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Intrinsic timescales in the visual cortex
change with selective attention and reflect
spatial connectivity

Roxana Zeraati 1,2, Yan-Liang Shi 3,4, Nicholas A. Steinmetz 5,
Marc A. Gieselmann6, Alexander Thiele6, Tirin Moore 7,
Anna Levina 2,8,9,10 & Tatiana A. Engel 3,4,10

Intrinsic timescales characterize dynamics of endogenous fluctuations in
neural activity. Variation of intrinsic timescales across the neocortex reflects
functional specialization of cortical areas, but less is known about how
intrinsic timescales change during cognitive tasks. We measured intrinsic
timescales of local spiking activity within columns of area V4 in male mon-
keys performing spatial attention tasks. The ongoing spiking activity
unfolded across at least two distinct timescales, fast and slow. The slow
timescale increased when monkeys attended to the receptive fields location
and correlated with reaction times. By evaluating predictions of several
network models, we found that spatiotemporal correlations in V4 activity
were best explained by the model in which multiple timescales arise from
recurrent interactions shaped by spatially arranged connectivity, and
attentional modulation of timescales results from an increase in the efficacy
of recurrent interactions. Our results suggest that multiple timescales may
arise from the spatial connectivity in the visual cortex and flexibly change
with the cognitive state due to dynamic effective interactions between
neurons.

The brain processes information and coordinates behavioral
sequences over a wide range of timescales1–3. While sensory inputs
can be processed as fast as tens of milliseconds4–7, cognitive pro-
cesses such as decision-making or working memory require inte-
grating information over slower timescales from hundreds of
milliseconds to minutes8–10. These differences are paralleled by the
timescales of intrinsic fluctuations in neural activity across the hier-
archy of cortical areas. The intrinsic timescales are defined by the
exponential decay rate of the autocorrelation of activity fluctuations.
The intrinsic timescales are faster in sensory areas, intermediate in

association cortex, and slower in prefrontal cortical areas11. The
hierarchy of intrinsic timescales is observed across different
recording modalities including spiking activity11,12, intracranial elec-
trocorticography (ECoG)13,14, and functional magnetic resonance
imaging (fMRI)15,16. The hierarchy of intrinsic timescales reflects
the specialization of cortical areas for behaviorally relevant compu-
tations, such as the processing of rapidly changing sensory inputs in
lower cortical areas and long-term integration of information (e.-
g., for evidence accumulation, planning, etc.) in higher cortical
areas17.
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In addition to ongoing fluctuations characterized by intrinsic
timescales, neural firing rates also change in response to sensory sti-
muli or behavioral task events. These stimulus or task-induced
dynamics are characterized by the timescales of trial-average neural
response18,19 or encoding various task events over multiple trials12,20.
The task-induced timescales also increase along the cortical
hierarchy12,14,20–22. However, task-induced and intrinsic timescales are
not correlated across individual neurons in any cortical area12, sug-
gesting they may arise from different mechanisms. Indeed, the time-
scales of trial-average response increase through the mouse visual
cortical hierarchy, whereas the intrinsic timescales do not change22.
Moreover, the task-induced and intrinsic timescales can depend dif-
ferently on task conditions. For example, for a fixed trial-average
response in a specific task condition, the intrinsic timescale of neural
dynamics varies substantially across trials and these changes are pre-
dictive of the reaction time in a decision-making task23. While task-
induced timescales relate directly to task execution, less is known
about how intrinsic timescales change during cognitive tasks. Intrinsic
timescales measured with ECoG exhibit a widespread increase across
multiple cortical association areas during working memory main-
tenance, consistent with the emergence of persistent activity in this
period13. However, whether intrinsic timescales can change with tem-
poral and spatial specificity in local neural populations processing
specific informationduring a task has not been tested. It is also unclear
whether intrinsic timescales can flexibly change in sensory cortical
areas and in cognitive processes other than memory maintenance.

The mechanism underlying the diversity of intrinsic timescales
across cortical areas can be related to differences in the connectivity.
The hierarchical organization of timescales correlates with the gra-
dients in the strength of neural connections in different cortical
areas24,25. These gradients exhibit an increase through the cortical
hierarchy in the spine density on dendritic trees of pyramidal
neurons26,27, gray matter myelination13,28, expression of N-methyl-D-
aspartate (NMDA) and gamma-aminobutyric acid (GABA) receptor
genes13,29, strength of structural connectivity measured using diffusion
MRI16, or strength of functional connectivity15,16,30–32.

The relation between the connectivity and timescales is further
supported by computational models. Differences in timescales across
cortical areas can arise in network models from differences in the
strength of recurrent excitatory connections27,33. These models mat-
ched the strength of excitatory connections to the spine density of
pyramidal neurons27 or to the strength of structural connectivity33 in
different cortical areas. Moreover, models demonstrate that the
topology of connections in addition to the connection strength can
affect the timescales of network dynamics. For example, slower time-
scales emerge in networks with clustered connections compared to
random networks34, or heterogeneity in the strength of inter-node
connections gives rise to diverse localized timescales in a one dimen-
sional network35. Thus, network models can relate dynamics to con-
nectivity and generate testable predictions to identify mechanisms
underlying the generation of intrinsic timescales in the brain.

We examined how the intrinsic timescales of spiking activity in
visual cortex were affected by the trial-to-trial alterations in the cog-
nitive state due to visual spatial attention. We analyzed spiking activity
recorded from local neural populations within cortical columns in
primate area V4 during two different spatial attention tasks and a
fixation task. In all tasks, the autocorrelation of intrinsic activity fluc-
tuations showed at least twodistinct timescales, one fast and one slow.
The slow timescale was longer on trials whenmonkeys attended to the
receptive fields of the recorded neurons and correlated with the
monkeys’ reaction times. We used recurrent network models to test
several alternative mechanisms for generating the multiplicity of
timescales and their flexible modulation. We established analytically
that spatially arranged connectivity generates multiple timescales in
local population activity and found support for this theoretical

prediction in our V4 recordings. In contrast, heterogeneous biophy-
sical properties of individual neurons alone cannot account for both
temporal and spatial structure of V4 correlations. Thus, the V4 time-
scales arise from spatiotemporal population dynamics shaped by the
local spatial connectivity structure. The model indicates that mod-
ulation of timescales during attention can be explained by a slight
increase in the efficacy of recurrent interactions. Our results suggest
thatmultiple intrinsic timescales in local population activity arise from
the spatial network structure of the neocortex and the slow timescales
can flexibly adapt to trial-to-trial changes in the cognitive state due to
dynamic effective interactions between neurons.

Results
Multiple timescales in fluctuations of local neural population
activity
We analyzed spiking activity of local neural populations within cortical
columns of visual area V4 from monkeys performing a fixation task
(FT) and two different spatial attention tasks (AT1, AT2)36,37 (Fig. 1a–c,
Supplementary Fig. 1). The activitywas recordedwith 16-channel linear
array microelectrodes from vertically aligned neurons across all cor-
tical layers such that the receptive fields (RFs) of neurons on all
channels largely overlapped. In FT, the monkey was rewarded for fix-
ating on a blank screen for 3 s on each trial (Fig. 1a). During AT1, the
monkeys were trained to detect changes in the orientation of a grating
stimulus in the presence of three distractor stimuli and to report the
change with a saccade to the opposite location (antisaccade, Fig. 1b).
On each trial, a cue indicated the stimulus that was most likely to
change, which was the target of covert attention, and the stimulus
opposite to the cue was the target of overt attention due to the anti-
saccade preparation. During AT2, the monkey was rewarded for
detecting a small luminance change in a grating stimulus in the pre-
sence of a distractor stimulus placed in the opposite hemifield. The
monkey reported the change by releasing a bar. An attentional cue on
each trial indicated the stimulus where the change should be detected,
which was the target of covert attention (Fig. 1c).

We analyzed the timescales of fluctuations in local spiking activity
by computing the autocorrelations (ACs) of spike counts in 2 ms bins.
Previous laminar recordings showed that the neural activity is syn-
chronized across cortical layers alternating spontaneously between
synchronous phases of high and low firing rates36,38. Therefore, we
pooled the spiking activity across all layers (Fig. 1d) to obtain more
accurate estimates of the spike-count autocorrelations. The shape of
spike-count autocorrelations in our data deviated from a single
exponential decay. In logarithmic-linear coordinates, the exponential
decay corresponds to a straight line with a constant slope. The spike-
count autocorrelations exhibited more than one linear slope, with a
steep initial slope followed by shallower slopes at longer lags (Fig. 1e).
Themultiple decay rates in the autocorrelations indicate the presence
of multiple timescales in the fluctuations of local population spiking
activity.

To verify the presence of multiple timescales and to accurately
estimate their values from autocorrelations, we used a method based
on adaptive Approximate Bayesian Computations (aABC, Methods)39.
Thismethod overcomes the statistical bias in autocorrelations of finite
data samples, which undermines the accuracy of conventional meth-
ods based on direct fitting of the autocorrelation with exponential
decay functions. The aABC method estimates the timescales by fitting
the spike-count autocorrelation with a generative model that can have
single or multiple timescales and incorporates spiking noise. The
method accounts for the finite data amount, non-Poisson statistics of
the spiking noise, and differences in the mean and variance of firing
rates across experimental conditions. The aABC method returns a
posterior distribution of timescales that quantifies the estimation
uncertainty and allows us to compare alternative hypotheses about the
number of timescales in the data.
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Wefitted each autocorrelationwith a one-timescale (M1) and a two-
timescale (M2) generative model and selected the optimal number of
timescales by approximating the Bayes factor obtained from the pos-
terior distributions of the fitted models (Fig. 2a, Supplementary Fig. 2,
Methods). The majority of autocorrelations were better described by
themodel with two distinct timescales (M2) thanwith the one-timescale
model (Fig. 2a, b). The presence of two distinct timescales (fast τ1 and
slow τ2) was consistent across both spontaneous (i.e. in the absence of
visual stimuli, τ1,MAP = 8.87 ±0.78ms, τ2,MAP = 85.82 ± 15.9ms, mean ±
s.e.m. across sessions, MAP: Maximum a posteriori estimate from the
multivariate posterior distribution) and stimulus-driven activity
(τ1,MAP = 5.05 ±0.51ms, τ2,MAP = 135.87 ± 9.35 ms, mean ± s.e.m.), and
across all monkeys, while the precise values of timescales were
heterogeneous reflecting subject- or session-specific characteristics
(Fig. 2c). Although it is possible that autocorrelations contained more
than two timescales, with our data amount, the three-timescale model
did not provide a better fit than the two-timescale model (Supple-
mentary Fig. 3). Thus, the two-timescale model provided a parsimo-
nious description of neural dynamics in our data.

Slow timescales are modulated during spatial attention
Next, we examined whether the intrinsic timescales of spiking activity
weremodulated during spatial attention. We compared the timescales
estimated from the stimulus-driven activity on trials when the mon-
keys attended toward the RFs location of the recorded neurons
(attend-in condition, covert or overt) versus the trials when they
attended outside the RFs location (attend-away condition). In this
analysis, we included recording sessions in which the autocorrelations

were better fitted with two timescales in both attend-away and attend-
in (covert or overt) conditions.We compared theMAP estimates of the
fast τ1 and slow τ2 timescales between attend-in and attend-away
conditions across recording sessions.

