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The different cell types in the brain have highly special-
ized roles with unique metabolic requirements. Normal
brain function requires the coordinated partitioning of
metabolic pathways between these cells, such as in the
neuron–astrocyte glutamate–glutamine cycle. An emerg-
ing theme in glioblastoma (GBM) biology is that malig-
nant cells integrate into or “hijack” brain metabolism,
co-opting neurons and glia for the supply of nutrients
and recycling of waste products. Moreover, GBM cells
communicate via signaling metabolites in the tumor mi-
croenvironment to promote tumor growth and induce im-
mune suppression. Recent findings in this field point
toward new therapeutic strategies to target the metabolic
exchange processes that fuel tumorigenesis and suppress
the anticancer immune response in GBM. Here, we pro-
vide an overview of the intercellular division of metabolic
labor that occurs in both the normal brain and the GBM
tumor microenvironment and then discuss the implica-
tions of these interactions for GBM therapy.

Glioblastomamultiforme (GBM; grade IV glioma) is the
most commonmalignant primary brain tumor and among
themost lethal of humancancers,withmedian survival af-
ter diagnosis of only ∼12–15 mowith intensive treatment
and ∼4 mo without treatment (Tamimi and Juweid 2017;
Baid et al. 2020). GBM is characterized by extensive inva-
sion and infiltration of the brain parenchyma, a process fa-
cilitated by architectural features of the brain such as
white matter tracts, making complete surgical resection
nearly impossible (Seker-Polat et al. 2022). Uniquely, the
vast majority of GBM cases are grade IV disease at initial
diagnosis, with <20% of GBMs developing from a known
lower-grade glioma (LGG) (Urbanska et al. 2014; Tamimi
and Juweid 2017). Another conserved feature of GBM is a
complex and highly immune-suppressive tumormicroen-

vironment (TME) with heterogeneous cancer cell popula-
tions, vascular endothelial cells, central nervous system
(CNS)-resident cells, and an abundance of dysfunctional
immune cells (Antunes et al. 2020; Bikfalvi et al. 2023;
Sharma et al. 2023). This heterogeneity contributes to
the resistance of GBM to chemotherapies, targeted thera-
pies, and immune therapies, such that the 5-yr survival
rateof only∼5%hasnot improved substantially for several
decades (Tamimi and Juweid 2017). The failure of targeted
and immune therapies to improve the prognosis for GBM
patients has prompted investigation of nononcogene de-
pendencies in GBM, including “metabolic addictions,”
as opportunities for novel therapeutic interventions.
The cell of origin of GBM is still debated, with neural

stem cells (NSCs) and oligodendrocyte precursor cells
(OPCs) residing in the subventricular zone considered
key candidates (Fan et al. 2019). Based onRNA sequencing
(RNA-seq) analyses, GBM cells can exist in four distinct
malignant states, with transcriptional programs reminis-
cent of either neural progenitor cells (NPC-like), OPCs
(OPC-like), astrocytes (AC-like), or mesenchymal cells
(MES-like) (Neftel et al. 2019;De Silva et al. 2023). A single
GBM tumor typically contains cancer cells in more than
one of these states, but the relative frequency of each state
varies between tumors and correlates with genetic alter-
ations in PDGFRA (primarilyOPC-like),CDK4 (primarily
NPC-like), EGFR (primarily AC-like), and NF1 (primarily
MES-like) (Neftel et al. 2019; De Silva et al. 2023). There
is extensive experimental evidence thatGBM tumors con-
tain a population of glioma stem cells (GSCs), which are
proposed to underlie tumor initiation, evolution, and ther-
apy resistance. However, GSCs have typically been func-
tionally defined by their tumor-propagating and self-
renewal potential, and a precise classification based on
molecular profile is lacking (Suvà and Tirosh 2020). How
the GSC model interfaces with the four malignant states
of GBM is also poorly defined, as isolated cells from three
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of these states (NPC-like,OPC-like, andMES-like) are able
to establish newGBM tumors that reacquire the heteroge-
neity observed in the primary tumor (Neftel et al. 2019). In
contrast, the AC-like state is associated with decreased
proliferation and low tumor-propagating potential and
thus has been proposed as a goal for differentiation thera-
pies in GBM (Suvà and Tirosh 2020).

Amajor distinguishing feature in gliomas of all grades is
the presence or absence of oncogenic mutations in the
gene encoding isocitrate dehydrogenase 1 (IDH1). These
mutations lead to substitutions of arginine-132 (R132) in
IDH1,most frequently (>90%) tohistidine (R132H), result-
ing in a neomorphic enzyme that catalyzes the NADPH-
dependent reduction of α-ketoglutarate (α-KG) into the
oncometabolite D-2-hydroxyglutarate (2-HG) instead of
the reversible interconversion of isocitrate and α-KG cata-
lyzed by the native enzyme (Han et al. 2020). In IDH1mu-
tant glioma cells, 2-HG accumulates to concentrations as
high as 30mMand acts as a competitive inhibitor of α-KG-
dependent dioxygenases, including histone demethylases
and DNA demethylases, resulting in global epigenetic re-
programming that influences cellular differentiation
(Han et al. 2020).Mutation of IDH1 is extremely common
inLGG (>80%of cases) but relatively rare inhigh-grade gli-
oma (∼10%of cases),where it is primarily found in second-
ary tumors that evolved from LGG. This has led to the
recent reclassification of “IDH1 mutant GBM” as grade
4 astrocytoma to distinguish it from primary GBM, which
is typically IDH1wild type (Louis et al. 2021). For simplic-
ity, in this review we use the term GBM to describe all
grade 4 gliomas.

An important regulator of the normal brain tissue envi-
ronment is the blood–brain barrier (BBB), which prevents
the nonselective diffusion of molecules from the circula-
tion into the brain interstitial fluid (ISF). The BBB is com-
posed of vascular endothelial cells that form the capillary
wall, pericytes embedded in the capillary basement mem-
brane, and astrocytic end feet that completely ensheathe
the blood vessel (Daneman and Prat 2015). GBM is typical-
ly highly vascularized and develops a “blood tumor barri-
er” (BTB), which shares many characteristics with the
BBB including drug barrier functions but overall has
more heterogeneous permeability (Arvanitis et al. 2019).
The BBB also restricts the access of circulating immune
cells into the brain parenchyma, such that the steady-state
brain is relatively devoid of lymphocytes and peripheral
monocytes (Louveau et al. 2015). This, along with other
physiological features such as limited access to the lym-
phatic system, has led to the brain being considered an
“immunologically privileged” site, although it is now
recognized that the BBB is dynamically regulated during
adaptive immunity, and infiltrating monocyte-derived
macrophages, neutrophils, and T cells are all present in
the GBMmicroenvironment (Brown et al. 2018). Another
outcomeof the regulated passage ofmolecules through the
BBB is that the brain is partially isolated, metabolically,
from the rest of the body and is strictly dependent on the
endogenous synthesis of several metabolites that in other
organs are supplied by the circulatory system. For exam-
ple, the BBB prevents transfer of lipoprotein-bound choles-

terol, and therefore almost all brain cholesterol must be
synthesized de novo. Additionally, neuroactive metabo-
lites including glutamate and aspartate must be main-
tained at extremely low levels in the brain ISF relative to
blood plasma and similarly cannot efficiently cross the
BBB (Dingledine and McBain 1999).

Intercellular cooperation across diverse physiological
processes is an integral characteristic of healthy brain
function andGBMpathology. The general principles of in-
tercellular communication in the healthy brain, GBM
tumor microenvironment, and GBM immune microenvi-
ronment have recently been reviewed elsewhere (Bau-
mann and Pham-Dinh 2001; Benarroch 2005; Gieryng
et al. 2017; Gillespie and Monje 2018; Szepesi et al. 2018;
Grabowski et al. 2021; Crivii et al. 2022). In this review,
we focus exclusively onmetabolic interactions. The high-
ly specialized roles of the different cell types in the brain
impose markedly distinct metabolic requirements, and
coordinatedmetabolic partitioning is consequently essen-
tial. An emerging theme is thatGBMeffectively integrates
into and/or“hijacks” thesemetabolic interactions, co-opt-
ing nonmalignant brain cells to provide fuels for tumor
growth and recycle waste products, and secreting metabo-
lites that induce amore immune-suppressive TME. By de-
fining these processes, opportunities for new therapeutic
interventions that effectively starve GBM cells of critical
nutrients or alleviate the immune-suppressive metabolic
environmenthave begun to emerge.Here,we first summa-
rize the metabolic division of labor between different cell
types during normal brain function and then discuss how
GBM integrates into or disrupts these interactions to drive
tumorigenesis and immune suppression.

