columella, LRC, cortex subcluster 2, endodermis, pericycle
and stele cell types are more divergent than other cell types when
compared with Setaria (Fig.4a). This shared divergence suggests that
the function of these tissues diverged from Setaria before the maize-
sorghum split.In addition, certain cell types—such as cortex subcluster
land 4, andseveral stele clusters—were significantly diverged between
maize and sorghum, implying additional divergence after the maize-
sorghum split. We note that the fast-evolving cell types were largely
consistent with the sink tissues favoured for neofunctionalization
by duplicate genes (compare Fig. 4a with Fig. 3f). Of note, in maize,
columellawas among the most divergent cell types relative to Setaria
(Fig. 4a).

Tofurtherinvestigate the potential functions involvedin columella
divergence, we used a measure of co-expression conservation to
identify transcripts within clusters of interest that showed divergent
patterns of expression across species in co-expression networks*
(Supplementary Table 8). We identified 443 genes displaying high
expression divergence across species in columella cells. Many of
these genes showed marked changesin cell-type localizationbetween
species, such as DOWNY MILDEW RESISTANT 6 (DMR6), which is
expressedin columellaand epidermisinmaize andin cortex and endo-
dermis in sorghum (Extended Data Fig. 10i,j).

GO term analysis of the cortex-to-columella orthologues in maize
showed enrichment in enzymes leading to the synthesis of mannose,
raffinose and oligosaccharides (Supplementary Table 8). These sugars
and carbohydrates are key components of mucilage (also known as
slime), which can be secreted from many different cell types of the
rootand has multiple roles, such as the shaping of the root-associated
microbiome and lubricating the root-soil interface®***.

We then examined all genes implicated in mucilage synthesis®4¢,
finding the same general pattern of cortical expression in sorghum
and Setaria and columella expression in maize (Fig. 4b-d).

Overall, these results suggest that maize underwent arelatively rapid
cellular divergencein columella, in part, by recruiting amucilage gene
expression module from a putatively ancestral expression patternin
the cortex. The most parsimonious model is that the recruitment of
the mucilage module occurred before the maize WGD, as both maize
homeologuesin the mucilage-annotated genes tended to share expres-
sion in the columella. However, the set of mucilage genes showed a
significant overlap with genes previously defined as under selection
during domestication*’ (Supplementary Table 8), suggesting that they
have aroleinagricultural traits.

Previous studies in animals have shown co-option of gene modules
from one cell type to another as a mechanism of cellular diversifica-
tion*8. We tested how frequently gene expression modules, such as
the mucilage group, switched cellular localization by focusing on
regulons that have different cell type-specific expression patternsin
maize compared with sorghum and/or Setaria (swapped regulons).
Although annotated regulons comprise only a subset of all potential
downstream targets of transcription factors, weidentified more than
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50 swapped modules across cell types. The swapped modules are prime
candidates for genes that could mediate differences in cellular traits
between maize and related species (Supplementary Table 5).

Overall, we identify two major trends in cellular divergence over a
taxonomicspan of 50 million years*. First, after WGD duplication, gene
pairsinwhich one homeologue shows expression dominance have the
strongestrolein cell type-specific divergence. However, the rare class
of subfunctionalized genes have the most likely evolutionary route to
neofunctionalization. Second, homologous cell types appear to diverge
in part by swapping gene expression modules*®, such as the mucilage
genesfound tobe expressed in the maize columella. Finally, weillustrate
how single-cell techniques canrapidly generate a pan-transcriptome to
yieldinsightsinto plant cell-type evolutionand provide new methods
toexplore the connection between genetic modules and cellular traits
inimportant crop species.
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Methods

Plant growth conditions

Seeds of A. thaliana Col-0,Z. maysB73, S. bicolor Btx623, S. viridis A10.1
and P1669942 (US National Plant Germplasm System) were used in this
study. Arabidopsis seeds were imbibed for 48 h at 4 °C before being
surface-sterilized and placed on a nylon mesh (110 pm) within plates
containing agar with 0.5x Murashige and Skoog salts (Sigma M5524),
0.5% sucrose, and 0.8% Agar (Sigma A1296). Plants were transferred
verticallyingrowthchamberssetto23 °Candalé hlight/8 hdark cycle
(400 umol m2s™). Root tips were collected 7 days after transfer, cut
with a feather scalpel at 150 pm from the tip, and directly transferred
to either the protoplast solution at room temperature or the nuclei
lysis buffer at 4 °C.

Maize and sorghum seeds were sterilized using bleach (1.5% active
chloride) and 0.001% Tween-20 for 20 min and then 4% chloramine
T for 20 min. Setaria seed germination was induced by incubation in
4% liquid smoke (Colgin, Authentic Natural Hickory) at 29 °C for 24 h.
Then, Setaria seeds were sterilized using bleach (1.5% active chloride)
and 0.001% Tween-20 for 20 min. All seeds were placed between two
layers of brown paper (Anchor Paper, 38# regular), rolled, and covered
withaluminium foil to prevent roots from exposure to direct light. Rolls
wereplacedinabucket of tap water under 16 hlight at 28°C and 8 hdark
at24°C cycles (250 pumol m2s™) for 7 days (15 days for Setaria) before
collecting theroot tips. Primary and seminal root tips were cut using a
finescalpelat 0.5 cmfromthetip for maize and sorghum, 0.2 cm from
thetip for Setaria, and transferred either to the pre-incubation solution
for single-cell processing or to the nuclei lysis buffer.

