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ABSTRACT

The brain represents sensory variables in the coordinated activity of neural populations, in which
tuning curves of single neurons define the geometry of the population code. Whether the same cod-
ing principle holds for dynamic cognitive variables remains unknown because internal cognitive
processes unfold with a unique time course on single trials observed only in the irregular spiking
of heterogeneous neural populations. Here we show the existence of such a population code for the
dynamics of choice formation in the primate premotor cortex. We developed an approach to si-
multaneously infer population dynamics and tuning functions of single neurons to the population
state. Applied to spike data recorded during decision-making, our model revealed that popula-
tions of neurons encoded the same dynamic variable predicting choices, and heterogeneous firing
rates resulted from the diverse tuning of single neurons to this decision variable. The inferred dy-
namics indicated an attractor mechanism for decision computation. Our results reveal a common
geometric principle for neural encoding of sensory and dynamic cognitive variables.

Cortical neurons encode external sensory variables and perform internal cognitive computations
that transform sensory inputs into motor actions. While these mental processes engage large neural
populations, the activity is often coordinated across neurons to form low-dimensional representations on
the population level1. Such representations were found for sensory and motor variables by mapping out
changes in neural activity in response to varying parameters of stimulus or movement2–5. For example,
the orientation of a visual stimulus is a one-dimensional circular variable encoded in the primary visual
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cortex, where neural population responses organize on a ring mirroring the topology of the encoded
variable6, 7 (Fig. 1a). The orientation-tuning curves of single neurons jointly define the embedding shape
of this ring in the population state space, that is, the geometry of neural representation7, 8 (Fig. 1a).

We hypothesized that neural encoding of dynamic cognitive variables follows the same princi-
ple as sensory variables: the encoded variable determines the topology of neural representation, and
heterogeneous tuning curves of single neurons define the representation geometry9 (Fig. 1b). Testing
this hypothesis has been challenging because internal cognitive processes (e.g., decision-making or at-
tention) are not directly observable and unfold with a unique time course on single trials in the sparse
and irregular spiking activity of neural populations10–14. Thus, these dynamic cognitive representations
cannot be revealed by simply averaging neural activity over trials. Moreover, individual neurons show
diverse temporal response profiles during cognitive tasks15–19, and it is unclear whether single-neuron
heterogeneity is compatible with the hypothesis that the neural population represents a low-dimensional
cognitive variable20–22.

To test our hypothesis, we developed a computational approach for inferring neural population
dynamics from spike data that simultaneously learns a model governing the low-dimensional population
dynamics on single trials and heterogeneous tuning functions of single neurons to the unobserved popu-
lation state that define the representation geometry. Two crucial technical advances within this approach
make testing our hypothesis possible. First, we perform nonparametric inference over a continuous space
of models to discover equations governing population dynamics directly from data23, 24, unlike previous
methods that tested a small discrete set of models without guarantees that any of these a priori chosen
models faithfully reflect neural dynamics11, 21, 25. Second, our ability to infer heterogeneous tuning func-
tions allows us to reconcile the diversity of single-neuron responses with the population-level encoding
of a low-dimensional cognitive variable. In contrast, previous methods assume a rigid monotonic rela-
tionship between firing rates of all neurons and latent states and thus capture population dynamics with
more latent dimensions, which may not directly correspond to the encoded cognitive variable11, 21, 25, 26.

We applied our approach to neural population activity recorded from the primate dorsal premo-
tor cortex (PMd) during decision-making15, a cognitive computation described by a decision variable
reflecting the dynamics of choice formation on single trials27, 28. The neural representation of the deci-
sion variable remains unknown since its unique trajectories on single trials are not observable10, 11, and
decision-related responses of cortical neurons are complex and heterogeneous15, 21, 22. Using our compu-
tational approach, we provide three lines of evidence for our hypothesis: in dynamics of single neurons,
in neural population dynamics, and in their correspondence with animal’s choices.

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.22.550183doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.22.550183
http://creativecommons.org/licenses/by/4.0/


Results

Neural recordings during decision-making. We analyzed spiking activity recorded with linear multi-
electrode arrays from PMd of two monkeys performing a decision-making task15 (Fig. 2a). The monkeys
discriminated the dominant color in a static checkerboard stimulus composed of red and green squares
and reported their choice by touching the corresponding left or right target when ready (a reaction-time
task). We varied the stimulus difficulty across trials by changing the proportion of the same-color squares
in the checkerboard and grouped trials into four stimulus conditions according to the response side indi-
cated by the stimulus (left versus right) and stimulus difficulty (easy versus hard, Fig. 2a, Methods).

Many single neurons in our recordings had decision-related responses with trial-averaged firing
rates separating according to the chosen side (Fig. 2b). While some neurons showed canonical firing
rates ramping up or down with a slope dependent on the stimulus difficulty, most neurons exhibited
heterogeneous temporal response profiles (Fig. 2b), which may seem incompatible with our hypothesis
that all these neurons encode the same dynamic decision variable.

Flexible inference of single-trial neural dynamics. To discover neural representations of the dynamic
decision variable, we modeled neural activity as arising from a latent variable x(t) governed by a general
nonlinear dynamical system equation23, 24 (Fig. 2c, Methods):

ẋ = −DdΦ(x)

dx
+
√

2Dξ(t). (1)

Here Φ(x) is a potential function that defines deterministic forces in the latent dynamical system, and
ξ(t) is a Gaussian white noise with magnitude D that accounts for stochasticity of latent trajectories.
At the beginning of each trial, x(t) is sampled from the distribution p0(x) of initial states, and the trial
terminates when x(t) reaches one of the decision boundaries in the latent space. We modeled the spikes
of each neuron as an inhomogeneous Poisson process with the instantaneous firing rate λ(t) = fi(x(t))

changing as a function of the current latent state x(t). The tuning functions fi(x) define the unique
dependence of the firing rate on the latent variable x for each neuron i (Fig. 2c), analogous to tuning
curves of single neurons to sensory and motor variables. In our model, Φ(x), p0(x), and tuning functions
fi(x) of all neurons are continuous functions that can take arbitrary nonlinear shapes, which enables us
to flexibly discover both the low-dimensional latent dynamics and their nonlinear embedding into the
neural population state space.

We simultaneously infer the functions Φ(x), p0(x), fi(x) and the noise magnitude D from spike
data by maximizing the model likelihood (Methods, Supplementary Fig. 1, Supplementary Note 2).
Thus, our approach discovers equations governing population dynamics directly from data by exploring
a continuous space of dynamical system models23, each defined by a different potential shape Φ(x), of
which previously proposed models of decision making10, 11 are special cases24.
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Decision dynamics in single neurons. First, we examined decision-related dynamics of single neurons
by fitting our model to spikes of each neuron separately. We analyzed 128 neurons from monkey T and 88
neurons from monkey O that had sufficiently large choice selectivity and data amount (Methods). Since
decision dynamics depend on the stimulus, we first fitted the model for each stimulus condition sepa-
rately. We noticed that the inferred tuning functions, initial state distribution p0(x) and noise magnitude
D were similar across four stimulus conditions and only the potential shapes were different (Supplemen-
tary Fig. 2). The stability of tuning functions fi(x) indicates that stimulus affects only the dynamics of
the decision variable but not its encoding in neural activity. In addition, stimulus-independence of p0(x)

is expected since stimulus information is not available before stimulus onset. We therefore proceeded
with shared optimization in which we fitted the model to all available trials and restricted fi(x), p0(x),
and D to be the same and only allowed the potential Φ(x) to differ across stimulus conditions. The
shared optimization maximally leverages all available data to produce more reliable and accurate infer-
ence (Supplementary Figs. 2-5). The model fit successfully converged for most neurons (monkey T: 117
out of 128 neurons, 91%; monkey O: 67 out of 88 neurons, 76%) which were used in further analyses,
showed overfitting for 1 neuron from monkey O (Supplementary Fig. 6, Methods), and showed signs of
underfitting for the remaining neurons (monkey T: 11 out of 128 neurons, 9%; monkey O: 20 out of 88
neurons, 23%, Supplementary Fig. 7, a detailed summary of outcomes in Methods).

To examine how well our model accounted for responses of single neurons in our data, we calcu-
lated the variance of spike times on single trials explained by the model and compared it to the spike-time
variance explained by the baseline prediction based on the trial-average firing rate traces in each condi-
tion (Methods). Our model explained significantly more spike-time variance than the baseline (Fig. 3a;
monkey T: p < 10−10, n = 111; monkey O: p < 10−10, n = 50, two-sample t-test) and on average
accounted for 0.27± 0.14 (monkey T) and 0.22± 0.13 (monkey O, mean ± std) of the total spike-time
variance. Since the total variance of spike times includes an unpredictable point-process variance, we
used an independent method to estimate the point-process variance for each neuron29 and compared it
with the residual variance unexplained by our model (Methods). The point-process variance correlated
tightly with the residual variance unexplained by our model (Fig. 3b; monkey T: r = 0.80; monkey
O: r = 0.73, Pearson correlation coefficient), which indicates that our model accounted for nearly all
explainable variance in the firing rates of neurons on single trials.