Intercellular metabolic compartmentation in the
healthy brain

CNS function carries a massive energetic cost, with the
adult human brain accounting for∼20%of the body’s rest-
ing energy expenditure despite comprising only∼2%of to-
tal body weight. It is estimated that 75%–80% of the
brain’s energy budget is dedicated to neurons, primarily
to power ATP-dependent ion pumps that re-establish and
maintain the electrochemical gradients required for action
potentials and synaptic potentials (Magistretti and Alla-
man2015). Thevastmajority of neuronalATP is generated
inmitochondria by oxidative phosphorylation (OXPHOS),
and defects in this pathway are associatedwith a spectrum
of neurological diseases (Breuer et al. 2013). A unique char-
acteristic of brain metabolism is that neurons do not con-
sume energy at a consistent rate but instead can have long
periods of low activity alternating with bursts of intense
activity, imposing a need for a dynamic metabolic re-
sponse tomaintain homeostasis. Glucose is the obligatory
metabolic fuel for the brain, but in specific physiological
contexts monocarboxylates such as lactate, acetate, and
ketone bodies also contribute, supplying up to 75% of
the brain’s energy needs during prolonged fasting (Dienel
2019). Despite the energetic demands of information pro-
cessing, neurons have minimal energy storage capacity
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coupledwith a lackof direct access to circulatingnutrients
due to the BBB (Barros et al. 2023). Consequently, neurons
rely on coordinated intercellularmetabolic cooperation to
support their highly specialized roles (Hertz 2004). This
metabolic support involvesmultiple cell types in the brain
and includes the transfer of all of the major classes of me-
tabolites. In the following sections we discuss key meta-
bolic exchange processes that support brain function,
including intercellular amino acidmetabolism, redox sup-
port, partitioning of lipidmetabolism, and the possible cy-
cling of additional bioenergetic substrates such as lactate
and ketone bodies.

The neuron–astrocyte glutamate–glutamine cycle

Glutamate is the most abundant excitatory neurotrans-
mitter in the CNS and is generated from glutamine in glu-
tamatergic neurons by mitochondrial glutaminase (GLS)
prior to loading into synaptic vesicles. Synaptic transmis-
sion involves the Ca2+-dependent fusion of these vesicles
with the plasma membrane of the presynaptic neuron to
release glutamate into the synaptic cleft, where it binds
and activates ionotropic (AMPA, NMDA, kainate, or δ)
or metabotropic (mGluR1–8) glutamate receptors on the
postsynaptic neuron (Meldrum 2000). Although some of
this glutamate is subsequently transported back into pre-
synaptic neurons by excitatory amino acid transporter 3
(EAAT3; encoded by SLC1A1), the majority is removed
by astrocytic processes that ensheathe glutamatergic syn-
apses to form the “tripartite synapse” (Fig. 1; Bergles and
Jahr 1998; Kojima et al. 1999; Allen and Eroglu 2017;Mah-

moud et al. 2019). These perisynaptic astrocytic processes
contain high levels of EAAT1–2 transporters (encoded by
SLC1A3 and SLC1A2, respectively) on their surface, and
the tripartite synapse structure prevents spillage of gluta-
mate out of the synaptic cleft, where glutamate concentra-
tions transiently reach 100–1000 μM compared with only
1–3 μM in the brain ISF (de Groot and Sontheimer 2011;
McKenna 2013). Remarkably, the concentrative EAAT
family transporters are capable of maintaining a concen-
tration gradient of up to 106-fold across biological mem-
branes, and the glutamate concentration in bulk brain
lysate (i.e., including intracellular glutamate) is 5–15
mM despite the exceptionally low level of this amino
acid in the ISF (Featherstone 2010; Moussawi et al. 2011).
Once taken up by astrocytes, ∼60%–85% of the gluta-

mate is amidated to regenerate glutamine, a reaction
catalyzed by the ATP-dependent enzyme glutamine syn-
thetase (GLUL), which is abundant in astrocytes and not
present in neurons (Norenberg and Martinez-Hernandez
1979). In parallel to glutamine synthesis, 15%–40% of
the consumed glutamate is deaminated by glutamate de-
hydrogenase (GLUD1/2) or transaminases to generate α-
KG, which is subsequently oxidized via the tricarboxylic
acid (TCA) cycle (Fig. 1; Yu et al. 1982; Zielke et al. 1990;
Farinelli and Nicklas 1992; Sonnewald et al. 1993). One
function of this ATP-generating oxidative pathway is to
offset the high energetic cost of the glutamate–glutamine
cycle. However, glutamate oxidation along with addition-
almetabolic fates such as glutathione biosynthesis consti-
tutes a net loss of material from the glutamate–glutamine
cycle. Glutamine derived from recycling of synaptic gluta-
mate must therefore be supplemented by de novo
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Figure 1. Coupled neuron–astrocyte gluta-
mate–glutamine metabolism supports glu-
tamatergic neuron function. Glutamatergic
neurons rely primarily on astrocyte-derived
glutamine as a source of glutamate. Neuro-
nal glutaminase deamidates glutamine to
glutamate, which is loaded into presynaptic
vesicles. In response to a presynaptic action
potential, these vesicles fuse with the mem-
brane and release the glutamate into the
synaptic cleft. Here it activates glutamate
receptors on the postsynaptic neuron,which
propagates the action potential in the post-
synaptic cell. Astrocytes form a tripartite
synapsewith the neurons and play an impor-
tant role in clearing synaptic glutamate. As-
trocytes take up glutamate via excitatory
amino acid transporter (EAAT) family trans-
porters in an energy-intensive process.
Within astrocytes, a majority of the gluta-
mate is reamidated to glutamine, while a
minority is oxidized via the tricarboxylic
acid (TCA) cycle to generateATP. The astro-
cyte-synthesized glutamine is released into

the extracellular space, where it is available for neuronal uptake once more. Solid lines indicate direct processes including movement
of amolecule or single-step reactions, and dashed lines indicate indirect ormultistep processes. (aa) Amino acid, (EAAT) excitatory amino
acid transporter, (Gln) glutamine, (GLS) glutaminase, (Glu) glutamate, (GLUL) glutamine synthetase, (GluR) glutamate receptor, (SNAT)
sodium-coupled neutral amino acid transporter, (TCA) tricarboxylic acid cycle.
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glutamine synthesis, which is supplied by glucose-derived
carbon (Schousboe et al. 2014). The ratio of glutamate
oxidation to de novo synthesis in astrocytes is highly sen-
sitive to exogenous glutamate levels, allowing homeosta-
sis to be maintained despite continuous fluctuations in
the level of glutamatergic neurotransmission (McKenna
et al. 1996; Schousboe et al. 2014). To complete the gluta-
mate–glutaminecycle, effluxof glutamine fromastrocytes
is coupled to glutamine uptake by neurons. The former is
mediated by several astrocytic export systems including
the Na+-dependent transporters SNAT3 and SNAT5
(encoded by SLC38A3 and SLC38A5) and Na+-indepen-
dent antiporters such as LAT1 (an SLC7A5/SLC3A2
heterodimer) (Bak et al. 2006). Glutamine uptake by gluta-
matergic neurons occurs primarily through the concentra-
tive Na+-dependent transporter SNAT1, encoded by
SLC38A1 (Fig. 1; Bhutia and Ganapathy 2016).

The glutamate–glutamine cycle also imposes a need for
intercellular ammonium (NH4

+) cycling to maintain ni-
trogen balance, since NH4

+ is generated in glutamatergic
neurons by the glutaminase reaction and consumed in as-
trocytes during glutamine synthesis. Several questions re-
main over the transport mechanism for this nitrogen
(Rothman et al. 2012). Briefly, any pathway besides direct
NH4

+ transfer or diffusion requires NH4
+ capture in neu-

rons,most likely byGLUD1/2 running in “reverse” to cat-
alyze the reductive amination of α-KG. Transaminases
would then use the nitrogen from glutamate to generate
nonneuroactive amino acids, providing a safe route for
transfer to astrocytes. There is evidence that metabolic
cycles involving alanine and/or the branched chain amino
acids (BCAAs) contribute to this process, but additional
work is required to define the mechanism (Rothman
et al. 2012).

An important outcome of the neuron–astrocyte gluta-
mate–glutamine cycle is that the energetic burden of syn-
aptic transmission is distributed between cell types.
Glutamate uptake into astrocytes via EAATs occurs
against an extreme concentration gradient and is powered
by aNa+ electrochemical gradient (Beart andO’Shea 2007;
Magi et al. 2019), which is maintained by the ATP-depen-
dent Na+/K+ pump (Rose et al. 2009). Uptake of one gluta-
mate is coupled to symport of three Na+ and one H+ along
with antiport of one K+, with the result that every mole-
cule of glutamate transported into astrocytes requires
the hydrolysis of ∼1.3 ATPs, with an additional ATP re-
quired for glutamine synthesis (Attwell and Laughlin
2001; McKenna 2013). This division of labor preserves
neuronal ATP for the energetically expensive mainte-
nance of ion electrochemical gradients and for the concen-
trative loading of glutamate into synaptic vesicles (Attwell
and Laughlin 2001).

Intercellular antioxidant support in the brain

The high demand for ATP in neurons necessitates rapid
OXPHOS, an inevitable consequence of which is the
production of damaging reactive oxygen species (ROS)
(Halliwell 1992). The challenge of neutralizing ROS is ex-

acerbated by a very low intrinsic antioxidant defense ca-
pacity in neurons (Murphy et al. 2001; Schmuck et al.
2002; Kraft et al. 2004). In contrast, astrocytes are profi-
cient at mitigating oxidative stress and express high levels
of all components of the de novo glutathione biosynthesis
pathway along with ROS-scavenging enzymes such as
NAD(P)H quinone dehydrogenase 1 (NQO1). Correspond-
ingly, another function of astrocytes in brain metabolism
is to support neuronal redox homeostasis via the indirect
supply of glutathione (Dringen 2000). Glutathione, amod-
ified tripeptide of glutamate, glycine, and cysteine, is the
principal antioxidant and detoxifying metabolite inmam-
malian cells, serving as a cofactor for the glutathione per-
oxidase and the glutathione S-transferase families of
enzymes (Dringen 2000). A bottleneck for glutathione bio-
synthesis in neurons is the acquisition of the rate-limiting
metabolite cysteine, which exists primarily in the oxi-
dized cystine form in the extracellular environment (Drin-
gen et al. 1999; Dringen 2000). Neurons do not express the
cystine/glutamate antiport system xCT, whereas this
transporter is abundant on astrocytes, where it mediates
glutamate-powered cystine uptake (Dringen 2000; Pow
2001; McGann and Mandel 2018; Combs and Denicola
2019). Transfer of reduced thiols from astrocytes to neu-
rons involves astrocytic secretion of glutathione into the
extracellular space, where γ-glutamyl transpeptidase
(GGT1) on the astrocyte membrane cleaves glutathione
to generate a cysteine–glycine dipeptide. This in turn is
cleaved by aminopeptidase N (ANPEP) on the surface of
neurons, yieldingglycine and the reduced formof cysteine,
which is then available for uptake by SLC1 family trans-
porters (Dringen et al. 1999, 2001; Dringen 2000; Bélanger
et al. 2011).

