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Comparative single-cell transcriptomic 
analysis of primate brains highlights 
human-specific regulatory evolution

Hamsini Suresh    1, Megan Crow2, Nikolas Jorstad3, Rebecca Hodge3, Ed Lein3, 
Alexander Dobin    1, Trygve Bakken    3 & Jesse Gillis    1,4 

Enhanced cognitive function in humans is hypothesized to result 
from cortical expansion and increased cellular diversity. However, the 
mechanisms that drive these phenotypic innovations remain poorly 
understood, in part because of the lack of high-quality cellular resolution 
data in human and non-human primates. Here, we take advantage of 
single-cell expression data from the middle temporal gyrus of five primates 
(human, chimp, gorilla, macaque and marmoset) to identify 57 homologous 
cell types and generate cell type-specific gene co-expression networks 
for comparative analysis. Although orthologue expression patterns are 
generally well conserved, we find 24% of genes with extensive differences 
between human and non-human primates (3,383 out of 14,131), which are 
also associated with multiple brain disorders. To assess the functional 
significance of gene expression differences in an evolutionary context, 
we evaluate changes in network connectivity across meta-analytic 
co-expression networks from 19 animals. We find that a subset of these genes 
has deeply conserved co-expression across all non-human animals, and 
strongly divergent co-expression relationships in humans (139 out of 3,383, 
<1% of primate orthologues). Genes with human-specific cellular expression 
and co-expression profiles (such as NHEJ1, GTF2H2, C2 and BBS5) typically 
evolve under relaxed selective constraints and may drive rapid evolutionary 
change in brain function.

Cortical expansion and increased cellular diversity in the human brain 
following divergence from great apes are hypothesized to contrib-
ute to enhanced cognitive function1,2, but the molecular mechanisms 
underlying human brain evolution are not fully understood. High 
protein sequence conservation between humans and non-human 
primates suggests that cortical evolution in the human lineage is 
driven primarily by changes in the regulation of gene expression3,4. 
Comparative cross-species transcriptomic analyses are essential to 

uncover gene expression programmes underlying cell identity5–7, and 
assess the impact of their dysregulation in neuropsychiatric disease8,9.  
Difficulty in obtaining and preserving samples, and the quality of 
genome annotation in non-human primates have restricted the scope 
of most comparative studies in primates to characterizing patterns of 
gene regulation across a small set of species using bulk transcriptomic 
data from a limited number of tissues10–14. Moreover, recent analyses15,16 
highlight the difficulty of disentangling functional gene co-regulation 
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are highly reproducible across species and brain regions23, primate 
MTG datasets were annotated by transferring subclass labels from the 
human primary motor cortex taxonomy23.

In total, 574,156 nuclei passed quality control, including 341,469 
excitatory (glutamatergic) neurons, 158,188 inhibitory (GABAergic) 
neurons and 74,499 non-neuronal cells (Fig. 2a). Cells in each spe-
cies were categorized into three classes (non-neurons, excitatory and 
inhibitory neurons) and 24 subclasses. Datasets were integrated across 
individuals and data modalities (SSv4, Cv3) in each species, and the 
integrated space was subdivided into cell-type clusters using a previ-
ously described ‘shatter and merge’ approach23 (further details are 
given in the Methods section ‘snRNA-seq processing and clustering’). 
This approach resulted in a varied number of cell-type clusters across 
species, ranging from 103 in marmoset to 151 in humans. Next, we 
assessed the replicability of cell types at different levels of granularity 
across species using MetaNeighbor29,30, which identifies cell types with 
highly similar transcriptional signatures within and across species. Cell 
types at the class and subclass levels of annotation were near-perfectly 
replicable across species, confirming that cell types have distinct 
transcriptomic profiles that distinguish them at broad levels of cell 
classification (Fig. 2b,e; refer to the Methods section ‘Replicability of 
clusters’ for additional details on measuring cell-type reproducibility). 
However, at finer resolution, multiple clusters exhibited substantial 
transcriptomic similarities within and across species (Supplementary 
Table 1). Because we are interested in assessing the conservation of 
gene expression signatures across matched cell types between human 
and non-human primates, we first generated a comprehensive set of 
homologous cell types (cross-species clusters) as described below.

First, we applied MetaNeighbor to identify highly replicable clus-
ters across species, which formed the initial pool of consensus cell 
types. Next, we used a weighted nearest-neighbour approach to assign 
each of the remaining ambiguously matched clusters to the consensus 
cell type containing the majority of transcriptionally similar cell clus-
ters (Fig. 2c; see the Methods section ‘Replicability of clusters’ for more 
details). This clustering procedure allowed us to map 594 clusters in 
all five primates to 86 cross-species clusters, with each cross-species 
cluster containing one or more clusters from at least two primates. 
All primates shared 57 of 86 cross-species clusters (Supplementary 
Fig. 1). We refer to these shared clusters as homologous cell types, and 
they contain more than 80% of clusters from each species (Fig. 2d). 
As expected, homologous cell types showed similar transcriptional 
profiles across species (Fig. 2f).

To assess the reliability of cross-species cluster assignment, we 
permuted through all possible combinations of leave-one-gene-out 
cross-validation, and predicted sets of best-matched cell types across 
all folds for each pair of species. Clustering results were generally 
consistent with consensus cell types defined by the initial clustering 
pipeline (mean adjusted Rand index = 0.999), confirming the robust-
ness of the generated taxonomy. We also functionally characterized 
our consensus clusters by identifying HUGO Gene Nomenclature Com-
mittee (HGNC)- and Synaptic Gene Ontology (SynGO)-curated gene 
groups that contributed the most to replicability30. Genes related to cell 
adhesion and neuronal signalling were most informative of cell-type 
identity, and showed similar classification performance when trained 
and tested in the same or different species (Fig. 2g; scores for all 920 
gene groups are listed in Supplementary Table 2).

Characterizing gene expression patterns across primates
We organized the 57 homologous cell types into a hierarchical taxon-
omy on the basis of transcriptomic similarities (Fig. 3a), and observed 
that hierarchical relationships among cell types roughly mirrored their 
developmental origins. This consensus taxonomy provides an excellent 
opportunity to infer the extent of functional conservation between 
humans and non-human primates by comparing the similarity of gene 
expression signatures across matched cell types.

confounded with co-expression because of variation in cell-type abun-
dance across tissue samples. Comparative co-expression analysis at 
single-cell resolution has the potential to systematically trace the origin 
and diversity of cell types across animal evolution.

Single-cell transcriptomics has become a powerful tool to identify 
regional and interspecific variation in gene expression underlying 
the evolution of brain regions and cell types within17–19 and across spe-
cies20–24. For example, aligning human and mouse samples from homol-
ogous brain regions revealed extensive divergence in gene expression 
of cortical cell types2, and the presence of a primate-specific striatal 
interneuron population25, highlighting the need to study primate brains 
at high resolution to uncover the mechanisms behind evolutionary 
innovations in the human lineage. To identify human-specific patterns 
of gene activity driving brain evolution, we used the gene expression 
resource recently generated by the BRAIN Initiative Cell Census Net-
work consortium26. This dataset contains high-quality single-nucleus 
transcriptomic atlases of the middle temporal gyrus (MTG) sampled 
from five primates (human, chimp, gorilla, macaque and marmoset), 
spanning an evolutionary period of ~45 million years. The essence of our 
approach was to identify cell types shared across species, and then use 
this common sample space to determine where and how orthologues 
change their expression pattern.