Our model revealed that despite heterogeneous trial-average responses, single neurons showed
remarkably consistent dynamics during choice formation on single trials (Fig. 3c-h), which provides the
first line of evidence for our hypothesis. In all stimulus conditions, the inferred potentials displayed
the same features: a nearly linear slope towards the decision boundary corresponding to the correct
choice and a single potential barrier separating it from the boundary corresponding to the incorrect
choice (Fig. 3d,g). The inferred distribution of initial states p0(x) was narrow and centered near the
top of the linear slope, indicating that latent trajectories evolve smoothly towards the correct choice but
have to overcome the potential barrier towards the incorrect choice (Fig. 3d,g). We observed the same
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potential shape with a single barrier in all stimulus conditions for the overwhelming majority of single
neurons (monkey T: 102 out of 117 neurons, 87%; monkey O: 66 out of 67 single neurons, 98.5%, more
examples in Supplementary Fig. 8), and the remaining neurons had a potential with either no barrier
or two barriers in at least 1 stimulus condition and a single-barrier potential in the remaining stimulus
conditions (a detailed summary of outcomes in Methods). For easy stimulus conditions, the potentials
had a higher barrier and steeper slope than for hard conditions (Fig. 3d,g,i; easy vs. hard; left stimulus:
p < 10−10, n = 184; right stimulus: p =< 10−10, n = 184, two-sample t-test), predicting more latent
trajectories reaching the correct choice boundary and faster reaction times which is consistent with the
animals’ behavior. The heterogeneity of trial-average responses across neurons (Fig. 3c,f) resulted from
the different shapes of the inferred tuning functions (Fig. 3e,h). These results reject the idea that decision-
related dynamics are heterogeneous across neurons21, which would correspond to diverse shapes of the
potential Φ(x). Instead, we find that during decision formation, the overwhelming majority of single
neurons in PMd follow the same dynamics described by a single-barrier potential and diverse tuning
functions account for the heterogeneity of their responses.

Decision dynamics in neural populations. We found that single neurons consistently showed the same
dynamics during decision making, but how are these dynamics organized in the population? One possi-
bility is that the dynamics unfold in unison across all neurons, that is, on each trial, all neurons follow
the same latent trajectory x(t), indicating that the entire population encodes the same latent dynamical
variable as we hypothesized (Fig. 1b). Alternatively, individual neurons can follow their unique inde-
pendent trajectories on single trials even if their dynamics are described by the same potential, in which
case different neurons can be at different latent states at the same time, for example, evolving towards
opposite choice boundaries on the same trial11. To test these possibilities, we examined neural popula-
tion dynamics by fitting our model to spikes of multiple neurons recorded simultaneously in the same
session (Methods). When fitting neural population responses, our model assumes that all neurons share
the same latent dynamical variable x(t) and each neuron has its unique tuning function fi(x) to this
latent variable (Fig. 2c). Thus, the population model has less freedom to explain neural responses than
single-neuron models fitted to spikes of each neuron separately. If single-trial dynamics do not unfold
in unison across all neurons, then we expect the population model to fit neural responses worse than
single-neuron models.

For each monkey, our data yielded 15 sessions that had at least 3 neurons, with the median number
of simultaneously recorded neurons per session 6 for monkey T (range 3 to 19), and 4 for monkey O
(range 3 to 7). The model fit successfully converged for most sessions (monkey T: 11 out of 15 sessions,
73%; monkey O: 13 out of 15 sessions, 87%) which were used in further analyses, showed overfitting
for 1 session in each monkey (Supplementary Fig. 6, Methods), and showed signs of underfitting for
the remaining sessions (monkey T: 3 out of 15 sessions, 20%; monkey O: 1 out of 15 sessions, 7%,
Supplementary Fig. 7, a detailed summary of outcomes in Methods).
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We compared the performance of the population model and single-neuron model in two ways.
First, we compared the variance of spike times on single trials explained by the population model and
by the single-neuron models fitted separately to each neuron. The population model explained the same
amount of spike-time variance as single-neuron models (Fig. 4a; monkey T: population model 0.27 ±
0.16, single-neuron model 0.29 ± 0.14, mean ± std, p = 0.59, two-sample t-test, n = 80; monkey O:
population model 0.19±0.13, single-neuron model 0.19±0.13, mean± std, p = 0.97, two-sample t-test,
n = 32), which indicates that single neurons participate in the same shared dynamics unfolding on the
population level. Second, we used a more stringent leave-one-neuron-out validation, in which we predict
spike times of one neuron from the latent variable x(t) inferred from spikes of all other neurons in the
population on single trials (Methods). We performed this analysis for datasets from monkey T which
had sufficiently large number of neurons per session (Methods). The amount of spike-time variance
explained by the population model in the leave-one-neuron-out validation was significantly greater than
the spike-time variance explained by the baseline prediction based on the neuron’s own trial-average
firing rate in each condition (Fig. 4a; monkey T: leave-one-neuron-out 0.15± 0.16, baseline 0.04± 0.09,
mean ± std, p = 1.1 · 10−6, two-sample t-test, n = 80). These results are consistent with our hypothesis
that the entire population encodes the same latent dynamical variable on single trials.

Since the population model predicted spike times just as well as single-neuron models, we expect
that it recovered the same dynamics as identified in single neurons. Indeed, the dynamics discovered by
the population model were consistent with single-neuron results (Fig. 4b-d). For all stimulus conditions,
the potential had a linear slope towards the boundary corresponding to the correct choice separated by a
potential barrier from the boundary corresponding to the incorrect choice (Fig. 4c). The initial state dis-
tribution p0(x) was narrow and centered near the top of the linear slope (Fig. 4c), and the heterogeneity
of single-neuron responses (Fig. 4b) was captured in their unique nonlinear tuning functions (Fig. 4d).
We observed the same potential shape with a single barrier in all stimulus conditions for the majority of
sessions (monkey T: 9 out of 11 sessions, 82%; monkey O: 13 out of 13 sessions, 100%), and the re-
maining two sessions had a potential with either no barrier or two barriers in at least 1 stimulus condition
and a single-barrier potential in the remaining stimulus conditions (detailed summary of outcomes in
Methods). The consistency of potential shapes and the high fit quality for the population model provide
the second line of evidence for our overall hypothesis.

Predicting choice from latent dynamics. Our results show that neural populations in PMd encode
a one-dimensional dynamic latent variable, and next we tested how this variable was related to the
decision-making behavior performed by the animals. We used our models to predict animals’ choices
from the neural activity on single trials. On each trial, we decoded the latent trajectory x(t) from spikes
and predicted the choice as the boundary to which this trajectory converged at the reaction time (Meth-
ods). Both single-neuron and population models predicted animals’ choices significantly above chance
(Fig. 4e; balanced accuracy, mean ± std, one-sample t-test, monkey T: single-neuron model 70 ± 13%,
p < 10−10, n = 85, population model 88 ± 7%, p = 7 · 10−8, n = 11; monkey O: single-neuron model
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60±7%, p < 10−10, n = 46, population model 72±7%, p = 2 ·10−7, n = 13). This correspondence be-
tween the inferred latent variable and animals’ choice is nontrivial, since the information about animals’
choices was not provided to the models during fitting. For a comparison, we trained a logistic regression
decoder to predict animals’ choices from spike counts measured in 75 ms sliding window on single trials
(Methods). Despite the decoder being directly supervised to predict the choice, our unsupervised models
predicted choices with higher accuracy than the decoder (Fig. 4e, monkey T: single-neuron decoder vs.
single-neuron models p = 2 · 10−5, n = 85, population decoder vs. population models p = 0.006,
n = 11; monkey O: single-neuron decoder vs. single-neuron models p = 0.04, n = 46, population
decoder vs. population models p = 0.006, n = 13, two-sample t-test), suggesting that the latent variable
inferred by our models is the dynamic decision variable encoded in the spiking activity. Moreover, the
population models predicted choices with higher accuracy than single-neuron models (Fig. 4e, monkey
T: p = 3 · 10−5; monkey O: p = 7 · 10−7, two-sample t-test), reinforcing the conclusion that the decision
variable is encoded on the population level. These results provide the third and final line of evidence for
our overall hypothesis.

In summary, we find that heterogeneous neural populations in PMd encode the same dynamic
decision variable with diverse tuning functions, which define the geometry of the population code for
choice formation. This discovery indicates that neural encoding of dynamic cognitive variables and
sensory variables follows a common geometric principle.

Attractor mechanism for decision computation. We discovered that both single-neuron and popu-
lation activity in PMd are consistently described by the same dynamics—a potential with a single
barrier—so what does this result tell us about the mechanism of decision computation in PMd? The
dynamics we found in PMd are qualitatively distinct from the stepping and ramping models proposed
previously11, 21, 24, 25 and, instead, are consistent with the attractor mechanism hypothesized in neural cir-
cuit models30–35. In the classical discrete attractor spiking network model30, two pools of excitatory
neurons receive external inputs providing evidence for the left and right choice (Fig. 5a). The excitatory
pools compete via a pool of inhibitory neurons that mediates winner-take-all dynamics, such that on
each trial, only one excitatory pool elevates the firing rate signaling the network’s choice and the other
excitatory pool is suppressed (Fig. 5a).