Intercellular partitioning of lipid metabolism in the brain

Polyunsaturated lipids readily react with ROS to form
highly toxic lipid peroxides and aldehydes, which can ini-
tiate ferroptotic cell death (Gaschler and Stockwell 2017;
Su et al. 2019). This is particularly relevant in the brain,
as lipids account for∼50%of the brain’s drymass,making
it themost lipid-rich organ in the body after adipose tissue.
Brain lipids arenot only highly abundant but also extreme-
ly diverse, with ∼75% of the total number of lipid species
in mammals found exclusively in the CNS (Fitzner et al.
2020). Each cell type in the brain has a unique lipid profile,
and the expression of lipid metabolism genes varies ac-
cordingly. For example, neurons are enriched with choles-
terol and ceramides, oligodendrocytes are enriched with
themyelin lipids galactosylceramide and sulfatide, and as-
trocytes are enriched with phosphatidylinositol, phospha-
tidylserine, and diacylglycerol (Fitzner et al. 2020). These
differences reflect intercellular partitioningof lipidmetab-
olism in the brain, and high levels of lipoproteins, particu-
larly apolipoprotein E (ApoE) and ApoJ, facilitate lipid
transfer between cells. Lipid transport is highly dynamic
and plays important roles in maintaining homeostasis in
response to stress, including that caused by oxidative
challenge.
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In addition to their low cell-intrinsic antioxidant capac-
ity, neurons have a limited ability to catabolize fatty acids
or store them in lipid droplets as inert triacylglycerides, ex-
acerbating their sensitivity to lipid peroxides (Ioannou et al.
2019). Astrocytes, in contrast, are highly proficient at fatty
acid disposal via mitochondrial β-oxidation and can also
detoxify peroxides and sequester excess fatty acids in lipid
droplets (Fig. 2; Smolič et al. 2021;Mi et al. 2023). Evidence
for neuron–astrocyte coupling of lipidmetabolism includes
the observation that neuronal oxidative stress triggers the
apolipoprotein-dependent accumulation of astrocytic lipid
droplets (Ioannou et al. 2019; Smolič et al. 2021).During pe-
riods of high neuronal activity with increased OXPHOS
and ROS production, peroxidated fatty acids are generated
in neurons but are rapidly expelled onto ApoE (Ioannou
et al. 2019). The fatty acid-laden lipoprotein is subse-
quently endocytosed by astrocytes, where the cargo is ini-
tially processed into lipid droplets. Simultaneously,
enhanced neuronal activity signals to activate β-oxidation
in astrocytes, ultimately leading to turnover of lipid drop-
lets (Ioannou et al. 2019). The benefits of minimizing β-ox-
idation in neurons include the avoidance of superoxide
production associated with this pathway, as well as the in-
trinsic mismatch between the slow dynamics of fatty acid
oxidation and the rapidly fluctuating bioenergetic needs of
these cells (Schönfeld and Reiser 2013).
In contrast to fatty acids, which are able to traverse the

BBB regardless of their chain length and degree of satura-
tion (Spector 1988; Guest et al. 2013), cholesterol is BBB-
impermeable and must be synthesized in situ. Despite
this isolation from circulating cholesterol supplies, the
brain is the most cholesterol-rich organ in the body, con-
taining ∼20% of the body’s cholesterol pool, primarily

in the unesterified form (Dietschy 2009). Approximately
70%–80% of brain cholesterol is present as a structural
component of myelin sheaths (Zhang and Liu 2015), but
cholesterol also has essential roles in cellular signal trans-
duction andmembrane fluidity (Hussain et al. 2019). Cho-
lesterol metabolism in the brain is sharply partitioned
between cell types, with ApoE againmediating intercellu-
lar cholesterol transfer (Fig. 2; Li et al. 2022). De novo cho-
lesterol biosynthesis is metabolically costly, requiring
ATP, reducing power in the form of NADPH, and a supply
of acetyl-CoA, from which all 27 carbon atoms are de-
rived. Fitting with their metabolic support role in the
CNS, astrocytes are the major site of de novo cholesterol
biosynthesis, supplying almost all of the cholesterol that
is found in neurons (Camargo et al. 2017; Li et al. 2022).
The ATP-powered transporter ABCA1 catalyzes choles-
terol efflux from astrocytes onto extracellular ApoE,
which is endocytosed by oligodendrocytes and neurons af-
ter binding the low-density lipoprotein receptor (LDLR)
(Fig. 2; Li et al. 2022). Oligodendrocytes incorporate cho-
lesterol into the myelin structures that ensheathe neu-
rons, whereas neurons are the site of cholesterol
turnover in the brain, carrying out the CYP46A1-depen-
dent conversion of cholesterol into 24S-hydroxycholes-
terol, a more polar metabolite that can exit the CNS by
diffusing across the BBB (Fig. 2; Li et al. 2022).

The N-acetylaspartate enigma

N-acetylaspartate is an enigmaticmetabolite straddling lip-
id, glucose, and amino acidmetabolism.After glutamate, it
is the most abundant metabolite in bulk brain lysate at a
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concentration of ∼10mM, but outside of the CNS it is pre-
sent at high levels only in adipose tissue (Moffett et al.
2007; Amaral et al. 2013). In the brain, NAA is synthesized
in neurons from aspartate and acetyl-CoA by the
mitochondrial enzyme N-acetylaspartate synthetase
(NAT8L) (Wiame et al. 2010). Conversely, hydrolysis of
NAA back into aspartate and acetate occurs almost exclu-
sively in oligodendrocytes and is catalyzed by the cytosolic
enzyme aspartoacylase (ASPA) (Baslow et al. 1999; Madha-
varao et al. 2004). NAA turnover in the brain is rapid, indi-
cating a high flux of this metabolite between neuronal
synthesis and oligodendrocytic disposal (Baslow 2002).
The importance of maintaining NAA homeostasis has
been highlighted by studies of Canavan disease, a lethal pe-
diatric neurological disorder characterized by the degenera-
tionofmyelinstructures throughout theCNS(Hoshinoand
Kubota 2014). Canavan disease is caused by homozygous
loss-of-functionmutations inASPA,whichabolish theabil-
ity of oligodendrocytes to catabolize NAA (Matalon and
Matalon 2015). However, the function of NAA in the CNS
hasnot been fullydefined, and the exactpathologicalmech-
anism of Canavan disease remains elusive. Certain hall-
marks of Canavan disease in Aspa-null mouse models,
including demyelination and neuronal death, are reversed
by concurrent Nat8l knockout to abolish NAA synthesis,
suggesting that these phenotypes are caused by accumula-
tion of NAA to toxic concentrations (Janson 2015; Maier
et al. 2015; Gessler et al. 2017; Sohn et al. 2017). However,
Nat8l deletion fails to rescue survival in these models, and
the only known human patient with NAT8L deficiency
has severe neurological symptoms, confirming that both
neuronalNAAbiosynthesisandneuron-to-oligodendrocyte
NAA shuttling have critical physiological roles (Wiame
et al. 2010). Fornow,NAAremains apoorlyunderstoodme-
tabolite, and the variousmodels for its role in theCNShave
been discussed in detail elsewhere (Elliott et al. 2018).

Glucose and the astrocyte–neuron lactate shuttle
hypothesis

In the resting brain, glycolysis and OXPHOS are tightly
coordinated, allowing for almost complete oxidation of
glucose to CO2. The oxygen–glucose index (OGI) de-
scribes the molar ratio of O2 used per glucose consumed
and has an ideal value of 6 when glucose is fully oxidized
in the absence of other metabolic substrates (i.e., six O2

are required for complete oxidation of one glucose, yield-
ing six CO2 and six H2O, with ∼32 ATPs synthesized)
(Flurkey 2010). TheOGI of the resting brain is close to ide-
al stoichiometry at ∼5.5, but this value decreases to ∼5
upon neuronal stimulation, indicating a partial uncoupl-
ing of glycolysis and OXPHOS (Fox et al. 1988). Corre-
spondingly, brain lactate levels transiently increase due
to fermentative metabolism of a fraction of glucose-de-
rived pyruvate to lactate instead of oxidation to CO2.
The “astrocyte–neuron lactate shuttle” (ANLS) hypothe-
sis proposes that glutamatergic signaling stimulates astro-
cytes to ferment glucose to lactate, which is then
transferred to neurons for use as a respiratory fuel (Pellerin

and Magistretti 1994). However, this model is controver-
sial and has been contested on both theoretical and exper-
imental grounds (Dienel 2017; Yellen 2018; Bonvento and
Bolaños 2021). Briefly, it is clear that neurons have the ca-
pacity to use both lactate and glucose for ATP synthesis,
and the debate centers on which nutrient constitutes
the major neuronal fuel in vivo. Arguing against the
ANLS, recent work has shown that neurons respond to
stimulation by increasing glucose consumption and gly-
colysis without a requirement for lactate respiration
(Díaz-García et al. 2017). Although astrocytic glycolysis
is essential for neuronal health and overall brain function
(Volkenhoff et al. 2015; Muraleedharan et al. 2020), this
can be explained by many mechanisms that do not in-
volve lactate supply to neurons. For example, glycolytic
blockade in astrocytes would severely impair the gluta-
mate–glutamine cycle. Despite the arguments against
the ANLS hypothesis, lactate is relatively abundant in
the brain ISF (∼1 mM), and its transfer between cell types
might still be physiologically important in some contexts
(Philips and Rothstein 2017; Yellen 2018; Wang et al.
2019a; Hollnagel et al. 2020; Karagiannis et al. 2021).

