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Predicting evolutionary outcomes is an important research goal in a diversity of
contexts. The focus of evolutionary forecasting is usually on adaptive processes,
and efforts to improve prediction typically focus on selection. However, adap-
tive processes often rely on new mutations, which can be strongly influenced
by predictable biases in mutation. Here, we provide an overview of existing
theory and evidence for such mutation-biased adaptation and consider the
implications of these results for the problem of prediction, in regard to topics
such as the evolution of infectious diseases, resistance to biochemical agents,
as well as cancer and other kinds of somatic evolution. We argue that empirical
knowledge of mutational biases is likely to improve in the near future, and that
this knowledge is readily applicable to the challenges of short-term prediction.

This article is part of the theme issue ‘Interdisciplinary approaches to
predicting evolutionary biology’.
1. Introduction
Predicting the dynamics and outcome of evolution is an important goal of the bio-
logical sciences, offering the potential to design better drugs, combat pathogens
and conserve endangered species [1–11]. Targets of prediction include genetic
changes underlying adaptation, such as those causing antibiotic resistance or
enhancing thermostability, as well as their corresponding phenotypes, such as
minimum inhibitory concentration or melting temperature [12,13]. Higher-level
targets include the diversity, abundance and ecosystem functions of microbial
communities [14], as well as the rate of adaptation itself [13].

Owing to the stochastic nature of the evolutionary process, forecasting offers
the greatest potential over short and intermediate timescales. Our ability to make
accurate forecasts depends crucially on high-quality experimental data, such as
those describing the phenotypic or fitness effects of mutations. For example,
over short timescales, where one may wish to predict the next beneficial
mutation to arise and go to fixation, empirical knowledge of the distribution of
fitness effects is key, because this provides information about the fixation prob-
abilities of new mutations [15]. At intermediate timescales, where one may
wish to predict which of several possible mutational trajectories to adaptation
is the most likely, empirical knowledge of the fitness effects of combinations of
mutations is key, because this can be used to delineate betweenmutational trajec-
tories that ascend adaptive peaks from those that fall into maladaptive valleys [2].
As such, the project of predicting evolution has benefited greatly from recent
advances in high-throughput sequencing technologies and phenotypic assays,
which ameliorate so-called ‘data limits’ on accurate forecasting [7]. These technol-
ogies have been used to characterize the phenotypic and fitness effects of
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mutations in a diversity of biological systems, including regu-
latory elements [16,17], macromolecules [18–24], gene
regulatory circuits [25,26] and metabolic pathways [27].

However, empirical knowledge of the phenotypic and fit-
ness effects of mutations only takes us so far. Whereas these
data provide useful information about the likelihood of
mutations going to fixation, they tell us nothing about the rate
with which new mutations are introduced into a population.
This is an important limitation, because evolution often pro-
ceeds via the introduction of new mutations, and some types
of mutations are more likely to arise than others [28,29]. For
example, studies of the rates and spectra of spontaneous
mutations, such as those based on mutation accumulation
experiments, have revealed a bias towards transitions (purine-
to-purine or pyrimidine-to-pyrimidine changes), relative to
transversions (purine-to-pyrimidine changes, or vice versa) in
a wide range of species [30]. The exact degree of transition
bias emerging under any particular set of conditions is the net
outcome of biases in all stages in the genesis of nucleotide
mutations, including biases in susceptibility to damage (e.g.
oxidative damage), in the efficiency of damage recognition
and repair, in rates of polymerase errors and proofreading,
and in the efficiency of recognition and repair of mispaired
bases (see [31,32]). Because transition bias and other kinds of
mutation bias make some mutational steps to adaptation
more likely than others, empirical knowledge of mutation
bias offers the potential to improve evolutionary forecasting,
both at short and intermediate timescales.

