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Abstract

Deep neural networks (DNNs) have advanced our ability to take DNA primary sequence as input 

and predict a myriad of molecular activities measured via high-throughput functional genomic 

assays. Post hoc attribution analysis has been employed to provide insights into the importance of 

features learned by DNNs, often revealing patterns such as sequence motifs. However, attribution 

maps typically harbor spurious importance scores to an extent that varies from model to model, 

even for DNNs whose predictions generalize well. Thus, the standard approach for model 

selection, which relies on performance of a held-out validation set, does not guarantee that a 

high-performing DNN will provide reliable explanations. Here we introduce two approaches that 

quantify the consistency of important features across a population of attribution maps; consistency 

reflects a qualitative property of human interpretable attribution maps. We employ the consistency 

metrics as part of a multivariate model selection framework to identify models that yield high 

generalization performance and interpretable attribution analysis. We demonstrate the efficacy 

of this approach across various DNNs quantitatively with synthetic data and qualitatively with 

chromatin accessibility data.

1. Introduction

Deep neural networks (DNNs) have demonstrated a powerful ability to learn complex 

sequence-function relationships from high-throughput functional genomics data, taking 

DNA sequences as input and predicting functional activities, such as transcription factor 

binding and chromatin accessibility [1, 2, 3, 4, 5]. The improved predictions by DNNs 

suggest that they are learning biological knowledge not considered by existing, traditional 

models, such as position weight matrices or k-mers. Distilling the rationale underlying their 

improved predictions through model interpretability is key to realizing the transformative 

impact that DNNs can bring to genomics.

Many regulatory functions are controlled though protein-DNA interactions. Proteins bind 

to DNA with varying degrees of affinity, depending on expression levels and sequence 
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context [6]. Strong binding sites are typically summarized as sequence motifs. One major 

goal of model interpretability is to reveal motifs and their dependencies that drive model 

predictions.

Of the many approaches to explainable AI [7, 8], attribution methods comprise a set of 

techniques that provide a base-resolution map of importance scores for each nucleotide in 

a given input sequence on model predictions [9, 10, 11, 12, 13, 14]. Attribution scores 

have a natural interpretation as single-nucleotide variant effects [15]. Attribution maps have 

demonstrated an ability to reveal known motifs that are important for cell-type specific 

regulatory functions and annotate their positions at base resolution [16, 17, 18]. Since 

attribution methods provide local explanations [19], i.e. for one datapoint, it is imperative to 

observe several attribution maps to deduce generalizable patterns.

The high expressivity of DNNs gives them the power to learn complex sequence-function 

relationships, but it also makes it easier to achieve benign overfitting [20, 21], which is an 

empirical phenomenon where the training and test performance diverge throughout training. 

While this is classically recognized in machine learning as overfitting, it turns out for highly 

flexible models, such as DNNs, benign overfitting does not necessarily affect generalization 

performance even though a more complex function is being learned to “overfit” the training 

data [22]. Nevertheless, it can adversely affect the quality of attribution maps which depends 

on the local properties of the function [23, 24], making it difficult to disentangle functional 

motifs from nucleotides with spurious importance scores. This suggests that DNNs can 

yield reliable or unreliable attribution maps and the generalization performance is largely 

not informative to identify which DNNs are more amenable with attribution analysis. This 

problem is exacerbated by the lack of ground truth with real biological data, which makes it 

difficult to quantitatively assess the efficacy of attribution maps.

Here we propose two quantitative metrics that characterize the consistency of position-

invariant local patterns that are shared across a population of attribution maps. Importantly, 

this approach does not require any ground truth knowledge as it aims to characterize 

qualitative properties of attribution maps that are human interpretable. We present results 

that show our consistency metrics are highly correlated to the quality of attribution maps 

both quantitatively across various models trained on synthetic data and qualitatively on in 
vivo genomics data. This work provides a foundation for a multivariate model selection 

framework to identify DNNs that yield high generalization and robust interpretations in real 

world genomic applications.

2. Characterizing consistency of attribution maps

In many regulatory genomic prediction tasks, we expect that important patterns such as 

motifs are stationary features and thus should appear more consistently while spurious noise 

should not be shared across genomic loci. Thus a measure of the consistency of motif 

patterns (and the level of spurious importance scores) across attribution maps captures a 

qualitative property that should provide insights into the reliability of attribution maps. 

Below, we introduce two information-based summary statistics that aim to quantify the 

level of consistency in local patterns shared across a population of attribution maps. These 
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methods are based on: 1) the distribution of k-mers within attributed positions and 2) the 

distribution of attribution scores in a low-dimensional contextual embedding space.