We found that the slow timescale was significantly longer
during both covert and overt attention relative to the attend-away
condition (covert: mean τ2,att−in = 140.69 ms, mean τ2,att−away = 115.07ms,
p= 3× 10−4, N=32; overt: mean τ2,att−in = 141.31ms, mean
τ2,att−away = 119.58ms, p= 7× 10−4, N=26; two-sided Wilcoxon signed-
rank test) (Fig. 3), while there was no significant change in the fast
timescale during attention (covert: mean τ1,att−in = 5.53ms, mean
τ1,att−away = 5.54ms, p=0.75, N=32; overt: mean τ1,att−in = 3.42ms, mean
τ1,att−away = 4.12ms, p=0.39, N=26; two-sided Wilcoxon signed-rank
test). The increase in the slow timescale with attention was evident on
individual recording sessions when comparing the marginal posterior
distributions of τ2 for attend-in versus attend-away conditions (Fig. 3a,
d). The significant increase of τ2 was observed in 24 out of 32 individual
sessions during covert attention, and 22 out of 26 individual sessions
during overt attention. Both fast and slow timescales varied across ses-
sions, but were not significantly different between covert and overt
attention (p>0.05 for both τ1 and τ2, two-sided Wilcoxon signed-rank
test, Supplementary Fig. 4). The increase in τ2 was not due to increase in
the firing rate with attention, since the aABC method accounts for the
differences in the firing rate across behavioral conditions (Methods), and
τ2 was not correlated with the mean firing rate of population activity
(Supplementary Fig. 5). The increase of slow timescales during attention
is consistent with the reduction in the power of low-frequency fluctua-
tions in local field potentials37,40–42 and spiking activity43 (Supplementary

V4 RFs

FP

A
T

1 
(m

on
ke

ys
 G

, B
)

F
T

 (
m

on
ke

y 
G

)

a b

Cue direction

Overt attention target

Covert attention target

Saccade direction
C

ha
nn

el
 n

um
be

r

Superficial

Deep
2 ms

1

16

d e

A
T

2 
( m

on
ke

y 
N

)

c
Unattended stimulus

0 40 80

Time lag, t (ms)

−2.0

−1.5

−1.0

lo
g 

(A
C

)

Covert attention target

Fig. 1 | Computing autocorrelations of spiking activity in V4 columns during
fixation and attention tasks. a In the fixation task (FT), the monkey was rewarded
for fixating a centralfixation point (FP) on a blank screen for 3 s on each trial.b In the
attention task 1 (AT1), monkeys were trained to detect an orientation change in one
of four peripheral grating stimuli, while an attention cue indicated which stimulus
was likely to change. Monkeys reported the change with a saccade to the stimulus
opposite to the change (black arrow). The cued stimulus was the target of covert
attention (yellow spotlight), while the stimulus opposite to the cue was the target of
overt attention. c In the attention task 2 (AT2), the monkey was rewarded for
detecting a small luminance change in one of two grating stimuli, directed by an
attentioncue. Themonkey respondedby releasing abar. Thebrown frameshows the
blank screen in the pre-stimulus period. In all tasks, epochs marked with brown

frames were used for analyses of spontaneous activity and epochs marked with
orange frames were used for the analyses of stimulus-driven activity. The cue was
either a short line (AT1) or twosmall dots (AT2) indicating thecovert attention target.
The dashed circle denotes the receptive field locations of recorded neurons (V4 RFs)
andwasnot visible to themonkeys (see Supplementary Fig. 1 fordetails).dMulti-unit
spiking activity (black vertical ticks) was simultaneously recorded across all cortical
layers with a 16-channel linear array microelectrode. The autocorrelation of spike
counts in 2ms bins was computed from the spikes pooled across all channels (green
ticks). e The autocorrelation (AC) computed from the pooled spikes on an example
recording session. Multiple slopes visible in the autocorrelation in the logarithmic-
linear coordinates indicate multiple timescales in neural dynamics. Source data for
panels d and e are provided as a Source Data file.
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Note 1, Supplementary Fig. 6, 7). The modulation of the slow timescale
was consistent across both attention tasks (AT1 and AT2) and each
monkey, and appeared in response to trial-to-trial changes in the cog-
nitive state of the animal directed by the attention cue. These results
suggest that different mechanisms control the fast and slow timescales
of ongoing spiking activity, and the mechanisms underlying the slow
timescale can flexibly adapt according to the animal’s behavioral state.

To test whether attentional modulation of timescales was rele-
vant for behavior, we analyzed the relationship between timescales
andmonkeys’ reaction times in the attention tasks. We quantified the
relationship between the average reaction times of monkeys’
responses in each session (see Supplementary Fig. 1 for details of
experiment) and the MAP estimated timescales of spiking activity

using linear mixed-effects models fitted separately in attend-in and
attend-away conditions (Fig. 4, Methods, Supplementary Table 1, 2).
The linear mixed-effects models had a separate intercept for each
monkey to account for individual differences between the monkeys
and attention tasks (AT1 and AT2). The reaction times were nega-
tively correlated with the slow timescales in attend-in condition
(combined covert and overt) (slope = −0.16 ± 0.066, mean ± 95%
confidence intervals (CIs); p = 9 × 10−6, F-test; N = 58, R2 = 0.62), but
not in attend-away condition (slope = 0.015 ± 0.12, p = 0.79, N = 32,
R2 = 0.69). Fast timescales were not correlated with the reaction
times (attend-in: slope = 0.0016 ± 0.86, p = 0.997, N = 58, R2 = 0.46;
attend-away: slope = 0.53 ± 0.94, p = 0.26, N = 32, R2 = 0.70). Thus, on
average monkeys responded to a stimulus change faster in sessions

Fig. 2 | Two timescales in ongoing spiking activity within V4 columns.
a Comparison between the two-timescale (M2) and one-timescale (M1) generative
models for three example recording sessions (rows). The models were fitted to
autocorrelations of V4 spiking activity using the adaptive Approximate Bayesian
Computations (aABC). The shape of the neural autocorrelation (AC) is reproduced
by the autocorrelation of synthetic data from the two-timescale model with the
maximum a posteriori (MAP) parameters, but not by the one-timescale model (left
panels). Autocorrelations are plotted from the first time-lag (t = 2ms). Marginal
posterior distribution of the timescale (τ) estimated by fitting M1 is in between the
posterior distributions of timescales (τ1, τ2) estimated by fittingM2 (middle panels).
Cumulative distribution of errorsCDFMi

ðεÞ between the autocorrelations of V4data
and synthetic data generated with parameters sampled from the M1 or M2 pos-
teriors (right panels). M2 is a better fit since it produces smaller errors (i.e. Bayes
factor =CDFM2

ðεÞ=CDFM1
ðεÞ>1, Methods). FT - fixation task, AT - attention task.b In

most recording sessions, the autocorrelations during spontaneous and stimulus-

driven activity were better describedwith two distinct timescales (M2) than a single
timescale (M1). For a few fits the model comparison was inconclusive as the
observed statistics were insufficient to distinguish between the models. The total
number of fitted autocorrelations for each monkey (G, N, B) was NG = 5,NN = 18 for
spontaneous, and NG = 57,NN = 24,NB = 39 for stimulus-driven activity. c MAP esti-
mates for the fast and slow timescales were heterogeneous across recording ses-
sions during spontaneous and stimulus-driven activity. Violin plots show the
distributions of timescales for the autocorrelations that were better fitted with two
timescales. The distributions were smoothed with Gaussian kernel densities. The
white dot indicates the median, the black box is the first to third quartiles. Inset
shows a zoomed range for the fast timescale. Number of autocorrelations better
fittedwithM2 out of the total fitted autocorrelations:N = 18/23 during spontaneous
activity, N = 92/120 during stimulus-driven activity. Source data are provided as a
Source Data file.
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with longer slow timescales of neuronswith the receptive fields in the
attended location. The spatial selectivity of this effect suggests that
the increase in the slow timescale may be related to behavioral
benefits of selective spatial attention.

Mechanisms for generating multiple timescales in local popu-
lation dynamics
What mechanisms can generate multiple timescales in the local
population activity? One possibility is that multiple timescales reflect
biophysical properties of individual neurons within a local population.
For example, two timescales can arise from mixing heterogeneous
timescales of different neurons44,45 or combining different biophysical
processes, such as a fast membrane time constant and a slow synaptic
time constant46. Alternatively, multiple timescales in local population
activity can arise from spatiotemporal population dynamics in net-
works with spatially arranged connectivity47.

Analyses of well-isolated single-unit activity (SUA) would be
ideal for testing whether multiple timescales in local V4 population
activity reflect the mixing of heterogeneous timescales of individual
neurons or dynamics shared by the population. However, due to low

firing rates, SUA did not yield sufficient data for conclusive model
comparison. We fitted autocorrelations of SUA during the fixation
task (which had the longest trial duration of 3 s and thus the largest
data amount per trial) and performed the model comparison to
determine the number of timescales. While some single units clearly
showed two distinct timescales, the model comparison was incon-
clusive for most units because autocorrelations were dominated by
noise due to low data amount (Supplementary Note 2, Supplemen-
tary Fig. 8). We, therefore, turned to computational modeling for
testing possible alternative mechanisms for generating multiple
timescales.