The mechanism of decision computation in this network can be understood using a mean-field
approximation that reduces the network to a two-dimensional dynamical system in which the activity
of two excitatory pools are the dynamic variables31, 36. In the phase plane of this dynamical system,
two stable attractors represent two choice alternatives separated by a saddle point (Fig. 5b). The stable
manifold of the saddle point is the separatrix, which divides the phase plane into the two attractor basins.
When initialized on either side of the separatrix, the network state evolves towards the corresponding
attractor following the flow field of the dynamical system. At the trial start, the symmetric low-activity
network state falls within the basin of the attractor corresponding to the correct choice. Accordingly,
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on correct trials, the network’s trajectory smoothly follows the flow field to reach the correct-choice
attractor. In contrast, on error trials, the noise drives the trajectory across the separatrix to reach the
incorrect-choice attractor, in which case the trajectory moves against the flow field thus overcoming a
potential barrier. When projected onto a single dimension (e.g., the unstable manifold of the saddle
point), these dynamics are described by a potential that has a linear slope towards the correct choice and
a potential barrier separating it from the incorrect choice (Fig. 5b).

To verify this theory, we fitted our population dynamics model to spiking activity generated by
simulating the attractor neural network (Methods). From the network activity, the population model
inferred potentials with a single barrier in each stimulus condition that were qualitatively similar to the
potentials discovered from the PMd data (Fig. 5c, c.f. Fig. 3d,g and Fig. 4c). For all neurons within
each excitatory pool, the inferred tuning functions were the same and mirror-symmetric reflections of
tuning functions in the opposite pool (Fig. 5d), which is expected in this symmetric network with ho-
mogeneous neural pools. Thus, the attractor network and PMd data have similar dynamics but different
representation geometry, since PMd neurons had heterogeneous tuning to the dynamic decision variable.

To further compare the representation geometry of the decision variable in the two-pool attractor
network and PMd, we visualized the manifold defined by the tuning functions fi(x) in the population
state space. In the two-pool attractor network, excitatory neurons have only two types of tuning functions
and thus naturally form a two-dimensional manifold. We can directly visualize this manifold by plotting
the two types of tuning functions against each other (Fig. 5e). The manifold shape closely corresponds to
the paths that network trajectories take from the initial state to the choice attractors (Fig. 5e cf. Fig. 5b);
this observation reinforces the link between our population dynamics model and the attractor mechanism.
Since PMd neurons had heterogeneous tuning functions, the manifold is high-dimensional and cannot be
directly visualized. We collected all tuning functions inferred in 24 well-fitted sessions and estimated the
manifold dimensionality with principal component analysis (PCA). The first three PCs explained 56.0%,
26.8%, and 5.2% of the total variance, respectively. Projecting the manifold onto the first three PCs
revealed a shape with two diverging branches for two choices, similar to the two-pool attractor network
but with different higher-dimensional geometry (Fig. 5f). This shape of the decision manifold in PMd
could potentially arise from the attractor mechanism distributed across many neurons in a recurrent
network with low-dimensional connectivity structure7, 32, 33, 37.

Discussion

We identified the dynamics and geometry of the neural population code for choice formation in the
primate premotor cortex. In this code, the instantaneous state of the neural population represents the
dynamic decision variable on single trials, and heterogeneous firing rates of single neurons result from
their diverse tuning to this decision variable. This discovery was enabled by our nonparametric ap-

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.22.550183doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.22.550183
http://creativecommons.org/licenses/by/4.0/


proach that simultaneously infers neural dynamics and their nonlinear embedding in the neural popula-
tion state space, and it would not be possible with methods that assume rigid parametric relationships
between firing rates and latent state11, 21, 25, 26. While previous work measured tuning curves of cortical
neurons to the accumulated evidence estimated from behavior38, 39, our results suggest that the dynamics
of internal cognitive computations may differ across brain areas and thus cannot be described by the
same global variable inferred from behavior. Our approach can be applied to discover the dynamics
and geometry of other cognitive computations in the brain from neural population activity recordings.
The decision dynamics we identified were qualitatively distinct from previously proposed ramping and
stepping models10, 11, 21, 25 and, instead, suggested an attractor mechanism hypothesized in neural circuit
models30–35. Thus, our results bridge the gap between the neural manifold and circuit approaches to
cognition, motivating future work to understand circuit mechanisms supporting cognitive computations
in distributed heterogeneous networks7.

Methods

Behavioral task and electrophysiological recordings. We analyzed an experimental dataset described
previously15. Two male monkeys (T and O, Macaca mulatta, 6 and 9 years old) were used in the experi-
ments. Experimental procedures were in accordance with NIH Guide for the Care and Use of Laboratory
Animals, the Society for Neuroscience Guidelines and Policies, and Stanford University Animal Care
and Use Committee (8856).

The monkeys were trained to discriminate the dominant color in a static checkerboard stimulus
composed of red and green squares and report their choice by touching the corresponding target. At the
start of each trial, a monkey touched a central target and fixated on a cross above the central target. After
a short holding period (300 − 485 ms), red and green targets appeared on the left and right sides of the
screen. The colors of each side were randomized on each trial. After another short delay (400−1000 ms),
the checkerboard stimulus appeared on the screen at the fixation cross and the monkey had to move its
hand to the target matching the dominant color in the checkerboard. Monkeys were free to respond
when ready. Monkeys were rewarded for the correct choices and received a longer inter trial delays for
the incorrect choices. Hand position was monitored by taping an infrared reflective bead to index or
middle fingers of each hand and used for measurement of speed and to estimate reaction time.

Difficulty of the task was parameterized by an unsigned stimulus coherence expressed as the ab-
solute difference between the number of red (R) and green (G) squares normalized by the total number
of squares |R−G|/(R + G). We used a 15× 15 checkerboard which led to a total of 225 squares. The
task was performed with 7 different unsigned coherence levels for monkey T and 8 levels for monkey
O. For each stimulus condition, our analysis requires at least a small fraction of incorrect choices so that
the neural activity fully explores the decision manifold. Therefore, we only analyzed the 4 most difficult
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stimulus conditions for each monkey which had sufficient number of error trials. To obtain sufficient
data for the model fitting and validation, we merged these four stimulus conditions into two groups com-
bining two easier conditions into one group and two harder conditions into another group. We refer to
these two groups as easy and hard stimulus difficulties. Since PMd neurons are selective for the chosen
side but not for color15, we further divided the trials according to the side indicated by the stimulus (left
or right) for each stimulus difficulty (easy or hard), resulting in four analyzed conditions in total.

We recorded neural activity with a linear multi-contact electrode (U-probe) with 16 channels. After
online and offline spike sorting (through a combination of MATLAB and plexon offline sorter), the
average yield was ∼16 and ∼9 neurons per session for Monkey T and O, respectively, which primarily
were well-isolated single units.

Selection of units for the analyses. After spike sorting and quality control, we had 546 and 450 single
neurons and multiunits recorded from monkeys T and O, respectively. From this dataset, we selected
units for our analyses based on three criteria: (i) trial-average firing rate traces sorted by the chosen
side reach 15 Hz for at least one side at any time between stimulus onset and median reaction time,
(ii) the total number of trials across all conditions is at least 560, (iii) selectivity index for the chosen
side is greater than 0.6 for monkey T and 0.55 for monkey O. The first two criteria ensure that a unit
yields sufficiently large number of spikes for model fitting23, and the third criterion selects for units with
decision-related activity.

For the first criterion, we used trial-average firing rate traces aligned to stimulus onset (PSTH)
sorted by the chosen side, obtained by averaging over trials the spike counts measured in 75 ms bins
sliding at 10 ms steps. For the third criterion, we measured the spike count of each neuron on each trial
in a [0.2, 0.35] s window aligned to stimulus onset. Selectivity index was defined as the area under the
receiver operating characteristic (ROC) curve for discriminating left versus right chosen side based on
the spike counts. Selectivity index ranges between 0.5 (no choice selectivity) and 1. For each monkey,
we imposed a selectivity index threshold at the median across all neurons (0.6 for monkey T and 0.55 for
monkey O), leading to selecting half of all neurons in each monkey. This criterion implies that analyzed
neurons had overall lower choice selectivity in monkey O than in monkey T, because choice selectivity
was generally lower for neurons from monkey O in our dataset.

128 units for monkey T and 88 units for monkey O passed all three selection criteria and were
used in single-neuron analyses. The majority were well-isolated single neurons (monkey T: 127 out of
128 units, 99%, monkey O: 76 out of 88, 86%), and the rest were multiunits. For population analyses,
we included sessions that had at least 3 of the selected single units recorded simultaneously, yielding 15
populations for each monkey.

On each trial, we analyzed PMd activity from 120 ms after stimulus onset (the appearance of a
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checkerboard stimulus on the screen) until the reaction time (the hand leaving the central target), which
was estimated at the first time after checkerboard onset when speed of the hand was above 10% of the
maximum speed for that trial. The delay of 120 ms was chosen to account for the lag in PMd response to
the stimulus. We verified that the model fitting results were the same for a 80− 120 ms range of delays.

Inference of latent neural dynamics. We model latent neural dynamics x(t) as a stochastic nonlin-
ear dynamical system defined by a Langevin equation24 (Eq. 1) on the domain x ∈ [−1; 1]. The de-
terministic force in this equation arises from the potential Φ(x), and ξ(t) is a white Gaussian noise
〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t−t′) andD is the noise magnitude. At the start of each trial, the initial latent
state x0 is sampled from a distribution with probability density p0(x). We model spikes of each neuron
as an inhomogeneous Poisson process with instantaneous firing rate λ(t) = f(x(t)) that depends on the
current latent state via a neuron-specific tuning function f(x). In population models, all neurons follow
the same latent dynamics x(t) and each neuron i has a unique tuning function fi(x) (i = 1 . . .M where
M is the number of neurons in the population). In this case, the population dynamics x(t) are shared
by all neurons and the tuning functions fi(x) jointly define the nonlinear embedding of these dynamics
into the neural population state space. Thus, the model is specified by a set of continuous functions—the
potential Φ(x), the initial state distribution p0(x), a collection of tuning functions {fi(x)}—and a scalar
noise magnitude D. We infer all model components θ = {Φ(x), p0(x), {fi(x)}, D} from spike data
Y (t).