Protoplast generation

Protoplasts were generated from primary and seminal roots as
described previously*. For maize, sorghumand Setaria, roots were cut
abovethe meristem as described above and placed in pretreatment solu-
tion containing L-cysteine for 40 min (3% sorbitol, 2.5 mM L-cysteine,
20 mMMES, pH 5.8 with Tris) to improve enzyme efficiency and cell wall
digestion. Cell walls were digested for 90 mininan enzyme solution opti-
mized for monocot roots (mannitol 8% corresponding to 400 mM, MES
20 mM, KCI20 mM, CaCl,40 mM, pH 5.8 with Tris, 100 pg mI™ BSA; 2%
cellulase ‘Onozuka’RS, 1.2% cellulase ‘Onozuka’R10, 0.4% macerozyme
R-10 (all three Yakult Pharmaceutical); and 0.36% pectolyase Y-23
(MP Biomedicals)). Protoplasts were then filtered through a40-pm cell
strainer and transferred to microcentrifuge tubes for centrifugation.

For Arabidopsis, roots were cut above the meristem as described
above and placed in an enzyme solution optimized for Arabidopsis
(mannitol 8%, 400 mM, MES 20 mM, KCI 20 mM, CaCl, 40 mM, pH
5.8 with Tris, BSA 100 pg ml™, 1.2% cellulase ‘Onozuka’ R10, 0.4%
macerozyme R-10 (both Yakult Pharmaceutical)). Protoplasts were
then filtered through a 20-pum cell strainer and transferred to micro-
centrifuge tubes for centrifugation.

Protoplasts were centrifuged for 3 minat 500gand the pellets were
washed and resuspended in washing solution twice (mannitol 8%, MES
20 mM, KCI20 mM, CaCl,10 mM, pH 5.8 with Tris,and BSA100 pg ml™)
and used immediately for single-cell RNA-seq. An aliquot of protoplasts
was stained with trypan blue (0.2% final) and checked on a haemato-
cytometer under the microscope to determine cell viability and con-
centration before loading into the 10x Chromium.

Nucleiextraction

For all species, root tips were directly transferred to pre-chilled lysis
buffer (0.3M sucrose, 15 mM Tris HCl at pH 8, 60 mM KCl, 15 mM NacCl,
2mMEDTA, 0.5 mM Spermine, 0.5 mM Spermidine, 15 mM MES, 0.1%
Triton, 5 mM DTT*, 1 mM PMSF*, 1% Plant Protease Inhibitors* 1 ml
(Sigma P9599), BSA* 0.4%, RNase inhibitor* 0.2 ug pl™; asterisks indi-
catereagentsadded at the last minute). Roots were chopped onice with
scalpel blades for 5-10 min and transferred into a pre-chilled dounce

homogenizer (Kimble, 885302). The pestle was moved up and down
10 times, samples were thenkeptonice for 10 min before an additional
10 strokes with the pestle. Root extracts were filtered at 20 pm into a
centrifuge tube and centrifuged for 10 min at 500g (maize, sorghum,
and Setaria) or at1,000g (Arabidopsis). Pellets were washed once with
washing buffer (0.3 M sucrose, 15 mM Tris HCl at pH 8, 60 mM KCl, 15
mM NaCl, 0.5 mM Spermine, 0.5 mM Spermidine, 15 mM MES, 5 mM
DTT*, 1 mM PMSF*, 1% Plant Protease Inhibitors* 1 ml (Sigma P9599),
BSA*0.4%,RNaseinhibitor* 0.2 U pl™; asterisks indicate reagents added
atthelastminute). Finally, nucleiwere resuspended into a final buffer
(0.3 M sucrose, 15 mM Tris HCI at pH 8, 60 mM KCI, 15 mM NaCl, 0.5
mM Spermine, 0.5 mM Spermidine, 15 mM MES, 5 mM DTT*,1% Plant
Protease Inhibitors* 1 ml (Sigma P9599), BSA* 0.4%, RNase inhibitor*
0.2 U pl™; asterisks indicate reagents added at the last minute) and
filtered using al0-pmfilter. An aliquot of nucleiwas stained with DAPI
for quality control and nuclei were counted under the microscope.
Nuclei were used immediately for single-nucleus RNA-seq.

Single-cell RNA-seq

Sixteen-thousand cells or nuclei per replicate were loaded in a Single
Cell B Chip (10x Genomics). Single-cell libraries were then prepared
using the Chromium Single Cell 3’ library kit, following manufacturer
instructions. Libraries were sequenced with an lllumina NextSeq 550
platformusing a1x150 high-output chip (2 libraries per chip) or Novaseq
6000 chip SP V2.5 (4 libraries per chip). Raw single-cell RNA-seq data
were analysed by Cell Ranger 5.0.1(10x Genomics) to generate gene—cell
matrices. Genereads were aligned to the Arabidopsis TAIR10.38, Maize
B73v4,S. bicolorv3 and S. viridis v2 reference genomes.