In this study, we identified 57 homologous cell types by align-
ing single-nucleus MTG atlases of five primates. We observed high 
cross-species similarity in expression variability over 57 consensus cell 
types for orthologous genes, suggesting conserved transcriptional 
patterning across primates. However, we also noted that a substantial 
fraction of genes had divergent expression variation between human 
and non-human primates in one or more cell classes. These genes were 
enriched for synapse assembly and function, and nearly half showed 
expression divergence limited to glial cell types. Because changes in 
gene expression can evolve under random drift or natural selection, 
we assessed the functional impact of expression variation by inves-
tigating changes in network connectivity using gene co-expression 
networks spanning a phylogenetically diverse set of 19 animals from 
CoCoCoNet27. Despite tissue heterogeneity in individual RNA sequenc-
ing (RNA-seq) datasets, we previously demonstrated that we can pro-
duce reliable estimates of gene co-expression through large-scale 
meta-analysis of publicly available gene expression data28. Using 
high-powered co-expression networks, we also established that genes 
typically have highly conserved co-expression neighbourhoods across 
evolutionarily distant species, highlighting their conserved regulation 
and function28. We identified 139 genes with divergent gene expression 
and connectivity exclusive to the human lineage, which also displayed 
a higher tolerance to inactivation, suggesting evolution under relaxed 
mutational constraint as a key driver of human-specific gene activity.

Overall, we generate a comparative catalogue of gene expres-
sion data over 57 matched cell types from MTG of five primates, and 
make this available through a web-based resource (https://gillislab.
shinyapps.io/Primate_MTG_coexp/) for further exploration. We also 
demonstrate that integrative analysis of gene expression at single-cell 
resolution with cross-species co-expression conservation (represented 
schematically in Fig. 1) is a powerful approach to distinguish evolution-
arily conserved transcriptional features from uniquely human gene 
expression traits.

Results
Consensus MTG taxonomy across primates
The BRAIN Initiative Cell Census Network26 generated high-resolution 
transcriptomic maps of the MTG in human, chimpanzee, gorilla, 
macaque and marmoset by applying single-nucleus transcriptomic 
(snRNA-seq) assays to samples isolated from between three and seven 
donor brains in each species (plate-based SMART-seq v4 (SSv4) for great 
apes, in addition to droplet-based Chromium v3 (Cv3) RNA-seq for all 
primates). Because gene expression signatures at the cell subclass level 
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Adopting the language of Patel et al.31, given a query gene from 
one species, the homologous gene in the target species with the most 
similar expression variability across a set of matched tissues is referred 
to as its ‘expressolog’. Although this method has been employed to 
select functionally similar orthologues from homologous gene clus-
ters, we apply it here to evaluate the similarity of expression profiles 
of one-to-one (1:1) orthologues compared with that of random gene 
pairs. We obtained a list of 14,131 human genes with 1:1 orthologues in 
all non-human primates from OrthoDB32. For each pair of species, we 
calculated the expression profile similarity for all pairs of genes by cor-
relating the mean normalized expression levels across 57 homologous 
cell types. We then defined the rank-standardized expression profile 
similarity of 1:1 orthologues relative to all other genes as the ‘expresso-
log score’ (Fig. 3b; see the Methods section ‘Calculating the expressolog 

score’ for details on the calculation). In essence, this measures whether 
orthologues show similar expression profiles across cells. This score 
is represented as an area under the receiver operating characteristic 
curve (AUROC) with a score of 1 signifying specific and highly similar 
expression variation across the species pair, 0.5 indicating dissimilar/
uncorrelated expression variation and 0 indicating significant extreme 
expression profile divergence in one or both species. Our earlier clus-
tering cross-validation ensured that no gene can drive the cluster 
assignments to ensure a high expressolog score for itself.

The expressolog score for each gene measures the specificity with 
which transcriptional signatures across shared cell types can be used 
to detect its 1:1 orthologues across species. Intuitively, an expressolog 
score of 0.99 for a gene indicates that its orthologue is in the top 1% 
of all genes in terms of expression profile similarity. Because genes 
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Fig. 1 | Schematic illustration of evolutionary analysis to infer subtle 
regulatory shifts underlying human-specific single-cell transcriptomic 
divergence. a, We used the single-nucleus transcriptomic atlases of the MTG of 
five primates to create a consensus classification of MTG cell types. The bar plot 
shows the percentage of within-species cell-type clusters associated with each 
consensus cell type, coloured by species. b, We quantified the similarity of gene 
expression profiles across primates to select genes with conserved expression 
signatures across non-human primates but diverged in humans (left). We then 

tested for signatures of differential regulation driving human-specific cell-type 
expression profiles by measuring changes in co-expression network connectivity 
between humans and 18 animals sampled broadly across metazoan phylogeny 
(right). The figure indicates that the gene retains its top ten co-expression 
partners in all animals except humans, suggesting that differential co-expression 
connectivity could underlie human-specific expression divergence. Silhouettes 
for all five primates are from www.phylopic.org (public domain). ExN, excitatory 
neuron; InN, inhibitory neuron; NonN, non-neuron.
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Fig. 2 | Homologous cell types across five primates. a, Summary of single-
nucleus transcriptomic data split by sequencing technology, number and sex 
of donors for each species. Ma, million years ago. b, Heatmap showing the 
‘one_vs_best’ MetaNeighbor scores for cell subclasses across primates, with cell 
types labelled by species and subclass. Each column shows the performance of 
a single training group across the five test datasets. Cell subclass replicability 
scores (AUROCs) were computed between the two closest neighbours in each 
test dataset, where the closer neighbour has the higher score (shown in red; all 
others are shown in grey). NA, not available. c, Scheme showing a semisupervised 
MetaNeighbor framework used to define consensus transcriptomic cell types 
across primates. d, Fraction of cell types from each species in the consensus MTG 
taxonomy. e,f, Cross-species clustering of cell types is validated by comparing 

cell-type reproducibility within and across cell classes (n = 594 clusters) (e) and 
plotting the distribution of cell-type replicability scores for matched clusters 
across species (f). The receiver operating characteristic curve in the inset 
indicates cluster replicability score identifies consensus cell types with high 
fidelity. g, Scatter plot depicts the performance of 920 HGNC- and SynGO-
curated gene groups in classifying consensus cell types within and across species, 
coloured by functional category. Linear regression fit is indicated by the black 
line, with the slope in the upper left-hand corner. Top highly conserved gene 
sets across primates are listed on the right (cell-type classification performance 
>0.95). For all boxplots, the bounds of the box represent the first and third 
quartiles, the thick line represents the median and the whiskers represent 1.5× the 
interquartile range.
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with shared functions often display similar expression profiles, we 
used expressolog scores computed over 57 matched cell types as a 
measure of gene functional conservation across species. We found that 
orthologous genes show highly similar patterns of expression variation 