The spike data consist of multiple trials Y (t) = {Yk(t)} (k = 1, 2 . . . K where K is the number of
trials). For independent trials, the total data likelihood is a product of likelihoods of individual trials, we
therefore consider here data for a single trial Yk(t) and omit the trial index to simplify notation. For each
trial, Y (t) = {y0, y1, ..., yN , yE} is a marked point process, that is, a sequence of discrete observation
events. Each observation is a pair yj = (tj, ij) where tj is the time of event j and ij is the type of this
event. The first and last events mark the trial start time t0 and trial end time tE, and the N remaining
events (j = 1, . . . N ) are the spike observations where tj is the time of jth spike and ij is the index of
the neuron that emitted this spike. The events are ordered according to their times.

We fit the model by maximizing the data likelihood L [Y (t)|θ] over the space of continuous
functions23, 24 (Supplementary Note 2.1). The likelihood is a conditional probability density of observing
the data Y (t) given the model θ marginalized over all possible latent trajectories:

L [Y (t)|θ] =

∫
DX (t) P (X (t), Y (t)|θ). (2)

Here P (X (t), Y (t)|θ) is a joint probability density of observing the spike data Y (t) and a continuous
latent trajectory X (t) given the model θ, and the path integral is performed over all possible latent
trajectories. To compute the path integral in Eq. 2, we consider a discretized latent trajectory X(t) =

{xt0 , xt1 , . . . , xtN , xtE}, which is a discrete set of points along a continuous path X (t) at each of the
observation times {t0, t1, . . . , tN , tE}. Once we calculate the joint probability density P (X(t), Y (t))
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of the discretized trajectory and data, we can obtain the data likelihood by marginalization over all
discretized latent trajectories:

L =

∫
xt0

∫
xt1

· · ·
∫
xtN

∫
xtE

dxt0 . . . dxtEP (X(t), Y (t)). (3)

Using the Markov property of the latent Langevin dynamics Eq. 1 and conditional independence
of spike observations, the joint probability density P (X(t), Y (t)) can be factorized24:

P (X(t), Y (t)) = p(xt0)

(
N∏
j=1

p(yj|xtj)p(xtj |xtj−1
)

)
p(xtE |xtN )p(A|xtE). (4)

Here p(yj|xtj)dt is the probability of observing a spike from neuron ij within infinitesimal dt of time tj
given the latent state xtj , hence p(yj|xtj) = fij(xtj) by the definition of the instantaneous Poisson firing
rate. p(xt0) is the probability density of the initial latent state. p(xtj |xtj−1

) is the transition probability
density from xtj−1

to xtj during the time interval between the adjacent spike observations, which accounts
for the absence of spikes during this time interval. Finally, the term p(A|xtE) represents the absorption
operator, which ensures that only trajectories terminating at one of the domain boundaries at time tE
contribute to the likelihood24.

The discretized latent trajectory X(t) = {xt0 , xt1 , ..., xtN , xtE} is obtained by marginalizing the
continuous trajectory X (t) over all latent paths connecting xtj−1

and xtj during each interspike interval.
These marginalizations are implicit in the transition probability densities p(xtj |xtj−1

) in Eq. 4. The
transition probability density p(xtj |xtj−1

) satisfies a modified Fokker-Planck equation which accounts
for the drift and diffusion in the latent space and for the absence of spike observations during intervals
between adjacent spikes in the data24:

∂p(x, t)

∂t
=

(
−D ∂

∂x
F (x) +D

∂2

∂x2
−

M∑
i=1

fi(x)

)
p(x, t) ≡ −Ĥp(x, t). (5)

Here F (x) = −Φ′(x) is the deterministic potential force, and the term −∑M
i=1 fi(x) accounts for the

probability decay due to spikes emitted by any neuron in the population24. The solution of this equation
p(x, tj) = p(x, tj−1) exp(−Ĥ(tj−tj−1)) propagates the latent probability density forward in time during
each interspike interval. To model the reaction time task, we solve Eq. 5 with absorbing boundary
conditions which ensure that trajectories reaching a boundary before the trial end do not contribute to the
likelihood24. In addition, the absorption operator p(A|xtE) in Eq. 4 enforces that the likelihood includes
only trajectories terminating on the boundaries at the trial end time tE24. Together these two conditions
ensure that the likelihood includes only trajectories that reach one of the boundaries for the first time at
the trial end time.

To fit the model to data, we derived analytical expressions for the gradients of the model likelihood
with respect to each of the model components (Supplementary Note 2.2). Instead of directly updating
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the functions Φ(x), p0(x), and fi(x) we, respectively, update the force F (x) = −Φ′(x) and auxiliary
functions F0(x) ≡ p′0(x)/p0(x) and Fi(x) ≡ f ′i(x)/fi(x). The potential Φ(x) is obtained from F (x) via

Φ(x) = −
∫ x

−1
F (s)ds+ C, (6)

where we fix the integration constant C to satisfy
∫
x

exp[−Φ(x)]dx = 1. The initial state distribution
p0(x) is obtained from F0(x) via

p0(x) =
exp

(∫ x

−1 F0(s)ds
)

∫ 1

−1 exp
(∫ s′

−1 F0(s)ds
)
ds′

. (7)

The change of variable from p0(x) to F0(x) allows us to perform an unconstrained optimization of
F0(x), while Eq. 7 ensures that p0(x) satisfies the normalization condition for a probability density∫ 1

−1 p0(x)dx = 1, p0(x) > 0. Finally, the tuning function fi(x) is obtained from Fi(x) via

fi(x) = Ci exp

(∫ x

−1
Fi(s)ds

)
, (8)

where Ci = fi(−1) is the firing rate at the left domain boundary. This change of variable allows us
to perform an unconstrained optimization of Fi(x), while Eq. 8 ensures the non-negativity of the firing
rate fi(x) > 0. We enforce the positiveness of the noise magnitude D by rectifying its value after each
update D = max(D, 0), and the same for each constant Ci.

We derived analytical expressions for the variational derivatives of the likelihood with respect to
each continuous function defining the model δL /δF (x), δL /δF0(x), δL /δFi(x) and the derivatives
of the likelihood with respect to scalar parameters ∂L /∂D and ∂L /∂Ci (Supplementary Note 2.2).
We evaluated these analytical expressions numerically for the iterative optimization. To compute the
likelihood and its gradients numerically, we use a discrete basis in which all continuous functions, such
as F (x), are represented by vectors, and the transition, emission, and absorption operators are repre-
sented by matrices23, 24 (Supplementary Note 2.1). Thus, Eq. 4 is evaluated as a chain of matrix-vector
multiplications.

Optimization with ADAM algorithm. We fit the model by minimizing the negative log-likelihood
− log L [Y (t)|θ] using ADAM algorithm40 with custom modifications (Supplementary Note 2.3). The
standard ADAM update rule for individual scalar parameters scales their gradients inversely proportional
to the average square of their elementwise current and past gradients. Since we optimize over continuous
functions F (x), F0(x), and {Fi(x)}, we scale their gradients by the average function’s L2-norm defined
as ‖φ(x)‖2 =

∫
x
|φ(x)|2dx. We used the following ADAM hyperparameters: α = 0.05 for single

neurons, α = 0.01 − 0.02 for populations, β1 = 0.9, β2 = 0.99, ε = 10−8 for both single neurons
and population (the definitions of hyperparameters are in Supplementary Note 2.3). We tuned these
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hyperparameters on synthetic data with known ground-truth. For the scalar parameters D and all {Ci},
we combine ADAM updates with line searches using L-BFGS-B algorithm (L-BFGS-B method from
scipy.optimize.minimize toolbox). Since a line search is computationally expensive, we perform only
30 line searches spaced logarithmically over the 5,000 epochs range, such that most line searches are
concentrated at early epochs.

We combine ADAM with mini-batch descent randomly splitting the trials from each condition
into 20 batches on each epoch. When we perform shared optimization, we fit the model to all available
trials restricting F0(x), {Fi(x)}, and D to be the same and only allowing the potential force F (x) to
differ across stimulus conditions. In this case, we perform ADAM updates on all batches pooled across
four stimulus conditions (80 batches total) in random order on each epoch. We update the force F l(x)

that defines the potential in condition l only on batches from this condition, and we update all shared
components F0(x), {Fi(x)}, D, {Ci} on every batch.

We accelerated the optimization algorithm on Graphic Processing Units (GPUs) using cupy library41.
GPU implementation provides a 5 − 10 fold acceleration over the CPU implementation with the exact
factor depending on the spatial resolution of the discrete basis.