UMAP

Replicates (see Supplementary Table 1) were integrated and cells
mapped using the Seurat package v4.0% as follows. First, genes with
counts in fewer than three cells were excluded from the analysis and
their counts were removed. Second, low-quality cells were removed
using threshold variable depending on the library quality (see Sup-
plementary Table1). Clustering of cells or nuclei separately were done
bylog-normalized raw counts and the 2,000 most variable genes were
identified for each replicate using the vst method in Seurat. Next, we
used the FindIntegrationAnchors function toidentify anchors between
the three datasets, using 20 dimensions. A new profile with an inte-
grated expression matrix containing cells from all replicates was pro-
duced with the IntegrateData function. For dimensionality reduction,
theintegrated expression matrix was scaled (linear transformed) using
the ScaleData function, and principal component analysis (PCA) was
performed. The top 30 principal components were selected. Cells
or nuclei were clustered using a k-nearest neighbour graph, which is
based onthe Euclidean distancein PCA space. The FindNeighbors and
FindClusters functions with a resolution of 0.5. were applied. Next,
non-linear dimensional reduction was performed using the UMAP
algorithm with the top 30 principal components.

For the co-clustering of cells and nuclei, the datasets were treated
similarly, all replicates were integrated at once using the seurat ‘SCT’
approach®. First, raw reads were normalized using the SCTransform
function, then SelectIntegrationFeatures was used toidentify anchors
between the datasets, using 3,000 features.

For multiple species clustering, all orthologous genes names from
ref. 11 were replaced by their corresponding maize ID in sorghum and
Setaria raw features.tsv.gz files (gene conversion in Supplementary
Table1). Anchors are combined using PrepSCTIntegration and selected
using FindIntegrationAnchors. For clustering of maize, sorghumand
Setaria together, all species were considered equally using the Find-
IntegrationAnchors function. Finally, a PCA was performed using the
first100 principal components and anon-linear dimensional reduction
was performed using the UMAP algorithm with the top 100 principal
components.



Identification of WGD and non-WGD one-to-one gene duplicate
pairs

We used prior studies to obtain alist of WGD homeologues in the maizel
and maize2 genomes™". To identify the other types of duplicated genes,
DIAMOND v2.0.6 was used to perform blastp for the target genome
(Z mays)withitself,and the outgroup genome (Amborella trichopoda),
retaining BLAST hits with e-value <107, These BLAST hits were filtered to
remove hits from different orthogroups as described*. Duplicate gene
pairswere called using DupGen_finder.pland DupGen_finder-unique.
pl (https://github.com/qiao-xin/DupGen_finder) with the following
parameters:-s 5 (requiring >5genes to call a collinearblock)-d10 (<10
intervening genes to call ‘proximal’ duplicates). Duplicate pairs are
derived from five types of gene duplication, including whole-genome
and four types of single-gene duplication: tandem, proximal, translo-
cated and dispersed duplication. A custom R script was used to retain
duplicate pairs with the lowest e-value to avoid over-counting pairs
within gene families. Further, to filter out pericentric paralogues that
are unlikely to be expressed, duplicate pairs where one of the para-
logues was missing methylation information was removed, retain-
ing only those pairs where both paralogues had methylation data
(Supplementary Table 6). This procedure identified duplicates that
were either not a part of the WGD (for example, in genome segments
that were not retained) or duplicated after the WGD. It also filters out
many ancient duplications whose one-to-one relationship becomes
obscured over time.

GO term analysis
All GO enrichment were performed using shinyGO V0.61 (http://bio-
informatics.sdstate.edu/go/) with an FDA of 0.05.

Cis-regulatory element prediction

Cis-regulatory element were predicted using the Meme suite FIMO
algorythmv5.5.1 (https://meme-suite.org/meme/tools/fimo) on 500 bp
in the promoters or introns. Maize transcription factor binding sites
database used in FIMO was downloaded from http://plantregmap.
gao-lab.org.

Gene expression analysis across species

Whole-root transcriptomes were obtained from ref. 19 for maize and
ref. 54 for Arabidopsis. Gene expression was normalized for each spe-
cies usingthe Normalizedata function from Seurat. Then the average
expression per cluster was calculated using AverageExpression from
Seurat.Kaand Ks values were taken from a previous report>. Low, mid
and high Ks values were calculated from WGD Ks distribution using
the 1/3 quartiles. T was calculated as described®, r=sumofi=1to N
((1-x)/(N-1)), where Nis the total number of cell types and x; is the
expression profile component normalized by the maximal compo-
nentvalue.

MetaNeighbor cell-type validation across species

To determine how well the cell clusters characterized the shared identi-
ties of cellsin their own clusters and the overlaps with the identities of
all other cells, we used the MetaNeighbor package in Python (https://
github.com/gillislab/pyMN)***’. MetaNeighbor measures the replicabil-
ity of celltypes by learningamodelin one dataset (or subset) and testing
foritsability toreconstruct cell-type clustersinthe other dataset. First,
we labelled all cells and nuclei by the technology used to sequence the
transcriptome, by the cluster identity, and by the plant species to which
they belonged. Then, we used the PyMN.variable_genes function from
MetaNeighbor tosubset the genelist to variable genes. This generates
alistof genesthatare variable across the technology and species. Next,
we employed the PyMN.MetaNeighborUS function to measure how well
the transcriptional profiles of cells from clustersin one division of the
dataset (for example, technology) predict the identities of cell clusters

in the other fraction of the data. This generates pairwise areas under
thereceiver operating characteristic (AUROCs) for each combination
of clusters. To generate the heat maps, the PyMN.plotMetaNeighborUS
was used with abrown-blue-green colour map. This plots the pairwise
AUROCs generated previously.