Here, we address how effects of mutational biases—
predictable differences in rates between different categories of
mutational conversions—make evolution more predictable,
focusing mostly on the case of short-term adaptation from
new mutations, and setting aside some related topics such as
the role of specialized mutation-generating systems [33, ch. 5]
and hypermutators [34]. First, we review theoretical work
suggesting that such biases can exert a strong influence on
the outcome of evolutionary processes, including adaptive pro-
cesses, that depend on new mutations. Next, we review the
empirical case for an influence of mutation bias on adaptation
in the laboratory and in nature. Finally, we discuss specific
applications where empirical knowledge of mutation bias is
anticipated to improve evolutionary forecasting, in regard to
topics such as infectious diseases, cancer and other kinds of
somatic evolution, as well as resistance to biochemical
agents.We note some recurring themes: (i) themost commonly
observed outcome is often the most mutationally favourable of
the adaptive options, not the most fit, (ii) ordinary nucleotide
mutation biases often have strong and predictable effects on
the genetic changes underlying adaptation, (iii) perturbing
the mutation spectrum alters the distribution of such changes,
and (iv) the influence of mutation biases can be altered by
the beneficial mutation supply and other population-genetic
and environmental conditions. In general, we argue that
knowledge of mutation can improve predictability in practical
contexts. We conclude with comments on open questions and
future prospects.
2. Theory
Under what conditions will empirical knowledge of mutation
bias improve evolutionary forecasting? To address this ques-
tion, we first turn to theory. The classic ‘Modern Synthesis’
view assumes evolution from standing variation in an abun-
dant gene pool, so that the process of evolution is formally a
process of recombining and shifting frequencies of available
alleles without newmutations [33,35,36]. In this context, adap-
tation happens by selectively favourable shifts in frequencies of
multi-locus combinations of small-effect alleles generated by
recombination [37–40]. The role of mutation is strictly limited:
recurrent mutation acts only as a weak pressure, ineffectual
except when mutation rates are high and unopposed by selec-
tion [41–43]. Therefore, in this theory, the predictability of
evolution emerges from a consideration of selection: in the
short-term, an evolving population ascends a fitness gradient
in a multi-locus allele-frequency space; in the long term, it
approaches a local or global maximum of fitness.

A different view of the roles of mutation and selection
emerged during the molecular revolution. Comparisons of
protein sequences suggested that evolutionary divergence
occurs by the accumulation of individual substitutions of
amino acid residues,where each substitution reflects amutation
that was promoted—or at least, tolerated—by selection, which
was conceptualized as a filter acting on individual mutations
[44–46]. This way of thinking placed the process of mutation
in the more important role of offering individual variants
directly for selective filtering (rather than merely filling up the
gene pool to facilitate subsequent recombination). This con-
ception of evolution as a two-step process was formalized in
‘origin-fixation’ models, which depict the limiting behaviour
of evolution when the number of new mutations introduced
per generation becomes arbitrarily small [47]. In an origin-
fixation model, the rate of evolution is determined by the
product of a rate of ‘introduction’ or originNμ and a probability
of fixation π, i.e. R =Nμπ.

Importantly, this new way of thinking about evolution
suggests an increased influence for mutation biases, because
the likelihoodof eachpossible stepwill dependon the likelihood
of the underlying mutation. For evolution in the origin-fixation
regime, mutational biases (i.e. biases in origination) and biases
in fixation each have proportional effects on the course of evol-
ution [29], i.e. we can express a ratio of origin-fixation rates in
terms of these two different types of biases:

Rij

Rik
¼ mijNpij

mikNpik
¼ mij

mik
� pij

pik
, ð2:1Þ

where Rij is the rate of change from allele i to allele j, μij is the
mutation rate from allele i to allele j, πij is the chance of fixation
of a newallele of type j in a population otherwise of type i, andN
is the population size (see also [48]). That is, the evolutionary
bias between two alternative types of changes, i→ j versus
i→ k, can be expressed as the product of a bias in origination
(e.g. transition-transversion bias orGC-ATbias) and a bias in fix-
ation [29,48]. This means that biases in the introduction process
can influence adaptation even when mutation rates are low and
selection is strong, in contrast to the classical view in which
internal biases are assumed to require evolution by mutation
pressure [41–43], which requires high rates of mutation.

The equation above reflects origin-fixation conditions, and is
useful for thinking about short-term evolution, or about long-
term evolution in an infinite space. What about less ideal con-
ditions, e.g. extended adaptive walks on finite landscapes? To
grasp the potential effects of mutation bias on adaptive walks,
it is helpful to consider the different perspectives of points,
paths, local peaks and landscapes. From a typical point on a
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complex landscape, multiple upward (fitness-increasing) steps
are possible, and some are mutationally favourable (whereas
others are not), so that the orientation of an evolving system
may be biased. Any path of upward steps eventually ends at
some local peak, and some paths are enriched in mutationally
favourable steps (whereas others are not), so that a system evol-
ving under a bias may favour some paths over others. From the
perspective of peaks, each fitness peak is accessible by some set
of upward paths, and this set of paths may differ in size, and
may be more or less enriched for mutationally favourable
paths, so that certain peaks may be more likely outcomes of
evolution, averaging overmany possible starting points. Finally,
for a given landscape with many peaks, we can define all the
upward paths, i.e. all the possible adaptive walks, and thus
some landscapes will have more mutationally favoured walks,
making them more navigable.