To determine which mechanism, local biophysical properties or
spatial network interactions, is consistent with neural dynamics in V4,
we developed three recurrent network models each with a different
mechanism for timescale generation (Fig. 5). We implemented all
mechanismswithin the samemodeling framework. Themodels consist
of binary units arranged on a two-dimensional lattice corresponding to
lateral dimensions in the cortex (Fig. 5a–c). Eachunit represents a small
population of neurons, such as a cortical minicolumn48,49, and is con-
nected to 8 other units in the network. The activity of unit i at time-step

Fig. 3 | Slow timescales increase during spatial attention. a Autocorrelations
(ACs) of neural data with two-timescale fits (left) and the corresponding posterior
distributions (right) during covert attention and attend-away condition for an
example recording session. The fitted lines are autocorrelations of synthetic data
from the two-timescale model with MAP parameters. The posterior distribution of
the slow timescale (τ2) has significantly larger values in attend-in (att-in) than in
attend-away (att-away) condition. Statistics: two-sided Wilcoxon rank-sum test,
pτ1

= 0:43, pτ2
<10�10. Number of samples in each posterior N = 100. b The increase

of the slow timescale (τ2, right) during attention was visible on most sessions
(points - MAP estimates for individual sessions, error bars - the first and third
quartiles of the marginal posterior distribution, dashed line - the unity line). If the
MAP estimate was smaller than the first or larger than the third quartile, the error
barwas discarded. Larger error bars indicate wider posteriors, i.e. larger estimation

uncertainty. Number of included sessions (in which autocorrelations were better
fittedwithM2) from the total fitted sessions for eachmonkey:NG = 13/19,NB = 13/13,
NN = 6/12. Color of the dots indicates different monkeys. c Across sessions, the fast
timescale (τ1, left) did not change, while the slow timescale (τ2, right) significantly
increased during covert attention (magenta) relative to the attend-away condition
(green). Bar plots show the mean ± s.e.m of MAP estimates across sessions. Statis-
tics: two-sided Wilcoxon signed-rank test, pτ1

= 0:75, pτ2
= 3 × 10�4. ns., **, *** indi-

cate p >0.05/4, p < 10−2, p < 10−3, respectively (Bonferroni corrected for 4
comparisons). Individual data points are shown inb.d–f Same asa–cbut during the
overt attention for a different example session. Number of included sessions from
the total fitted sessions for each monkey: NG = 14/19,NB = 12/12. Statistics:
d pτ1

= 0:07, pτ2
<10�10, (f) pτ1

= 0:39, pτ2
= 7 × 10�4. Source data are provided as a

Source Data file.
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t0 is described by a binary variable Siðt0Þ 2 f0,1g representing high (1)
and low (0) firing-rate states of a local population36. The activity Siðt0Þ
stochastically transitions between states driven by the self-excitation
(probability ps), excitation from the connected units (probability pr),
and the stochastic external excitation (probabilitypext≪ 1) delivered to
each unit (Methods). The self-excitation probability describes intrinsic
dynamics of a unit in the absence of network interactions, arising from
biophysical properties of neurons or reverberation within a local
population (via the vertical connectivity within a minicolumn). The
self-excitation generates a timescale τself, which is the autocorrelation
timescale of a two-state Markov process: τself = ð� lnðpsÞÞ�1 (Methods,
Supplementary Note 3). The recurrent excitation pr accounts for hor-
izontal interactions between units. The sum of all interaction prob-
abilities is the local branching parameter: BP = ps + 8pr, describing the
expected number of units activated by a single active unit i.

The models differ in the mechanism generating multiple time-
scales in the local population activity. In two models, connectivity is
random and multiple timescales arise locally from biophysical prop-
erties of individual units. In the third model, connectivity is spatially
organized and multiple timescales arise from recurrent interactions
between units47.

The first model assumes that two timescales in local population
activity reflect aggregated activity of different neuron types with dis-
tinct (fast and slow) biophysical timescales (e.g., membrane time
constants),whichwemodeled as two types of units (A andB) eachwith
a different self-excitation probability (ps,A, ps,B, Fig. 5a). We placed two
units, A andB, at each vertex of the lattice and summed their activity to
obtain a local population activity as in the columnar recordings.
Connections between units of any type are random. As expected, the
autocorrelation of local population activity exhibits two distinct
timescales corresponding to the self-excitation timescales of the two
unit types (Fig. 5d).

The second model assumes that two timescales arise from two
local biophysical processes, e.g., a fast membrane time constant and a
slow synaptic time constant (Fig. 5b)46. We modeled the membrane
time constant with the fast self-excitation timescale, and the synaptic
time constant as a low-pass filter of the input to each unit with a slow
time-constant τsynapse (Methods)46. The connectivity between units is
random. The autocorrelation of individual unit’s activity in this model
exhibit two timescales corresponding to the membrane (τself) and
synaptic (τsynapse) time constants (Fig. 5e).

Finally, in the third model, multiple timescales arise from recur-
rent dynamics shaped by the spatial network connectivity, akin to the
horizontal connectivity in primate visual cortex49. Each model unit is
connected to 8 nearby units (Fig. 5c). Although each unit has only a

single self-excitation timescale, the unit’s autocorrelation exhibit
multiple timescales with a fast decay at short time-lags and a slower
decay at longer time-lags (Fig. 5f). The fast initial decay corresponds to
the self-excitation timescale. The slow autocorrelation decay is gen-
erated by recurrent interactions among units in the network. In
simulations, the slow autocorrelation decay closely matches the
autocorrelation of the net recurrent input received by a unit from its
neighbors (excluding the self-excitation input).

To understand how recurrent interactions generate slow time-
scales, we analytically computed the autocorrelation timescales of
the unit’s activity in the network with spatial connectivity, using the
master equation for binary units with Glauber dynamics50 (Methods,
Supplementary Note 4, details in47). We found that the slow decay of
the autocorrelation contains amixture of interaction timescales τint,k.
Each τint,k arises from recurrent interactions on a different spatial
scale, characterized by the modes of correlated fluctuations with
different spatial frequencies k in the Fourier space (Methods). For
each spatial frequency k, the interaction timescale depends on both
the probability of horizontal interactions (pr) and the self-excitation
probability (ps) (Methods, Eq. (24)). Shorter interaction timescales
arise from higher spatial frequency modes (larger k) which corre-
spond to persistent activity in local neighborhoods, and longer
timescales are generated by more global interactions (smaller k)47.
The longest timescale in the network is characterized by the global
interaction timescale related to the zero spatial frequency mode
(Methods, Eq. (25)). We can approximate the slow decay of the
autocorrelation with a single effective interaction timescale (τint)
defined as a weighted average of all interaction timescales (Methods,
Eq. (27)). Therefore, the autocorrelation shape is well approximated
with two timescales: the fast self-excitation timescale and the slow
effective interaction timescale.

Generating multiple timescales in spatial networks does not
require strictly structured connectivity. Systematically changing the
connectivity from structured to random reveals that networks with an
intermediate level of local connectivity also exhibitmultiple timescales
in local dynamics (Fig. 6, Supplementary Note 5). However, by getting
closer to a random connectivity, most interaction timescales become
smaller and close to the self-excitation timescale, and only the global
timescale does not depend on the network structure. Hence networks
with different connectivity have the same global timescale (Fig. 6,
inset). In fully randomnetworks, the autocorrelation of a unit’s activity
effectively exhibits only two distinct timescales: the self-excitation
timescale and the global interaction timescale. However, the global
timescale has a very small relative contribution in local autocorrela-
tions (scaledwith the inversenumber of neurons in the network) and is

Fig. 4 | Slow timescales are correlated with monkeys’ reaction times. Average
reaction times of monkeys for each session were negatively correlated with the
MAP estimates of slow timescales (τ2) in attend-in condition (left, slope=
−0.16 ± 0.066, mean± 95% CIs, p = 9 × 10−6, one-sided F-test, N = 58, R2 = 0.62) but
not attend-away condition (right, slope= 0.015 ± 0.12, p =0.79, one-sided F-test,
N = 32, R2 = 0.69). Each point represents one recording session; symbols indicate

different monkeys. Error bars denote ± s.e.m. Gray lines show the estimated fixed-
effect parameters (slope and intercept) of thefittedmixed-effectsmodel (Methods,
Supplementary Table 1). Because reaction time was tested against 4 hypothesized
predictors (two timescales in two attention conditions), a Bonferroni-adjusted
significance level was calculated asp <0.05/4. Source data are provided as a Source
Data file.
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hard to observe empirically as it requires data with excessively long
trial duration.

While all three mechanisms account for multiple timescales in
V4 autocorrelations, they can be distinguished in cross-correlations
between local population activity at different spatial distances. In
models with random connectivity, cross-correlations do not depend
on distance between units on the lattice (Fig. 5g, h). In contrast, the
model with spatial connectivity predicts that both the strength and
timescales of cross-correlations depend on distance (Fig. 5i). Speci-
fically, the zero time-lag cross-correlations decrease with distance.
Moreover, cross-correlations contain multiple timescales equal to
the interaction timescales in autocorrelations (Methods), but no self-
excitation timescale since self-excitation is independent across units.
With increasing distance, the weights of timescales generated by
local interactions (high spatial frequency modes) decrease, and
timescales generated by more global interactions (low spatial

frequency modes) dominate cross-correlations. Thus, cross-
correlations become weaker and dominated by slower timescales
at longer distances (analytical derivations in Methods, details in
ref. 47). Approximating the shape of auto- and cross-correlations
with two effective timescales, the theory predicts that both time-
scales in cross-correlations are larger than in the autocorrelation and
increase with distance. Therefore, by measuring timescales of cross-
correlations at different distances, we can determine which
mechanism, spatial network interactions or local biophysical prop-
erties, is more consistent with neural dynamics in V4.

To test these model predictions in our V4 recordings, we com-
puted cross-correlations between population activity on different
channels during spontaneous activity (monkey G in FT, monkey N in
AT2), which had the longest trial durations for better detection of
slow timescales (Methods). Columnar recordings generally exhibit
slight horizontal displacements which manifest in a systematic shift

Fig. 5 | Mechanisms for generating multiple timescales in local population
activity. a–c Network models consist of units (circles) arranged on a two-
dimensional lattice (thin grey lines). Each target unit (large circle) receives inputs
from 8 other units in the network (thick grey lines). The connectivity is random
(a, b) or spatially arranged with each unit connected to its nearest neighbors (c). In
themodel with heterogeneous cell types (a), a local population at each lattice node
(dashed circle) consists of two cell types, A and B, with distinct timescales (self-
excitation probabilities ps,A = 0.88 and ps,B = 0.976). In the model with two local
biophysical processes (b), each local population has a fastmembrane time constant
(modeled as ps = 0.88) and a slow synaptic time constant (modeled as τsynapse = 41
ms). The spatial network model (c) assumes only a single self-excitation timescale
(ps = 0.88) for each unit. d–f All models reproduce two distinct timescales in the
autocorrelations of local population activity. In the model with two cell types (d),
the timescales correspond to the self-excitation timescales of two unit types (τself,A,
τself,B, pink lines). In themodel with synapticfiltering (e), the timescales correspond
to the self-excitation and synaptic timescales (τself, τsynapse, blue lines). In the spatial
network model (f), the unit’s autocorrelation exhibits multiple timescales and is
well captured by the analytical derivation (purple). The fast autocorrelation decay
corresponds to the self-excitation timescale (τself, blue). The slower decay is

captured by the autocorrelation of recurrent inputs received by each unit in
simulations (gray) and an analytical effective interaction timescale (τint, dashed
line). g–i In the models with random connectivity, cross-correlations between the
activity of local populations donot dependon thedistance (d) betweenunits on the
lattice (two cell types in g; synaptic filtering inh). In contrast, in the spatial network
model, cross-correlations depend on distance d and exhibit multiple timescales (i).
The strength of cross-correlations decreases with distance, and slower interaction
timescales dominate cross-correlations at longer distances. For all models: BP=
0.99, pext = 10−4. j Auto- and cross-correlations of V4 spiking activity recorded on
different channels overlaid with correlations of synthetic data with MAP para-
meters (data from monkey G, FT; data from monkey N in Supplementary Fig. 9).
The strength of cross-correlations is smaller than the auto-correlation and
decreases with RF-center distance (dRF,L > dRF,S). k Posterior distributions of time-
scales from fitting correlations in j. Cross-correlations had slower timescales than
the autocorrelation, and slower timescales dominated cross-correlations at larger
RF-center distances. Statistics: two-sided Wilcoxon rank-sum test, *** indicate
p < 10−10. Number of samples in each posterior N = 100. Correlations are plotted
from the first time-lag (t = 2 ms). Source data are provided as a Source Data file.
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of receptive fields (RFs) across channels51. We used distances
between the RF centers (RF-center distance) as a proxy for horizontal
cortical distances51. For each monkey, we divided the cross-
correlations into two groups with larger (dRF,L) and smaller (dRF,S)
RF-center distances than the median distance (monkey G:
0 < dRF,S < 2.08, 2.08 < dRF,L < 5, monkey N: 0 < dRF,S < 0.77,
0.77 < dRF,L < 2.25, all distances are in degrees of visual angle, dva)
and averaged the cross-correlations within each group. For com-
parison, we also computed the average auto-correlation of popula-
tion activity on individual channels (i.e. without pooling spikes across
channels). The differences between auto- and cross-correlations of
V4 data appeared smaller than in the model since horizontal dis-
placements between channels were relatively small, sampling mainly
within the same or nearby columns51.