Ketone bodies as an alternative energy source

During fasting or on ketogenic diet, glucose is supple-
mented by the two principal ketone bodies, acetoacetate
and β-hydroxybutyrate, as a fuel source for the brain (Mor-
ris 2005; Puchalska and Crawford 2017). The primary site
of ketogenesis in the body is the liver, where the precursor
metabolite acetyl-CoA is generated from fatty acids via β-
oxidation (>95% of circulating ketone bodies) and from
ketogenic amino acids (Evans et al. 2017). Matching their
respective capacities for β-oxidation, neurons are incapa-
ble of ketogenesis, whereas astrocytes are proficient at
this process (Takahashi et al. 2014; Takahashi 2020; Silva
et al. 2022). An astrocyte–neuron ketone body shuttle has
been proposed, but since peripheral ketone bodies can en-
ter the brain through monocarboxylate transporters
(MCTs) in the BBB, the physiological roles of astrocytic
ketogenesis are not clear (Guzmán and Blázquez 2001;
Takahashi et al. 2014). In Drosophila, glial-synthesized
ketone bodies sustain memory formation under starva-
tion conditions, and it will be of interest to determine
whether these findings extend to the mammalian brain,
particularly during aging when CNS glucose metabolism
becomes impaired (Cunnane et al. 2020; Silva et al. 2022).

The nutrient environment influences microglia
polarization

Microglia are the primary brain-resident immune cell pop-
ulation and perform a number of essential immune sur-
veillance and homeostatic roles in the healthy brain
(Tremblay et al. 2011).Microglia have a distinct yet plastic
metabolic phenotype, which allows them to integrate into
brain metabolic cycles and to function in a nutrient envi-
ronment characterized by relatively low levels of key fuels
such as glucose. One feature of resting microglial
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metabolism is a strong reliance on OXPHOS for ATP gen-
eration (Holland et al. 2018; Song et al. 2022), allowing for
the efficient harnessing of energy from nutrients and
simultaneously minimizing metabolic competition with
other cell types. Microglia also display flexibility in their
use of available nutrients. Glucose is the preferred fuel,
andmicroglia express the glucose transporter GLUT1 (en-
coded by SLC2A1) in common with other glial cells, as
well as the high-capacity, high-affinity, transporter
GLUT3 (encoded by SLC2A3) in common with neurons
(Kalsbeek et al. 2016; Aldana 2019; Wang et al. 2019b).
However, in nonhomeostatic conditions when glucose
levels are compromised, microglia can switch to gluta-
mine as the primary bioenergetic substrate, which as
with neurons is likely supplied by astrocytes (Bernier
et al. 2020).This ability to switchbetweenglucose and glu-
tamine facilitates the continued surveillance function of
microglia and is not associated with a change in cellular
phenotype or polarization (Bernier et al. 2020).
Like other immune cells,microglia adopt different states

in response toavarietyofcues, ranging fromanti-inflamma-
torywoundhealingphenotypes toproinflammatory pheno-
types associated with many disease states. Microglia
polarization has historically been viewed as involving a
proinflammatory “M1-like” or anti-inflammatory “M2-
like” state, but it should benoted that these categorizations
were adopted fromthe studyof peripheralmacrophages and
are often an oversimplification of microglial phenotypes in
vivo (Cherry et al. 2014).Microglia polarization is regulated
by proteins, cytokines, andmetabolites, andmetabolic pro-
cessesalso reinforcespecificpolarizationstates.Thus, there
is cross-talk and feedbackbetweenmetabolic activity in the
brain and microglial phenotype, helping to ensure that
these cells support normal brain function and the mainte-
nance or restoration of homeostasis.
Collectively, the above examples illustratehowthedivi-

sion of metabolic processes across the multiple cell types
in the brain allows for greater specialization of cellular
function and allocates energy-intensive or toxic waste
management tasks to the cells best equipped to deal
with them. During tumorigenesis, these symbiotic rela-
tionships can be exploited or hijacked by GBM cells. An
emerging theme is that, far from being metabolically iso-
lated, GBMcells integrate into or disrupt diversemetabol-
ic processes in the brain, obtaining metabolic fuels from
noncancer cells andmodulating the nutrient environment
to advance tumor progression.

Metabolic interactions in the GBM microenvironment

Themetabolic requirements of solid tumors are heteroge-
neous and distinct from those of their host tissue. Sus-
tained activation of anabolic pathways in proliferative
cancer cells requires a continuous supply of ATP and re-
ducing equivalents within a TME characterized by fluctu-
ating and limited levels of many nutrients, including O2

(De Berardinis and Chandel 2016). Although there is no
single universal metabolic phenotype of cancer, certain
characteristics are broadly conserved across a spectrum

of malignancies (Pavlova and Thompson 2016; Pavlova
et al. 2022). One such hallmark of cancer metabolism is
the use of opportunistic modes of nutrient acquisition to
obtainmaterial fromtheTME (Pavlova et al. 2022).Cancer
cells also co-opt stromal cells formetabolic support,which
can involve stroma-to-cancer delivery of metabolic fuels
and cancer-to-stroma transfer of waste products for dis-
posal or recycling (Sousa et al. 2016; Wilde et al. 2017;
Yan et al. 2018; Banh et al. 2020). In GBM, cancer cells in-
teract with multiple brain-resident cell types, with astro-
cytes again having particularly important metabolic
support roles. Indeed,manyGBM–brain-resident cellmet-
abolic interactions recapitulate or parasitize existingmet-
abolic couplings in the healthy brain, as discussed further
below. It should be noted that these stromal cells within
theTMEofGBMare frequently in altered nonhomeostatic
states, such as reactive astrogliosis, which can be induced
by changes in themetabolic environment and further con-
tribute to disease progression. Relatedly, the metabolic
secretome of GBM cells profoundly influences the im-
mune microenvironment, promoting an immune-sup-
pressive phenotype that might be pharmacologically
targeted to potentiate immune therapies. In the following
sections, we first cover examples of metabolic coupling
that help to fuel GBM growth and then discuss metabolic
suppression of the anticancer immune response and the
therapeutic opportunities that arise from these interac-
tions. While this review focuses on the metabolic interac-
tions contributing to GBM progression, additional
nonmetabolic aspects of the TME also impact GBM pa-
thology and have recently been reviewed elsewhere (Gil-
lespie and Monje 2018; Crivii et al. 2022).

Hijacking of the neuron–astrocyte glutamate–glutamine
cycle by GBM

Many cancer cell lines are dependent on an exogenous
supply of glutamine in ex vivo culture despite this being
a nonessential amino acid that can be synthesized de
novo by GLUL. In cultured GBM cell lines, glutamine is
the second most rapidly consumed nutrient after glucose
and serves as a major anaplerotic carbon source for the
TCA cycle. This pathway is initiated by the GLS-cata-
lyzed hydrolysis of glutamine to glutamate, underlying
the sensitivity of cultured GBM cells to GLS inhibitors
(Wise et al. 2008; Tardito et al. 2015; Yang et al. 2021).
However, in GBM tumors in vivo, the pathways of gluta-
mine metabolism differ from those in cultured cells, a
phenomenon explained by differences in the nutrient en-
vironment of the brain ISF and additional features of the
TME including tumor–stroma interactions (Natarajan
and Venneti 2019; Oizel et al. 2020). There is evidence
that GBM cells partially integrate into the neuron–astro-
cyte glutamate–glutamine cycle, exploiting astrocytes as
an exogenous source of glutamine and even participating
in glutamatergic neurotransmission (Fig. 3).
Stable isotope tracing studies have revealed a lack of net

glutamine catabolismvia the canonicalGLS-initiatedpath-
way in IDH1 wild-type GBM in vivo. Instead, an
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intratumoral glutaminepoolaccumulates,which is synthe-
sized in situ and is important for sustaining de novo nucle-
otide biosynthesis, for which glutamine is the obligate
nitrogen donor in five separate reactions (Marin-Valencia
et al. 2012; Tardito et al. 2015). Some intratumoral gluta-
mine production might occur in GSC cells, which have el-
evated GLUL expression relative to non-stem-like GBM
cells. However,GLUL-negativeGBMcells in tumors reside
in close proximity to GLUL-positive astrocytes, implicat-
ing the latter as the primary source of glutamine for anabol-
ic metabolism in GBM. Supporting this model, astrocyte-
derived glutamine is sufficient to enable growth of GLUL-
negative GBM cells in coculture experiments using gluta-
mine-depleted medium (Tardito et al. 2015). Thus, GBM
cellsappear toexploit thenormalphysiological roleofastro-
cytes as the glutamine supply cells of the CNS and poten-
tially outcompete neurons for glutamine by expressing
the high-affinity uptake transporter SLC1A5 (Fig. 3; Han
et al. 2022).