across cell types and are highly conserved across the phylogeny. Two 
such examples are shown in Fig. 3c: ADAM10, which is constitutively 
expressed in the primate MTG, and GAD1, which is expressed exclusively 
in inhibitory neurons. Both genes exhibit perfectly matched expression 
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level in the UMAP plots). Both genes have near-identical expression profiles 
between human and non-human primates (expressolog score = 1 in both cases). 
Expressolog scores computed across cell types within each subgroup reveal 
persistent transcriptomic similarities at different levels of granularity (with 

the exception of Pvalb cell subclass for ADAM10, and L5/6 excitatory neurons 
and vascular cells for GAD1). Astro, astrocyte; c.p.m., counts per million; Endo, 
endothelial cell; Oligo, oligodendrocyte; OPC, oligodendrocyte precursor;  
PVM, perivascular macrophage; VLMC, vascular and leptomeningeal cell.  
d, Heatmap of expressolog scores averaged across 14,131 orthologues for all pairs 
of primates. e, Boxplots indicate that cell lineage-specific genes like marker genes 
distinguishing the three cell classes and transcription factors have conserved 
expression profiles across primates suggesting conserved transcriptional 
programmes shape cell identity across species (n = 128 genes). f, Expressolog 
scores suggest that individual isoforms also exhibit similar expression profiles 
across great apes (n = 8,190 isoforms). For all boxplots, the bounds of the box 
represent the first and third quartiles, the thick line represents the median and 
the whiskers represent 1.5× the interquartile range.
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profiles across human and non-human primates, corresponding to 
an expressolog score of 1 in each case. Notably, both ADAM10 and 
GAD1 display conserved patterns of expression variation even across 
more homogeneous cell types (such as caudal ganglionic eminence 
(CGE)-derived interneurons or deep layer excitatory neurons), sug-
gesting that the genes are deeply conserved across species.

Early microarray-based comparative studies noted that the diver-
gence in gene activity in the same tissue between species reflects their 
evolutionary relationships12,33. Similarly, average expressolog score  
(or cross-species co-expression) correlates with evolutionary distances 
between human and non-human primates (Fig. 3d; refer to Supple-
mentary Table 3 for the full list of scores). Expressolog scores correctly 
classify orthologues with performance ranging from 0.93 for humans 
with great apes, to 0.8 for humans with marmoset. Marker genes and 
transcription factors also show high functional conservation across 
species, suggesting a highly conserved molecular landscape of the MTG 
region across primates (Fig. 3e; see Methods for details on marker and 
transcription factor selection).

Alternative splicing is known to increase transcriptomic diversity 
in primates34,35, but the functional conservation of individual isoforms 
is yet to be fully characterized. Do isoforms have reproducible tran-
scriptional signatures across primates? To address this, we used SSv4 
data with full transcript coverage in 28 cell types in human, chimp 
and gorilla to explore patterns of isoform usage across great apes. In 
general, isoforms showed similar expression profiles across species 
(Fig. 3f). For each gene with multiple isoforms in a pair of species, we 
calculated the expressolog scores for all isoform pairs to measure the 
ability of each isoform to correctly predict itself across species. Overall 
performance for this task was slightly better than that expected by 
chance (AUROC = 0.56), suggesting similar but not specific transcrip-
tional patterning of isoforms across species. Indeed, consistent with 
previous observations35, we also noted extensive isoform switching 
across apes, which could explain the weak expression specificity of 
isoforms across species.

Assessing gene activity conservation using co-expression
Does transcriptional similarity across primates correspond to con-
served gene regulation? Because gene co-expression reflects shared 
regulation and function, we can assess the conservation of regulatory 
mechanisms underlying shared transcriptional patterning by quan-
tifying the similarity of gene co-expression neighbourhoods across 
species28,36–38. We built gene co-expression networks for each of the 
five primates by aggregating individual cell type-specific co-expression 
networks built from pseudobulk samples of consensus cell types  
(see left-hand panel of Fig. 4a for a schematic representation, and refer 
to the Methods section ‘Building aggregate co-expression networks’ 
for further details on building co-expression networks).

To measure the similarity of gene co-expression neighbour-
hoods between human and non-human primates, we subset gene 
co-expression networks to 4,500 highly variable 1:1 orthologues, 
and calculated a ‘co-expression conservation’ score, which is a meas-
ure of gene neighbourhood replicability across the species pair  
(see right-hand panel of Fig. 4a for a schematic representation, and the 
Methods section ‘Calculating cross-species co-expression conserva-
tion’ for further details). We observed that gene co-expression neigh-
bourhoods are highly conserved across primates (Fig. 4b), revealing a 
highly conserved cellular architecture of the MTG region in primates. 
Similar to expression profile similarity, we found that co-expression 
neighbourhood similarity also correlates with primate phylogeny.

The reliability of gene functional conservation estimation is lim-
ited by the statistical power of the underlying co-expression networks. 
Currently, we need greater single-cell sequencing depth for better 
transcriptomic coverage, and multiple high-quality datasets that can be 
aggregated to build well-powered cell type-specific co-expression net-
works to link changes in gene expression to cell type-specific regulatory 

rewiring. Therefore, co-expression network analysis using large-scale 
aggregation of bulk expression data remains important for study-
ing evolutionary differences driving species-specific transcriptional 
signatures. However, we need to evaluate the conservation of gene 
co-expression across (1) different levels of cell-type granularity, and (2) 
divergent species before we can leverage the vast amounts of publicly 
available bulk RNA-seq data to pinpoint species-specific regulatory 
changes that could be associated with divergent expression pattern-
ing in the MTG.

Are gene co-expression relationships replicable across networks 
built at different levels of cell-type heterogeneity? We can now com-
pare co-expression networks from snRNA-seq datasets with networks 
derived from whole-brain or cross-tissue samples in humans to distin-
guish co-expression due to shared co-regulation from co-expression 
driven by cell-type composition. We generated a meta-analytic human 
brain co-expression network by aggregating datasets of human bulk 
brain data sourced from the Gemma database39 (Fig. 4c). At coarser res-
olution, we also obtained a high-confidence human gene co-expression 
network from CoCoCoNet27 created by meta-analysis of publicly avail-
able bulk RNA-seq datasets. Co-expression neighbourhood conserva-
tion calculated pairwise between the three aggregate co-expression 
networks revealed functional conservation of genes at different levels 
of cell-type resolution (Fig. 4c). The high degree of consistency between 
single-nucleus and bulk networks highlights conserved co-regulatory 
relationships across tissues and cell types. This observation is con-
sistent with a model of multiscale co-expression in the brain, which 
proposes that cell types may differ substantially in gene expression 
levels, but share a core co-regulatory network.