2.1 k-mer Method: KL-divergence of attributed k-mers versus an uninformative prior

The motivation for this method is based on the observation that patterns in reliable 

attribution maps should enrich for motifs, which can be represented with a specific 

distribution of k-mers. This distribution should be more sparse compared to a baseline k-mer 

distribution across all positions in the sequences. On the other hand, we expect poor quality 

attribution maps to have a more diffuse distribution that closely resembles the baseline k-mer 

distribution. Thus, the distance between the k-mer distributions within attributed positions or 

across all positions may provide a sensitive metric to compare attribution map consistency 

(Fig. 1).

To measure the distance between the k-mer distributions, we utilize the Kullback-Leibler 

divergence (KLD) (Fig. 1a). To calculate the KLD, we need to: 1) choose a k-mer size; 2) 

define which positions are within significant attribution scores; and 3) calculate global k-mer 

frequencies across all positions. To identify attributed positions, we applied a sequence-

specific threshold to each attribution map in the test set, above which are considered 

attributed positions. This type of threshold aims to address the variable magnitudes in 

the attribution maps from sequence to sequence. The threshold was set automatically for 

each sequence according to the 90th percentile in the attribution scores. For each set of 

contiguous positions, we added a buffer size of 2 nucleotides on the 3’ end to extend the 

positions considered. While this step introduces some noise, it also helps to address motif 

positions that have variable attribution scores (some below and some above the threshold), 

which is a prevalent feature of noisy attribution maps. Global k-mer frequencies were then 

calculated by aggregating the k-mer frequencies within each of the subsequences which had 

a minimum length of k. In this study, k = 6. For comparison, a non-informative empirical 

prior was calculated by aggregating the k-mer frequencies across all test sequences. We 

then calculated the KLD between the two k-mer frequencies in an element-wise fashion and 

summed them to get a single summary statistic.

2.2 k-attr-mean Method: KL-divergence of the distribution of locally embedded attribution 

scores versus an uninformative prior

To encode information about the local structure of motifs, we construct a new metric 

that considers a lower-dimensional embedding based on locally averaged attribution maps. 

Specifically, we first apply a gradient correction which effectively fixes the gauge freedom 

in attribution maps which arises due to the nature of one-hot encoded DNA [25]. Given 

a corrected attribution map, A ∈ ℝL, A, we calculate the mean attribution scores (across 

each nucleotide channel) with a window size of k centered on each position. This provides 

local context of nearby attribution scores similar to a uniform convolutional kernel. In this 

paper, k = 3. Each 4-dimensional (4D) mean attribution vector is reduced to 3D with a 

Gram-Schmidt orthogonalization procedure to remove the linear dependence (see Appendix 

A), which arises from gauge fixing with the gradient correction. This enables a direct 

visualization of (averaged) attribution vectors in 3D space. Strikingly, the mean attribution 
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vectors exhibit a high degree of structure with radial symmetry (Fig. 1b). Since the natural 

coordinates are spherical, we further reduce the dimensions into 2D space by considering the 

2 angular components (i.e. polar and azimuthal), while using the inverse squared radius as a 

weight for this 2D distribution. As in Method 1, we apply a filter based on a threshold set by 

the 90th percentile of the attribution scores for each sequence. We then bin the filtered points 

within the 2D angular space with a uniform lattice of size 0.1 radians, adding the weights 

(i.e. squared radius) within each bin. This is followed by a global normalization to make 

the sum of all bins equal to 1. This serves as a coarse-grain angular density of attributed 

positional vectors.

To construct a non-informative prior, we apply a boxcar filter (with a window size 0.5 

radians) to diffuse the cluster information while retaining global spatial biases. We note that 

the observed bias within the uninformative prior arises from the asymmetry in attribution 

scores; important motifs typically yield positive attribution scores. In addition, spatial 

distortions due to projecting a 3D globe onto a 2D map contributes to spatial biases. 

The KLD between the two distributions is then calculated separately within each bin and 

summed to provide a single summary statistic. Henceforth, we refer to method 2 as k-attr-

mean.

3. Comparing models for binary classification of synthetic regulatory 

codes

To test how well the proposed consistency metrics can facilitate a model selection scheme 

that is amenable to biological discovery from attribution analysis, we explored several 

hundred DNNs trained with different regularization strategies on a synthetic regulatory 

genomic prediction task from Ref. [26]. This dataset is ideal as it uses synthetic data, 

for which we have “pixel-level” ground truth, and it compares a diverse set of models, 

of which many regularization strategies have support for improving attribution maps. This 

allows us to test the efficacy of the consistency metrics across various DNNs (with similar 

generalization performance) with a direct comparison to a summary statistic that captures 

the reliability of their attribution maps.