In contrast to IDH1wild-typeGBM, the∼12%of grade4
gliomas that harbor oncogenic IDH1 mutations exhibit
intratumoral glutamine depletion relative to the sur-
rounding brain tissue (Andronesi et al. 2018). Here, gluta-
mine serves as a carbon source for 2-HG production via
its sequential conversion to glutamate and then α-KG,
the substrate for neomorphic IDH1 variants. This is an ex-
tra burden in addition to the usual fates of glutamate,
which include protein synthesis and sustaining glutathi-
one biosynthesis both directly as a substrate andby driving
cystine uptake via xCT (Fack et al. 2017). Consistent with
these observations, oncogenic IDH1 mutations sensitize
cells to GLS inhibitors (Seltzer et al. 2010). The feasibility
of extending these findings into the clinic remainsunclear,
as the first-in-class GLS inhibitor CB-839 has poor BBB

penetrance, and passage of a GLS inhibitor into the CNS
would likely have undesirable impacts on glutamatergic
neurotransmission due to the blockade of glutamate pro-
duction in presynaptic neurons.While the canonical effect
of 2-HG is to inhibit α-KG-dependent dioxygenases, it also
blocks the active site of transaminase enzymes, particular-
ly branched chain aminotransferase 1 and 2 (BCAT1/2)
(McBrayer et al. 2018). The BCAT reaction reversibly con-
verts BCAAs into their corresponding branched chain α-
ketoacids (BCKAs), with the amine group transferred
onto α-KG to generate glutamate (Fig. 3). Competitive in-
hibition of BCAT1/2 by 2-HG therefore prevents IDH1
mutant cells from using BCAAs for glutamate production,
further increasing their dependence on exogenous gluta-
mine and the GLS reaction (McBrayer et al. 2018). Corre-
spondingly, in IDH1 mutant glioma, the expression of
the BCAT1 gene is typically epigenetically silenced and
GLS or GLS2 expression is up-regulated, whereas in
IDH1wild-typeGBM,BCAT1 is almost universally highly
expressed and its knockdown or inhibition suppresses tu-
morigenesis (Tönjes et al. 2013;McBrayer et al. 2018;Dek-
ker et al. 2022). Both products of the BCAT1 reaction,
glutamate and BCKAs, are secreted by IDH1 wild-type
GBMcells via xCTandMCTs, respectively, and theseme-
tabolites modulate the TME throughmechanisms includ-
ing the activationof glutamatergic signaling (Fig. 3; Tönjes
et al. 2013; Silva et al. 2017; Cai et al. 2022).

Glutamatergic signaling and synaptic integration of GBM

Since IDH1wild-type GBMcells secrete copious amounts
of glutamate, the extracellular glutamate concentration in
the TME vastly exceeds that in normal brain tissue
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Figure 3. Hijacking of the neuron–astrocyte
glutamate–glutamine cycle by glioblastoma.
Glioblastoma cells express glutamate recep-
tors such asAMPARand can form functional
synapses with glutamatergic neurons, with
calcium influx through glutamate receptors
contributing to increasedmigration and inva-
sion of glioblastoma cells. Simultaneously,
glioblastoma cells can exploit astrocytes as
a source of glutamine for anabolic reactions
such as nucleotide biosynthesis. Many of
these reactions convert glutamine into gluta-
mate, which drives cystine uptake via the
cystine/glutamate antiporter xCT, providing
the glioblastoma cells with their primary
source of cysteine. Glutamate export via
xCT has other consequences, including auto-
crine glutamate receptor signaling and induc-
tion of neuronal excitotoxicity, contributing
to the progression and symptomology of glio-
blastoma. Solid lines indicate direct process-
es including movement of a molecule or
single-step reactions, and dashed lines indi-
cate indirect ormultistep processes. (aa)Ami-

no acid, (α-KG) α-ketoglutarate, (AMPAR) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, (BCAA) branched chain amino
acid, (BCKA) branched chain α-ketoacid, (EAAT) excitatory amino acid transporter, (GBM) glioblastoma multiforme, (Gln) glutamine,
(GLS) glutaminase, (Glu) glutamate (GLUL) glutamine synthetase, (MCT) monocarboxylate transporter.
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(Takano et al. 2001; Marcus et al. 2010). This triggers au-
tocrine and paracrine glutamatergic signaling events in
GBM,which promote tumorigenesis and contribute to ad-
ditional pathologies that impact patient quality of life,
such as tumor-associated epilepsy and excitotoxic neuro-
nal cell death (Buckingham et al. 2011; Lange et al. 2021).
GBM cells typically lack EAAT family glutamate uptake
transporters and instead conduct net glutamate export
coupled to cystine consumption via the xCT system
(Fig. 3; Ye et al. 1999; Buckingham et al. 2011). High levels
of xCT are a biomarker for epileptic seizures in GBM, sup-
porting a direct connection between cancer cell glutamate
secretion and neuronal hyperstimulation (Buckingham
et al. 2011; Sørensen et al. 2018). Sustained stimulation
of glutamatergic NMDA receptors also drives neuronal
excitotoxicity in the vicinity of GBM tumors, and the re-
sulting neuronal cell death increases inflammation in the
TME and potentially drives more extensive necrosis
(Takano et al. 2001; Noch and Khalili 2009). GBM cells
frequently express AMPA family glutamate receptors
lacking the GluA2 subunit that normally prevents Ca2+

permeability. This allows for glutamate-triggered auto-
crine Ca2+ signaling cascades, which stimulate GBM cell
migration and invasion (Fig. 3; Lyons et al. 2007).
In addition to this autocrine signaling, some GBM cells

aredirectly innervated byneurons and therebyalso receive
paracrine signals from glutamatergic neurotransmission
(Fig. 3; Venkataramani et al. 2019, 2022; Venkatesh et al.
2019; Wirsching and Weller 2020). Specifically, callosal
projectionneurons (CPNs) projecting fromthecontralater-
al brain hemisphere innervate the tumor, and the activity
of these neurons promotes overall GBM progression and
invasion (Huang-Hobbs et al. 2023). Single-cell transcrip-
tomics studies have shown that a distinctGBMcell subset
expresses multiple synaptic genes, including selective up-
regulation of AMPA- and kainate-type glutamate receptor
subunits. Synaptic gene expression is particularly en-
riched in OPC-like cells (Venkataramani et al. 2019; Ven-
katesh et al. 2019), and it is notable that in normal brain
development and function, glutamatergic synapses form
between neurons and the OPC stem cell population (Ber-
gles et al. 2000). Adding to this, spatial transcriptomics
has shown that a population of GBM cells at the invasive
edge of the tumor is activity dependent on and enriched
in axon guidance gene expression, with semaphorin-4F
(SEMA4F) a key regulator of activity-dependent GBM pro-
gression (Huang-Hobbs et al. 2023). As with the autocrine
glutamatergic signaling described above, the functional
chemical synapses that connect presynaptic neurons
with postsynaptic GBM cells trigger Ca2+ currents that
stimulate proliferation and invasion in GBM cells (Fig. 3).

Neuron-derived NAA as a potential metabolic
fuel for GBM

In the healthy brain, NAA is synthesized and secreted al-
most exclusively by neurons and is then taken up by oligo-
dendrocytes via the Na+-dependent dicarboxylate
transporter SLC13A3 and catabolized by ASPA. GSCs

also express SLC13A3 and ASPA and thus are capable of
acquiring and hydrolyzing NAA into acetate and aspar-
tate, which are potential fuels for proliferative metabo-
lism (Long et al. 2013). Intriguingly, supplementation of
culture medium with NAA not only boosts GSC prolifer-
ation but also suppresses differentiation, possibly due to
the increased intracellular acetate level altering histone
acetylation patterns (Long et al. 2013).

Lipid metabolism in the GBM microenvironment

Fatty acid metabolism in GBM is heterogenous and re-
sponsive to fluctuations in the nutrient environment,
such that de novo fatty acid synthesis and the reverse pro-
cess of fatty acid β-oxidation both contribute to GBM
pathogenesis (Miska and Chandel 2023). Analysis of
GBM tissue has revealed that lipid droplets are highly en-
riched in tumor cells relative to cells in the surrounding
brain parenchyma (Taïb et al. 2019). Lipid droplets serve
as inert energy storage organelles whose triacylglyceride
contents can be hydrolyzed during nutrient starvation to
yield free fatty acids, which are then catabolized via β-ox-
idation to provide substrates for OXPHOS. Consistent
with this role, GBM cells with a high lipid droplet content
are relatively resistant to glucose deprivation and adapt to
this stress by increasing the lysosomal fusion of lipid drop-
lets and subsequent autophagic processing of their con-
tents to supply fatty acids (Hoang-Minh et al. 2018; Kant
et al. 2020; Wu et al. 2020). As in astrocytes, this coupled
use of lipid droplets and the β-oxidation pathway also pro-
tects GBM cells from the accumulation of toxic lipid per-
oxide species (Puca et al. 2021).
Several studies have identified a distinct lipid profile in