ForFig.4a, to generate Pvalues for evaluating the significance of the
differences betweeneach pair of AUROCs generated by MetaNeighbor,
we used the two-sided Hanley McNeil test, which produces a Z-score
for the difference®. As each MetaNeighbor AUROC is the averaged
AUROC from two reciprocal tests between a pair of cell clusters, we
chose the smaller of the two clusters as the number of true positives
(NTP) to generate the most conservative P value. The number of true
negatives was the total number of cells, less the number of true posi-
tives. Following the calculation of Z-scores for each pairwise combina-
tion of AUROCs, we used the scipy.stats.norm.sf functionin Pythonto
convert the Z-scores into P values for a two-sided test. For error bars
on the AUROC in Fig. 4a, we calculated the standard deviation on the
estimate of the AUROC, thus, ameasure of the error in the mean stand-
ardized rank of the positives, so we term that measure of variability
standard error.

Validation of integration using scGEN

Toevaluate the integration of nuclei and cells across three plant species,
werepeated theintegration using the supervised integration method
scGEN?, We used scGEN version 2.1to train a model using the scgen.
train function, and the scgen.model.batch_removal function to correct
our data. Following correction, we used the ScanpyV1.9% calculate
the nearest neighbours using scanpy.pp.neighbors, and generated a
2D projection using UMAP, via sc.tl.umap. We then used sc.tl.leiden
clustering algorithm at a 0.6 resolution to identify clusters, which we
evaluated for mixing and accuracy of integration.

Identification of single-cell regulatory networks using MINI-EX
We used MINI-EX, a pipeline specialized for inferring cell type-specific
gene regulatory networks in plants® to identify the gene regulatory
networks in our samples. As gene regulatory network inference is
dependent upon datasets containing transcription factors and bind-
ing sites not available in sorghum and Setaria, we used maize tran-
scription factors with one-to-one matches to sorghum and Setaria
genes for those species. This converted list of transcription factors
was used as the TF_list parameter in the miniex.config file. We ran the
MINI-EX pipeline using the default parameters but modified it torunon
32 CPU cores.

Co-expression conservation between maize sub-genomes and
sorghum

Togenerate co-expression conservation scores between the two maize
sub-genomes and the sorghum genome (Supplementary Table 8),
we used our existing aggregated co-expression networks*. In brief,
these networks are built by taking all publicly available data and cal-
culating average correlations between gene pairs within experiments,
standardizing within experiments, and then averaging to construct
robust meta-analytic networks. We filtered these networks to a previ-
ously generated list of gene triplet pairs for the maize sub-genomes
and the sorghum genome. Next, for each gene, we compare the top
co-expression partners across species to determine the degree of func-
tional conservation, as described in more detail in previous work®®. We
calculated this by taking the ranks of a gene’s co-expression strength
to all other genes in one species and using it to predict that gene’s
top 10 co-expressed partners in the second species. This was then
doneagaininthereverse direction, and the two scores were averaged
(calculated as an AUROC). We then selected genes with the lowest
co-expression scores (0.34 < FC.Score) and highest cell specificity
(r>0.8) in the root cap (Extended Data Fig. 10i and Supplementary
Table 8).
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Formulation of adominance-co-expression-regulatory
subfunctionalization metric

To calculate the Dominance versus regulatory subfunctionalization
score, foreachorthologue triplet (S, M1 or M2) we calculated the number
of cellsinwhich M1 or M2 was dominant or co-expressed togetherinthe
same cells where the sorghum and Setaria orthologue was expressed.
We defined dominanceifthe average expression of one of the two dupli-
cateistwo time superior asthe average expression of the other duplicate
inthe same cell type. Co-expression was defined when both duplicates
were expressed in the same cell type and their respective expression
was below a twofold range difference. Regulatory subfunctionalization
was defined when both duplicates are dominantin different cell types.
Regulatory neofunctionalization was defined when one or both dupli-
cates are expressed in cell type inwhich the sorghumand Setaria ortho-
logue were not expressed. In this dataset, ageneis defined as expressed
ifitsexpressionis above the first quartile among genes detected inthat
celltype, thisis necessary to normalize for cell-type quality (certain cell
types display more UMIand more gene detected per cellsthan others).
The procedure also helps remove the background of genes with very
low expression that results from noise generated by combining cells
and nuclei together. The score is given by the expression

Score =(number of cells in which M1 is dominant
x number of cells in which M2 is dominant)
- (number of cells of the dominant orthologue
—number of cells of the nondominant orthologue)

Ifthe scoreis negative, the scoreis normalized by NormScore = Score/
(no.of cellsinwhichM1and M2 are expressed). If the score is positive,
thescoreis normalized by the NormScore = Score/(no. of cellsinwhich
M1and M2 are expressed x 0.5)%

Cell-type marker identification

Marker genes for each species were identified using FindAllmarkers
functions from Seurat (using log.FC=0.25, pt.1>0.750 pt.2 < 0.250).
Differential gene expression was done using the Findmarkers function
from Seurat with default parameter function. For Fig. 2e and Extended
DataFigs. 4c and 104, statistical analysis was performed in R using a
pairwise Wilcoxon test with p.adjust method BH, as the data are not
normally distributed.