Are gene co-expression relationships conserved across metazoa? 
Although the neocortex is a feature specific to mammals, the basic 
regulatory components underlying functional changes there may 
have evolved before mammalian evolution and undergone extensive 
re-organization in different phylogenetic classes40,41. Therefore, we 
can use co-expression conservation of functionally relevant genes to 
test for signs of conserved molecular identity across species. Ideally, 
we would like to test this idea through meta-analysis of large-scale 
brain-specific transcriptomic data from multiple species, but such 
data are available only for select model species. Previously, we showed 
that our gold standard human gene co-expression network (assem-
bled from datasets sampling multiple bulk tissues) is topologically 
and functionally similar to our meta-analytic brain-specific human 
network (Fig. 4c), capturing the key regulatory features shared 
by both. Based on this observation, we tested the conservation 
of neuronal and non-neuronal cell-type marker genes using bulk 
co-expression networks of humans and 21 other species available 
on CoCoCoNet (networks derived from 54,668 samples over 22 spe-
cies as reported in Supplementary Table 5). We observe consist-
ently high co-expression conservation scores of 1:1 orthologues 
even in phylogenetically distant species like fruit fly and roundworm  
(Fig. 4d), suggesting the presence of conserved regulatory features 
across metazoa. We note that this result is robust to different marker 
gene selection criteria (Supplementary Fig. 2) and is also recapitu-
lated using brain-specific co-expression networks (Supplementary 
Fig. 3), highlighting the replicability of gene–gene relationships 
across diverse species and tissues.

We observe that the two complementary measurements of gene 
functional conservation—expression profile similarity between human 
and non-human primates and co-expression conservation between 
human and 21 other species—are broadly consistent with each other 
(Fig. 4e). We also note that genes with divergent expression profiles 
between human and non-human primates exhibit greater changes 
in co-expression network connectivity in humans, indicating that an 
integrative analysis of single-cell and bulk transcriptomic data has 
the potential to uncover subtle regulatory shifts in the human lineage 
underlying novel expression profiles.
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Candidate genes for human-specific expression
Genetic variation within species is known to drive regulatory and phe-
notypic variation across species12,42. Under a neutral model of evolution, 
we expect a similar constraint of evolutionary drift to apply to gene 
sequences and expression levels within and across species. The evo-
lutionary trajectory of many genes follows this principle, as evidenced 
by highly conserved expression and co-expression profiles across large 
evolutionary timescales (Fig. 4e). However, a few outlier genes can 
have expression changes due to positive selection on specific regula-
tory variants, lower mutational constraint or environmental differ-
ences across species43. Here, we propose that an integrative analysis of 
high-resolution single-nucleus and well-powered bulk transcriptomic 
data can combine the specificity of expression across cell types with the 
similarity of co-expression neighbourhood across divergent species to 
detect human-specific regulatory variation in an evolutionary context.

Our workflow to identify genes with potential human-specific 
co-expression patterns is illustrated in Fig. 5a. In brief, we filtered the 
list of 14,131 genes to exclude lowly expressed genes (genes with average 
expression in the bottom tenth percentile in the primate MTG data-
sets), yielding a set of 12,742 genes. Next, we selected genes with low 
expressolog scores (AUROC < 0.55) within one or more classes between 
human and non-human primates. These 3,383 genes exhibit diverged 
expression profiles either in humans, non-human primates or across all 
primates. To shortlist the genes with potential human-specific regula-
tory divergence, we then examined their co-expression conservation 

scores across 19 animals (humans and 18 other animals with >60% 
human orthologues), and only selected genes showing significantly 
lower conservation between human and other animals, compared with 
all other pairs of animals. Given that most genes have highly similar 
co-expression neighbourhoods even across phylogenetically distant 
species (average co-expression conservation = 0.89), we recognize 
that our stringent filter provides a robust but conservative estimate of 
human-specific divergence. We identified 139 genes with concordant 
human-specific functional divergence in single-cell and bulk tran-
scriptomic data, a very small fraction of all genes analysed, consistent 
with an evolutionarily conserved regulatory landscape across species. 
Genes exhibiting species-specific functional divergence between 
humans and other primates are the exception in our analysis, not  
the rule.

Among 3,383 genes with diverged expression profiles in one 
or more cell classes between human and non-human primates, 98% 
of genes showed expression divergence in only one cell class, with 
nearly half of the genes exhibiting differential co-expression across 
non-neuronal cell types. The 3,383 genes are more likely to be associ-
ated with cortex-specific significant expression quantitative trait loci 
(eQTLs; Wilcoxon P < 0.003), which could underlie gene expression 
changes in humans. Compared with all expressed genes, genes with 
diverged expression in one or more classes were enriched for intracel-
lular signal transduction, synapse organization and function (Fisher’s 
exact test, adjusted P < 0.02), and significantly associated with various 
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landscapes. a, Aggregate co-expression networks at single-cell resolution built 
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(left). Gene functional conservation is defined as the similarity of co-expression 
neighbourhoods for 1:1 orthologues across a species pair (right). FPR, false 
positive rate; TPR, true positive rate. b, Boxplots showing the distribution 
of co-expression conservation for highly variable genes calculated between 
human and non-human primates (n = 4,500 genes). c, Boxplots showing the 
distribution of co-expression conservation for highly variable genes calculated 
between human-specific networks at different levels of granularity, indicating 
the replicability of co-expression signatures between ‘compositional’ (bulk) 

and ‘co-regulatory’ (single cell) networks (n = 4,500 genes). d, Boxplots showing 
mean co-expression conservation for marker genes between humans and 21 
other species, grouped by their divergence time (n = 1,681 genes). Co-expression 
conservation is negatively correlated with phylogenetic distance (Spearman 
correlation coefficient = −0.65, P < 2.2 × 10−16). e, Boxplots showing the 
distribution of co-expression conservation between humans and other species 
as a function of the expression profile similarity of orthologues shared between 
human and non-human primates (binned into quartiles (Q) of increasing 
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brain disorders including intellectual disability, microcephaly, epilepsy 
and autism spectrum disorders (adjusted P < 0.001). We detected 139 
genes with putative novel regulatory relationships in humans, and a 
majority of these genes (68%) were diverged in a single cell class with 
roughly equal numbers of genes diverged in each of the three classes, 
GABAergic, glutamatergic and non-neuronal cells. The 139 human 
genes were also significantly associated with intellectual disability 
and blindness.

We visualized the expression variation over homologous cell types 
and cross-species co-expression conservation for three candidate 
genes showing human-specific deviation in expression profile in neu-
rons (NHEJ1), non-neurons (C2) and all cell classes (GTF2H2). Differences 
in gene expression profiles between human and non-human primates 
for these genes are shown in the left-hand panels in Fig. 5b,d,f. The box-
plots on the right in Fig. 5c,e,g show the corresponding distributions 
of co-expression conservation between humans and non-human mam-
mals, within non-human mammals and between non-human mammals 

and other model vertebrates (chicken and zebrafish). This broader spe-
cies analysis confirms differential co-expression in humans, validating 
the human-specific expression variation observed in single-nucleus 
transcriptomic data.