Briefly, the task consists of taking 200 nucleotide DNA sequences as input and predicting 

a binary classification of whether the sequence contains at least 3 “core motifs” (up to 5) 

in any combinations (positive class) or contains a different set of “background motifs” 

(negative class). This synthetic data consists of 20,000 total sequences split randomly 

into a training (0.7), validation (0.1), and test (0.2) set. The baseline DNN that was used 

here consists of 4 convolutional layers and 1 fully connected layer with optional batch 

normalization prior to each activation and the first layer activation being either ReLU 

or exponential, which was shown to lead to more interpretable attribution maps. Using 

these base architectures, 327 model variations were explored with different regularization 

strategies – input mixup [27], manifold mixup [28], input noise [29], manifold noise, 
adversarial training and spectral norm regularization [30]. Further details regarding the 

specific models used are given in Appendix B.

Majdandzic et al. Page 4

Proc Mach Learn Res. Author manuscript; available in PMC 2023 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We trained each model with different random initializations for a total of 390 DNNs. Of 

these, 327 DNNs passed a performance filter with an area-under the receiver operating 

characteristic curve (AUROC) cutoff of 0.97. For each high performing DNN, we calculated 

an attribution map for all positive label sequences. We then calculated the signal-to-noise 

ratio (SNR) by defining signal as the average attribution scores at positions where ground 

truth motifs are embedded, while background was calculated according to the average of the 

top 10 highest false-positive attribution scores. The ratio provides a measure of the signal 

strength compared to the worst false positive attributions in background positions, which 

better reflects the practical scenario where motif discoveries are based on positive attribution 

scores.

As expected, we observed that the generalization performance on the test set does not 

correlate with the attribution SNR of each DNN’s attribution maps (Fig. 2a and Fig. 4 in 

Appendix C), in agreement with previous observations [26, 25]. Many DNNs yield high 

predictions but their attribution SNR can vary significantly. Thus, when scientific discovery 

based on attribution analysis is a major downstream application, as is frequently used in 

genomics, there must be an additional metric that can further stratify these models to sub-

select DNNs that yield both high generalization performance and more human-interpretable 

attribution analysis.

The strategy that we propose is based on consistency metrics (Sec. 2.1 and 2.2). However, 

in order to be useful for model selection, the consistency metric must be able to track 

the attribution SNR of attribution analysis, because in real world settings, ground truth 

in attribution maps is not known. To test this, we plot the attribution SNR versus each 

consistency metric (Fig. 2b for k-mer method and Fig. 2c for k-attr-mean method). While 

not a perfect one-to-one correlation, the consistency metrics capture general trends that 

should inform which model’s attribution maps are more interpretable even when ground 

truth in attribution maps do not exist (see Table 1 in Appendix C for full results).

Upon further investigation, we consider 2 DNNs that yield similar high generalization 

performance but very different attribution SNRs, i.e. Model 1 exhibits a higher attribution 

SNR compared to Model 2. For the k-mer consistency method, models that learn more 

consistent motifs exhibit more skew in the k-mer distribution (Fig. 2d), with a subset 

of k-mers exhibiting higher frequencies within attributed positions compared to a non-

informative prior, as expected. For the k-attr-mean consistency method, we observe a trend 

where mean attribution vectors are clustered in the 2D-embedded angle space, with tighter 

clusters corresponding to DNNs with higher attribution SNR (Fig. 2e and 2f). Surprisingly, 

we found that the sequences that correspond to a given cluster are often the same and 

represent (parts of) known motifs. Interestingly, we find that each consistency-based method 

identifies similar motifs for Model 1 (Fig. 2d and 2e), while Model 2 remains much more 

difficult to decipher. Moreover, a qualitative comparison of saliency maps shows that Model 

1 indeed visually reflects ground truth patterns relative to Model 2 (Fig. 2g). While the main 

results are presented for saliency maps, similar conclusions would be drawn using other 

attribution maps, including integrated gradients and smoothgrad (Fig. 5 in Appendix C).
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An investigation into the sensitivity of each methods hyperparameters (i.e. k and 

attribution threshold for k-mer and k-attr-mean methods) shows that the same conclusions 

would largely be drawn from different hyperparameter choices (Fig. 6 in Appendix C). 

Nevertheless, the sensitivity, which is the separation of the KLD between different models, 

is sensitive to hyperparameters; optimal values can be selected based on observing a larger 

spread of KLD across models on the validation set.