Evolutionary simulations on complex adaptive landscapes
confirm these broad expectations and provide some guidance
on the size of effects [49–53]. For instance, [52] modelled
adaptive walks using an NK model of fitness applied to a
protein encoded by a gene subject to variable GC : AT bias,
finding that a several-fold bias in mutation can have a sub-
stantial impact on the amino acid composition of evolved
proteins. Cano & Payne [49] explored the effect of transition-
transversion bias on the navigability of empirical landscapes
for transcription-factor binding sites, finding that the land-
scapes are most navigable when the mutation bias matches
the bias inherent in the landscape. Schaper & Louis [51] find
that RNA folds with the most sequences are more findable
in adaptation.

How far do effects of mutation biases extend outside of
the strict origin-fixation regime that emerges as the mutation
supply μN becomes arbitrarily small? In the hypothetical case
of an infinite-sitesmodel,mutation biases are influential regard-
less ofmutation supply (appendixA). For finite cases, the results
of Yampolsky & Stoltzfus [29] suggest that biases in the intro-
duction process decay with mutation supply but remain
influential well outside the origin-fixation regime. Subsequent
work has clarified this relationship [56–58]. In particular, Cano
et al. [56] used simulations to study the effect of mutation
supply in a codon-based model of protein adaptation. They
quantified the effect of mutation bias with a single statistic, β,
which ranges from 0, indicating no influence, to 1, indicating
that the spectrum of amino acid-changing mutations has a pro-
portional influence on the spectrum of changes fixed in
adaptation. They found that β≈ 1 when the mutation supply
is low (Nμ≈ 10−4), and ultimately goes to 0 for high mutation
supply, withmost of the shift from1 to 0 happening asmutation
supply goes from 10−2 to 100.

Finally, what are the implications for predictability? As
explained in appendix B, considering a single adaptive step,
predictability (in the sense of repeatability) decreases with
the number of possibilities, and increases with the variance
in their probabilities [63,66]. This predictability can be parti-
tioned further (under limiting conditions explained in
appendix B) into contributions of mutation and fixation. The
separate terms have the same property that, the greater the
variability in the probability of fixation π, or the greater the
variability in μ, the greater the contribution to repeatability.
An important implication of this theoretical result is that, in
designing approaches to prediction, it is important to capture
as much variance as possible in elementary chances, and to
treat mutation and selection comparably to avoid a skewed
picture of their contributions. For instance, if 40 different ben-
eficial mutations are possible, and we use individual fitness
measurements for each s, but characterize each μwith an aver-
age rate from a model of six types of rates, this artificially
reduces the expected contribution of mutation to repeatability,
given that such simplified models capture only a minority of
the variance in individual mutation rates [67].

What about predictability in long-term adaptive walks?
In the special case of adaptation on a fixed and finite land-
scape without epistasis, the evolving system will converge
on a single global peak, and mutation bias will influence
the trajectory and the length of the walk, but not the final des-
tination. In any other case, mutation bias may influence the
direction, length and ultimate destination of a walk, as out-
lined above. Predictability has a somewhat counterintuitive
relationship to mutation bias when a system with a particular
bias is on a landscape enriched for upward paths favoured by
that bias. In this case, as shown by Cano & Payne [49], there
is a larger set of upward paths enriched for mutationally
favourable changes, and so the particular path taken in any
instance of adaptation is less predictable.

Predicting evolutionary trajectories is further complicated
by the potential for changes in the mutation spectrum itself,
which can occur even on short timescales, owing to transient
changes in environmental conditions [68,69]. Durable genetic
changes in the mutation spectrum that may be important in
evolution on various timescales include (i) the emergence of
hypermutators with greatly enhanced mutation rates and dis-
tinct mutation spectra [34,70], (ii) changes that modify
mutation spectra without dramatic changes in total mutation
rate [71,72], (iii) long-term changes in DNA repaire repertoire
including the loss and gain of entire pathways [73], (iv) shifts
in (and long-term equilibration of) the genomic frequency of
sequence contexts under the long-continued influence of con-
text-dependent mutation [74], (v) genome-wide patterns of
adaptive amelioration reducing the frequency or severity of
deleterious mutations [75,76], and (vi) bias reversals that tem-
porarily enhance the rate of adaptation by enhancing
mutational access to previously under-sampled classes of
beneficial mutations [50,53].