NHEJ1 is a DNA repair gene known to be under positive selection 
exclusively in the human lineage44. An independent study that com-
piled a comprehensive list of human accelerated regions (HARs) in the 
genome45 also identified a HAR overlapping this gene (HARsv2_1598), 
suggesting accelerated evolution of its coding sequence drives regula-
tory divergence specific to the human lineage.

Given that cis-regulatory variation contributes to interspecific 
expression divergence42, association of significant eQTL with GTF2H2 
and C2 could explain their expression variability across species. GTF2H2 
is a transcription factor gene with high interindividual variability 
because of several cortex-specific eQTLs, as seen in Genotype-Tissue 
Expression Project V8 (ref. 46)). C2 is an immune-related gene involved 
in interferon signalling and has microglia-specific expression in the 
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Fig. 5 | Integrative analysis of single-nucleus and bulk transcriptomic data 
can detect genes with human-specific regulatory divergence. a, Schematic 
representation and workflow of our approach to identify genes with human-
specific regulatory changes. AUC, area under the curve. b–g, Three examples 
of genes displaying human-specific differential co-expression: NHEJ1 (b,c), C2 
(d,e) and GTF2H2 (f,g). b,d,f, Plots comparing the expression profile of each gene 
of interest in humans with the average expression profile of the orthologue in 
non-human primates. Expressolog scores within each cell class are listed above 
the plot, and scores <0.55 are highlighted in orange. c,e,g, Boxplots showing 
co-expression conservation for orthologues between human and non-human 
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of the box represent the first and third quartiles, the thick line represents the 
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conservation between human and non-human mammals was lower than that 
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other vertebrates. The resulting P values were adjusted by applying Benjamini–
Hochberg procedure, and the adjusted P values are indicated above the boxplots 
in c, e and g.
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human central nervous system47. C2 is known to mediate interactions 
between microglia and neurons, and its downregulation in microglia 
is associated with ageing48. Because C2 has similar expression levels 
in microglia and neurons, regulatory changes in the human lineage 
could underlie the divergent pattern of C2 expression in non-neurons.

Another gene with potential differential expression regulation 
specific to the human lineage is BBS5. We observed human-specific 
upregulation of BBS5 specifically in one layer five excitatory neuron 
cell type and in microglia (Supplementary Fig. 4b), along with dif-
ferential co-expression conservation between humans and other 
animals in our bulk networks (Supplementary Fig. 4c). Single-cell 
epigenomic profiling of broad cortical cell types in the adult and 
developing human brain49,50 indicated microglia-specific activity of 
putative BBS5 enhancer, strongly suggesting a potential mechanism 
for expression upregulation specific to human microglia (Supplemen-
tary Information). These examples suggest the power of integrative 
analysis to uncover both patterns and mechanisms of human-specific 
expression variation, and measure the functional impact in a broad 
phylogenetic context.

Finally, we sought to assess genic properties of the 139 human 
genes that could be associated with human-specific functional diver-
gence. Consistent with previous research51, we found that the 139 
genes were younger (Wilcoxon P < 0.006), shorter in length (Wilcoxon 
P < 3.1 × 10−16), had higher GC content (Wilcoxon P < 2.4 × 10−5) and dis-
played more cell type-specific expression (Wilcoxon P < 0.0003) com-
pared with the other 12,603 functionally conserved genes. Divergent 
genes had marginally lower sequence similarity across primates com-
pared with conserved genes (Wilcoxon P < 0.01), coupled with higher 
sequence evolution rates in the human lineage (Wilcoxon P < 0.01). 
Despite not being more likely to be associated with significant cortical 
eQTLs, divergent genes showed relatively higher tolerance to inactiva-
tion (higher loss-of-function observed/expected upper bound fraction 
(LOEUF) scores; Wilcoxon P < 8.4 × 10−8). These observations suggest 
that the divergent genes predominantly evolve under relatively mild 
evolutionary constraints, with a handful of genes acquiring new regula-
tory features (like HARs) under positive selection.

Discussion
Single-nucleus transcriptomic profiling of the MTG in humans and 
four non-human primates provides an unprecedented opportunity 
to determine the core transcriptional features underlying conserved 
cell identity across primates and isolate human-specific transcrip-
tional features related to cellular diversity and trait evolution in the 
human lineage. In this study, we generated a transcriptomic catalogue 
of primate MTG cell types, which serves as the basis for comparative 
analysis of gene expression across primates. Expression profile simi-
larity of 14,131 orthologues between human and non-human primates 
confirmed the functional conservation of orthologues across primates 
(mean expressolog AUROC = 0.88; 47% of genes highly conserved with 
AUROC > 0.95), with the average extent of conservation recapitulating 
phylogenetic distances.

One of the main goals of comparative analysis using high- 
resolution, multi-omic profiling of matched brain regions across 
species is to develop methods for robust inference of genes with 
human-specific regulatory divergence underlying phenotypic nov-
elty. Given that genes typically have matched expression profiles 
across primates, differences in co-variation probably reflect func-
tional divergence between species. Therefore, we used cross-species 
co-expression between human and non-human primates within the 
three broad classes to identify genes with differential regulation in 
humans. We found 3,383 genes with divergent transcriptional pattern-
ing (expressolog score <0.55) across one or more classes in humans 
relative to non-human primates. Genes that diverged in one or more 
classes were significantly associated with multiple neuropsychiat-
ric and neurodegenerative diseases. Most of these genes exhibited 

changes in expression profiles only within a single class, and nearly 
half showed diverged expression limited to non-neuronal cell types. 
Because gene co-expression reflects shared regulation and function, 
we verified whether the observed gene expression changes have a 
functional impact by studying the divergence of gene co-expression 
relationships across species.

We utilized species-specific gene co-expression networks (gen-
erated by large-scale meta-analysis of 49,796 RNA-seq samples span-
ning 19 animals) to provide a quantitative framework to connect 
changes in gene expression profile to species-specific differential 
regulation. We identified 139 genes (<1% of all expressed genes) with 
human-specific expression and connectivity patterns not replicated 
in other primates or mammals. Relative to other expressed genes, 
these ‘human-divergent’ genes are younger, and display significantly 
higher rates of sequence evolution and evolve under relaxed mutational 
constraint. We propose that integrating both types of data can detect 
both conserved genes that are well-suited for translational research, 
and genes with differential co-regulation across species that could limit 
their utility as disease biomarkers in model organisms52.

Most single-cell comparative studies have focused on differential 
gene expression across species to isolate species-specific changes in 
gene activity suggesting functional divergence. However, the func-
tional consequence of differential expression is not always obvious, and 
the minimal overlap of differentially expressed genes across independ-
ent studies further complicates any efforts in meta-analysis to infer 
robust signatures of species-specific regulatory variability. Although 
we connect changes in gene expression to changes in co-expression net-
work connectivity to select genes with human-specific regulatory fea-
tures, we recognize that we underestimate the extent of human-specific 
functional divergence for several reasons:

 (1) Because primates have recently evolved from their last common 
ancestor, most genes have 1:1 orthologues across species. How-
ever, species-specific paralogues are more likely to be divergent 
across species (Fig. 3F in ref. 28), but are not in the scope of our 
current analysis.