Model selection. ADAM optimization produces a series of models across epochs and we need a model
selection procedure for choosing the optimal model. On early epochs, the fitted models miss some true
features of the dynamics due to underfitting, whereas on late epochs, the fitted models develop spurious
features due to overfitting to noise in the data. The optimal model is discovered on some intermediate
epochs. The standard approach for selecting the optimal model is based on optimizing model’s ability to
predict new data (i.e. generalization performance), e.g., using likelihood of held-out validation data as a
model selection metric42. However, optimizing generalization performance cannot reliably identify true
features and avoid spurious features when applied to flexible models23, which generalize well despite
overfitting43. We developed an alternative approach for model selection based on directly comparing
features of the same complexity discovered from different data samples23, 24 (Supplementary Note 2.4).
Since true features are the same, whereas noise is different across data samples, the consistency of fea-
tures inferred from different data samples can separate the true features from noise, and model selection
based on feature consistency can reliably identify the correct features23, 24.

To compare features discovered from different data samples, we need a metric for feature com-
plexityM. We define feature complexity as the negative entropy of latent trajectories generated by the
model23, 24M = −S[Φ(x), D, p0(x); ΦR(x), DR, pR0 (x)]. The trajectory entropy44 is a functional defined
as a negative Kullback-Leibler (KL) divergence between the distributions of trajectories in the model of
interest {Φ(x), D, p0(x)} and the distribution of trajectories in the reference model {ΦR(x), DR, pR0 (x)}.
The reference model is a free diffusion in a constant potential (ΦR(x) = const) with the same diffusion
coefficient D as in the model of interest. We derived the analytical expression for the trajectory entropy
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for non-stationary Langevin dynamics24:

S[Φ(x), D, p0(x); ΦR(x), D, pR0 (x)] = −
∫
dxp0(x) ln

p0(x)

pR0 (x)
− D

4

∫ ∞
0

dt

∫
dxF 2(x)p(x, t). (9)

We choose the initial distribution pR0 (x) for the reference model to be uniform. We derived an expression
for efficient numerical evaluation of Eq. 9 taking the integral over time analytically24 (Supplementary
Note 2.4). Qualitatively, feature complexity reflects the structure of the potential Φ(x): potentials with
more structure have higher feature complexity. The reference model with constant potential has zero
feature complexity. During model fitting, the feature complexity consistently grows throughout the
optimization epochs24.

We compare models discovered from two non-intersecting halves of the dataD1 andD2 to evaluate
consistency of their features (Supplementary Fig. 1). We perform the ADAM optimization independently
on each data split to obtain two series of models θ1n = {Φ1

n, D
1
n, p

1
0,n(x)} and θ2n = {Φ2

n, D
2
n, p

2
0,n(x)}

(where n = 1, 2 . . . 5, 000 is the epoch number) fitted on D1 and D2, respectively. We measure feature
complexity of these models, M1

n and M2
n, and quantify the consistency of features of the same com-

plexity between models fitted on different data splits. We quantify the consistency of features between
two models by evaluating Jensen-Shannon divergence DJS between their time-dependent probability
densities over the latent space24 (Supplementary Note 2.4). At low and moderate feature complexity,
the models contain true features of the dynamics in the data and their features agree between data splits
reflected in low DJS values. At high feature complexity, the models overfit to noise and contain spurious
features that do not replicate between data splits, resulting in largeDJS values. To find the optimal feature
complexity, we set the threshold DJS,thres = 0.0015 and selectM∗ as the maximum feature complexity
for which DJS 6 DJS,thres. This procedure returns two models of roughly the same feature complexity
which represent the consistent features of dynamics across data splits. The threshold DJS,thres sets the
tolerance for mismatch between models and choosing higher DJS,thres results in greater discrepancy be-
tween models obtained from two data splits. We set DJS,thres = 0.0015 based on fitting synthetic data
with known ground truth, at this threshold value the selected models reliably matched the ground-truth
model.

Uncertainty quantification. We quantify the estimation uncertainty for fitted models using a bootstrap
method24. To obtain confidence bounds for the inferred model, we generate ten bootstrap samples by
sampling trials randomly with replacement from the set of all trials. To ensure that the two data samples
D1 and D2 used for model selection do not overlap, we first randomly split all trials into two equal non-
overlapping groups, and then sampled trials randomly with replacement from each group to generate D1

and D2. For shared optimization, we resampled the trials separately for each stimulus condition. For
each bootstrap sample, we refit the model and perform model selection using our feature consistency
method. We then obtain the confidence bounds for the inferred potential, p0(x) distribution, and tuning
functions by computing a pointwise standard deviation across twenty models produced by the model
selection on two data splits from each of ten bootstrap samples.
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Outcomes of the model fitting and selection. When fitting our model to spikes of single neurons
and populations and performing model selection, we observed three possible outcomes: overfitting,
underfitting, and good fit.

In rare cases (monkey T: 0 out of 128 single neurons 0%, 1 out of 15 populations 6.7%; monkey O:
1 out of 88 single neurons 1%; 1 out of 15 populations 6.7%), the model selection produced a model that
showed signs of overfitting (Supplementary Fig. 6). We detected overfitting as models with unrealisti-
cally high firing rates in the tuning function (hundreds of Hz), disproportionally high noise magnitude
(in the range D ∼ 3 − 5, compared to D ∼ 0.2 − 0.6 in regular fits) compensated by deep wells in the
potential (overall depth of the potential ∼ 20, compared to ∼ 2 in regular fits). These models produced
severely underestimated reaction times (reaction time ∼10 ms in the model, compared to ∼500 ms in
the data) and did not predict monkey’s choice. This type of overfitting cannot be detected with standard
validation approaches23, e.g., these models had similar likelihood on training and validation data.

Some selected models showed signs of underfitting in one of two types. In the first type (monkey T:
10 out of 128 single neurons 7.8%, 2 out of 15 populations 13%; monkey O: 11 out of 88 single neurons,
12.5%, 1 out of 15 populations 6.7%), the potentials had the linear slope tilted towards the same boundary
in all stimulus conditions, i.e. the model had no decision signal (Supplementary Fig. 7a,b). In the second
type (monkey T: 1 out of 128 single neurons 0.8%, 1 out of 15 populations 6.7%; monkey O: 9 out of
88 single neurons, 10%, 0 out of 15 populations 0%), the potentials obtained from two data halves D1

and D2 had the linear slope tilted towards the opposite boundaries in at least one stimulus condition
(Supplementary Fig. 7c-e). This disagreement about the correct choice side results in DJS values rising
high early in the optimization, leading to the selection of a model with low feature complexity before
all consistent features have been discovered. These both types of underfitting likely arise when a model
cannot detect a weak decision signal and mainly fits the condition-independent trend in neural activity.

All remaining models were considered a good fit and were used in further analyses. In these mod-
els, we quantified the potential shape by counting the number of barriers in the potential. A barrier is a po-
tential maximum where the force, which is the negative derivative of the potential F (x) = −dΦ(x)/dx,
changes the sign from negative to positive. We also classified a potential minimum next to a boundary as
a barrier, because the trajectory must get to the top of the potential to reach the boundary. At a potential
minimum, the force changes the sign from positive to negative. We therefore counted the number of
sign changes from negative to positive and vice versa in the force F (x) in each stimulus condition. We
used two force functions F 1(x) and F 2(x) produced by the model selection on two data splits D1 and
D2 (bootstrap samples were not used in this analysis). We counted a sign change to occur within a local
region if both F 1(x) and F 2(x) were negative for ten consecutive grid points to the left and positive for
ten consecutive grid points to the right of that region, or vice versa. We only counted sign changes that
were at least 30 grid points away from the domain boundaries. The overwhelming majority of models
had a single-barrier potential in all four stimulus conditions (monkey T: 102 out of 117 single neurons
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87%, 9 out of 11 populations 82%; monkey O: 66 out of 67 single neurons, 98.5%, 13 out of 13 pop-
ulations 100%, Fig. 3e,h, Fig. 4d, Supplementary Figs. 8,9 ). Some models had a monotonic potential
(no barrier) in at least 1 stimulus condition and a single-barrier potential in the remaining conditions
(monkey T: 9 out of 117 single neurons 8%, 1 out of 11 populations 9%; monkey O: 0 out of 67 single
neurons, 0%, 0 out of 13 populations 0%). The remaining models had a second small barrier in at least
1 stimulus condition and a single-barrier potential in the remaining conditions (monkey T: 6 out of 117
single neurons 5%, 1 out of 11 populations 9%; monkey O: 1 out of 67 single neurons, 1.5%, 0 out
of 13 populations 0%). The second barrier was typically shallow and located near the incorrect-choice
boundary, where the estimation uncertainty is higher due to lower sampling probability of this region in
the data.

We also analyzed the potential shape in models that showed the first type of underfitting with no
decision signal. These models had feature complexity similar to good fits, suggesting that the model
selection identified similar features in the dynamics. The fit, however, captured only the condition-
independent dynamics and missed the weak decision signal. These models can still inform us about
the mechanism of decision-making. For example, in the two-pool attractor network model30, inhibitory
neurons do not have choice selectivity but they still reflect the attractor dynamics with a barrier separating
correct and incorrect choices. Many of the models with no decision signal had a single-barrier potential
(monkey T: 5 out of 10 single neurons 50%, 0 out of 2 populations 0%; monkey O: 11 out of 11 single
neurons, 100%, 1 out of 1 populations 100%), which further supports our finding that the dynamics
described by a single-barrier potential were prevalent in our PMd data.