GSCs relative to other GBM cells, resulting from expres-
sion of the genes encoding fatty acid synthase (FASN)
and fatty acid desaturases,which in turn leads to increased
production of polyunsaturated fatty acids (PUFAs) (Yasu-
moto et al. 2016; Shakya et al. 2021; Parik et al. 2022). Cer-
tain PUFAs, including arachidonic acid, are signaling
metabolites that help to sustain self-renewal capacity in
stem-like cells, and consequently pharmacological inhibi-
tion of FASN decreases the expression of stemness mark-
ers in GSCs (Yasumoto et al. 2016). A number of
questions remain about the precise balance between fatty
acid synthesis and β-oxidation inGBM.Since lipid droplets
are enriched in hypoxic regions of the tumor (Shakya et al.
2021), we speculate that the availability ofO2 for fatty acid
catabolism is one factor influencing this balance. Another
unanswered question, given the low concentration of free
fatty acids in the brain ISF (Seyer et al. 2016), is howGBM
cells that areengaged in β-oxidationand/or lipid droplet ac-
cumulation are supplied with these nutrients, including
whether lipoprotein-mediated transport from other cell
types such as neurons occurs within the TME (Fig. 4).
Many tumors, including GBM, contain high levels of

cholesterol, which is typically particularly enriched inmi-
tochondria and protects cancer cells from apoptosis by
lowering mitochondrial membrane fluidity to block Bax
activation (Lucken-Ardjomande et al. 2008; Montero
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et al. 2008; Perelroizen et al. 2022).However, in contrast to
their context-dependent capacity for fatty acid synthesis,
GBM cells appear to be strictly auxotrophic for cholester-
ol. Expression of genes related to cholesterol biosynthesis
are suppressed in GBM tissue relative to the normal brain,
whereas levels of LDLR, which mediates the endocytosis
of cholesterol-laden ApoE, are elevated (Villa et al. 2016).
Consistentwith a lackof denovo cholesterol biosynthesis,
cultured GBM cells are unaffected by treatment with stat-
ins, which inhibit the rate-limiting step of this pathway,
and instead are highly dependent on the presence of cho-
lesterol-carrying lipoproteins in the culture medium. Re-
ciprocally, normal human astrocytes are unaffected by
removal of exogenous cholesterol but are killed by statin
treatment,matching their known role as the site of choles-
terol biosynthesis in the healthy brain (Villa et al. 2016;
Perelroizen et al. 2022). Conditioned medium from GBM
cells stimulates increased cholesterol biosynthesis and ef-
flux by astrocytes, and astrocyte coculture completely res-
cues GBM cell proliferation in lipoprotein-depleted
medium (Perelroizen et al. 2022). In vivo, the cholesterol
efflux transporter ABCA1 is up-regulated in GBM-associ-
ated astrocytes, and targeted knockdown by RNAi de-
pletes cholesterol in GBM tissue and triggers massive
apoptotic cell death, leading to tumor regression and pro-
longed survival (Perelroizen et al. 2022). Collectively,
these results implicate astrocyte-to-GBM cell cholesterol
transfer as an essential metabolic coupling for GBM
growth in vivo (Fig. 4).

Autocrine and paracrine lipid signaling in the GBM
microenvironment

In addition to structural and metabolic roles, numerous
lipid species are mediators of intracellular and intercellu-
lar signal transduction. Within the GBM microenviron-
ment, autocrine and paracrine signals are transmitted by
diverse bioactive lipid families including the sphingoli-
pids and eicosanoids (Nathoo et al. 2004; Hawkins et al.
2020). The sphingolipid sphingosine-1-phosphate (S1P) is
highly enriched in GBM relative to normal brain tissue,
and up-regulation of the enzyme that catalyzes its produc-
tion, sphingosine kinase 1 (SPHK1), correlates with poor
prognosis (Van Brooklyn et al. 2005; Abuhusain et al.
2013). Autocrine S1P signaling via the G protein-coupled
S1P receptors S1PR1–5 is mitogenic and also stimulates
GBM cell migration and invasion (Fig. 4), and paracrine
signaling to vascular endothelial cells constitutes a
VEGF-independent angiogenic axis (Van Brooklyn et al.
2005; Abuhusain et al. 2013; Grassi et al. 2019).

Eicosanoids are oxidized derivatives of PUFAs and in-
clude the prostanoid and leukotriene subfamilies of lipid
mediators. Arachidonic acid, which is generated from
phospholipids by phospholipase A2 (PLA2), is a precursor
for several eicosanoids, among which prostaglandin E2
(PGE2) is particularly important in GBM pathology. Up-
regulation of cyclooxygenase-2 (COX-2), the enzyme
that initiates the conversion of arachidonic acid into
PGE2, correlates with poor prognosis in GBM patients
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Figure 4. Brain lipid metabolism is co-opt-
ed by glioblastoma cells. Glioblastoma cells
exploit astrocytes as a source of cholesterol
and may obtain fatty acids from neighboring
neurons. Astrocyte-derived cholesterol is
loaded onto apolipoprotein E particles and
can be taken up by glioblastoma cells via
the low-density lipoprotein receptor
(LDLR). Glioblastoma cells typically sup-
press the endogenous cholesterol synthesis
pathway,making this astrocyte-derived cho-
lesterol essential for supporting proliferation
and normal membrane functions. Glioblas-
toma cells may also scavenge fatty acids
from neighboring neurons and oxidize
them to generate ATP under nutrient-
starved conditions. Under nutrient-replete
conditions, glioblastoma cells are capable
of synthesizing fatty acids, which are stored
in lipid droplets or used for the synthesis of
lipids for membrane biogenesis. A number
of lipid species function as signaling metab-
olites, with prominent examples being
sphingosine-1-phosphate and prostaglandin
E2, both of which are enriched in glioblasto-
ma. Both molecules engage in autocrine and
paracrine signaling, which can remodel the
tumor vasculature and promote the prolifer-

ation and invasion of glioblastoma cells. Solid lines indicate direct processes including movement of a molecule or single-step reactions,
and dashed lines indicate indirect or multistep processes. (ABCA1) ATP-binding cassette transporter A1, (ApoE) apolipoprotein E, (EP1–4)
prostaglandin E2 receptor 1–4, (FA) fatty acid, (GBM) glioblastomamultiforme, (LD) lipid droplet, (LDLR) low-density lipoprotein receptor,
(PGE2) prostaglandin E2, (ROS) reactive oxygen species, (S1P) sphingosine-1-phosphate, (S1PR1–5) sphingosine-1-phosphate receptor 1–5.
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(Dean andHooks 2023). Analogous to S1P signaling, exter-
nalized PGE2 engages G protein-coupled PGE2 receptors
(EP1–4), driving autocrine mitogenic and proinvasion sig-
naling in GBM cells and stimulating angiogenesis (Fig. 4;
Jiang et al. 2017; Dean and Hooks 2023). In addition to
their roles in regulating proliferation, migration, and an-
giogenesis, both S1P and PGE2 contribute to immune sup-
pression in the GBM microenvironment, as described in
the following section.

Metabolic modulation of the GBM immune
microenvironment

A hallmark of GBM is a profoundly immune-suppressive
TME, withmassive accumulation of immune cells in dys-
functional states. Tumor-associated myeloid cells
(TAMCs), including microglia, macrophages, and mye-
loid-derived suppressor cells (MDSCs), are the most abun-
dant immune cells in GBM, comprising up to 50% of the
total number of cells in the tumor (Xuan et al. 2021). The
extent of TAMC infiltration correlates positively with
GBM progression, and this population of cells mediates
immune suppression by impairing the activity of immune
effector cells and promoting the induction and recruit-
ment of immune-suppressive regulatory T cells (Tregs)
(Gabrilovich and Nagaraj 2009; Thomas et al. 2015). As
mentioned above, myeloid cells including microglia are
highly plastic and can differentiate into distinct polariza-
tion states, which historically were categorized as proin-
flammatory “classically activated” (M1) and anti-
inflammatory “alternatively activated” (M2). However,
it is now appreciated that TAMCs exist in a broad spec-
trum of dynamic functional states, expressing transcripts
linked to both M1 and M2 polarization. This results in
the TAMC composition of GBM being highly heteroge-
neous but skewed toward a state enriched with M2-like
characteristics, which is driven in part by immune-sup-
pressive signaling metabolites such as S1P and PGE2
(Arseni et al. 2023; Dean and Hooks 2023). The tumor
oncogenotype and its downstream impact on cytokine/
chemokine signaling and metabolic phenotype are major
determinants of immune suppression (Binnewies et al.
2018; Friedrich et al. 2021). In the context of grade IV glio-
ma, the mutation status of IDH1 is a particularly impor-
tant regulator of this aspect of the TME. In the following
sections, we discuss the key metabolic mechanisms that
modulate the anticancer immune response. Additional
nonmetabolic factors contributing to immune suppres-
sion inGBMhave recently been reviewed elsewhere (Gier-
yng et al. 2017; Grabowski et al. 2021).