4. Comparing models that predict chromatin accessibility profiles

To assess the generalization of the two proposed consistency metrics, we compared how well 

each method facilitates model selection based on the attribution maps across 26 previously 

trained DNNs from Ref. [33]. In this study, the task is to take 2048 nt one-hot DNA 

sequences as input and predict 15 chromatin accessibility profiles experimentally measured 

by ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) in human 

cell lines. Specifically, DNNs were trained either as a binary classification of statistically 

significant peaks identified in the read coverage profiles or a quantitative regression that 

directly predicts the read coverage profiles at various resolutions. This study provides an 

ideal platform to explore our model selection scheme as it is comprised of numerous models 

trained with various architectures and data augmentations. Further details regarding the 

specific models used in this study is given in in Ref. [33] and Table 2 in Appendix C.

Without loss of generality, we focused our study on 3,968 saliency maps from sequences 

that corresponds to high read coverage for the GM12878 cell line (1 of the 15 cell lines). By 

considering both the generalization performance and consistency metric for model selection, 

we found that the highest performing DNNs did not yield the most consistent attribution 

maps (Figs. 3a and 3b). Interestingly, we identified a three models from each stratified 

group that generalized nearly as well on the test set but whose consistency metric scaled 

differently. We note that the k-attr-mean method exhibited a wider separation compared to 

the k-mer method, suggesting that it has a higher sensitivity (see Table 2 in Appendix C 

for full results). By qualitatively comparing the sequence logos of the attribution maps from 

each of these models, we observed that the KLD value agrees with our expectations; the 

model with higher KLD visually captures known motifs better than the other models that 

have lower KLDs (Figs. 3F and 3d).

5. Discussion

Interpreting high-performing DNNs through attribution analysis can provide new biological 

insights about motifs and their syntax. However, the current strategy to select which 

model to interpret is based on held out validation performance, which does not necessarily 

guarantee the model’s attribution maps will be visually human-interpretable. Hence there 

must be an additional metric as part of a multivariate model selection process to identify 

optimal models with good generalization and reliable attribution methods. Here we propose 

2 metrics that characterize the consistency of important features in attribution maps. One 

approach is based on a simple k-mer distribution within attributed positions and the second 

is based on the distribution of local attribution embeddings. We find that both approaches 

work well in practice, though the limits of each method have not been explored thoroughly 

Majdandzic et al. Page 6

Proc Mach Learn Res. Author manuscript; available in PMC 2023 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in this study. We find that the k-mer consistency metric is valuable as a simple and quick 

estimate that can eliminate most models with low attribution SNR and narrow down the 

search for models with high attribution SNR, while the k-attr-mean consistency metric 

shows more sensitivity to track attribution SNR. Together, this demonstrates that it may 

be beneficial to incorporate consistency-based KLD as a secondary metric in addition to 

generalization performance.

Motif discovery and annotation.

Interestingly, the intermediate processing steps in both consistency metrics show promise 

for de novo motif discovery (Fig. 2d and 2e). These aggregated statistics can help to 

uncover global motifs that are consistently learned across attribution maps, providing 

a complementary approach to an existing clustering tool TF-MoDISCo [34]. Further 

development could exploit these intermediate representations to annotate motifs in 

individual sequences.

Limitations of attribution analysis.

Although the goal here is to help identifiability of optimal models that would yield more 

interpretable attribution maps, attribution maps are anecdotal views of single nucleotide 

effects in a given sequence. It does not specify the effect size of extended patterns, such 

as motifs or combinations of motifs. Nevertheless, more reliable attribution maps facilitates 

hypotheses generation of cis-regulatory mechanisms that can be followed up with in silico 
experiments, such as global importance analysis [35].

Limitations of this study.

The proposed consistency metrics were motivated by the desire to characterize consistent 

motifs in attribution maps. However, the importance of motifs may be influenced by the 

presence of another motif or sequence context. These can make attribution scores for motifs 

more diffuse for reasons that appear as a less consistent attribution maps. Another limitation 

is that as the number of tasks grow, consistency-based metrics can suffer from an over-

crowded set of important patterns, which may lead to reduced sensitivity. Moreover, models 

that learn a small subset of features well would yield higher KLD compared to a model 

that learns a broader set of patterns, which may be a more comprehensive characterization 

of regulatory DNA. Thus, an additional property that would be desirable is to capture 

the diversity of consistent patterns, thereby providing another axis that can be utilized in 

a multivariate approach to model selection. Together, this work lays the groundwork to 

identify optimal models that would yield more trustworthy attribution analysis for robust 

scientific discovery in genomics.