When analyzing spike-time variance explained by our models (Fig. 3a,b, Fig. 4a), for each neuron,
we included only stimulus conditions that had at least 600 spikes across all trials. This restriction was
necessary for an accurate estimation of the spike-time variance explained, which is computed on raw
spike times without binning or smoothing. For single-neuron models, this restriction produced 111 and
50 single neurons for monkey T and O, respectively (Fig. 3a). For population models, this restriction
produced 80 and 32 single neurons for monkey T and O, respectively, which were part of the well-fitted
populations (Fig. 4a). The comparison between the residual variance unexplained by single-neuron mod-
els and the point process variance estimated by the independent method was performed for 64 neurons
from monkey T and 27 neurons from monkey O, which had sufficiently high firing rate for the indepen-
dent method to produce a reliable estimate29. For behavior prediction (Fig. 4e), we additionally only
included conditions that had at least 5 incorrect choices in both training and validation datasets, which
did not change the number of analyzed populations. This condition was necessary for the baseline com-
parison, which required training a logistic regression decoder for choice prediction. In this analysis, we
used all well-fitted population models and the single-neuron models for the exact same set of neurons
that were part of the used populations.
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Spike-time variance explained by the models. To quantify how well our models fitted spiking activity
on single trials, we computed the amount of variance in raw spike times (without binning or smooth-
ing) explained by a model. We define the spike-time variance using the time rescaling theorem45 for
doubly stochastic renewal point processes46, 47. For a doubly stochastic renewal point process, the total
variability in spike times arises from two sources: the variability of the instantaneous firing rate λ(t)

and the variability of the spike-generating point process. The time rescaling theorem states that we
can eliminate the firing rate variability by mapping the spike times from the real time t to the oper-
ational time t′ via squeezing or stretching the time locally in proportion to the cumulative firing rate:
t′ = Λ(t) =

∫ t

0
λ(s)ds. Thus, the variability of rescaled spike times in the operational time reflects

only the point process variability. For example, rescaling spike times generated by an inhomogeneous
Poisson process yields a homogeneous Poisson process with the firing rate 1 Hz.

We quantify the spike time variability using the squared coefficient of variation of interspike inter-
vals (ISIs) CV2, which is the ratio of the ISI variance to the squared mean ISI48. The total variance is
then CV2

total of the raw ISIs calculated in the real time. To compute the variance explained by a model, we
use the model to predict the instantaneous firing rate λ(t) of a neuron on each trial, map the spikes to the
operational time using the predicted firing rate λ(t), compute CV2

model of rescaled ISIs in the operational
time, and finally compute the variance explained as:

R2 = 1− CV2
model

CV2
total

. (10)

If the predicted instantaneous firing rate λ(t) faithfully captures the firing-rate dynamics on single
trial, then rescaling ISIs eliminates the firing-rate variability leading to CV2

model < CV2
total. The point

process variability still contributes to CV2
model, hence R2 < 1 always holds bounded by the unexplainable

point process variability. For a Poisson spike-generating process, the rescaled spike times follow a
homogeneous Poisson process hence CV2 of rescaled ISIs equals one. However, spike statistics of
cortical neurons often deviate from the Poisson process49, and in our data the residual spike time variance
was typically CV2

model < 1 (Fig. 3b) indicating that the spike-generating process is more regular than
Poisson20. We therefore estimated the point processes variability with an independent method based on
more general doubly stochastic renewal point processes29 and compared this independently estimated
point process variance to the residual variance unexplained by our models. A tight correspondence
between the residual spike-time variance unexplained by a model and the independently measured point
process variance would indicate that the model accounts for nearly all explainable firing-rate variance in
the data.

The independent method for estimating the point process variance is based on doubly stochastic
renewal point processes, for which the variance Var(NT ) of spike count NT measured in time bins of
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size T can be partitioned as29:

Var(NT ) = Var(λT ) +
1

6
(1− φ2) + φE[NT ] +O(T−1). (11)

Here φ is CV2 of ISIs in the operational time, which is a parameter that controls the point process
variability, and λ(t) is the instantaneous firing rate which is assumed to be approximately constant within
a single bin. To estimate φ from data, we apply Eq. 11 to spike counts measured in two bin sizes T and
2T to yield two equations, which can be solved to obtain a quadratic equation for φ29:

1

2
(φ2 − 1)− (4E[NT ]− E[N2T ])φ+ 4Var(NT )− Var(N2T ) = 0. (12)

Here, the spike-count mean and variance for each bin size E[NT ], E[N2T ], Var(NT ), Var(N2T ) are mea-
sured directly from the spike data, and φ is the only unknown variable. Thus, we solve Eq. 12 to estimate
φ from data and compare this φ to the residual spike-time variance unexplained by our model.

To predict the instantaneous firing rate λ(t) with our models, we used the Viterbi algorithm to
predict the most probable latent path X̂(t) given the observed data Y (t). We generalized the max-sum
Viterbi algorithm with backtracking50 to our case of continuous-space continuous-time latent dynamical
system (Supplementary Note 2.5). From the most probable latent path X̂(t), we computed the instan-
taneous firing rate for a neuron i using its tuning function λ(t) = fi(X̂(t)). For leave-one-neuron-out
validation, we interpolated the instantaneous firing rate with cubic splines to obtain the firing rate at
spike times of the left-out neuron. We then rescale spike times via t′i =

∫ ti
t0
λ(t)dt (where t0 is the trial

start time and t1, ..., tN are the original spike times) using the trapezoidal rule to approximate the time
integral and finally compute CV2

model of rescaled ISIs.

We calculated the variance explained by our model using a cross-validation procedure with the
same two non-overlapping data splits D1 and D2 as used for the model selection. We used the model
fitted on the dataset D1 to predict the instantaneous firing rate and compute R2 of each neuron on the
dataset D2, and vice versa. We analyzed each stimulus condition separately and averaged R2 across
conditions. We report R2 averaged over the two data splits. For the leave-one-neuron-out validation, we
use a population model fitted to spikes of n neurons on training trials to predict the instantaneous firing
rate of each neuron in turn on validation trials using the latent path predicted with the Viterbi algorithm
from the spikes of the remaining n− 1 neurons.

As a baseline for the comparison with our models, we also predicted the instantaneous firing rate
λ(t) using the trial-average firing rate traces sorted by the chosen side and stimulus difficulty (i.e. the
peristimulus time histogram, PSTH). We computed the trial-average firing rates for the left and right
choice trials in a 75 ms window sliding in 10 ms steps on the dataset D1, and used them as a prediction
of the instantaneous firing rates for the left and right choice trials on the dataset D2, and vice versa.
Thus, this baseline prediction uses the information about the animal’s choice on both the training and
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validation trials. We analyzed each stimulus condition separately and averaged R2 across conditions and
the two data splits.

Predicting animal’s choice from neural activity. We used our models to predict animal’s choice from
neural activity. We performed a cross-validation procedure with the same two non-overlapping data
splits D1 and D2 as used for the model selection. We use the models fitted on the dataset D1 to predict
the animal’s choice on the dataset D2, and vice versa, and report the average accuracy over the two data
splits. We apply Viterbi algorithm to neural activity on validation trials to predict the most probable
latent path X̂(t). By the design of Viterbi algorithm with absorbing boundary conditions, the trajectory
must terminate at one of the domain boundaries, therefore we predict choice as the value of x(tE) at the
trial end.

As a baseline for the comparison with our models, we also predicted animal’s choice with a logistic
regression decoder using the same two data splits for the decoder training and validation. As an input to
the decoder, we provide trial-average firing rate traces computed with a 75 ms window sliding in 10 ms
steps. We truncated each trial at 0.5 s after stimulus onset resulting in 42-dimensional input vector for
single neurons and 42×M -dimensional input vector for populations, where M is the number of neurons
in the population. We normalize the inputs to have zero mean and unit variance across trials for each
condition in each time bin.

Our data is imbalanced as monkeys make more correct choices than errors, especially on easy
trials. We therefore report balanced accuracy for both our models and the linear decoder (Fig. 4e). The
balanced accuracy is the average between true positive and true negative rates.

Spiking neural network model. We simulated a spiking recurrent neural network model of decision
making with the same parameters as in Ref.30 using a python package Brian 251. We only changed the
value of the NMDA conductance for inhibitory neurons from gNMDA = 0.13 nS to gNMDA = 0.128 nS
to match the reaction times of the spiking network to the experimental data. We simulated 4 stimulus
conditions based on the stimulus difficulty (easy versus hard) and side (left versus right) for comparison
with our PMd data. We set the stimulus coherence parameter c = 17.5% for easy and c = 7.5% for hard
stimulus conditions and generated ∼3,200 trials of data per condition. The reaction time was defined on
each trial as time when one of the population firing rates (smoothed with a moving average over 200 ms
time window) crosses the threshold of 30 Hz. We fitted our population model to responses of two neurons
from each of the two selective excitatory pools (i.e. four simultaneous neural responses in total). We
performed the same shared optimization across four conditions as for the PMd data using the same
hyperparameters for optimization and model selection. To obtain the decision manifold for the network
model (Fig. 5e), we plotted the inferred tuning functions of two neurons from different excitatory pools
against each other, because tuning functions of all neurons from the same pool are identical.
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We used the mean-field approximation to reduce the network’s dynamics to a two-dimensional
dynamical system model with the same parameters as in Ref.31. To calculate the potential along the
unstable manifold of the saddle, we numerically integrated the flux-free flow field along this manifold,
Φ(x) = −

∫ ~Se

~Sb

~Rffd~S. Here ~Rff is the flux-free flow field of the reduced two-variable model, and ~Sb and
~Se are the start and end points of the manifold, respectively. To find the flux-free flow field, we solved
the Poisson equation−∇· ~∇Φ(S1, S2) = ∇· ~R, where ~R is the full flow field of the reduced two-variable
model. The flux-free flow field is then ~Rff = −~∇Φ. To find the stable and unstable fixed points on the
phase plain, we numerically solved the equation ~R = 0 starting from a few different initial conditions
using Matlab fsolve function. To find the stable and unstable manifolds of the saddle, we followed the
path along −~R and ~R, respectively, starting the trajectory near the saddle point.
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4. Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A. & Fiete, I. The intrinsic attractor manifold and
population dynamics of a canonical cognitive circuit across waking and sleep. Nat. Neurosci. 22,
1512 – 1520 (2019).

5. Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128
(2022).

6. Jazayeri, M. & Ostojic, S. Interpreting neural computations by examining intrinsic and embedding
dimensionality of neural activity. Curr. Opin. Neurobiol. 70, 113 – 120 (2021).

7. Langdon, C., Genkin, M. & Engel, T. A. A unifying perspective on neural manifolds and circuits
for cognition. Nat. Rev. Neurosci. 24, 363–377 (2023).

8. Kriegeskorte, N. & Wei, X.-X. Neural tuning and representational geometry. Nat. Rev. Neurosci.
22, 703–718 (2021).

9. Nieh, E. H. et al. Geometry of abstract learned knowledge in the hippocampus. Nature 595, 80–84
(2021).

10. Bollimunta, A., Totten, D. & Ditterich, J. Neural dynamics of choice: Single-trial analysis of
decision-related activity in parietal cortex. J. Neurosci. 32, 12684 – 12701 (2012).

11. Latimer, K. W., Yates, J. L., Meister, M. L. R., Huk, A. C. & Pillow, J. W. Single-trial spike trains
in parietal cortex reveal discrete steps during decision-making. Science 349, 184 – 187 (2015).

12. Cohen, M. R. & Maunsell, J. H. R. A neuronal population measure of attention predicts behavioral
performance on individual trials. J. Neurosci. 30, 15241 – 15253 (2010).

13. Engel, T. A. et al. Selective modulation of cortical state during spatial attention. Science 354, 1140
– 1144 (2016).

14. Denfield, G. H., Ecker, A. S., Shinn, T. J., Bethge, M. & Tolias, A. S. Attentional fluctuations induce
shared variability in macaque primary visual cortex. Nat. Commun. 9, 334 – 14 (2018).

23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.22.550183doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.22.550183
http://creativecommons.org/licenses/by/4.0/


15. Chandrasekaran, C., Peixoto, D., Newsome, W. T. & Shenoy, K. V. Laminar differences in decision-
related neural activity in dorsal premotor cortex. Nat. Commun. 8, 996 (2017).

16. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by
recurrent dynamics in prefrontal cortex. Nature 503, 78 – 84 (2013).

17. Murray, J. D. et al. Stable population coding for working memory coexists with heterogeneous
neural dynamics in prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A 114, 394 – 399 (2017).

18. Chaisangmongkon, W., Swaminathan, S. K., Freedman, D. J. & Wang, X.-J. Computing by robust
transience: How the fronto-parietal network performs sequential, category-based decisions. Neuron
93, 1504 – 1517.e4 (2017).

19. Cavanagh, S. E., Towers, J. P., Wallis, J. D., Hunt, L. T. & Kennerley, S. W. Reconciling persistent
and dynamic hypotheses of working memory coding in prefrontal cortex. Nat. Commun. 9, 3498
(2018).

20. Chandrasekaran, C. et al. Brittleness in model selection analysis of single neuron firing rates.
bioRxiv preprint at https://www.biorxiv.org/content/10.1101/430710v1 (2018).

21. Zoltowski, D. M., Latimer, K. W., Yates, J. L., Huk, A. C. & Pillow, J. W. Discrete stepping
and nonlinear ramping dynamics underlie spiking responses of lip neurons during decision-making.
Neuron 102, 1249 – 1258.e10 (2019).

22. Steinemann, N. A. et al. Direct observation of the neural computations underlying a single decision.
bioRxiv preprint at https://www.biorxiv.org/content/10.1101/2022.05.02.490321v3 (2023).

23. Genkin, M. & Engel, T. A. Moving beyond generalization to accurate interpretation of flexible
models. Nat. Mach. Intell. 2, 674 – 683 (2020).

24. Genkin, M., Hughes, O. & Engel, T. A. Learning non-stationary Langevin dynamics from stochastic
observations of latent trajectories. Nat. Commun. 12, 5986 (2021).

25. Zoltowski, D. M., Pillow, J. W. & Linderman, S. W. Unifying and generalizing models of neural
dynamics during decision-making. arXiv preprint at https://arxiv.org/abs/2001.04571 (2020).

26. Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential auto-
encoders. Nat. Methods 15, 805 – 815 (2018).

27. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535 –
574 (2007).

28. Peixoto, D. et al. Decoding and perturbing decision states in real time. Nature 80, 791 – 21 (2021).

24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.22.550183doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.22.550183
http://creativecommons.org/licenses/by/4.0/


29. Aghamohammadi, C. & Engel, T. A. Unbiased estimation of firing-rate variance from spikes to
reveal decision computations. 48th Annual Meeting of the Society for Neuroscience (2019). A
bioRxiv preprint for this work will be submitted shortly.

30. Wang, X.-J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36,
955–968 (2002).

31. Wong, K.-F. & Wang, X.-J. A recurrent network mechanism of time integration in perceptual deci-
sions. J. Neurosci. 26, 1314 – 1328 (2006).

32. Song, H. F., Yang, G. R. & Wang, X.-J. Training excitatory-inhibitory recurrent neural networks for
cognitive tasks: A simple and flexible framework. PLoS Comput. Biol. 12, e1004792 – 30 (2016).

33. Mastrogiuseppe, F. & Ostojic, S. Linking connectivity, dynamics, and computations in low-rank
recurrent neural networks. Neuron 99, 609 – 623.e29 (2018).

34. Inagaki, H. K., Fontolan, L., Romani, S. & Svoboda, K. Discrete attractor dynamics underlies
persistent activity in the frontal cortex. Nature 566, 212 – 217 (2019).

35. Finkelstein, A. et al. Attractor dynamics gate cortical information flow during decision-making.
Nat. Neurosci. 24, 843–850 (2021).

36. Roach, J. P., Churchland, A. K. & Engel, T. A. Choice selective inhibition drives stability and
competition in decision circuits. Nat. Commun. 14, 147 (2023).

37. Langdon, C. & Engel, T. A. Latent circuit inference from heterogeneous neural responses during
cognitive tasks. bioRxiv preprint at https://www.biorxiv.org/content/10.1101/2022.01.23.477431v1
(2022).

38. Yang, T. & Shadlen, M. N. Probabilistic reasoning by neurons. Nature 447, 1075–1080 (2007).

39. Hanks, T. D. et al. Distinct relationships of parietal and prefrontal cortices to evidence accumulation.
Nature 520, 220 – 223 (2015).

40. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint at
https://arxiv.org/abs/1412.6980 (2014).

41. Okuta, R., Unno, Y., Nishino, D., Hido, S. & Loomis, C. CuPy: A NumPy-compatible library for
NVIDIA GPU calculations. In Proceedings of Workshop on Machine Learning Systems (Learn-
ingSys) in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS)
(2017).

42. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer Science &
Business Media, 2013).

25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.22.550183doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.22.550183
http://creativecommons.org/licenses/by/4.0/


43. Belkin, M., Hsu, D., Ma, S. & Mandal, S. Reconciling modern machine-learning practice and the
classical bias–variance trade-off. Proc. Natl. Acad. Sci. U.S.A 116, 15849 – 15854 (2019).

44. Haas, K. R., Yang, H. & Chu, J.-W. Trajectory entropy of continuous stochastic processes at equi-
librium. J. Phys. Chem. Lett. 5, 999 – 1003 (2014).

45. Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E. & Frank, L. M. The time-rescaling theorem and
its application to neural spike train data analysis. Neural Comput. 14, 325 – 346 (2002).

46. Cox, D. R. Renewal Theory (Springer, 1967).

47. Cox, D. R. & Isham, V. Point Processes (CRC Press, 1980).

48. Cox, D. R. & Lewis, P. A. The Statistical Analysis of Series of Events (Springer, 1966).

49. Maimon, G. & Assad, J. A. Beyond Poisson: Increased spike-time regularity across primate parietal
cortex. Neuron 62, 426 – 440 (2009).

50. Bishop, C. M. Pattern Recognition and Machine Learning (Springer, New York, 2007).

51. Stimberg, M., Brette, R. & Goodman, D. F. Brian 2, an intuitive and efficient neural simulator. eLife
8, e47314 (2019).