IDH1 mutation status impacts glioma immune
suppression

As described above, oncogenic mutation of IDH1 results
in the production and accumulation of 2-HG to concentra-
tions of 1–30 mM in the TME, with consequences includ-
ing redox imbalance, metabolic reprogramming, and
epigenetic dysregulation. The effects of 2-HG accumula-

tion are not restricted to cancer cells but instead impact
the broader TME, including resident immune cell popula-
tions. Caution is needed when comparing IDH1wild-type
with IDH1 mutant glioma, as the IDH1 mutation is far
more common in LGG (∼80% of cases) than in grade IV
disease (∼12% of cases), and differences in the immune
microenvironment can be attributable to tumor grade as
well as mutation status. Nevertheless, recent use of syn-
geneic mouse models supports a causative role for onco-
genic IDH1 variants in mediating glioma immune
suppression (Amankulor et al. 2017; Kohanbash et al.
2017; Friedrich et al. 2021).
Single-cell RNA-seq analysis of human gliomas shows

that all cases contain an abundance of TAMCs in amixture
of polarization states, but that overall immune infiltration
is more severely suppressed in IDH1 mutant tumors than
in IDH1 wild-type GBM. In IDH1 mutant tumors, the
vast majority of the myeloid compartment consists of
microglia, whereas IDH1 wild-type tumors contain some
microglia but are also infiltrated by peripheral monocyte-
derived macrophages (MDMs), intermediate monocytes,
and, to a lesser extent, neutrophils (Amankulor et al.
2017; Klemmet al. 2020; Yeo et al. 2022). Similarly, periph-
eral lymphocytes are largely excluded from IDH1 mutant
gliomas, whereas IDH1wild-type GBM has substantial in-
filtration, particularly by CD4+ T cells. Isogenic mouse gli-
oma models differing only in IDH1 mutation status
support the conclusion that these differences in the tumor
immune landscape are directly attributable to the oncoge-
notype (Amankulor et al. 2017; Friedrich et al. 2021).
Mechanistically, 2-HG is linked to activation of the aryl
hydrocarbon receptor (AHR), a ligand-activated transcrip-
tion factor that induces immune-suppressive cell polariza-
tion (Friedrich et al. 2021). Rather than binding AHR
directly, 2-HG stimulates tryptophan catabolism to gener-
ate the AHR ligand kynurenine.

Tryptophan catabolism promotes immune suppression
in GBM

Catabolism of the essential amino acid tryptophan via the
kynurenine pathway is a central axis in themetabolic reg-
ulation of immunity (Opitz et al. 2011; Campesato et al.
2020). The kynurenine pathway is initiated by the rate-
limiting oxidation of the indole ring of tryptophan to gen-
erate N-formylkynurenine, a reaction catalyzed by both
indoleamine 2,3-dioxygenase 1/2 (IDO1/2) and trypto-
phan 2,3-dioxygenase (TDO2) (Fig. 5). N-formylkynure-
nine is then hydrolyzed by arylforamidase (AFMID) to
generate kynurenine. Expression of IDO1 is induced by
interferon and prostaglandin signaling, whereas TDO2 is
a glucocorticoid-responsive gene normally expressed
only in the liver (Nakamura et al. 1987; Bianchi et al.
1988; Braun et al. 2005). IDO1 is highly expressed in acti-
vatedmyeloid cells, but both IDO1 and TDO2 are also ex-
pressed by cancer cells in multiple tumor types including
GBM (Liu et al. 2018; Pham et al. 2021). This tryptophan
catabolism axis suppresses immune responses both by de-
pleting tryptophan, which is required for T cell
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proliferation, and by the action of the kynurenine product
on AHR. Binding of kynurenine triggers the release of
AHR from an inactive cytosolic complex, allowing nucle-
ar translocation and dimerization of AHR with the AHR
nuclear translocator (ARNT) to form the active transcrip-
tion factor complex (Fig. 5; Opitz et al. 2011).

Both IDO1 andTDO2 are highly expressed inGBM, and
cultured GBM cells avidly secrete kynurenine (Takenaka
et al. 2019; Kudo et al. 2020; Zhai et al. 2021). GBM cells
also secrete the cytokines IFNβ and interleukin-6 (IL-6),
known activators of STAT1 and STAT3, respectively,
which in turn drive increasedAHR expression in TAMCs.
Thus, GBM cells signal to TAMCs to up-regulate AHR
gene expression and simultaneously provide kynurenine
ligand to activate the AHR protein. Upon activation,
AHR coordinates a transcriptional program that skews
TAMCs toward an M2-like state, and this in turn blunts
the antitumor T cell response (Fig. 5).

Immune-suppressive adenosine signaling in the TME

Yet another metabolic mechanism connects M2-like
skewing of TAMCs with T cell suppression and tumor

immune escape; namely, the expression of the ectonu-
cleotidase CD39 (encoded by ENTPD1), which initiates
production of the immune-suppressive metabolite aden-
osine. The major route for extracellular adenosine pro-
duction is a two-step processing of ATP, which is
normally present at very low levels in the healthy brain
as a neurotransmitter and gliotransmitter but accumu-
lates tomicromolar concentrations in the TME due to re-
lease from necrotic cells (Fig. 5; Jennings et al. 2021).
Extracellular ATP is first hydrolyzed to AMP by CD39,
which is present on the surface of TAMCs and vascular
endothelial cells. Then, AMP is hydrolyzed to adenosine
by the membrane-anchored ecto-5′-nucleotidase CD73
(encoded by NT5E), which is expressed by both cancer
cells and immune cells in the TME (Fig. 5; Goswami
et al. 2019; Coy et al. 2022). Single-cell spatial transcrip-
tomics analysis of GBM tissue shows that CD39 is ex-
pressed by both microglia and macrophage TAMCs and
that these cells reside in close proximity to CD73-ex-
pressing cancer cells (Coy et al. 2022). Whereas extracel-
lular ATP drives proinflammatory signaling, adenosine
generated by the CD39/CD73 pathway potently sup-
presses inflammation via its activation of adenosine
receptors.
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Figure 5. Immune-suppressive metabolite
signaling in the glioblastomamicroenviron-
ment. Metabolites play an important role in
shaping the tumor immune microenviron-
ment. Tryptophan is an essential amino
acid, important for cancer cell proliferation
as well as proper T cell functioning. Glio-
blastoma cells effectively compete with T
cells for environmental tryptophan, deplet-
ing it and suppressing T cell function in
turn. A key fate of tryptophan in glioblasto-
ma cells is its breakdown to kynurenine,
mediated by the enzymes IDO1 and
TDO2, with the latter activated in isocitrate
dehydrogenase 1 (IDH1) mutant glioma in a
2-hydroxyglutarate-dependent manner.
Kynurenine thus accumulates in the tumor
microenvironment and, as the endogenous
ligand of the aryl hydrocarbon receptor
(AHR), activates this receptor in neighbor-
ing tumor-associated myeloid cells
(TAMCs). Here, AHR translocates to the nu-
cleus and binds the aryl hydrocarbon recep-
tor nuclear translocator (ARNT), forming an
active complex that drives target gene tran-
scription and contributes to anM2-like gene

expression profile. One consequence of this is increased expression of CD39 on the surface of TAMCs. CD39 is a membrane-associated
extracellular enzyme that converts ATP to AMP. ATP is not normally found in the extracellular milieu but is abundant in the tumor mi-
croenvironment due to the high level of necrotic cell death. AMPproduced byCD39 can be converted byCD73 on the surface ofGBMcells
and various immune cells to adenosine, which has potent anti-inflammatory properties. Adenosine binds to adenosine receptors on the
surface of TAMCs and T cells, promoting anM2-like gene expression profile and T cell suppression, respectively. Glioblastoma cells also
express adenosine receptors, and signaling through these promotes proliferation, invasion, and therapy resistance. Solid lines indicate di-
rect processes includingmovement of amolecule or single-step reactions, and dashed lines indicate indirect ormultistep processes. (2-HG)
2-hydroxyglutarate, (A2AR) adenosine receptor 2A, (A2BR) adenosine receptor 2B, (AHR) aryl hydrocarbon receptor, (ARNT) aryl hydrocar-
bon receptor nuclear translocator, (CD39) cluster of differentiation 39 (ectonucleoside triphosphate diphosphohydrolase-1), (CD73) cluster
of differentiation 73 (ecto-5′-nucleotidase), (GBM) glioblastoma multiforme, (IDO1) indoleamine 2,3-dioxygenase 1, (Kyn) kynurenine,
(TAMC) tumor-associated myeloid cell, (TDO2) tryptophan 2,3-dioxygenase, (TME) tumor microenvironment, (Trp) tryptophan.
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There are four G protein-coupled adenosine receptors,
A1R, A2AR, A2BR, and A3R, which have different affinities
for adenosine (Sheth et al. 2014). All four receptors are ex-
pressed by GBM cells, but the low-affinity receptor A2BR,
which is only activated by pathologically high adenosine
concentrations as found in the TME, is selectively up-reg-
ulated relative to nontransformed cells (Yan et al. 2019).
Cancer cell-intrinsic effects of A2BR activation include
the increased expression of matrix metalloproteinases
and multidrug resistance transporters, which promote
cancer cell invasion and chemoresistance, respectively
(Fig. 5). However, it is the role of the immune cell adeno-
sine receptor A2AR that has received themost attention in
GBM. Strikingly, CD39/CD73/A2AR is the most enriched
immune-suppressive axis in human glioma samples, with
TAMCs and infiltrating lymphocytes consistently ex-
pressing A2AR regardless of disease grade (Ott et al.
2020). Similar to the activation of AHR by kynurenine,
adenosine-mediated activation of A2AR skews TAMCs to-
ward an M2-like state, suppresses T cell effector activity,
and induces Tregs (Fig. 5; Ott et al. 2020).