Correlation analysis in Extended Data Fig. 1c was performed using
Pearson correlation function in R between whole-root data coming
from single cell or single nuclei. In brief, averaged gene expression
was calculated for each gene while combining every cell type using
the AverageExpression function from Seurat.

Half-mountinsitu hybridization

Probes (hairpin chainreaction (HCR) RNA-FISH) and reagents (includ-
ingthe probe hybridization buffer, probe wash buffer and amplification
buffer) were obtained from Molecular Instruments (Supplementary
Table 9), with modifications to the hybridization protocol for plant
tissue and for the half-mount technique®.

For fixation, germination paper containing 7-day old maize or sorghum
roots were unrolled and small volume of fixative FAA (4% formaldehyde,
5% glacial acetic acid, 50% ethanol in RNAse free water) was pipetted
onto eachroot. Thenlongitudinal sectioning of root tips was performed
using a15° microscalpel. Roots were cut up to -3 cm from the tip, then
immediately fixed by transferring to FAA in 5-ml screw caps and put
under vacuumseveral times until they no longer floated. Roots were then
agitated atroomtemperature foratleast1 hinatuberevolver (allwashes
inthe protocol were performedin a tube revolver or stated otherwise.)

Samples were dehydrated inaseries of washes at room temperature:
70% ethanol for 15 min, 90% ethanol for 15 min, 100% ethanol 2 times

for 15 min each, 100% methanol 2 times for 15 min each. Samples can
then be stored at 20 °C for several weeks. Samples were washed 2
times for 15 min in 100% ethanol at room temperature before being
permeabilized for 30 min in 50% Histo-Clear 11:50% ethanol at room
temperature. Then they were incubated 2 times for 30 min in a solu-
tion of 100% Histo-Clear Il at room temperature. Each time, vacuum
was applied for the first 10 min.

Sampleswere rehydrated through a series of washes: 50% Histo-Clear
11/50% ethanol for 15 min, 100% ethanol for 15 min, 50% ethanol/50%
DPBS-T (0.1% Tween-20, 1x DPBS) for 15 min (roots will float up then
settle after a few minutes), 100% DPBS-T 2 times for 15 min (roots will
float up again). Samples were incubated with Proteinase K (0.1 M Tris
HCI (pH 8),0.05 M EDTA (pH 8), Proteinase K 80 pg ml™ final) at room
temperature under vacuum for 5min then digested with Proteinase K
for 25minina37 °C water bath with manual agitation every 5-10 min
(rootsshould turnalittle yellow after this step). Samples were washed
2times for15minin DPBS-T atroom temperature thenincubated with
Fixativell (4% formaldehydein DPBS-T) under gentle vacuum for 10 min
theninatuberevolver for30 minatroomtemperature. They were then
washed 2 times for 15min eachin DPBS-T at room temperature. Roots
were aliquoted into 2 ml Eppendorf tubes and incubated in 500 pl of
HCR probe hybridization buffer, vacuum was applied for 10 min then
roots were incubated for 1 h at 37 °C in a thermomixer with agitation
(1,000 rpm).

Samples can then be stored in probe hybridization buffer at—20 °C
up to several weeks.

Probe buffers were made by adding 0.8 pmol of each probe set (for
example, 2 pl of the 1 uM stock) to 500 pl of HCR probe hybridization
bufferat37 °C. Pre-hybridization solution was removed and replaced
with probe solution. Samples were hybridized by incubating overnight
(-20 h) at 37 °C in athermomixer with agitation (1,000 rpm). The fol-
lowing day, excess probes were removed by washing 4 times for 15 min
eachwith1 mlof HCR Probe Wash Buffer at 37 °Cin athermomixer with
agitation. Samples were washed 2 times for 5 min each with 1 ml of 5x
SSC-T (25%20%SSC, 0.1% Tween-20) at room temperature inathermo-
mixer with agitation. SSC-T was replaced with 500 pul of amplification
buffer, gentle vacuumwas applied in afume hood for 10 minand then
samples were pre-amplified by incubating in a tube rotator at room
temperature for 50 min. While samples pre-amplify, 6 pmol of hairpin h1
and 6 pmol of hairpin h2 (thatis, 5 pl of the 3 uM stocks) were prepared,
eachinitsownseparate tube. Hairpins were snap-cooled by heating at
95°Cfor90sthenkeptinadark drawer atroomtemperature for 30 min.
Amplification solution was prepared by combining snap-cooled hl
and h2 hairpinsin 250 pl of HCR amplification buffer at room tempera-
ture. Pre-amplification solution was removed and and replaced with
amplification buffer containing hairpin solution overnight (-20 h) in
the dark at room temperature in athermomixer with agitation (1,000
rpm). Excess hairpins were removed by washing with 1 ml of 5x SSC-T at
roomtemperature inathermomixer with agitation, 2x for Smin each,
then2xfor30 mineach, 1x for 5min. Samples were transferred onto a
glassslide (in 5% SSC-T) and cut using a30° microscalpel and arranged
sothatthe cut face of theroots faced upwards. They were then covered
with a coverslip and imaged on a confocal microscope.