Acknowledgements

Research reported in this publication was supported in part by the National Human Genome Research Institute of 
the National Institutes of Health under Award Number R01HG012131, the Developmental Funds from the CSHL 
Cancer Center Support Grant 5P30CA045508, and the Simons Center for Quantitative Biology at Cold Spring 
Harbor Laboratory. This work was performed with assistance from the US National Institutes of Health Grant 
S10OD028632-01. We would also like to thank Justin Kinney and David McCandlish for helpful discussions.

Majdandzic et al. Page 7

Proc Mach Learn Res. Author manuscript; available in PMC 2023 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A: Gram-Schmidt orthogonalization

Gradient-corrected attribution maps ([25]) in genomic one-hot sequence data have scores 

that sum to zero at each position. This introduces linear dependency between the 4 scores 

at each nucleotide position. Linear dependency means that there is excess dimensionality 

in the data, so we may reduce it. We use the Gram-Schmidt (G-S) procedure to calculate 

new linear combinations that are linearly independent and orthogonal. For every nucleotide 

position, the 4-vector of scores x, y, z, w  we transform using x, y, z, w e1, e2, e3

where e1 = 1
2 − x + y , e2 = 2

2 3 − x − y  and where e3 = 3
2 3 − x − y − z + w .

This reduces the number of dimensions of the data from 4D to 3D, which is favorable from 

the calculation time perspective for later analysis. We do not lose any information by this 

change of basis.

B: Synthetic data analysis

Data.

The synthetic dataset consists of 20,000 sequences (each 200 nucleotides long) split 

randomly into a train, validation, and test set according to fractions 0.7, 0.1, and 0.2 , 

respectively. Each sequence is sampled from a single sequence model, M, with elements 

equal to 0.25, except for where motifs were embedded. Positive sequences were embedded 

with 3 to 6 “core” motifs (i.e. CTCF, SP1, YY1, GABPA and SRF from the JASPAR 

database [32]), randomly drawn with replacement, while negative sequences were embedded 

with a bag of motifs that includes 50 additional background motifs. Since we know exactly 

where motifs are embedded during the simulation process, we have ground truth of the 

importance of various letters at different positions.
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where k is a factor to change the width of the network, here k = 1. By default, batch 

normalization [36] is applied prior to the activation of each hidden layer, and dropout [37] is 

incorporated after each convolutional layer with a default rate of 0.1 and the dense layer with 

0.5.

We uniformly trained each model by minimizing the binary cross-entropy loss function 

with minibatch stochastic gradient descent (100 sequences) for 100 epochs with Adam [38] 

updates using default parameters. All reported performance metrics are drawn from the test 

set using the model parameters that yielded the highest performance metric on the validation 

set, i.e. early stopping.

Mixup.

Mixup is a data augmentation technique introduced by [27]. The key idea here is that the 

sensitivity of a DNN to adversarial examples may be reduced by imposing constraints that 

force the model to interpolate linearly between any two input points. Concretely, this is 

achieved by constructing augmented data samples as follows. Given a pair of datapoints, 

x1, y1  and x2, y2  from the training dataset, construct a new datapoint xm, ym  as a convex 

combination of the training sample pair:

xm = λx1 + 1 − λ x2, ym = λy1 + 1 − λ y2, (1)

where λ ∈ 0,1  is sampled randomly from a beta distribution −λ ∼ Beta   α, α . The 

concentration parameter α is a hyperparameter which is set to 1.

In practice, the augmented data samples are constructed by randomly permuting the 

order of the samples in a minibatch. Let x1:M, y1:M  denote a minibatch of size M and 
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xperm  1:M , yperm  1:M  denote the same minibatch with the ordering of it’s samples permuted 

randomly. The augmented minbatch xaug, M, yaug, M  is generated by applying Eqn. (1) to the 

original minibatch and its permuted form:

xaug, M = λx1:M + 1 − λ xperm  1:M , yaug, M = λy1:M + 1 − λ yperm  1:M . (2)

Manifold mixup.

Manifold mixup, proposed by [28], is a generalization of the mixup data augmentation 

scheme. Instead of ‘mixing up’ samples on the input manifold alone, as is the case 

with mixup, manifold mixup extends that principle to include mixing up the hidden 

representations (i.e. activations from the hidden layers) of the input as well. Consider 

a L layer NN − fΘ x = fL ∘ fL − 1 ∘ ⋯ ∘ f1 x . Let 0 = x be the input and ℓ = fℓ ℓ − 1  for 

ℓ = 1,2, …, L − 1 be the hidden representations of the input. Let K = 0,1, 2, …, L − 1  be the 

set of indices of all NN layer activations before the final output and including the original 

input. Given k ∈ K, the NN can be expressed as fΘ x = fL ∘ fL − 1 ∘ ⋯ ∘ fk + 1 k . The manifold 

mixup augmentation scheme proceeds similarly to that of the mixup technique. Given a 

minibatch of data x1:M, y1:M , we first sample k ∼ Uniform   K  and compute k = fk ∘ ⋯ ∘ f1 x . 