 (2) Changes in expression profile may be unrelated to differential 
co-expression, so our strategy of selecting genes with concord-
ant divergence in expression and co-expression patterns misses 
genes that are functionally diverged due to other sources of vari-
ability (like environment or diet).

 (3) Our co-expression networks are not MTG- or brain-specific, but 
built from heterogeneous samples from bulk tissue sequencing. 
Although we cannot rule out genes with conserved regulation 
across all tissues except the brain, our current workflow excludes 
such genes because they have otherwise high co-expression 
conservation across species.
Although much of our analysis focused on cell types shared by 

all five primates, we appreciate the importance of species-specific 
cellular novelty in driving evolutionary change. Although we identi-
fied 29 cell types shared across a subset of primates (Supplementary  
Fig. 1a,c), we are currently underpowered to identify cell types unique 
to a single species. We hope that our datasets provide a valuable 
resource to uncover species-specific cell types when aligned against 
higher resolution spatio-transcriptomic atlases that may become 
available in the near future.

Overall, we provide a framework to identify genes with marked 
changes in both cell type-specific expression and gene co-expression 
neighbourhoods, which could underlie evolutionary innovations exclu-
sive to the human lineage. We make our comprehensive catalogues 
of single-cell gene expression and cross-metazoa co-expression con-
servation accessible through a web-based tool (https://gillislab.shin-
yapps.io/Primate_MTG_coexp/) for users to explore gene functional 
conservation at single-cell resolution and across large evolutionary 
distances, and examine the regulatory divergence of genes associated 
with human-specific traits and diseases. Although our results focused 

http://www.nature.com/natecolevol
https://gillislab.shinyapps.io/Primate_MTG_coexp/
https://gillislab.shinyapps.io/Primate_MTG_coexp/


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-023-02186-7

on genes with human-specific differential regulation, our datasets 
and framework can be extended to identify genes with differential 
regulation specific to other species or phylogenetic groups, removing 
a critical bottleneck in the use of single-cell data and offering exciting 
opportunities for novel evolutionary analyses of disparate systems.

Methods
snRNA-seq processing and clustering
Cell-type label transfer. Subclass annotations from the human pri-
mary motor cortex (M1) taxonomy23 were used to annotate cell sub-
classes in the primate MTG by performing label transfer with Seurat v.3 
(ref. 53). Datasets were preprocessed with the standard LogNormaliza-
tion method, followed by the selection of 3,000 highly variable genes 
(or their orthologues for non-human primates) with the ‘vst’ method, 
and label transfer based on the first 30 principal components. Each 
dataset was split into five neighbourhoods (CGE-derived and medial 
ganglionic eminence (MGE)-derived inhibitory neurons, intratelence-
phalic (IT) type and deep excitatory neurons, and non-neurons) using 
the CellSelector (lasso) tool from Seurat to isolate distinct islands of 
cell populations in the uniform manifold approximation and projection 
(UMAP) space based on their label transferred identities.

Filtering low-quality nuclei. Over 570,000 nuclei were collected 
from five primates. All nuclei preparations were stained for the 
pan-neuronal marker NeuN and FACS-purified to enrich for neurons 
over non-neuronal cells. Samples containing 90% NeuN+ (neurons) 
and 10% NeuN− (non-neuronal cells) nuclei were used for library prepa-
rations and sequencing. SSv4 nuclei were included in downstream 
analysis if they passed all quality control criteria:

•	 30% complementary DNA longer than 400 base pairs;
•	 500,000 reads aligned to exonic or intronic sequence;
•	 40% of total reads aligned;
•	 50% unique reads;
•	 0.7 TA nucleotide ratio.

Next, quality control was performed at the neighbourhood level. 
Neighbourhoods were split into more than 100 metacells using Lou-
vain clustering, and low-quality metacells with relatively low unique 
molecular identifiers (UMIs) or gene counts (glia and neurons with 
fewer than 500 and 1,000 genes detected, respectively), predicted 
doublets (nuclei with doublet scores above 0.3), and/or low subclass 
label prediction metrics within the neighbourhood (for example, 
excitatory labelled nuclei that clustered with majority inhibitory or 
non-neuronal nuclei) were removed from the dataset. Remaining 
high-quality nuclei were normalized with SCTransform v.1 (ref. 54) 
using default parameters.

snRNA-seq clustering. Neighbourhoods across individuals and 
modalities within a species were integrated by identifying mutual 
nearest-neighbour anchors and applying canonical correlation analysis 
as implemented in Seurat v.3. The SSv4 dataset (where available) was 
treated as an individual donor in the integration strategy. For example, 
deep excitatory neurons from human-Cv3 were split by individuals 
and integrated with the human-SSv4 deep excitatory neurons. The 
SelectIntegrationFeatures function was used to identify 3,000 genes 
for integration, and datasets were integrated across the first 30 princi-
pal components. Sex and mitochondrial genes from the gene exclusion 
list were removed from the list of 3,000 genes used for integration.  
The gene exclusion list used in this study was derived in Hodge et al.2, 
and can be accessed at https://github.com/AllenInstitute/Great_Ape_
MTG/blob/master/exclusiongenes_mito_sex_tissue.txt

The integrated space containing the remaining genes was then 
scaled and projected into 30 principal components, which were used 
for the clustering of each neighbourhood. Each neighbourhood was 

clustered using a previously described ‘shatter and merge’ approach23. 
Louvain clustering was performed using the FindClusters algorithm 
from Seurat with variable resolution parameters until more than 100 
clusters or ‘metacells’ were identified for each neighbourhood. Meta-
cells were merged with their nearest neighbour until each metacell 
contained more than 20 nuclei, and had a total of 8 genes (4 for glia) 
or more differentially expressed with every other metacell. Here, dif-
ferentially expressed genes are defined as being expressed in more 
than half of nuclei in both metacells, have a fold-change of two or 
more across the metacell pair and have a proportion expressed dif-
ferential of 0.3 or greater. The remaining clusters underwent further 
quality control to exclude low-quality and outlier populations. These 
exclusion criteria were based on irregular groupings of metadata 
features that resided within a cluster. Readers are encouraged to refer 
to Jorstad et al.26 for further details on RNA-seq processing, quality 
control and annotation.

Replicability of clusters
All analyses were performed in R v.4. MetaNeighbor v.1.12 (refs. 29,30) 
was used to provide a measure of neuronal and non-neuronal subclass 
and cluster replicability within and across species. We used OrthoDB 
v.10.1 (ref. 32) to shortlist 14,131 orthologues across five primates, 
and subset snRNA-seq datasets from each species to this list of com-
mon orthologues before further analysis. For each assessment, we 
identified highly variable genes using the get_variable_genes func-
tion from MetaNeighbor. To identify homologous cell types, we used 
the MetaNeighborUS function with the fast_version and one_vs_best 
parameters set to TRUE. The one_vs_best parameter identifies highly 
specific cross-dataset matches by reporting the performance of the 
closest neighbouring cell type over the second closest as a match for 
the training cell type, and the results are reported as the relative clas-
sification specificity (AUROC). This step identified highly replicable cell 
types within each species and across each species pair. All 24 subclasses 
are highly replicable within and across species (one_vs_best AUROC of 
0.96 within species and 0.93 across species in Fig. 2b).