Statistics and reproducibility
For HCRRNA-FISH experiments, all replicates are biological replicates.

Figure 2b: 1 experiment: transverse, 2 strong, 1 weak; longitudinal,
2strong, 4 weak.

Extended Data Fig. 7a: 5 experiments: 7 outer cap, 11 transverse, 32
longitudinal—all consistent. Extended Data Fig. 7c: 1experiment: trans-
verse, 4 moderate signal; longitudinal, 5 moderate signal. Extended
Data Fig. 7d: 1 experiment: transverse, 2 no signal, the rest moderate
to strong; longitudinal, 1too high, 5 moderate to strong. Extended
Data Fig. 7e: 1 experiment: transverse, 4 weak, 11 none; longitudinal,
2 weak. Extended Data Fig. 7f: 1 experiment: transverse, 2 strong,



1weak; longitudinal 2 strong, 4 weak. Extended Data Fig. 7g: 3 experi-
ments: transverse, 2 weak, 1 very weak, 1 no signal; longitudinal, 2 weak,
8 nosignal. Extended Data Fig. 7h: 2 experiments: transverse, 1 weak;
longitudinal, 4 weak, 5 no signal. Extended Data Fig. 7i: 1 experiment:
transverse, 4 moderate; longitudinal, 1moderate, 1no signal. Extended
Data Fig. 7j: 1 experiment: outer cap, 2 weak; transverse, 2 weak, 3 no
signal; longitudinal, 3 weak. Extended Data Fig. 7k:1experiment: trans-
verse, 4 weak; longitudinal, 5 weak. Extended Data Fig. 7I: 1experiment:
outer cap,1weak; longitudinal, 3 weak, 1imaged too low. Extended Data
Fig.7m:1experiment:transverse, 5moderate; longitudinal, 3 moderate,
1nosignal. Extended Data Fig. 7n: 3 experiments: outer cap, 7 strong;
transverse, 3 strong, 1 no signal; longitudinal, 25 strong.

Extended Data Fig. 8a: 4 experiments: 2 outer; 5 transverse; 20 lon-
gitudinal—all consistent. Extended Data Fig. 8c: 2 experiments; trans-
verse, 3 strong, 2 moderate, 1 weak, 1 no signal; longitudinal, 6 strong,
2 moderate, 4 weak, 11 none. Extended Data Fig. 8d: 3 experiments:
transverse, 7 strong, 2 no signal; longitudinal, 7 strong, 1 moderate,
5imaged too low, 1 none. Extended Data Fig. 8e: 1 experiment: trans-
verse, 3weak; longitudinal, 3 weak. Extended Data Fig. 8f:1experiment:
transverse, 3 no signal; longitudinal, 5 weak. Extended Data Fig. 8g:
lexperiment: outer, 1 moderate; longitudinal, 4 moderate. Extended
Data Fig. 8h: 1 experiment: transverse, 1 very weak, 2 no signal; lon-
gitudinal: 2 weak, 2 no signal. Extended Data Fig. 8i: 2 experiments:
transverse, 4 strong; longitudinal, 8 strong, 7imaged too low.

Spatial transcriptomics
Tissue fixation and embedding was performed as described previ-
ously®.

Sample slide preparation. Formaldehyde-fixed paraffin-embedded
tissue sections (10 pm) were placed within capture areas on Resolve
Bioscience slides and incubated on a hot plate for 10 min at 60 °C to
attachthesamplestotheslides. Slides were treated to allow deparaffi-
nization, permeabilization, acetylation and refixation. After complete
dehydration of the samples, a few drops of SlowFade-Gold Antifade
reagent (Invitrogen) were added to the sections and covered with a
thin glass coverslip to prevent damage during shipment to Resolve
BioSciences (Germany).

Sample pretreatment and priming In preparation for hybridiza-
tion. the coverslip was removed and the mounting reagent was washed
twicein1xPBS for 30 min4 °C, followed by 1-min washes in 50% ehanol
and 70% ethanol at room temperature. Samples were primed, after
the aspiration of ethanol, by the addition of buffer BST1 for optimal
hybridization of probes during the Molecular Cartography proce-
dure, which uses a combination of probes and single-molecule fluo-
rescence in situ hybridization to identify 100 separate transcripts.
Tissues were hybridized overnight at a constant temperature with
all probes specific to the target genes. Samples were washed the next
day to remove excess probes and fluorescently labelled in a two-step
procedure. Regions of interest were imaged as described below and
fluorescent signals were removed after imaging via a decolouriza-
tion procedure. Colour development, imaging and decolourization
were repeated over several cycles to develop a unique combinato-
rial code for every target gene that was derived from raw images as
described below.

Probe design. The probes for 100 genes were designed based on
full-length protein-coding transcript sequences (Supplementary
Table 9). Probe design was based on the manufacturer’s proprietary
algorithm, with probes available from the Resolve. After screen-
ing to generate probe candidates and discard ambiguous ones,
the probes were mapped to the background transcriptome using
ThermonucleotideBLAST, and probes with stable off-target hits
were discarded.