The minibatch in this hidden representation is k, 1:M, y1:M. We then randomly permute the 

order of the examples to obtain k, Perm(M), yPerm(M). Finally, we take a convex combination of our 

original and permuted minibatches to obtain the augmented minibatch:

k, aug, M = λk, 1:M + 1 − λ k, perm  1:M ,
yaug, M = λy1:M + 1 − λ yperm  1:M , (3)

where, λ ∼ Beta   α, α  and α is a hyperparameter. In this work, α is set to 1.

Input noise and manifold input noise.

Injecting noise into the input and hidden representation is a well-known regularizing 

technique [29]. Most notably, this takes the form of dropout [37] which applies a 

multiplicative mask sampled from a Bernoulli distribution. Theoretically, adding noise to 

the input data has been shown to be equivalent to adding an extra term to the loss function. 

More specifically, under a mean squared error loss function and zero-mean Gaussian noise 

injected into the input, it can be shown that this additional penalty is equivalent to a 

Tikhonov regularizer [39]. In our work, we explored 2 forms of regularizations based on 

noise injection.

For a input x (with corresponding label y), we sample ϵ ∼ N 0, σ2I  and add it to the input. 

This produces the perturbed input x = x + ϵ which leads to a new augmented data sample 

x, y . In our work, the standard deviation of the noise σ is set to 0.15.

We extend the input noise data augmentation to include hidden representations of the 

network by following a process similar to manifold mixup. Given a sample k ∼ Uniform   K
of a layer index, we compute k = fk ∘ ⋯ ∘ f1 x , the hidden representation at layer k. I.i.d. 
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zero-mean Gaussian noise is sampled and added to k to produce the augmented data sample 

k .

Adversarial training.

NN are notoriously susceptible to adversarial examples [40] - data inputs perturbed with 

imperceptible noise that produce incorrect predictions from the NN. More formally, given 

an input x with a correspond correct label y, an adversarial example is a perturbed input 

x = x + δ which causes an incorrect NN prediction y′, under the constraint that ∥ δ ∥p ≤ ϵ, 

i.e., the perturbed input x is sufficiently close to the original input x under a suitable norm. 

Thus, a network fΘ x  is said to be adversarially robust if:

fΘ x = fΘ x + δ , ∀δ ∈ ℬp ϵ , (4)

where, ℬp ϵ = δ: ∥ δ ∥p ≤ ϵ  is the p-norm ball of radius ϵ. Given a loss function ℒ x, y; Θ
(in our case, the binary cross entropy), adversarial training is performed by minimizing the 

following modified loss function:

ℒ x, y; Θ = E x, y ∼ D max
δ ∈ ℬp ϵ

ℒ x + δ, y; Θ (5)

The inner maximization over the p-norm ball ℬp ϵ  is performed with a small number of 

constrained gradient descent based steps. The expectation is, ofcourse, of the loss function 

over the sampled minibatch.

In our work, the feasible set of the perturbations is chosen to be ℬ∞ 0.05 , i.e. the ℓ norm 

ball with a radius of 0.05. We use a simple projected gradient descent (PGD) update:

δ i + 1 P δ i + α∇δℒ x, y; Θ , (6)

where P ⋅  is the projection onto ℬ∞ 0.05 1, the step size α = 0.005, and we perform 15 

PGD iterations to generate δ. Furthermore, for our adversarial training results, we followed 

a schedule for optimizing our networks. We run the first 5 epochs of training by minimizing 

the standard loss function (i.e. without introducing adversarial constraints). From epochs 

6 to 20, we use adversarially generated inputs to augment the training set data, i.e., we 

minimize the standard loss on the data pair x, y  and also on x + δ, y . Finally, from epoch 

21 onwards, we use a purely adversarial strategy to train the network.

Spectral norm regularization.