Targeting intercellular metabolic coupling
for GBM therapy

Despite extensive exploration of therapies targeting onco-
genic signaling pathways in GBM, long-term prognosis for
patients has not improved substantially in decades, and
treatment of this disease remains one of the most chal-
lenging problems in clinical oncology. This lack of pro-
gress has prompted investigation of nononcogene
dependencies in GBM, including “metabolic addictions”
that arise as a consequence of oncogenic signaling, epige-
netic reprogramming, and/or features of the TME (Bi et al.
2019). As with any cancer therapy, a requirement of this
approach is that it must achieve sufficient selectivity to
eliminate malignant cells while sparing the patient from
unacceptable side effects arising from off-target activities
(Lee et al. 2018). A promising preclinical example is the
targeting of intercellular cholesterol metabolism in
GBM, which is discussed in more detail below. However,
selective inhibition of oncogenic IDH1 variants repre-
sents the cleanest metabolism-targeted therapy for glio-
mas that harbor IDH1 mutations, as the neomorphic
enzyme is present only in cancer cells. Since the initial ob-
servation of glioma IDH1mutations in 2008, the develop-
ment of such therapeutics has advanced rapidly, and
clinical trials of neomorphic IDH1-targeted antibodies
and inhibitors have recently yielded promising results in
glioma patients (Parsons et al. 2008; Mellinghoff et al.
2021, 2023; Platten et al. 2021; Natsume et al. 2023). Giv-
en the connections between IDH1 mutation status and
immune suppression in the TME, a logical extension of
these studieswill be to test whether neomorphic IDH1 in-
hibition potentiates immune therapies such as immune
checkpoint blockade. Indeed, in preclinical models, com-
bination of neomorphic IDH1 inhibition with anti-PDL1
therapy leads to complete tumor regression in 60% of
IDH1 mutant glioma-bearing mice (Kadiyala et al. 2021).

Targeting intercellular metabolic dependencies
in GBM—cholesterol as an example

Pharmacological blockade of anabolic metabolism is a
widely used approach in cancer therapy, exemplified by
antimetabolite inhibitors of nucleotide biosynthesis
such as antifolates, antipyrimidines, and antipurines
(Lukey et al. 2017). However, many of these agents nonse-
lectively target all proliferative cell types, including acti-
vated immune cells, and therefore a challenge is to
identify metabolic dependencies that are truly unique to
cancer cells. As described above, GBM cells are strictly
auxotrophic for cholesterol, requiring a supply of this nu-
trient from astrocytes. Inhibiting de novo cholesterol syn-
thesis in theCNSwould likely be detrimental for the host,
as astrocytes are killed by blockade of this pathway, but a
more selective approach for targeting cholesterol auxotro-
phy inGBMcells has recently beendeveloped.Cholesterol
homeostasis is regulated by the liver X receptors (LXRα/β),
which upon activation by cholesterol catabolites heterodi-
merize with retinoid X receptors (RXRs). The LXR:RXR
complex down-regulates LDLR and up-regulates ABCA1
in cholesterol-replete cells, thereby suppressing cholester-
ol uptake and simultaneously stimulating its efflux (Wang
and Tontonoz 2018). Loss of this negative feedback loop
due to low levels of endogenous LXR ligands is a unique
feature of GBM cell metabolism and allows cholesterol
to accumulate to levels that protect from apoptosis (Villa
et al. 2016; Perelroizen et al. 2022). This rendersGBMcells
selectively sensitive to pharmacological LXR agonists,
which spare normal astrocytes and neurons (Villa et al.
2016). The brain-penetrant agonist LXR-623 is able to
drive cholesterol depletion-dependent death of GBM cells
in vivo, leading to inhibition of tumor growth and extend-
ed survival in mice (Villa et al. 2016).

Pharmacological targeting of glutamatergic signaling
in GBM

As described above, glutamatergic signaling contributes
directly to GBM progression while also contributing to
complications such as tumor-associated epilepsy via
neuronal overactivation. Multiple steps of the GBM-spe-
cific glutamatergic signaling pathway can potentially be
targeted, such as the cystine/glutamate antiporter xCT,
as well as tumor-enriched glutamate receptors them-
selves. In this regard, several clinical trials have been
conducted with talampanel and perampanel, which are
noncompetitive inhibitors of the AMPA receptor. While
talampanel monotherapy failed to show any clinical ben-
efit for recurrent GBM (Iwamoto et al. 2010), a combina-
tion therapy of talampanel with radiation and
temozolomide was well tolerated and showed encourag-
ing improvements in survival time compared with radi-
ation and temozolomide alone (Grossman et al. 2009).
Additionally, perampanel has proven to be effective at
controlling seizures in patients suffering GBM-associat-
ed epilepsy while also possibly restraining tumor pro-
gression (Izumoto et al. 2018).
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Relieving the immune-suppressive metabolic
environment in GBM

Immune-suppressive metabolic signaling axes in the
GBM microenvironment include the kynurenine and
adenosine pathways, both of which are highly amenable
to pharmacological blockade. The first step of the kynur-
enine pathway of tryptophan catabolism can be targeted
by inhibitors of IDO1 and/or TDO2. In immune-compe-
tent mouse models of GBM, monotherapy with a CNS-
penetrant IDO1 inhibitor is ineffective at treating the dis-
ease, but trimodal therapy of IDO1 blockade, anti-PD1
therapy, and radiotherapy markedly increases survival,
with complete tumor regression and durable survival in
40% of animals (Ladomersky et al. 2018). Given the re-
dundancy between IDO1 andTDO2, dual IDO1/TDO2 in-
hibitors have also been developed and show improved
efficacy relative to IDO1-selective inhibitors (Du et al.
2020). IDO1 and/or TDO2 inhibitors are currently being
evaluated in numerous clinical trials, which to date
have shown evidence of benefit in subsets of GBM pa-
tients (Platten et al. 2019; Opitz et al. 2020; Reardon
et al. 2020; Modoux et al. 2021; Fujiwara et al. 2022;
Peng et al. 2022). A potential caveat with competitive in-
hibitors of IDO1/TDO2 is that some of these compounds
are structurally similar to kynurenine and can themselves
be activating ligands for AHR, thus bypassing the intend-
ed disruption of this immune-suppressive axis (Moyer
et al. 2017). An alternative approach that avoids this com-
plication is to use direct antagonists of AHR. Such inhib-
itors show efficacy both as a monotherapy and in
combination with anti-PD1 therapy in models of several
solid tumors (Campesato et al. 2020; McGovern et al.
2022) but to our knowledge have not yet been extensively
evaluated in animal models of GBM.

Preclinical studies also support the continued investi-
gation of adenosine signaling blockade in GBM therapy
(Jin et al. 2021; Bova et al. 2022). Inhibition of the aden-
osine receptor A2BR, which is highly up-regulated on
GBM cells (Fig. 5), increases the chemosensitivity in ex
vivo culture (Daniele et al. 2014; Yan et al. 2019; Erices
et al. 2022). A brain-penetrant inhibitor of the immune
cell adenosine receptor A2AR modestly extended sur-
vival in immune-competent mouse models of GBM but
failed to relieve T cell exhaustion in the TME (Ott
et al. 2020). A broader approach for adenosine blockade
is to inhibit its production by CD39/CD73, a strategy
that might simultaneously increase proinflammatory
signaling by the precursor metabolite ATP (Fig. 5).
Knockout of Nt5e (encloding CD73) inhibits tumor
growth and invasion and modestly extends survival in
mouse models (Goswami et al. 2019; Yan et al. 2019).
However, supplying anti-CTLA4 and anti-PD1 combina-
tion therapy to Nt5e knockout animals leads to a re-
markable increase in survival, with ∼40% of responses
being durable (Goswami et al. 2019). These results point
toward possible future clinical applications in GBM for
adenosine pathway inhibitors, which are already being
assessed in clinical trials for other cancer types (Leone
and Emens 2018; Thompson and Powell 2021).

Concluding remarks

Coordinated intercellular partitioning of metabolism is a
defining characteristic of the CNS and involves symbiotic
relationships that allow brain-resident cells to direct their
resources to highly specialized functions such as neuronal
firing. In many of these processes, astrocytes play impor-
tant metabolic support roles, powering energetically
demanding neurotransmitter cycles, supplying biosyn-
thetic precursors, and detoxifying and recyclingmetabolic
waste products. An emerging theme in cancer biology is
that tumors integrate into and/or hijack the metabolism
of their host tissue, making use of nutrients in the ISF
and co-opting stromal cells to provide additional metabol-
ic support (Lyssiotis and Kimmelman 2017; Altea-Man-
zano et al. 2020). While these interactions contribute to
cancer progression, in some cases they also lead to con-
text-dependent metabolic dependencies that can be selec-
tively targeted for cancer therapy (Muir and Vander
Heiden 2018). In GBM, it is now clear thatmalignant cells
exploit diverse aspects of brain metabolism and are likely
dependent on astrocytes for both cholesterol and gluta-
mine supply. GBM also hijacks the signaling roles of cer-
tain metabolites, even forming functional synapses with
glutamatergic neurons that stimulate mitogenic and
proinvasion signaling. Finally, the metabolic secretome
of GBM cells induces immune suppression through com-
plementary axes including the kynurenine and adenosine
pathways. Despite the research to date, gaps in our under-
standing remain. In particular, there is a paucity of infor-
mation on the role of oligodendrocytes in the GBM TME.
On this topic and others, technological advances such as
imaging mass spectrometry are likely to facilitate further
gains in our understanding of the multidirectional meta-
bolic interactions in theGBMmicroenvironment (Randall
et al. 2020; Philipsen et al. 2023). The knowledge gained
from this basic research has already been used to develop
rational drug combinations, which in some cases lead to
a high rate of durable remission in preclinical models of
GBM. The challenge now is to translate these findings
into new therapies that finally improve the long-term
prognosis for patients diagnosed with this devastating
disease.
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