The cross-correlations of V4 activity exhibited distinct fast and
slow decay rates as predicted by the spatial network model (Fig. 5j,
Supplementary Fig. 9, left). In agreement with the spatial network
model, zero time-lag cross-correlations decreased with increasing RF-
center distance (monkey G: mean for dRF,S = 0.047, dRF,L = 0.040,
p = 4 × 10−4, N = 152; monkey N: mean for dRF,S = 0.022, dRF,L = 0.013,
p =0.001, N = 128, two-sided Wilcoxon rank-sum test), consistent with
the reduction of pairwise noise correlations with lateral distance in
V451,52. The shapes of V4 auto- and cross-correlations were well
approximated by fitted two-timescale generative models (Fig. 5j,
Supplementary Fig. 9, left), and the estimated posterior distributions
allowed us to compare auto- and cross-correlation timescales at dif-
ferent distances (Fig. 5k, Supplementary Fig. 9, right). Both fast and
slow timescales were smaller in autocorrelations than in cross-
correlations (Fast timescale: monkey G, mean τ1,AC = 10.11ms,
τ1,CC,S = 12.24ms, τ1,CC,L = 14.19ms; monkey N, mean τ1,AC = 4.93ms,
τ1,CC,S = 12.18ms, τ1,CC,L = 12.34ms; Slow timescale: monkey G, mean
τ2,AC = 75.46ms, τ2,CC,S = 83.94ms, τ2,CC,L = 101.94ms;monkey N, mean
τ2,AC = 26.53ms, τ2,CC,S = 358.07ms, τ1,CC,L = 552.70ms; number of
samples in each posterior N = 100, all p-values < 10−10, two-sided Wil-
coxon rank-sum test). Both fast and slow timescales of cross-
correlations increased with the RF-center distance in both monkeys,
but the increase in the fast timescale did not reach statistical sig-
nificance in monkey N (τ2: p < 10−10, τ1: pG < 10−10, pN =0.36, two-sided
Wilcoxon rank-sum test), possibly due to narrower range of RF-center
distances in monkey N compared to monkey G (median dRF,N = 0.77,

dRF,G = 2.08 dva). Thus, predictions of the spatial network model, but
not the models with random connectivity, were borne out by the data.

These results suggest that multiple timescales in local population
activity in V4 arise from the recurrent dynamics shaped by the spatial
connectivity of the primate visual cortex and not from local biophy-
sical processes alone. Local biophysical mechanisms can also con-
tribute to generating multiple neural timescales. For example, spatial
connectivity combined with synaptic filtering can give rise to multiple
autocorrelation timescales (Supplementary Fig. 10). The dependence
of cross-correlation timescales on distance indicates that dominant
timescales in the local population activity reflect the spatial network
structure.

Changes in the efficacy of network interactions modulate local
timescales
We used the spatial network model to investigate which mechanisms
can underlie the modulation of the slow timescales during attention.
Wematched the timescales between themodel with local connectivity
(r = 1) and experimental data to determine which changes in themodel
parameters can explain the attentionalmodulation of timescales in V4.
We matched the self-excitation and effective interaction timescales of
amodel unit to, respectively, the fast and slow timescales of V4 activity
(mean timescale ± s.e.m., Methods) for both the attend-away and
attend-in (averaged over covert and overt) conditions (Fig. 7).We used
a combination of analytical approximations and model simulations to
find parameters that produce timescales similar to the V4 data
(Methods).

We found that to reproduce the timescales in V4, themodel needs
to operate close to the critical point BP = 1 (Fig. 7b). At the critical
point, each unit activates one other unit on average resulting in self-
sustained activity53. Close to this regime, the timescales are flexible,
such that small changes in the network excitability give rise to sig-
nificant changes in timescales. To increase the slow timescale during
attention, the total excitability of the network interactions should
increase, shifting the networkdynamics closer to the critical point. The
overall increase in the interaction strength can be achieved by
increasing the strength of either the self-excitation (ps) or the recur-
rent interactions (pr). Increasingpr while keepingps constant allows for
substantial changes in the slow timescale and a nearly unchanged fast
timescale consistent with the V4 data. The increase of ps in the model

Fig. 6 | Dependence of local but not global timescales on the spatial network
structure. a Schematic of local (r = 1) and dispersed (r > 1) spatial connectivity in
the network model. Each unit (blue) is connected to 8 other units (pink) selected
randomly within the connectivity radius r (brown line). b Shapes of the auto-
correlations of individual units (AC) reflect the underlying local connectivity

structure. Interaction timescales disappear and the self-excitation timescale (τself)
dominates local autocorrelations when the connectivity radius increases while the
connection strengths are kept constant (ps = 0.88, 8pr = 0.11, pext = 10−4). The
autocorrelation of the global network activity (ACglobal, inset) does not depend on
the connectivity structure. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-37613-7

Nature Communications |         (2023) 14:1858 8



produces a slight increase in the fast timescale (τ1) (~ 0.4ms on aver-
age), but such small changes in τ1 would be undetectable with our
available data amount (the uncertainty of τ1 MAP estimate is ± 0.9 ms
on average, Fig. 3b, e). The increase in ps can also be counterbalanced
by a reduction in pr to produce the observed changes of timescales.

Several mechanisms can account for changes in the strength of
recurrent interactions during attention. For example, the increase in ps
is consistent with the observation that interactions between cortical
layers in V4 increase during attention42, when ps is interpreted as the
strength of vertical recurrent interactions within cortical mini-
columns. A reduction in pr can be mediated by neuromodulatory
effects that reduce the efficacy of lateral connections in the cortex
during attention54. In addition, our analytical derivations show that in
the model with non-linear recurrent interactions, the effective
strengths of recurrent interactions can also change by external input
(Methods, details in ref. 47). The input alters the operating regime of
network dynamics changing the effective strength of recurrent inter-
actions. Thus, with non-linear interactions, timescales can be modu-
lated by the input to the network, such as top-down inputs fromhigher
cortical areas during attention51,55. Altogether, ourmodel suggests that
attentional modulation of timescales can arise from changes in the
efficacy of recurrent interactions in visual cortex that can bemediated
by neuromodulation or top-down attentional inputs.

Discussion
We found that ongoing spiking activity of local neural populations
within columns of the area V4 unfolded across fast and slow time-
scales, both in the presence and absence of visual stimuli. The slow
timescale increased when monkeys attended to the receptive fields

location, showing that local intrinsic timescales can change flexibly
from trial to trial according to selective attention. Furthermore, the
slow timescales of neurons with RFs in the attended location corre-
lated with the monkeys’ reaction times suggesting that the increase in
the slow timescale may contribute to behavioral benefits of selective
spatial attention. To understand the mechanisms underlying the
multiplicity and flexible modulation of timescales, we developed net-
work models linking intrinsic timescales to biophysical properties of
individual neurons or the spatial connectivity structure of the visual
cortex. Only the spatial network model correctly predicted the
distance-dependence of spatiotemporal correlations in V4, indicating
that multiple timescales in V4 dynamics arise from the spatial con-
nectivity of primate visual cortex. The model suggests that slow
timescales increase with the effective strength of recurrent
interactions.

Multiple intrinsic timescales in neural activity
Previous studies characterized the autocorrelation of ongoing neural
activity with a single intrinsic timescale11,13,15,16. The intrinsic timescale
was usually measured for neural populations either by averaging
autocorrelations of single neurons in one area11 or using coarse-
grained measurements such as ECoG13 or fMRI15,16. Thus, ongoing
dynamics in each area were described with a single intrinsic timescale
that varied across areas.We extended this view by showing that, within
one area, local population activity exhibits multiple intrinsic time-
scales. These timescales reflect ongoing dynamics on single trials and
are not driven by task events. Our results suggest that the multiplicity
of timescales is an intrinsic property of neural activity arising from
inherent cellular and network properties of the cortex.

Fig. 7 | Modulation of the slow timescale during attention is mediated by an
increase in the efficacy of network interactions. a Effect of connectivity para-
meters on local timescales in themodel. The fast timescale (τ1, right)mainly depends
on the self-excitation probability (ps), whereas the slow timescale (τ2, left) depends
onboth the self-excitation (ps) and recurrent horizontal interactions (pr). Thedashed
rectangles indicate the range of parameters reproducing V4 timescales (mean±
s.e.m. of MAP estimates, Methods). b The slow timescale increases with the network
excitability (ps + 8pr, left panel). Green and magenta dots indicate the parameters
reproducing attend-away (att-away) and attend-in (att-in) timescales, respectively.

Filled dots show examples of experimentally observed 20% increase in τ2 for three
possible scenarios based on different changes in ps or pr (right panels). Larger
changes of parameters in scenarios (2) and (3) are due to coarser grid of ps used to fit
the timescales. A similar change of τ2 can also be achievedwith smaller changes in ps
and pr (e.g., for all 0.74 < ps < 0.745 in scenario 2). c Example autocorrelations (ACs)
from the model simulations with the attend-in and attend-away parameters for the
scenario (2) in b. We fitted unbiased autocorrelations from the model simulations
with double exponential functions (green and pink lines) to estimate the two time-
scales (Methods). Source data are provided as a Source Data file.
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We show that multiple timescales in local dynamics can emerge
from the spatial connectivity structure in a recurrent network model.
The presence of two dominant timescales (τself, τint) in local dynamics
depends on the combination of the structured connectivity and strong,
mean-driven interactions between units. Networks with random con-
nectivity (Fig. 6, b) or weak, diffusion-type interactions51 exhibit only
one dominant timescale in local activity (Supplementary Note 6).
Moreover, local biophysical properties alone cannot explain the
dependence of spatiotemporal neural correlations on lateral distance in
the cortex, highlighting the importance of spatial network interactions
for generating multiple timescales in local population activity.

In our network model with local spatial connectivity, recurrent
interactions across different spatial scales induce multiple slow time-
scales. To generate multiple slow timescales, our network operates
close to a critical point. Spiking networks with spatial connectivity can
generate fast correlated fluctuations that emerge from instability at
particular spatial frequency modes56. Slow fluctuations of firing rates
can also arise in networks with clustered random connectivity, but
interactions between clusters induce only a single slow timescale34. We
show that more local spatial connectivity (smaller r) leads to slower
dynamics and modifies the weights and composition of timescales in
the local activity. The timescale of the global activity, on the other hand,
is the same across networks with distinct local timescales and different
connectivity structures. These results show that local temporal and
spatial correlations of neural dynamics are closely tied together.