Given a matrix A ∈m × n the spectral norm of A denoted by σ A  is the largest singular 

value of the matrix, i.e., σ A = max
b ∈n ∖ 0

∥ Ab ∥2
∥ b ∥2

. [30] note that a NN fΘ x  defined by a 

piecewise linear activation function is affine within some neighborhood of x. In this local 

1this is accomplished by simply clipping the argument to P.
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neighborhood the entire NN model may be expressed as fθ x = WΘx + bΘ. The sensitivity of 

fΘ to perturbation, in this neighborhood, will therefore have to be bounded by the spectral 

norm of the WΘ:

∥ fΘ x + ϵ − fΘ x ∥2

∥ ϵ ∥2
= ∥ WΘ x + ϵ − WΘ x ∥2

∥ ϵ ∥2
= ∥ WΘϵ ∥2

∥ ϵ ∥2
≤ σ WΘ . (7)

Furthermore, [30] show that for a L-layer fully connected NN with layer weight matrices 

Wℓ, ℓ = 1,2, …, L, the spectral norm of WΘ is bounded by the product of the the spectral 

norms of the Wℓs − σ WΘ ≤ ∏i = 1
L σ Wℓ . This provides a natural regularization principle for 

improving the robustness of a DNN model - penalizing the spectral norm of the weight 

matrices of the DNN is equivalent to learning functions which have lower Lipshitz constants 

in the neighborhood of the input x. The spectral norm penalty for a feedforward NN with L

layers is, thus, λ
2 ∑i = 1

L σ Wℓ
2, where λ is a regularization constant, which is set to 0.01 in our 

work. In practice, the spectral norm of a weight matrix is computed using the iterative power 
method [41].

1D convolutional layers have a 3rd order weight tensor of dimensions - k × Cin × Cout , 

where k, Cin, Cout are filter size, number of input channels and number of output channels 

respectively. To incorporate models with convolutional layers, the 1st and 2nd axes of 

the convolutional weight matrix is flattened to produce a matrix of dimensions kCin × Cout. 

Note that while the above derivation relies on the assumption of a piecewise linear 

activation function, one can approximate these bounds with nonlinear activations such as the 

exponential function too as in a sufficiently small neighborhood of x, fΘ x  is approximately 

affine.

C.: Additional Figures and Tables

Table 1:

Performance of DNNs on test set of synthetic data. Values represent the average across 

trials.

Method BN Activation Trials KLD (k-mer) KLD (k-attr-
mean)

AUROC Attribution SNR

Adversarial nobn exponential 15 0.104 0.525 0.977 1.148

Adversarial nobn relu 14 0.125 0.240 0.973 0.471

Manifold-mixup bn relu 12 0.667 0.254 0.975 0.555

Manifold-mixup bn exponential 14 1.215 0.833 0.982 2.057

Manifold-mixup nobn relu 14 0.809 0.357 0.977 0.595

Manifold-mixup nobn exponential 15 1.266 0.642 0.977 1.511

Manifold-noise nobn exponential 15 0.529 0.620 0.976 2.001

Manifold-noise nobn relu 12 0.555 0.276 0.976 0.834

Manifold-noise bn exponential 12 0.68 0.791 0.976 2.785

Manifold-noise bn relu 5 1.039 0.251 0.982 1.097
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Method BN Activation Trials KLD (k-mer) KLD (k-attr-
mean)

AUROC Attribution SNR

Mixup bn relu 3 1.036 0.230 0.980 1.568

Mixup bn exponential 12 0.555 0.848 0.976 2.458

Mixup nobn relu 15 0.511 0.375 0.975 0.749

Mixup nobn exponential 15 0.554 0.691 0.976 1.932

Noise nobn exponential 13 1.125 0.780 0.980 2.490

Noise bn relu 15 0.648 0.221 0.977 0.884

Noise bn exponential 15 1.104 0.784 0.981 2.979

Noise nobn relu 14 0.425 0.267 0.982 0.943

Spectral-norm bn relu 8 0.982 0.295 0.976 1.358

Spectral-norm bn exponential 11 1.248 0.84 0.978 2.039

Spectral-norm nobn relu 15 1.341 0.488 0.983 1.570

Spectral-norm nobn exponential 13 1.27 0.851 0.983 1.782

Standard nobn exponential 15 0.547 0.667 0.976 1.721

Standard nobn relu 12 0.645 0.410 0.974 0.783

Standard bn exponential 9 0.763 0.807 0.974 2.445

Standard bn relu 4 1.101 0.254 0.981 1.481

Table 2:

Performance of DNNs on ATAC-seq data. The model names follow from the original study 

by Ref. [33]. The test sequences (from held out chromosome 8 and 9) that were associated 

with an ATAC-seq peak from GM12878 IDR peak bedfiles were subselected. The Pearson 

correlation coefficient between the test set and predictions was calculated for each sequence, 

and then averaged across all sequences in the test set.