Imaging. Samples were imaged by Resolve BioSciences ona Zeiss Cell-
discoverer 7, using the 50x Plan Apochromat water immersion objective
with an NA of 1.2 and the 0.5x magnification changer, resulting ina 25x
final magnification. Standard CD7 LED excitation light source, filters
and dichroic mirrors were used together with customized emission
filters optimized for detecting specific signals. Excitation time per
image was fixed at 1,000 ms for each channel, 20 ms for DAPI, and 1
ms for calcofluor white. A z-stack was taken at each region with a dis-
tance per z-slice according to the Nyquist-Shannon sampling theorem.
A custom CD7 CMOS camera (Zeiss Axiocam Mono 712, 3.45 pm pixel
size) was used. The imaging for the cell wall-specific stain, Calcofluor
White, was done at the end of all primary imaging. Before the pre-
processing of the images, all images were corrected for background
fluorescence. Based on the raw dataimage, the 20% darkest local pix-
el values and positions were determined and copied to a new empty
image (background image) having the same size as the image to be
corrected. The remaining 80% of pixels of the background image were
generated based upon the surrounding existing pixel values using a
distance-weighted average value. Finally, the background-corrected
image (bc-image) was created by subtracting the background image
values from the raw dataimage values.

Extraction of features. In the first step, a target value for the allowed
number of maxima was calculated based on the area of the slice in
pm?2 multiplied by an empirically optimized factor (0.5x). The result-
ing target value was used to adapt the threshold for the algorithm
iteratively searching local 2D maxima. The threshold leading to the
closest number of maxima equal to or smaller than the target value
was used for further steps and the respective maximawere storedina
reiterative process for every image slice independently. Maxima that
did not have aneighbouring maximum in an adjacentslice (termed as
z-group) within aradius of one pixel were excluded. For the resulting
list of maxima, the absolute brightness (Babs), the local background
(Bback), and the average brightness of the pixels surrounding the local
maximum (Bperi) were measured and stored. The resulting maxima
list was further filtered in an iterative loop by adjusting the allowed
thresholds for (Babs — Bback) and (Bperi — Bback) to reach a feature
target value based on the total volume of the 3D image. Only maxima
stillin a z-group with a size of at least two passed this stringent filter
step. Each z-group was counted as one hit and the members of the
z-groups with the highest absolute brightness were used as features
toresemble 3D point clouds.

Determination of transformation matrices, pixel evaluation, and
decoding: toalign the raw dataimages from differentimaging rounds,
these images had to be corrected for the 6 degrees of freedom in 3D
space The extracted feature point clouds were used to find the trans-
formation matrices to align the raw data images. Based on the trans-
formation matrices, the corresponding images were processed by a
rigid transformation using trilinear interpolation. The aligned images
were used to create a profile for each pixel, which were then filtered
for a variance from zero normalized by the total brightness of all pix-
elsin the profile. Matched pixel profiles with the highest score were
assigned as an ID to the pixel to further group the neighbouring pixel
withthe sameID. Thelocal 3D-maxima of the groups were determined
as potential final transcript locations, which were additionally evalu-
ated by the number of maximain the raw dataimages where amaximum
was expected. The finalized maxima were decoded by the fit to the
corresponding code to be written to the results file and considered to
resemble transcripts of the corresponding gene. The ratio of signals
matching to codes used in the experiment and signals matching to
codes not usedinthe experiment were used as estimation for specificity
(false positives). Final image analysis was performed in ImageJ using
the Polylux tool plugin from Resolve BioSciences to examine specific
molecular cartography signals.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Allreference genomes were downloaded from Arabidopsis TAIR10.38,
at https://www.arabidopsis.org/, for Maize B73 v4, S. bicolor v3 and
S. viridis v2 reference genomes at https://plants.ensembl.org/. All
raw single-cell and single-nucleus RNA-seq data, expression matrices
and analysed R-Seurat objects are available under Gene Expression
Omnibus accession GSE225118. All data used to generate figures are
available at https://figshare.com/articles/dataset/Data_for_Guillo-
tin_et_al_/22331002, except for the following figures, for which the
datacanbefoundinthe following deposited filesunder GEO accession
GSE225118: Arabidopsis_Cells_Nuclei_Seurat_Obj.RData.gz (Fig.1cand
Extended Data Figs. 2c,d and 4a,b), Maize_Sorghum_Setaria_Cells_
Nuclei_Seurat_Obj.RData.gz (Extended Data Figs.3d and 5¢,d). Datain
Extended Data Figs. 2c,d and 3d, and those in Extended Data Fig. 5¢,d
are clustered separately. Data on single-cell RNA-seq quality control
are provided in Supplementary Table 1. Analysis of single-cell versus
single-nucleus RNA-seq data is provided in Supplementary Tables 2
and 3. Cell-specific marker genes for all species, including ashared pan
library of marker genes, are provided in Supplementary Table 4. Data
onregulon analysis are provided in Supplementary Table 5. Data on
duplicate genes are provided in Supplementary Tables 6 and 7. Cellular
divergence analysis is provided in Supplementary Table 8 and in situ
probe information is provided in Supplementary Table 9.
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Extended DataFig. 5| Analysis of marker geneidentificationin maize
single nucleusvs. cell profiles. a, b UMAPs of maize single-cell and single-
nucleus RNA-seq data clustered independently. Only the single nucleus
RNA-seq dataset displays a cluster annotated as columella, whichisabsentin