In ourmodel, integrating activity over larger spatial scales leads to
disappearance of faster interaction timescales (higher spatial fre-
quencies) leaving only slower interaction timescales (lower spatial
frequencies) in the coarse-grained activity. At the extreme, the global
network activity exhibits only the slowest interaction timescale (the
global timescale). This mechanism may explain the prominence of
slow dynamics in meso- and macroscale measures of neural activity
such as LFP or fMRI57, while faster dynamics dominate in local mea-
sures such as spiking activity. The model predicts that the slowest
interaction timescales have very small weights in the autocorrelation
of local neural activity and thus can be detected in local activity only
with excessively long recordings. Indeed, infraslow timescales (on the
order of tens of seconds and minutes) are evident in the cortical
spiking activity recorded over hours58.

Functional relevance of neural activity timescales
Intrinsic timescales are thought to define the predominant role of
neurons in the cognitive processes17. For example, in the orbitofrontal
cortex, neurons with long intrinsic timescales are more involved in
decision-making and the maintenance of value information44. In the
prefrontal cortex (PFC), neurons with short intrinsic timescales are
primarily involved in the early phases of working memory encoding31,
while neuronswith long timescales play a significant role in coding and
maintaining information during the delay period31,45. Our finding that
intrinsic timescales can flexibly change from trial to trial (and across
epochs within a trail13) suggests a possibility that task-induced time-
scales may correspond with intrinsic timescales only during specific
task phases. These results may explain why the task-induced time-
scales of single neurons do not correlate with intrinsic timescales
measured over the entire task duration12.

We found that timescales of local neural activity changed from trial
to trial depending on the attended location. A previous ECoG study
found that the intrinsic timescale of neural activity in cortical associa-
tion areas increased after engagement in a workingmemory task13. Our
findings go beyond this earlier work by showing that themodulation of
timescales can be functionally specific as it selectively affects only
neurons representing the attended locationwithin the retinotopicmap.
While changes in timescale due to task engagement could be mediated
by slow global processes such as arousal, the retinotopically precise
modulation of timescales requires local changes targeted to task-

relevant neurons. Our results further show that the modulation of
timescales also occurs in sensory cortical areas and cognitive processes
other than memory maintenance13 which explicitly requires temporal
integration of information. The correlation of slow timescales with
reaction times during attention may be functionally relevant, poten-
tially allowing neurons to integrate information over longer durations.

Longer timescales during attention in the model are associated
with shifting the network dynamics closer to a critical point. Shifting
closer to criticality was also suggested as amechanism for the increase
in gamma-band synchrony and stimulus discriminability during
attention59. Furthermore, strong recurrent dynamics close to the cri-
tical point can flexibly control the dimensionality of neural activity60.
Hence, operating closer to the critical point during attention might
help to optimize neural responses to environmental cues and improve
information processing61.

Mechanisms for attentional modulation of timescales
Changes in the slow timescale of neural activity due to attention
occurred from one trial to another. Such swift changes cannot be due
to significant changes in the underlying network structure and require
a fast mechanism. Our model suggests that the modulation of slow
timescales during attention can be explained with a slight increase in
the network excitability mediated by an increase in the efficacy of
horizontal recurrent interactions, or by an increase in the efficacy of
vertical interactions accompanied by a decrease in the strength of
horizontal interactions.

Several physiological processes may underlie these network
mechanisms in the neocortex. Top-down inputs during attention can
enhance the local excitability in cortical networks55. Our analytical
derivations show that inputs can increase the effective strength of
recurrent interactions between neurons in networks with non-linear
interactions, similar to previous models18,62. Similar modulation of
timescales during covert and overt attention suggests that top-down
attentional inputs arrive frombrain areas that represent both attention-
related and saccade-related information. Frontal eye field (FEF) can be a
possible source for such modulations37,63,64. Furthermore, feedback
connections from higher visual areas like PFC or the temporal-occipital
area (TEO) to lower visual areas have broader terminal arborizations
than the size of the receptive fields in lower areas65,66. These feedback
inputs can coordinate activity across minicolumns in V4. Moreover,
vertical interactions in V4 measured with local field potentials (LFPs)
increase during attention42, while neuromodulatory mechanisms can
reduce horizontal interactions. The level of Acetylcholine (ACh) can
modify the efficacy of synaptic interactions during attention in a
selective manner54. Increase in ACh strengthens the thalamocortical
synaptic efficacy by affecting nicotinic receptors and reduces the effi-
cacy of horizontal recurrent interactions by affecting muscarinic
receptors. Decrease in horizontal interactions is also consistentwith the
proposed reduction of spatial correlations length during attention51.
These observations suggest that an increase in vertical interactions and
a decrease in horizontal interactions is a likely mechanism for mod-
ulation of the slow timescale during attention.

To identify biophysical mechanisms of timescales modulation,
experiments with larger number of longer trials are required to pro-
vide tighter bounds for estimated timescales. Additionally, detailed
biophysical models can help distinguish different mechanisms, since
biophysical and cell-type specific properties of neurons might also be
involved in defining neural timescales67,68. In particular, diverse time-
scales observed across single neurons within one area17,31,44,45,69 require
models considering a heterogeneous parameter space and can have
computational implications for the brain70. Here, we used the RF-
center distances as a proxy for spatial distances in the cortex. Experi-
mentswith spatially organized recording siteswould allow to study the
relation between temporal and spatial correlations more directly.
Furthermore, developing recurrent network models that perform the
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selective attention task can help to find direct links between the
modulation of dynamics and task performance. Finally, perturbation
experiments that modulate selectively top-down inputs or neuromo-
dulatory levels can provide the most direct test of the underlying
mechanisms.

Our findings reveal that targeted neural populations can integrate
information over variable timescales following changes in the cogni-
tive state. Ourmodel suggests that local interactions between neurons
via the spatial connectivity of primate visual cortex can underlie the
multiplicity and flexible modulation of intrinsic timescales. Our
experimental observations combined with the computational model
provide a basis for studying the link between the network structure,
functional brain dynamics, and flexible behavior.

Methods
Behavioral tasks and electrophysiology recordings
We used previously published datasets36,37,71–73. Experimental proce-
dures for the fixation task and attention task 1 were in accordancewith
NIH Guide for the Care and Use of Laboratory Animals, the Society for
Neuroscience Guidelines and Policies, and Stanford University Animal
Care and Use Committee. Experimental procedures for the attention
task 2 were in accordance with the European Communities Council
Directive RL 2010/63/EC, and Use of Animals for Experimental Proce-
dures, and the UK Animals Scientific Procedures Act. Three male
monkeys (Macaca mulatta, between 6 to 9 years old) were used in the
experiments. Monkeys were motivated by scheduled fluid intake dur-
ing experimental sessions and juice reward.

On each trial of the fixation task (FT, monkey G), the monkey was
rewarded for fixating a central dot on a blank screen for 3 s. In atten-
tion task 1 (AT1, monkeys G, B), the monkey detected orientation
changes in one of the four peripheral grating stimuli whilemaintaining
central fixation. Each trial started by fixating a central fixation dot on
the screen and after several hundredmilliseconds (170ms formonkey
B and 333ms for monkey G), four peripheral stimuli appeared. Fol-
lowing a 200 − 500ms period, a central attention cue indicated the
stimulus that was likely to change with ~ 90% validity. Cue was a short
line from fixation dot pointing toward one of the four stimuli, ran-
domly chosen on each trial with equal probability. After a variable
interval (600 − 2200ms), all four stimuli disappeared for a brief
moment and reappeared. Monkeys were rewarded for correctly
reporting the change in orientation of one of the stimuli (50% of trails)
with an antisaccade to the location opposite to the change, or main-
taining fixation if none of the orientations changed. Due to the
anticipation of antisaccade response, the cued stimulus was the target
of covert attention, while the stimulus in location opposite to the cue
was the target of overt attention. In attend-in conditions, the cue
pointed either to the stimulus in the RFs of the recorded neurons
(covert attention) or to the stimulus opposite to the RFs (overt
attention). The remaining two cue directions were attend-way
conditions.

In attention task 2 (AT2, Newcastle cohort monkey, N), the mon-
key detected a small luminance change within the white phase of a
squarewave static grating. Themonkey initiated a trial byholding abar
and visually fixating a fixation point. The color of the fixation point
indicated the level of spatial certainty (red: narrow focus, blue: wide
focus). After 500ms a cue appeared indicating the location and focus
of the visual field to attend to. The cue was switched off after 250ms.
After another second two gratings appeared, one in the center of the
RFs and one diametrically opposite with respect to the fixation point.
The grating at the position indicated by the cue was the test stimulus.
The other grating served as the distractor. After at least 500ms a small
luminance change (dimming) occurred either in the center of the
grating (narrow focus)or in oneof 12 peripheralpositions (wide focus).
If the dimming occurred in the distractor grating first, themonkey had
to ignore it. The monkey was rewarded for a bar release within 750ms

of the dimming in the test grating. The faster the monkey reacted, the
larger reward it received. Two grating sizes (small and large) were used
in this experiment. We analyzed trials with the small grating to avoid
surround-suppression effects created by the large grating sizes
extending beyond the neurons’ summation area74.

Recordings were performed in the visual area V4 with linear array
microelectrodes inserted perpendicularly to the cortical layers. Data
were amplified and recorded using the Omniplex system (Plexon) in
AT1 and FT and with the Digital Lynx recording system (Neuralynx) in
AT2. Arrays were placed such that receptive fields of recorded neurons
largely overlapped. Each array had 16 channels with 150μm center-to-
center spacing. In AT1 and FT, all 16 channels were visually responsive.
In AT2, the number of visually-responsive channels per recording
ranged between 8 and 12 with the median at 9.

Computing autocorrelations of neural activity
We computed autocorrelations frommulti-unit (MUA) spiking activity
recorded in the presence (stimulus-driven) and absence (spontaneous)
of visual stimuli (brownandyellow frames inSupplementaryFig. 1). For
spontaneous activity, we analyzed spikes during the 3s fixation epoch
in FT, and during the 800ms epoch from 200ms after the cue offset
until the stimulus onset in AT2. For stimulus-driven activity, we ana-
lyzed spikes in the epoch from 400ms after the cue onset until the
stimulus offset in AT1, and from 200ms after the stimulus onset until
the dimming in AT2. For the stimulus-driven activity, trials in both
attention tasks had variable durations (500 − 2200ms). Thus, we
computed autocorrelations in non-overlappingwindowsof 700ms for
AT1 and 500ms for AT2. On long trials, we used as many windows as
would fit within the trial duration, and we discarded trials that were
shorter than the window size. The duration of windows were selected
such that we had at least 50 windows for each condition in each ses-
sion. 3 out of 25 recording sessions in monkey G (AT1) were excluded
due to short trial durations. For spontaneous activity, the windows
were 3 s in FT and 800ms in AT2.