Model KLD (k-mer) KLD (k-attr-mean) Pearson’s r

Quantitative/Exponential

CNN-base (all) 0.142 0.494 0.605

CNN-base (task) 0.141 0.489 0.599

CNN-32 (all) 0.140 0.529 0.596

CNN-32 (task) 0.137 0.499 0.599

Residualbind-base (all) 0.096 0.245 0.667

Residualbind-base (task) 0.103 0.304 0.670

Residualbind-32 (all) 0.082 0.257 0.663

Residualbind-32 (task) 0.087 0.257 0.686

Quantitative/ReLU

Basenji 0.083 0.282 0.652

BPNet 0.114 0.188 0.641

CNN-base (all) 0.117 0.367 0.585

CNN-base (task) 0.118 0.382 0.613

CNN-32 (all) 0.119 0.381 0.595

CNN-32 (task) 0.122 0.413 0.590

Residualbind-base (all) 0.076 0.147 0.652

Residualbind-base (task) 0.079 0.167 0.646
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Model KLD (k-mer) KLD (k-attr-mean) Pearson’s r

Residualbind-32 (all) 0.062 0.166 0.644

Residualbind-32 (task) 0.068 0.172 0.661

Binary/Exponential

Basenji 0.203 0.613 0.557

Basset 0.021 0.567 0.515

CNN-base 0.130 0.468 0.580

ResidualBind-base 0.128 0.289 0.606

Binary/ReLU

Basenji 0.137 0.408 0.497

Basset 0.049 0.159 0.541

CNN-base 0.106 0.230 0.521

ResidualBind-base 0.094 0.174 0.607
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Figure 4: 
Test performance on synthetic data. Scatter plot of area-under the precision-recall (AUPR) 

curve and attribution SNR (based on saliency maps) for various DNNs trained with different 

regularization methods on synthetic data. Each point represents a different model and the 

marker represents whether the first layer activation was ReLU or exponential. Annotated 

points represent 2 DNNs that yield high generalization performance but different attribution 

SNRs.
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Figure 5: 
Consistency performance for different attribution methods on test set of synthetic data. 

Scatter plot of attribution SNR versus the consistency metric of the k-mer method (top 

row) and k-attr-mean method (bottom row) for attribution maps based on SmoothGrad (left 

column) and integrated gradients (right column). Annotated points represent the two DNNs 

that yield high generalization performance (e.g. AUROC/AUPR) but different attribution 

SNRs according to saliency maps in Figures 2a–c.
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Figure 6: 
Hyperparameter sensitivity analysis. Sensitivity analysis of hyperparameter choices on 

the consistency metrics across models with different regularization methods (shown in a 

different color) averaged across trials, where top row represents models with exponential 

activations in the first layer and the bottom row represents models with ReLU activations. 

For the k-mer method, hyperparameters of the k-mer size (left column) and the attribution 

threshold (middle column). For the k-attr-mean method, the attribution window size k was 

explored. The line serves as a guide for the eye.
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Figure 1: 
Schematic of consistency metrics. (a) k-mer Method: KLD of attributed k-mer frequencies 

versus an uninformative prior. (b) k-attr-mean Method: KLD of the distribution of locally 

averaged attribution vectors versus an uninformative prior.
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Figure 2: 
Performance of consistency metrics on synthetic data. (a) Scatter plot of generalization 

AUROC and attribution SNR (based on saliency maps) for various DNNs trained with 

different regularization methods on synthetic data. Each point represents a different model 

and the marker represents whether the first layer activation was ReLU or exponential. (b,c) 

Scatter plot of attribution SNR versus the consistency metric defined by KLD of k-mer (b) 

and k-attr-mean (c). (d) k-mer frequency distribution for Model 1, Model 2, and an empirical 

prior (shown in a different color). Inset shows the ranked list of the same k-mer distribution 

as a log-log plot. (e,f) Density of the angular components of lower-dimensional embedding 

for Model 1 (left) and Model 2 (right). (g) Saliency map comparison for a representative 

test set sequence for Model 1 and Model 2. Ground truth is shown at the top for reference. 

Sequence logos were generated using Logomaker [31].
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Figure 3: 
Selecting interpretable DNNs trained on chromatin accessibility data. Scatter plot of Pearson 

correlation of the test performance versus the consistency metric (KLD) calculated from 

the k-mer method (a) and the k-attr-mean method (b) for various DNNs trained on ATAC-

seq data for GM12878. Each dot represents a different model with a color and marker 

combination that stratifies with modeling choice, i.e. quantitative models and binary models 

and their first layer activation function, ReLU or exponential. (c,d) Saliency maps for three 

different models from two representative test sequence. Sequence logos were generated 

using Logomaker [31]. Annotated motifs from the JASPAR database [32] are shown on the 

right.
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