26

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.22.550183doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.22.550183
http://creativecommons.org/licenses/by/4.0/


F
ir
in

g
 r

a
te

ba

α

F
ir
in

g
 r

a
te

Neuron 2Neuron 1Neuron 2Neuron 1

Decision variable,
Stimulus orientation, 

Choice 1

Choice 2

Task variable Tuning curve

Representation

geometry

Time

D
e

c
is

io
n

 v
a

ri
a

b
le

,

x

x

α

α
90◦

135◦ 45◦

0◦

Neuron M
Neuron M

x(t)

Figure 1. Geometry of neural population codes for sensory and cognitive variables. a, Orientation of a visual
stimulus is a one-dimensional circular variable α (upper left). Single neurons in the primary visual cortex encode
the orientation of a stimulus with bell-shaped tuning curves, which describe the neuron’s trial-average firing rate as a
function of the stimulus orientation (upper right). In the population state space, these neural responses form a ring
matching the topology of the encoded variable (dots – trial-average population responses to different stimulus orienta-
tions indicated by color, the scatter illustrates estimation noise due to a finite number of trials; line – idealized noise-free
ring manifold encoding the stimulus orientation). b, We hypothesize that the same coding principle holds for dynamic
cognitive variables. Specifically, a decision variable x(t) is a one-dimensional variable representing the dynamics of
choice formation on single trials (upper left, trajectories colored by the final choice). Single neurons may encode the
decision variable with diverse tuning functions, which describe the neuron’s instantaneous firing rate as a function of
the decision variable value (upper right). During decision formation, neural population responses evolve along a one-
dimensional manifold encoding the decision variable in the population state space (lower panel, noisy lines illustrate
stochastic trajectories of the decision variable on two example trials colored by choice, solid line – idealized noise-free
decision manifold). The tuning curves of all neurons jointly define the embedding shape of the decision manifold in the
population state space, that is, the geometry of the neural population code for choice.
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Figure 2. Recording and modeling spiking activity during decision making. a, Monkeys discriminated the dominant
color in a static checkerboard stimulus composed of red and green squares and reported their choice by touching the
corresponding target (left). While monkeys performed the task, we recorded spiking activity with 16 channel multi-
electrode arrays from PMd (right). Trial conditions varied by the response side indicated by the stimulus (left versus
right) and stimulus difficulty (easy versus hard, middle). b, Trial-average firing rates of four example neurons sorted by
the chosen side and stimulus difficulty. While some neurons showed canonical ramping responses (upper panels), other
neurons showed heterogeneous temporal response profiles (lower panels). c, A framework for simultaneous inference
of neural population dynamics and their embedding shape in the population state space. We model neural population
dynamics with the latent dynamical system Eq. 1, in which the deterministic flow field arises from a potential Φ(x)

(lower left) and stochasticity is driven by a Gaussian white noise. On each trial, the latent trajectory x(t) starts at the
initial state x(t0) (middle, black dot) sampled from the probability density p0(x) (upper left). Trial ends when the
trajectory reaches one of the decision boundaries corresponding to left and right choice (middle, red and green dashed
lines). The observed spikes of each neuron follow an inhomogeneous Poisson process with time-varying firing rate that
depends on the latent variable x(t) via neuron-specific tuning functions fi(x) (right).
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Figure 3. Decision dynamics in single neurons. a, Spike-time variance explained by the single-neuron model (y-
axis) and by the trial-average firing rate (PSTH, x-axis) for monkey T (orange) and monkey O (purple). Each dot
represents data for one neuron averaged across stimulus conditions. b, The residual spike-time variance unexplained by
the single-neuron model (y-axis) tightly correlates with the point process variance estimated by an independent method
(x-axis), which indicates that our model accounts for nearly all explainable firing-rate variance for each neuron. c,
Spiking activity (upper panel) and trial-average firing rates (lower panel, PSTH) sorted by the chosen side and stimulus
difficulty for an example neuron. Colored dots mark spikes, black dots indicate trial end (reaction time). Error bars are
s.e.m. over trials. Time window used for model fitting starts at 120 ms after the stimulus onset (vertical dashed line)
and extends until the reaction time on each trial. d, Potentials discovered from spikes of the example neuron in c show
a single barrier (marked by triangles) in all four stimulus conditions (middle and lower panels). The inferred initial
state distribution p0(x) shared across conditions (upper panel) peaks near the top of the linear slope of the potential on
the side corresponding to the correct choice (dashed vertical lines). e, The inferred tuning function shared across four
stimulus conditions for the example neuron in c. Error bars in d,e are s.t.d. across 10 bootstrap samples. f-h, Same as
c-e for another example neuron. i, The distribution of the potential slope at the trial start (at the maximum of p0(x)) for
four stimulus conditions. The initial slope is smaller for hard conditions, consistent with longer reaction times than for
easy conditions. The box-and-whisker plot shows the initial slope of the potential across all neurons. The center line
marks the median, the box extends from the 25th (Q1) to 75th (Q3) percentiles, and the whiskers extend from the box
to either 1.5× the interquartile range (Q3−Q1) or the most extreme outlier, whichever is closer to the box. The outliers
outside of the whiskers are shown with dots.
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Figure 4. Decision dynamics in neural populations. a, The distribution of spike-time variance explained by the popu-
lation model (green), single-neuron model (orange), trial-average firing rate traces (blue, PSTH), and by the population
model in a leave-one-neuron-out validation (red). The box-and-whisker plot shows the explained spike-time variance
across all neurons. b, Trial-average firing rate traces (PSTHs) sorted by the chosen side and stimulus difficulty for 14
neurons recorded simultaneously on an example session. Error bars are s.e.m. c, Potentials governing the population
dynamics discovered from spikes of 14 neurons in b show a single barrier (marked by triangles) in all four stimulus con-
ditions (middle and lower panels). The inferred initial state distribution p0(x) shared across conditions (upper panel)
peaks near the top of the linear slope of the potential on the side corresponding to the correct choice (vertical dashed
lines). d, The inferred tuning functions of 14 neurons in a shared across stimulus conditions. Error bars in c,d are s.t.d.
across 10 bootstrap samples. e, The distribution of balanced accuracy of predicting monkey’s choice using the single-
neuron models (orange), population models (light green), and a logistic regression decoder trained on single-neuron
(red) and population activity (dark green). The box-and-whisker plot shows the balanced accuracy of choice prediction
across all neurons (for single-neuron models and decoder) and across all sessions (for population models and decoder).
The box-and-whisker format is as in Fig. 3i.

30

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.22.550183doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.22.550183
http://creativecommons.org/licenses/by/4.0/


0

20

40

0 0.5
0

20

40

0

10

0

2

−1 0 1

0

2

−1 0 1

−0.25 0.00 0.25 0.50

0 1
0

1

−100
0

100

−100
0

100

−50

0

50

PC1 (
Hz)PC2 (Hz)

PC
3 

(H
z)

10 20

10

20

E
2

Tr
ia

l
nu

m
be

r
Po

pu
la

tio
n

fir
in

g 
ra

te
 (H

z)

Time from stimulus (s)b

d

c

p
0
(x
)

Po
te

nt
ia

l,

Latent state, x

e

f

Po
te

nt
ia

l,

Distance from
the saddle (a.u.)

Fi
rin

g 
ra

te
 (H

z)

Latent state, x

PMd data

Attractor network model

E1 E2

I

Excitation
Inhibition

Stimulus 1 Stimulus 2

E1 activity (a.u.)

E
2

ac
tiv

ity
 (a

.u
.)

Easy
Hard

Left RightStimulus:

firing rate (Hz)E1

fir
in

g 
ra

te
 (H

z)

−1 0 1

10

20

30

−1 0 1

E1E2

a

Figure 5. Attractor mechanism for decision computation. a, A spiking network model consists of two excitatory
neural pools and one inhibitory neural pool (left). The recurrent connections are stronger within than across excitatory
pools. The inhibitory neurons mediate the winner-take-all competition, in which one excitatory pool elevates the firing
rate on each trial signaling the network’s choice and the other excitatory pool is suppressed. The network activity is
shown for an example trial: spikes of 40 example neurons (upper right) and the population-average firing rates of two
excitatory pools (lower right) indicated by color. Grey shading indicates time window used for model fitting, starting
at the stimulus onset and ending at the reaction time. b, Using the mean-field approximation, the network dynamics are
reduced to a two-dimensional flow field (arrows) visualized on a phase plane (left). On this phase plane, two stable fixed
points are attractors corresponding to two choices (red and green circles), which are separated by a saddle point (blue
cross). The stable manifold of the saddle point (blue line) is a separatrix dividing the basins of the two choice attractors.
At the trial start, the network is initialized in a symmetric low-activity state (black dot). Two example trajectories are
shown for a correct (green) and error trial (red). On the error trial, the trajectory has to cross the separatix to reach the
incorrect choice attractor. When projected onto a single dimension (the unstable manifold of the saddle point, black
line), these dynamics are described by a potential with a single barrier (right). c, Potentials discovered by fitting spikes
generated by the network model show a single barrier (marked by triangles) in all four stimulus conditions, similar to the
PMd data. The inferred initial state distribution p0(x) shared across conditions (upper panel) peaks near the top of the
linear slope on the correct-choice side (vertical dashed lines). d, The inferred tuning functions of two example neurons
from each excitatory pool. e, The decision manifold defined by the tuning functions of neurons in the spiking network
model. The manifold is two dimensional because all neurons within each excitatory pool have identical responses
and therefore identical tuning functions to the latent population state. f, The decision manifold defined by the tuning
functions of PMd neurons visualized by projecting on the first three principal components. The decision manifold in
PMd has two diverging branches for two choices qualitatively similar to the two-pool network model but with more
complex higher-dimensional geometry.

31

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.22.550183doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.22.550183
http://creativecommons.org/licenses/by/4.0/