We computed the average spike-count autocorrelation for each
recording session. On each trial we pooled the spikes from all visually-
responsive channels andcounted thepooled spikes in2msbins. For each
behavioral condition (stimulus orientation, attention condition), we
averaged spike-counts at each time-bin across trials, and subtracted the
trial-average from the spike-counts at each bin11 to remove correlations
due to changes infiring rate locked to the task events.We segmented the
mean-subtracted spike-counts Aðt0iÞ into windows of the same length N,
where t0i (i= 1…N) indexes bins within a window. We then computed the
autocorrelation in each window as a function of time-lag tj39:

ACðtjÞ=
1

σ̂2ðN � jÞ
XN�j

i= 1

Aðt0iÞ � μ̂1ðjÞ
� �

Aðt0i + jÞ � μ̂2ðjÞ
� �

: ð1Þ

Here σ̂2 = 1
N�1

PN
i = 1ðAðt0iÞ2 � 1

N2 ð
PN

i = 1Aðt0iÞÞ
2Þ is the sample variance, and

μ̂1ðjÞ= 1
N�j

PN�j
i = 1 Aðt0iÞ and μ̂2ðjÞ= 1

N�j

PN
i = j + 1 Aðt0iÞ are two different sam-

ple means. In Eq. (1) for autocorrelation, we subtracted window-specific
mean to remove correlations due to slow changes in firing rate across
trials, such as slow fluctuations related to changes in the arousal state.
Thus, the range of timescales was limited to the trial duration. These
timescales reflect the intrinsicneuraldynamicswithin single trials. Finally,
we averaged the autocorrelations over windows of the same behavioral
condition separately for each recording session. The exact method of
computing autocorrelations does not affect the estimated timescales,
since we use the same method for computing autocorrelations of
synthetic data when fitting generative models with the aABC method39.

In AT1, we averaged autocorrelations over trials with different
stimulus orientation for each attention condition, since all attention
conditions contained about the same number of trials with each
orientation. For stimulus-driven activity in AT2, we first estimated
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timescales separately for focus wide and narrow conditions and found
no significant differences (two-sided Wilcoxon signed rank test
betweenMAP estimates,p > 0.05). Thus, we averaged autocorrelations
of the focus narrow and wide conditions and refitted the average
autocorrelations. The sameprocedurewas applied to the spontaneous
activity in AT2, and since there was no significant difference in time-
scales between different focus or attention conditions (two-sided
Wilcoxon signed rank test between MAP estimates for the two-by-two
conditions, p > 0.05), we averaged the autocorrelations over all con-
ditions and refitted the average autocorrelation.

For estimating the timescales, we excluded sessions with auto-
correlations dominatedby noise or strongoscillations that could not be
well described with a mixture of exponential decay functions. We
excluded a session if the autocorrelation fell below 0.01 (logðACÞ fell
below − 2) in lags smaller or equal to 20ms (Supplementary Fig. 11).
Based on this criterion, we excluded 3 out of 22 sessions for monkey G
in AT1, 8 out of 21 sessions during covert attention and 9 out of 21
during overt attention for monkey B in AT1, 2 out 20 sessions for
spontaneous activity and 8 out 20 sessions for stimulus-driven activity
forMonkeyN inAT2. Thedifference in thenumber of excluded sessions
for Monkey N during spontaneous and stimulus-driven activity is
explained by the larger amount of data available for computing auto-
correlations during spontaneous activity due to averaging over atten-
tion conditions and longer window durations (800ms vs. 500ms).

For visualizationof autocorrelations,weomitted the zero time-lag
(t =0ms) (examples with the zero time-lag are shown in Supplemen-
tary Fig. 11). The autocorrelation drop between the zero and first time-
lag (t = 2ms) reflects the difference between the total variance of spike
counts and the variance of instantaneous rate according to the law of
total variance for a doubly stochastic process39. This drop is fitted by
the aABC algorithm when estimating the timescales.

Statistics and reproducibility
Three male monkeys were used in the experiments which is a standard
sample size for primate studies18,37,42,43. Animals’ ability to perform the
task determined the number of trials in each recording session. The
number of simultaneously recorded neurons was determined by the
properties of the linearmultielectrode arrays used for the experiments.
Blinding of the investigators were not relevant, since there were no
differences between the subjects that would conceivably create biases.
Sex of the subjects was not considered in study design, as the sample
size is too small tomakeanymeaningful statements about the impact of
sex on the mechanisms we found. Participants were not allocated into
groups and no subject randomization was implemented. Information
about excluded recording sessions is provided in the previous section.

Estimating timescales with adaptive Approximate Bayesian
Computations
We estimated the autocorrelation timescales using the aABC method
that overcomes the statistical bias in empirical autocorrelations and
provides the posterior distributions of unbiased estimated
timescales39. Thewidth of inferred posteriors indicates the uncertainty
of estimates. For more reliable estimates of timescales (i.e. narrower
posteriors), we selected epochs of experiments with longer trial
durations (brown and yellow frames in Supplementary Fig. 1).

The aABC method estimates timescales by fitting the spike-count
autocorrelation with a generative model. We used a generative model
basedon a doubly stochastic processwith one or two timescales. Spike
counts were generated from a rate governed by a linear mixture of
Ornstein-Uhlenbeck (OU) processes (one OU process Aτk

for each
timescale τk)

AOUðt0Þ=
Xn
k = 1

ffiffiffiffiffi
ck

p
Aτk

ðt0Þ,
Xn
k = 1

ck = 1, ck 2 ½0, 1�, ð2Þ

where n is the number of timescales and ck are their weights. The aABC
algorithm optimizes the model parameters to match the spike-count
autocorrelations between V4 data and synthetic data generated from
the model. We generated synthetic data with the same number of
trials, trial duration, mean and variance of spike counts as in the
experimental data. By matching these statistics, the empirical auto-
correlations of the synthetic and experimental data are affected by the
same statistical bias when their shapes match. Therefore, the time-
scales of the fitted generative model represent the unbiased estimate
of timescales in the neural data.

The spike-counts s are sampled for each time-bin ½t0i, t0i+ 1� from a
distribution pcountðs∣λðt0iÞÞ, where λðt0iÞ=AOUðt0iÞΔt0 is the mean spike-
count and Δt0 = t0i+ 1 � t0i is the bin size. To capture the possible non-
Poisson statistics of the recorded neurons, we introduce a dispersion
parameter α defined as the variance over mean ratio of the spike-
counts distribution α = σ2

s∣λðt0iÞ
=λðt0iÞ. For a Poisson distribution, α is

equal to 1. We allow for non-Poisson statistics by sampling the spike
counts from a gamma distribution and optimize the value of α toge-
ther with the timescales and the weights.

On each iteration of the aABC algorithm, we draw sample para-
meters from a prior distribution (first iteration) or a proposal distribu-
tion (subsequent iterations) defined based on the prior distribution and
parameters accepted on the previous iteration. Then, we generate
synthetic data from the sampled parameters and compute the distance
d between the autocorrelations of synthetic and experimental data:

dðtmÞ=
1
m

Xm
j =0

ACexperimentalðtjÞ � ACsyntheticðtjÞ
� �2

, ð3Þ

where tm is the maximum time-lag considered in computing the
distance. We set tm to 100ms to avoid over-fitting the noise in the tail
of the autocorrelations. If the distance is smaller than a predefined
error threshold ε, the sample parameters are accepted and added to
the posterior distribution. Each iteration continued until 100 sample
parameters were accepted. The initial error threshold was set to
ε0 = 0.1, and in subsequent iterations, the error threshold was updated
to the first quartile of the distances for the accepted samples. The
fraction of accepted samples out of all drawn parameter samples is
recorded as the acceptance rate accR. The algorithm stops when the
acceptance rate reaches accR < 0.0007. Thefinal accepted samples are
considered as an approximation for the posterior distribution. We
computed the MAP estimates by smoothing the final joint posterior
distribution with a multivariate Gaussian kernel and finding its
maximum with a grid search.

The choice of summary statistic (e.g., autocorrelations in the time
domain or power spectra in the frequency domain and the fitting
range) does not affect the accuracy of estimated timescales and only
changes the width of the estimated posteriors39. The frequency-
domain fitting converges faster in wall-clock time than time-domain
fitting39. As a control, we also estimated timescales by fitting the whole
shape of power spectral density in the frequency domain. The results
of these fits (Supplementary Fig. 7) were in agreement with the time-
domain fits with a limited fitting range (Fig. 3).

We used a multivariate uniform prior distribution over all para-
meters. For the two-timescale generative model (M2), the priors’ ran-
ges were set to

τ1 : U½0, 60�, τ2 : U½0, 400�, c1 : U½0, 1�, α : U½0:7, 1:3�, ð4Þ

and for the one-timescale generative model (M1) they were set to

τ : U½0, 400�, α : U½0:7, 1:3�: ð5Þ
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Model comparison with adaptive Approximate Bayesian
Computations
Weused the inferredposteriors from the aABCfit to determinewhether
the V4 data autocorrelations were better described with the one-
timescale (M1) or the two-timescale (M2) generative models39. First, we
measured the goodness of fit for each model based on the distribution
of distances between the autocorrelation of synthetic data from the
generativemodel and the autocorrelation of V4 data.We approximated
the distributions of distances by generating 1000 realizations of syn-
thetic data from eachmodel with parameters drawn from the posterior
distributions and computing the distance for each realization. If the
distributions of distances were significantly different (two-sided Wil-
coxon ranksum test), we approximated the Bayes factor, otherwise the
summary statisticswerenot sufficient todistinguish these twomodels75.

Bayes factor is the ratio of marginal likelihoods of the twomodels
and takes into account the number of parameters in each model76. In
the aABC method, the ratio between the acceptance rates of two
models for a given error threshold ε approximates the Bayes factor
(BF) for that error threshold39:

BFðεÞ= accRM2
ðεÞ

accRM1
ðεÞ : ð6Þ

Acceptance rates can be computed using the cumulative distribution
function (CDF) of the distances for a given error threshold ε,

CDFMi
ðεÞ=pMi

ðd < εÞ= accRMi
ðεÞ, i= 1, 2, ð7Þ

where pMi
ðdÞ is the probability distribution of distances for model Mi.

Thus, the ratio between the CDF of distances approximates the Bayes
factor for every chosen error threshold. To eliminate the dependence
on a specific error threshold, we computed the acceptance rates and
the Bayes factor for varying error thresholds. Since only small errors
indicate awell-fittedmodel, we computed the Bayes factor for all error
thresholds that were smaller than the largest median of distance
distributions of two models.

The M2 model was selected if its distances were significantly
smaller than for the M1 model (two-sided Wilcoxon ranksum test) and
CDFM2

ðεÞ>CDFM1
ðεÞ, i.e. BF > 1, for all ε<maxM1,M2

½medianðεÞ� (Sup-
plementary Fig. 2). The same procedure was applied for selecting the
M1 model. Although the Bayes factor threshold was set at 1, in most
cases we obtained BF≫ 1, indicating strong evidence for the two-
timescale model. If the distribution of distances for the two models
were not significantly different or the condition for the ratio between
CDFs did not hold for all selected ε (CDFs were crossing), we classified
the outcome as inconclusive, meaning that data statistics were not
sufficient to make the comparison.