Although cell-type clusters are highly replicable within each spe-
cies (one_vs_best AUROC of 0.93 for neurons and 0.87 for non-neurons), 
multiple transcriptionally similar clusters mapped to each other across 
each species pair (average cross-species one_vs_best AUROC of 0.76). 
To build a consensus cell-type taxonomy across species, we defined 
a cross-species cluster as a group of clusters that are either recipro-
cal best hits or clusters with AUROC >0.6 in the one_vs_best mode 
in at least one pair of species. This lower threshold (AUROC >0.6) 
reflects the high level of difficulty/specificity of testing only against 
the best-performing other cell type. To demonstrate the significance 
of this threshold empirically, we permuted the within-species cluster 
labels in chimp and mapped them to clusters in the human data by 
running MetaNeighborUS in the one_vs_best mode. We observed no 
hits between human and chimp at an AUROC threshold of 0.6, and only 
one or two hits at a lower threshold of 0.51, highlighting the difficulty 
in obtaining a uniquely good hit across species.

We identified 86 cross-species clusters, each containing clus-
ters from at least two primates. Individual clusters that could not be 
uniquely mapped to a single cross-species cluster were assigned to one 
of the 86 cross-species clusters based on their transcriptional similarity. 
For each such cluster, top ten of their closest neighbours were identi-
fied using MetaNeighborUS one_vs_all cluster replicability scores, and 
the cluster was assigned to the cross-species cluster in which a strict 
majority of its nearest neighbours belong. For clusters with multiple 
best hits, this was repeated using top 20 closest neighbours, still requir-
ing a strict majority to assign a cross-species type. A total of 594 clusters 
present in all five primates mapped to 86 cross-species clusters, with 
492 clusters present in 57 consensus cross-species clusters shared by 
all five primates. Five of the 57 consensus cell types are visualized in  
the third panel in Fig. 2c. Gene expression across single nuclei present 
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in 57 consensus clusters in the human MTG was visualized using UMAP 
plots coloured by log-transformed expression levels (Fig. 3c).

Calculating the expressolog score
We generated a pseudobulk dataset for each species that recorded the 
normalized average counts per cell type of 14,131 genes across the con-
sensus cell types. For each pair of species, we calculated the expression 
profile similarity for all pairs of genes by computing the Pearson corre-
lation of normalized expression levels across 57 homologous cell types. 
For each gene in one species, we calculated the rank-standardized 
expression profile similarity of its 1:1 orthologue (relative to 14,130 
genes) in the other species, repeated this calculation in the opposite 
direction, and report the average of the bidirectional scores as the 
‘expressolog score’ (Fig. 3b). The expressolog score is equivalent to the 
average AUROC, with a score of 1 indicating that orthologues can be 
identified by matching expression profiles across species, and a score 
of 0 suggesting that orthologues have diverged in expression across 
species. The AUROC for expression profile similarity of gene i in one 
species with gene j in another species was calculated as:

AUROC = (rij − 1)/(N − 1),

where N is the total number of genes, and rij is the rank of the Pearson 
correlation of gene i with gene j relative to other (N − 1) genes in the 
second species. In our expressolog analysis, N = 14,131.

Expressolog scores were also calculated across cell types within 
each class, subtype and meta-cluster (as defined in Fig. 3a) using the 
same formula, and capture the extent to which gene expression varia-
tion within progressively homogeneous cell types is shared across spe-
cies. For each cell-type group (excitatory neurons, medial ganglionic 
eminence (MGE)-derived inhibitory neurons or Pvalb meta-cluster), 
we obtained a 14,131 × 14,131 matrix of AUROCs corresponding to the 
expression profile similarity of all gene pairs across a pair of species, 
and report the AUROCs corresponding to 1:1 orthologues as expresso-
log scores. Average expressolog scores between human and non-human 
primates calculated within each cell-type group are reported in Sup-
plementary Table 3.

Isoform data generation
We used SSv4 snRNA-seq data from human, chimp and gorilla to 
assess the expression profile similarity of individual isoforms across 
great apes. Reads from cells belonging to the consensus clusters 
were mapped to the species’ genomes using the default parameters 
in STAR v.2.7.7a (ref. 55). Isoform and gene expression were quanti-
fied using RSEM v.1.3.3. For the analysis related to Fig. 3, we retained 
consensus clusters with reads mapped from ten or more cells, and 
further removed isoforms with total expression <5 transcripts per 
million. To assess whether an isoform could predict itself among 
other isoforms of a gene, we considered genes with at least two iso-
forms shared by all species. We computed the expressolog scores of 
all pairs of isoforms of a gene across a pair of species, and ranked the 
expressolog score of an isoform with itself relative to other isoforms 
(reported as an AUROC).

Building aggregate co-expression networks
All co-expression networks used in this study were generated by 
aggregating networks built from individual cell types or datasets. For 
each consensus cell type, expression data were filtered to the set of 
4,500 highly variable genes between human and non-human primates, 
and randomly split into samples of 20 nuclei each. The read counts 
were aggregated across 20 nuclei in each sample. The corresponding 
co-expression network was built by calculating the Spearman correla-
tion between all pairs of highly variable genes across these pseudobulk 
samples, and then ranking the correlation coefficients for all gene–gene 
pairs, with NAs (not available) assigned the median rank. An aggregate 

single-cell co-expression network for each primate was generated 
by averaging the rank-standardized networks from individual cell 
types. For example, the human single-cell co-expression network was 
built by averaging the 57 cell type-specific networks (human|Astro_1, 
human|Oligo_9, human|Lamp5_2, human|Sst_20, human|L4 IT_10, 
human|L5 ET_1, and so on).

Meta-analytic bulk co-expression networks for 21 metazoan spe-
cies and yeast derived by aggregating 54,668 individual RNA-seq data-
sets in a similar manner were downloaded from CoCoCoNet27. Four 
RNA-seq datasets each were used to build aggregate co-expression 
networks for gorilla and marmoset. Human bulk brain co-expression 
network was generated by aggregating 20 individual datasets curated 
by Gemma39.

Curated gene sets and orthology
To investigate the conservation and divergence of the co-expression 
of gene families between human and non-human primates, we car-
ried out MetaNeighbor analysis using gene groups curated by HGNC 
at the European Bioinformatics Institute (https://www.genenames.
org; downloaded October 2021) and by SynGO56 (downloaded Octo-
ber 2021). HGNC annotations were propagated via the provided 
group hierarchy to ensure the comprehensiveness of parent anno-
tations. Only groups containing five or more genes were included 
in the analysis.