thesingle-cell dataset. ¢, d Dotplot of maize marker genes for each cell type
cluster, showing expressionincells (c) and in nuclei (d) datasetsindependently.
Markers for columella outlined in the red box are only presentin the single
nucleus dataset.
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a-c, statistical analysis was performed using ANOVA followed by the Tukey test
for all pairwise comparisons, Not sharing aletter represents statistical
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upper hinges correspond to the first and third quartiles (Q1,Q3), extremeline
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extreme lines shows potential outliers.a-h:n=10,104 WGD, n =860 Proximal,
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Data collection  No software was used

Data analysis No additional custom code was develop in this study. Only basic function from R have been used to plot the data. Only the following softwares
and packages were used:
Cell Ranger 5.0.1 (10x Genomics, https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome) was used to
generate fastq files and align the reads from sequenced single cell or single nuclei
Seurat package v4.0 (https://satijalab.org/seurat/) was used to integrate the expression matrices generated by Cell Ranger, according to
tutorial present online.
DIAMONDV2.0.6 (http://ab.inf.uni-tuebingen.de/software/diamond) and
DupGen_finder.pl and DupGen_finder-unique.pl V1 (https://github.com/qgiao- xin/DupGen_finder) were used to identify duplicated genes
shinyGO V0.61 (http://bioinformatics.sdstate.edu/go/) was used to identify GO term enrichments
FIMO algorythmv5.5.1 (https://meme- suite.org/meme/tools/fimo) was used to predict cis-regulatory elements in maize duplicates
MetaNeighborvl package in Python (https://github.com/gillislab/pyMN) was used to assess cross-species-cell transcriptional relationship
SCGENv2.1 (https://github.com/theislab/scgen) was used as an alternative method of single cell clustering
Scanpyv1.9 (https://scanpy.readthedocs.io/en/stable/) was used calculate the nearest neighbors using scanpy.pp.neighbors, and generated a
2D projection using UMAP
MINI-EXv1 (https://github.com/VIB-PSB/MINI-EX) was used to identify single cell regulatory networks
ImageJ V2.9.0/1.53t
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All reference genomes were downloaded from Arabidopsis TAIR10.38, at https://www.arabidopsis.org/, for Maize B73 v4, Sorghum bicolor v3 and Setaria viridis v2
reference genomes at https://plants.ensembl.org/.

All raw scRNA-seq and snRNA-seq data, expression matrices and analyzed R-Seurat objects are available under GEO accession (GSE225118). All data on duplicate
genes are provided in Supplementary Tables. All cell specific marker genes for all species, including a shared pan library of marker genes between species are
provided in Supplementary Table 4.

All data used to generate figures is available at https://figshare.com/articles/dataset/Data_for_Guillotin_et_al_/22331002, except for the following figures, for
which the data can be found under GEO accession GSE225118, in the following deposited files: Arabidopsis_Cells_Nuclei_Seurat_Obj.RData.gz (Fig. 1c; Extended
Data Fig. 2¢,d; Extended Data Fig. 4a,b), Maize_Sorghum_Setaria_Cells_Nuclei_Seurat_Obj.RData.gz (Extended Data Fig. 3d, Extended Data Fig. 5c,d). Extended Data
Figs. 2c,d; 3d; and Fig. 5c¢,d are clustered separately.
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Reporting on sex and gender No human related research have been used in this manuscript

Population characteristics No human related research have been used in this manuscript
Recruitment No human related research have been used in this manuscript
Ethics oversight No human related research have been used in this manuscript

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. Each sampling was performed on a new batch of germinated seedlings, with a minimum of 30 root
tips per sample. This amount was chosen to account for plant variability in root growth and minimum sample size requirement for statistical
analysis. This amount was also calculated to avoid an excess of total amount of samples leading to technical difficulties in extracting cells or
nuclei.

Data exclusions  No data was excluded

Replication For each species, data were collected in the lab with at least 3 biological replicates for cells or nuclei (except for Sorghum, only one replicate
was generated in single cells due to technical difficulties in digesting the cell wall of this species, as described in the manuscript, while 3
biological replicates were generated for Sorghum nuclei). Apart from the Sorghum cell-profiles for which protoplasts could not be generated
(as above), all other replicates were successful. Each replicate is made by combining cells or nuclei from (30 to 200 root tips depending on the
specie, as describe in Supplementary table 1). Each replicate allows the sequencing of 2000 to 7000 cells or nuclei. No technical repetitions
were made in this study, ie: two single cell or single nuclei RNAseq made on the same day with the same batch of plant).

Randomization  No randomization was used in this study as plant were grown in only one control condition in the same environment, for all three biological
replicates. Arabidopsis was grown in vitro and maize, sorghum and Setaria were grown in the same growth chamber in the same location at
different time.

Blinding Blinding was not possible in this study as there was no treatment effect to measure and as we compared species transcriptomes directly.
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