Timescales of auto- and cross-correlations of spiking activity on
individual channels
We computed the average auto- and cross-correlations of the multi-
unit spiking activity recorded on individual channels during sponta-
neous activity (monkey G in FT, Monkey N in AT2). We computed the
autocorrelation of each channel’s activity using the same procedure
described above and then averaged the autocorrelations across
channels and recording sessions for each monkey. We computed the
cross-correlations between spike counts on every pair of channels (Aa

and Ab) that were at least two channels apart (∣a − b∣ ≥ 2 e.g., channels 1
and 3) as a function of time-lag tj

CCa,bðtjÞ=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ̂a
2σ̂b

2
q

ðN � jÞ

XN�j

i= 1

Aaðt0iÞ � μ̂aðjÞ
� �

Abðt0i+ jÞ � μ̂bðjÞ
� �

: ð8Þ

Here σ̂a
2 and σ̂b

2 are the sample variances, and μ̂aðjÞ= 1
N�j

PN�j
i = 1 Aaðt0iÞ

and μ̂bðjÞ= 1
N�j

PN
i= j + 1Abðt0iÞ are the sample means for the activity on

eachchannel. Then,wedivided the cross-correlations for eachmonkey
in two groups based on the monkey-specific median RF-center
distance and averaged over the cross-correlations within each group.

ThemappingofRFswasdescribedpreviously36. RFsweremeasured
by recording spiking responses to brief flashes of stimuli on an evenly
spaced 6×6 grid covering the lower left visual field (FT) or an evenly
spaced 12 ×9 grid centered on the RF (AT2). Spikes in the window
0 − 200ms (FT) or 50 − 130ms (AT2) relative to the stimulus onset were
averaged across all presentations of each stimulus. First, we assessed the
statistical significance of a given RF77 and only included channels with a
significant RF. Then, we found the RF center as the center ofmass of the
responsemap, and estimated the horizontal displacements between the
channels by computing the distances between their RF centers.

We estimated the timescales of auto- and cross-correlations using
the aABC method. We assumed the correlation between channels’
activity canbemodeled as a two-timescaleOUprocess sharedbetween
the two channels. We fitted the cross-correlation shape by the
unnormalized autocorrelation of the shared OU process, such that the
variance of the OU process (i.e. the autocorrelation at lag zero) defines
the strength of correlations. Thus,we used a two-timescaleOUprocess
as the generative model and applied the aABCmethod to optimize the
model parameters by minimizing the distance between the auto-
correlation of synthetic data from the OU process and V4 cross-
correlations. The aABC method returned a multivariate posterior dis-
tribution for timescales, their weights and the variance of the OU
process. We computed the distances starting from the first time-lag
t = 2msup to tm = 100ms. For a fair comparison between the auto- and
cross-correlations timescales, weused the same procedure to estimate
the timescales of individual channels’ autocorrelations. For fitting the
autocorrelation of monkey G, we additionally excluded the second
time-lag t = 2 ms, since AC(t = 2) < AC(t = 4), potentially related to
refractory period of neurons (similar to11,31,44).

Testing correlation between timescales and reaction times with
linear mixed-effects models
To compute the reaction times for each attention condition, we sepa-
rated the trialsbetweenattend-in (separatecovert andovert) andattend-
away conditions. We computed the average reaction times of the
monkeys for each recording session and each condition as the average
duration between the reappearance of the stimuli and initiation of the
anti-saccade response (AT1, only trials with a change in stimuli orienta-
tion) or the average duration between dimming in the target stimulus
and thebar release (AT2), across trialswith the sameattention condition.

We quantified the relationship between average reaction times
and MAP estimates of the fast and slow timescales in each session for
twodifferent attention conditions (attend-in and attend-away). For this
analysis, we pulled the data across covert and overt attend-in condi-
tions, resulting in more samples for the attend-in than attend-away
condition. For each attention condition, we fitted a separate linear
mixed-effects model using the “fitlm” function in the MATLAB R2021a.
In these models, we consider data from each monkey as a separate
group (i.e. a random effect) with a separate intercept to account for
individual differences between the monkeys and between the two
response types in the attention tasks (anti-saccade versus bar release).

We fitted two different models that considered either one or two
fixed effects for each attention condition. First, we fitted models that
considered as the fixed effect, either the slow timescale (τ2,cond)

RTi,m =ω0 +ω1τ2,cond,i +Ω0,m + εi,m, ð9Þ
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or the fast timescale (τ1,cond),

RTi,m =ω0 +ω1τ1,cond,i +Ω0,m + εi,m: ð10Þ

Here the index cond denotes attend-in or attend-away condition, RT
indicates the reaction time, i is the session index, and m∈ {G, B, N}
indicates three different monkeys. ω0 and ω1 give the intercept and
slope of the fixed effect with a given p-value. Ω0,m and εi,m are the
random effects, where Ω0,m gives a monkey-specific intercept and εi,m
gives the residuals.We also fittedmodels that consideredboth fast and
slow timescales as fixed effects simultaneously,

RTi,m =ω0 +ω1τ2,cond,i +ω2τ1,cond,i +Ω0,m + εi,m: ð11Þ

Thesemodels return two fixed-effect coefficientsω1,2 with p-values, one
for each timescale. The resulting statistics for the twofittedmodelswere
consistent (Supplementary Table 1, 2). In the main text, we reported
statistics from the first model type (Fig. 4, Supplementary Table 1).

Network model with spatially structured connections
The network model operates on a two-dimensional square lattice of
size 100 × 100 with periodic boundary conditions. Each unit in the
model is connected to 8 other units taken either from its directMoore
neighborhood (local connectivity, Fig. 6a, top) or randomly selected
within the connectivity radius r (dispersed connectivity, Fig. 6a, bot-
tom). Activity of each unit is represented by a binary state variable
Si∈ {0, 1} (i = 1…N, where N = 104 is the number of units). The units act
as probabilistic integrate-and-fire units78 following linear or non-linear
integration rules. States of the units are updated in discrete time-steps
t0 based on a self-excitation probability (ps), probability of excitation
by the connected units (pr), and the probability of external excitation
(pext≪ 1). The transition probabilities for each unit Si at time-step t0 are
either governed by additive interaction rules (linear model):

pðSi =0 ! 1Þ=pext +pr

X
j

Sj ,

pðSi = 1 ! 0Þ= 1� pext +ps +pr

X
j

Sj

 !
,

ð12Þ

or multiplicative interaction rules (non-linear model):

pðSi =0 ! 1Þ= 1� ð1� pextÞ 1� pr

� �P
j
Sj ,

pðSi = 1 ! 0Þ= ð1� pextÞð1� psÞ 1� pr

� �P
j
Sj :

ð13Þ

Here, ∑jSj indicates the number of active neighbors of unit Si at time-
step t0. For the analysis in the main text, we used the linearmodel. The
non-linear model generates similar local temporal dynamics (Supple-
mentary Fig. 12). In the linear model, the sum of connection
probabilities BP = ps + 8pr is the branching parameter that defines the
state of the dynamics relative to a critical point at BP = 153,78.

To compute the average local autocorrelation in the network, we
simulated the model for 105 time-steps and averaged the autocorrela-
tions of individual units. The global autocorrelations were computed
from the pooled activity of all units in the network. To compute the
autocorrelation of horizontal inputs for a unit i, we simulated the net-
workwith an additional “shadow” unit, whichwas activated by the same
horizontal inputs (pr) as the unit ibutwithout the inputs ps and pext. The
shadow unit did not activate other units in the network. The auto-
correlation of horizontal recurrent inputs was computed from the
shadow unit activity. We computed the cross-correlations between the
activity of each pair of units in the network and averaged the cross-
correlations over pairs with the same distance d between units. To have
the same number of sample cross-correlations for each distance, we

randomly selected 4 × 104 pairs per distance. The spatial distance in the
model is defined as the Chebyshev distance on the lattice (e.g., d = 1 is
the Moore neighborhood). Each simulation started with a random
configuration of active units basedon the analytically computed steady-
state mean activity (Eq. (21)). Running simulations for long periods
allowedus to avoid the statistical bias in themodel autocorrelations.We
setpext = 10−4, but the strengthof external input in the linearmodel does
not affect the autocorrelation timescales.

Network model with different unit types
In this model, two unit-types A and B are placed at each node of a two-
dimensional square lattice (Fig. 5a). The connectivity between theunits
is random and each unit is connected to 8 other units of any type.

The activity of each unit is given by a binary state variable
Si∈ {0, 1} with transition probabilities as in the spatial linear model
(Eq. (12)), but with different probabilities for the self-excitation
(pself,A, pself,B) and recurrent interactions (pr,A, pr,B) for each unit
type. In order for both unit types to operate in the same dynamical
regime, we set pself,A + 8pr,A = pself,B + 8pr,B = BP. Simulations were
performed as for the spatial network, but auto- and cross-
correlations were computed using the summed activity of two
units A and B at each lattice node.

Network model with synaptic filtering
The model operates on a two-dimensional square lattice, where each
unit on the lattice is connected to 8 randomly selected units (Fig. 5b).
We define the discrete-time dynamics of units in thismodel based on a
previously proposed continuous rate model with synaptic filtering46.
The transition probabilities for each binary unit Si∈ {0, 1} at time-step
t0 are governed by

pðSi =0 ! 1Þ=pext + f
X
j

Sj

 !
,

pðSi = 1 ! 0Þ= 1� pext +ps + f
X
j

Sj

 ! !
:

ð14Þ

Here, f(∑jSj) is a low-passfilter on recurrent inputs to each unitwith the
time constant τsynapse, which evolves in discrete time-steps:

f t0 + 1,
X
j

Sj

 !
= f t0,

X
j

Sj

 !
+
pr
P

jSj � f ðt0,PjSjÞ
τsynapse=Δt

0 , ð15Þ

where Δt0 = 1 ms is the duration of each time step. Simulations and
computation of auto- and cross-correlations were the same as for the
spatial network.