The MetaMarkers package57 was used to find marker genes for cell 
types defined at different levels of organization in each species, with 
the search at each level stratified by the broader cell type to generate 
marker sets that can discriminate even relatively homogeneous cell 
clusters. Marker genes defining cell class, subclass and consensus 
clusters are listed in Supplementary Table 4. A list of transcription 
factors used in Fig. 3 was obtained from Ziffra et al.50.

To assess genic features associated with human-divergent genes, 
we downloaded the sequence similarity, gene length and GC content for 
all human genes from Ensembl v.107, gene ages from GenTree (http://
gentree.ioz.ac.cn/), list of significant eQTLs and associated genes 
from the Genotype-Tissue Expression Project V8 portal46, and gene 
constraint scores (loss-of-function observed/expected upper bound 
fraction) from The Genome Aggregation Database (gnomAD v.2.1.1). 
Average sequence evolution rates between human and other primates, 
and gene lists associated with various brain disorders were downloaded 
from the GenEvo website (https://genevo.pasteur.fr/). Gene set enrich-
ment analysis was performed using Fisher’s exact test and the resulting 
P values were adjusted by applying Benjamini–Hochberg correction. 
Cell type-specificity scores were calculated using pseudobulk human 
MTG data as published58.

OrthoDB v.10.1 (ref. 32) was used for orthology mapping. For 
each pair of species, we used the set of orthology groups of their last 
common ancestor to obtain a comprehensive list of many-to-many 
orthologues. We filtered this list to include only 1:1 orthologues, which 
yielded ~4,500 orthologues for phylogenetically distant species (like 
human and yeast) and ~13,500 orthologues for recently diverged 
species. All single-nucleus expression profile similarity analyses 
used a set of 14,131 orthologues across five primates, with aggregate 
co-expression networks built using a subset of the top 4,500 highly vari-
able genes. Species divergence times were sourced from TimeTree59.

Calculating cross-species co-expression conservation
For each pair of species to be compared, we filtered aggregate 
co-expression networks to include known 1:1 orthologous genes, 
then compare each gene’s top ten co-expression partners across spe-
cies to quantify gene functional similarity28. The scheme in Fig. 4a  
illustrates the calculation of co-expression conservation of an 
orthologous gene between human and rhesus macaque. Given a gene 
of interest in human, its top ten co-expression partners are identi-
fied and co-expression conservation is calculated by ranking the 
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co-expression of their macaque orthologues with the macaque ortho-
logue of the target gene. Calculation is repeated in the other direction  
(macaque to human), and the average of the bidirectional AUROC is 
taken as a measure of co-expression neighbourhood similarity of the 
target gene. We calculate the co-expression conservation not just for 
orthologues, but for all gene pairs, and rank the co-expression conser-
vation of each orthologue relative to all genes to determine the specific-
ity of co-expression neighbourhood conservation for each gene. We 
term this specificity score ‘co-expression conservation’ and note that 
it provides a standardized measure to compare the extent of functional 
conservation of orthologues over large evolutionary timescales, and 
infer examples of human-specific regulatory divergence.

Co-expression conservation for a set of 4,500 highly variable genes 
shared across human single-cell, bulk brain and bulk co-expression net-
works was used to assess the topological similarity across the different 
networks (Fig. 4c). We use a set of 1,681 human markers (comprising 
582 class, 929 subclass and 170 consensus cell-type markers listed in 
Supplementary Table 4) to assess the extent of functional conservation 
across metazoa. We compute the co-expression conservation of 1,681 
marker genes between human and 21 other metazoan species using 
aggregate co-expression networks derived from bulk transcriptomic 
data, and observe that marker genes have conserved co-expression 
neighbourhoods even across phylogenetically distant species  
(Fig. 4d). Classification of 14,131 genes based on their co-expression 
divergence in single-cell, bulk or both transcriptomic datasets is pro-
vided in Supplementary Table 6.

Protein sequence similarity for candidate genes showing 
regulatory divergence in humans
We obtained data for the protein sequence similarity of 1:1 ortho-
logues between humans and non-human primates from Ensembl 
v.107. NHEJ1 showed 96% and GTF2H2 showed 91% average similarity 
between human and non-human primates (great apes: chimp, gorilla; 
monkeys: crab-eating macaque, rhesus macaque). C2 had 97.87% simi-
larity between humans and crab-eating macaque. BBS5 showed 99.7% 
similarity between human and two great apes.

Impact of different subclass annotation protocols on gene 
expression profile similarity
To test the robustness of our results to different cell subclass annota-
tion strategies, we re-annotated the primate MTG datasets using the 
human MTG taxonomy described in Hodge et al.2. Briefly, we used an 
automated method (MetaMarkers57) to generate marker gene sets for 
the 22 cell subclasses observed in Hodge et al.2, which were then used 
to annotate cell types at the subclass level for all primate MTG datasets. 
Cell subclass annotations for cell-type clusters reported in Hodge et al.2, 
and their corresponding marker gene sets can be accessed at https://
labshare.cshl.edu/shares/gillislab/resource/Primate_MTG_coexp/
Hodge_MTG_subclass_anno_marker_list.xlsx.

We found that the subclass annotations generated using the MTG2 
and M1 (ref. 26) taxonomies were mostly concordant (overall clas-
sification accuracy = 0.9, and adjusted Rand index = 0.79). Next, we 
recalculated the expressolog scores for 14,131 genes at the subclass 
level (expression profile similarity of 1:1 orthologues across 22 cell types 
for each pair of primates), and compared them with the subclass-level 
expressolog scores calculated using subclass annotations provided 
by Jorstad et al.26. We observed that the average expressolog scores 
mirrored species divergence times, and were largely independent of 
subclass annotation strategy (Supplementary Fig. 7a,b). Comparison 
of the expressolog scores between human and non-human primates 
for the 139 human-specific ‘diverged’ genes (Fig. 5a) and the remaining 
‘conserved’ genes indicated that the genes diverged in humans had 
significantly lower expression profile similarity with their non-human 
primate orthologues irrespective of the subclass labelling method 
(Supplementary Fig. 7c).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw sequence data were produced as part of the BRAIN Initiative 
Cell Census Network (BICCN) and are available for download from 
the Neuroscience Multi-omics Archive (https://assets.nemoarchive.
org/dat-net1412), and the relevant file locations are listed in https://
github.com/hamsinisuresh/Primate-MTG-coexpression. Integrated 
snRNA-seq gene expression dataset and associated metadata for each 
primate species are available on the BICCN Human/NHP website. 
Data used in the analyses reported in this study can be accessed from 
https://labshare.cshl.edu/shares/gillislab/resource/Primate_MTG_
coexp/ and from the figshare repository60: https://doi.org/10.6084/
m9.figshare.22032104.

Code availability
Details on the processing and clustering of primate MTG snRNA-seq 
datasets are available at: https://github.com/AllenInstitute/Great_Ape_
MTG. Code to reproduce the cross-species expression profile similarity 
and co-expression conservation analysis can be accessed from https://
github.com/hamsinisuresh/Primate-MTG-coexpression.
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