Analytical derivation of local timescales in the spatial net-
work model
For analytical derivations, we derived a continuous-time rate model
corresponding to the linear probabilistic network model (Eq. (12)),
with the transition rates defined as

wðSi =0 ! 1Þ=α1 + β1
P
j
Sj ,

wðSi = 1 ! 0Þ=α2 � β2
P
j
Sj:

ð16Þ

These equations contain two non-interaction terms α1 =pext
� lnðps Þ
ð1�ps ÞΔt0
h i

and α2 = ð1� ps � pextÞ � lnðps Þ
ð1�psÞΔt0
h i

, and two interaction terms

β1 = β2 =pr
� lnðps Þ
ð1�ps ÞΔt 0
h i

, where Δt0 = 1 ms is the duration of each time step

(details in ref. 47). For this model, the probability of units to stay in a
certain configuration {S} = {S1, S2, . . . , SN} at time t0 is denoted as
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PðfSg, t0Þ. Themaster equationdescribing the time evolutionofPðfSg,t0Þ
is given by50:

d
dt0

PðfSg, t0Þ= � PðfSg, t0Þ
X
i

wðSiÞ+
X
i

PðfSgi*, t0Þwð1� SiÞ, ð17Þ

where {S}i* = {S1, S2, . . . , 1 − Si, . . . , SN}. Using the master equation, we
can write the time evolution for the first and second moments as

d
dt0

hSiiðt0Þ=
X
fSg

PðfSg, t0Þ½wðSiÞð1� 2SiÞ�, ð18Þ

d
dt0

hSiSjiðt0Þ=
X
fSg

PðfSg, t0Þ½wðSiÞð1� 2SiÞSj +wðSjÞð1� 2SjÞSi�, ð19Þ

and for the time-delayed quadratic moment at time-lag t as

d
dt

hSiðt0ÞSjðt0 + tÞi= hSiðt0Þð1� 2Sjðt0 + tÞÞwðSjðt0 + tÞÞi: ð20Þ

By setting the right side of Eq. (18) to zero and averaging across all
units, we can compute the steady-state mean activity

�S=
1
N

X
i

hSii=
α1

α1 +α2 � nβ1
=

pext

1� ðps + 8prÞ
, ð21Þ

where n = 8 is the number of incoming connections to each unit.
We compute the timescales analytically for the network with local

connections (r = 1). From Eq. (20), we can derive the equation for the
average autocorrelation of each unit AC(t) as

1
α1 +α2

d
dt

ACðtÞ= � ACðtÞ+ β1

α1 +α2

X
x

CCðx, tÞ: ð22Þ

HereCC(x, t) is the cross-correlation between eachunit at location (i, j)
and its 8 nearest neighbors x = (i ± 1, j ± 1). The cross-correlation term
in this equation gives rise to the interaction timescales in the
autocorrelation. By neglecting the cross-correlation term, we can
solve the Eq. (22) to get the self-excitation timescale

τself =
1

α1 +α2
= � Δt0

lnðpsÞ
: ð23Þ

Solving the dynamical equation for the time-delayed cross-correlation
(Eq. (20)) in the Fourier domain gives the interaction timescales
(Supplementary Note 4, details in47):

τint,kðk= ðk1, k2ÞÞ=
τself

1� n
4

β1
α1 +α2

½cosðk1Þ+ cosðk2Þ+ 2 cosðk1Þ cosðk2Þ�

= � Δt0

lnðpsÞ
� 1
1� ps � 2pr½cosðk1Þ+ cosðk2Þ+ 2 cosðk1Þ cosðk2Þ�

,

ð24Þ
where k = (k1, k2) are the spatial frequencies in the Fourier space. For
each k we get a different interaction timescale. Smaller k (low spatial
frequencies) correspond to interactions on larger spatial scales,
whereas larger k (high spatial frequencies) correspond to interactions
on more local spatial scales. The largest interaction timescale (the
global timescale) is defined based on the zero spatial frequencymode:

τglobal = τint,kðk= ð0,0ÞÞ= 1
α1 +α2 � nβ1

= � Δt0ð1� psÞ
ð1� ps � 8prÞ lnðpsÞ

:

ð25Þ

In these derivations, we defined distances between units as Euclidean
distances and discarded the contributions from third and higher
moments.

Considering the self-excitation and interaction (i.e. cross-corre-
lation) terms, we can write down the analytical form of the auto-
correlation function as

ACðtÞ=A exp � t
τself

� �
+
X2πðN0=2�1Þ
N0

k1 ,k2 =0

~CCðk1, k2Þ exp � t
τint,kðk1, k2Þ

�
 !" #

,

ð26Þ

where A is the normalization constant to get AC(t =0) = 1. N0 is the
number of units in each dimension: N0 ×N0 =N. This equation shows
that the autocorrelation function contains self-excitation timescale
τself and N 02=4 interaction timescales weighted by the amplitude of
cross-correlation function ~CCðk1,k2Þ for the given spatial frequency
mode (k1, k2). We can approximate the slow decay of the autocorrela-
tion with an effective interaction timescale τint given by the weighted
average of all interaction timescales created by different spatial
frequency modes47:

τint =
X2πðN0=2�1Þ
N0

k1 ,k2 =0

~CCðk1, k2Þ
CCð0, 0Þ

" #
τint,kðk1, k2Þ: ð27Þ

Here CC(0, 0) is given by
P2πðN0=2�1Þ

N0
k1 ,k2 =0

~CCðk1, k2Þ.
The analytical approximation of the effective interaction time-

scale is more accurate when the dynamics are away from the critical
point. Close to the critical point (BP→ 1), the mean-field approxima-
tions are not valid.

The self-excitation timescale for the discrete-time networkmodel
can also be obtained analytically using the autocorrelation of a two-
state Markov process driven by the self-excitation and external input.
Using the transition matrix (considering the linear model)

P=
1� pext pext

1� ðps +pextÞ ps +pext

	 

, ð28Þ

we can compute the autocorrelation of theMarkov process at time-lag
t (Supplementary Note 3):

AC2SMPðtÞ=pt
s: ð29Þ

The decay timescale of this autocorrelation is equivalent to the self-
excitation timescale in the network model

τself = � ðlnðpsÞÞ�1, ð30Þ

which for Δt0 = 1 is equivalent to Eq. (23).

Analytical derivation of timescales for nonlinear interactions
We can write down the general form of transition rates described
previously in Eq. (16) as

ωð0 ! 1Þ = α1 +β
0
1 F

P
j
Sj + I

 !
,

ωð1 ! 0Þ = α2 � β0
2 F

P
j
Sj + I

 !
:

ð31Þ

F ðxÞ is a non-linear activation function that is a monotonically
increasing function of x and satisfies F ð0Þ=0, F ð1Þ= 1. Here we
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consider F of the form:

F
X
j

Sj

 !
= 1� exp � θ

n

X
j

Sj

 !
, ð32Þ

where θ is a positive constant that controls the gain of recurrent
inputs, andn is the number of connectedneighbors to each target unit.
The activation function with a constant global input current I⩾0 can
be written as:

F ðn�S+ IÞ= 1� expð�θ�S� IÞ, ð33Þ

where �S is the steady-state mean activity. Here I is a constant input
current that uniformly increases activation of all units, which is
different from pext that provides stochastic and spatially random
activation of units. We interpret I as the attentional input (e.g., from
FEF) to V4 area.

To compute the timescales in the presence of non-linearity and
external input current, we can perform Taylor expansion of the
interaction terms around the mean activity �S

β0
1 F

X
j

Sj + I

 !
=β0

1F 0ðn�S+ IÞ
X
j

Sj

 !
+β0

1F0 =β1

X
j

Sj

 !
+β0

1F0, ð34Þ

β0
2F

X
j

Sj + I

 !
=β0

2F 0ðn�S+ IÞ
X
j

Sj

 !
+β0

2F0 =β2

X
j

Sj

 !
+β0

2F0, ð35Þ

where F 0 denotes the derivative of F and F0 is defined as

F0 =F ðn�S+ IÞ � n�SF 0ðn�S+ IÞ+O
X
j

Sj

 !
� n�S

" #20
@

1
A: ð36Þ

Using these expansions, we can rewrite the transition rates as

ωð0 ! 1Þ = αeff
1 +β1

P
j
Sj,

ωð1 ! 0Þ = αeff
2 � β2

P
j
Sj ,

ð37Þ

where

αeff
1 =α1 +β

0
1F0, αeff

2 =α2 � β0
2F0, ð38Þ

β1 = β
0
1F 0ðn�S+ IÞ, β2 =β

0
2F 0ðn�S+ IÞ: ð39Þ

Hence, all non-interaction and interaction terms, as well as the mean
activity �S depend on the external input. Consequently, the self-
excitation and interaction timescales become input dependent.

The explicit form of the self-excitation timescale and the global
interaction timescale are given by

τself =
1

αeff
1 +αeff

2

=
1

α1 +α2 + ðβ0
1 � β0

2ÞF0
, ð40Þ

and

τglobal =
τself

1� nβ1
αeff
1 +αeff

2

=
1

α1 +α2 + ðβ0
1 � β0

2Þ 1� ðθ�S+ 1Þe�θ�S�I
� �� β0

1θe�θ�S�I
: ð41Þ

When ðβ0
1 � β0

2Þ<0, increasing the external input I would lead to an
increase in the mean activity and the self-excitation timescale. This
conditions implies that already active units are more excitable in the

next time step compared to silent units. Moreover, if in addition to
ðβ0

1 � β0
2Þ<0, we have �∣β0

1 � β0
2∣�S+β

0
1 < 0, the global timescale would

also increase. Other interaction timescales increase with the input
when �∣β0

1 � β0
2∣�S+ c1β

0
1 < 0 ( − 1 < c1 < 1) (details in47). The changes in

the fast timescale are smaller than in the slow timescale and can remain
undetected with the limited data amount.

Matching the timescales of the network model to neural data
Tomatch the timescales between themodel and V4 data, we used the
activity autocorrelation of one unit in the network model with local
connections (r = 1). We searched for model parameters such that the
model timescales fell within the range of timescales observed in the
V4 activity, which was the mean ± s.e.m of the MAP timescale-
estimates across recording sessions. We computed the range for the
fast timescales from the pooled attend-in and attend-away condi-
tions, since they were not significantly different: τ1,att−away =
τ1,att−in = 4.74 ± 0.42ms. We used this range for the fast timescale in
both the attend-in and attend-away conditions. For the slow
timescales, we computed the ranges separately for the attend-in
(averaged over covert and overt) and attend-away conditions:
τ2,att−away = 117.09 ± 10.58ms, τ1,att−in = 140.97 ± 11.51ms.

We fitted the self-excitation and effective interaction timescales
obtained from the autocorrelation of an individual unit’s activity in
the model to the fast and slow timescales of V4 data estimated from
the aABC method. Using Eq. (30) and Eq. (27), we found an approx-
imate range of parameters ps and pr that reproduce V4 timescales.
Then, we performed a grid search within this parameter range to
identify the model timescales falling within the range of V4 time-
scales during attend-away and attend-in conditions. We used model
simulations for grid search since the analytical results for the effec-
tive interaction timescale are approximate. We used very long model
simulations (105 time steps) to obtain unbiased autocorrelations and
then estimated the model timescales by fitting a double exponential
function

ACðtÞ= c1e�t=τ1 + ð1� c1Þe�t=τ2 , ð42Þ

directly to the empirical autocorrelations. We fitted the exponential
function up to the time-lag tm = 100ms, the same as used for fitting the
neural data autocorrelations with the aABC method.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All behavioral and electrophysiological data used in this study are
available on Fighshare at https://doi.org/10.6084/m9.figshare.
19077875.v172 (fixation task, FT), https://doi.org/10.6084/m9.figshare.
16934326.v371 (attention task 1, AT1), and https://doi.org/10.6084/m9.
figshare.21972911.v273 (attention task 2, AT2). Source data are provided
with this paper.

Code availability
The code for the timescale estimation andBayesianmodel comparison
with the aABC method is available as a Python package at: https://
github.com/roxana-zeraati/abcTau79. The code for simulating network
models is available at: https://github.com/roxana-zeraati/spatial-
network80.
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