In summary, theory suggests that mutation bias can influ-
ence adaptation under a broad range of population genetic
conditions, with the strongest signal of mutational influence
appearing when the mutation supply is low. Mutation
biases can influence both the outcomes of short-term adap-
tation, and the trajectory, length, and outcome of adaptive
walks, dependent on conditions. The extent to which empiri-
cal knowledge of mutation bias will improve evolutionary
forecasting depends on the extent to which natural systems
evolve under conditions favourable to these effects. Because
this is an empirical issue, we next turn to experimental
evidence, from the laboratory and nature.
3. Evidence
As outlined above, theory suggests that, where conditions
allow, systematic biases in mutation can shape the course of
adaptation via biases in the introduction process. What is
the evidence that this kind of causation is real? What do we
know about effect-sizes under various conditions? How
well do these effects fit theoretical expectations? How broadly
are such effects expected?
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(a) Causal agency
To begin, one may ask what studies establish causal agency,
i.e. proving beyond any reasonable doubt that X causes Y?
The gold standard is to manipulate X and show the expected
effects on Y under controlled conditions. This standard is sat-
isfied by the work of Couce et al. [77] and Horton et al. [78],
laboratory studies with microbial systems, involving adap-
tation from new mutations under controlled conditions that
include direct manipulation of the mutation spectrum.

Couce et al. [77] subjected 192 replicate lines of Escherichia
coli to increasing concentrations of the β-lactam antibiotic cefo-
taxime, using three different parental strains: wild-type, mutH
andmutT. The latter two are mutators with higher overall rates
of mutation and distinctive biases toward transitions (mutH) or
A : T→C : G transversions (mutT). Figure 1 shows the resist-
ance-conferring mutations that arose in ftsI, the gene in
which most of these mutations are found. The resistance-con-
ferring mutations from mutT isolates (blue) tend to be A :
T→C : G transversions (left block of bars), which are the
type favoured by mutT, whereas the resistance-conferring
mutations that evolved in the mutH strain (red) tend to be the
transitions (centre block of bars) favoured by mutH. That is,
changing the mutation spectrum changes the spectrum of
adaptive changes in a corresponding manner.

The second study, by Horton et al. [78], was motivated by
the observation that two different strains of Pseudomonas fluor-
escens adapt to the loss of motility in strikingly different ways.
In one strain, over 95 per cent of the time, adaptation involved
an A289C change in the ntrB locus, whereas in the other strain,
adaptation involved mutations in diverse genes. They ident-
ified a hotspot mutation associated with synonymous
sequence differences in the two strains. To test that the
mutational hotspot caused the difference in adaptation, they
used genetic engineering to create the hotspot in one strain,
and remove it in the other—all without changing the protein
sequence (because the engineered changes were synonymous).
The results confirmed the mutational hypothesis. When the
hotspot was removed, adaptation no longer relied on the
mutation in the ntrB locus; and when the hotspot was engin-
eered, adaptation no longer involved mutations in diverse
genes, but rather relied on the A289C mutation.
(b) Range of effect-sizes
Having established causal agencywith studies that involve unu-
sual conditions—some mutators and a hotspot—let us now ask
about effect-sizes when ordinary nucleotide mutation biases are
involved, and particularly, let us consider whether quantitative
relationships between s, μ and the frequency with which a var-
iant evolves f are roughly what we expect from theory. Several
studies are useful in this regard. We will focus here on Maclean
et al. [62], Rokyta et al. [59] and Cano et al. [56].

Maclean et al. [62] tracked the emergence of resistance to
Rifampicin in replicate cultures of Pseudomonas aeruginosa.
Resistant strains typically have mutations in rpoB, encoding
the main RNA polymerase subunit. Maclean et al. [62]
measured selection coefficients for 35 resistant variants, and
mutation rates for 11 of these. The mutation rates—all for
single-nucleotide substitutions—ranged 30-fold. However,
the selection coefficients are very large and show amuch smal-
ler range, from 0.3 to 0.9, so that the range expected for the
probability of fixation is even smaller, just 0.45 to 0.83 (using
the formula of [60]). Thus, under origin-fixation conditions,
we expect a 30-fold effect of mutation but only about a twofold
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effect of selection (given that clonal interference is not
expected). The results shown in figure 2 confirm this expec-
tation and provide some additional useful evidence (these
results are also used as an example in appendix B). As shown
in the left panel, the most frequent outcome is not the most
fit; the top two most frequent outcomes fall in the middle of
the fitness distribution. Meanwhile, there is a strong and
roughly proportional effect of mutation rate, as shown in the
centre panel. The right panel confirms that this effect
of mutation rate is not owing to confounding with selection
coefficients, which are uncorrelated with the mutation rates.

In a well-known study of recurrent evolution, Rokyta et al.
[59] carried out one-step adaptation 20 times in replicate
populations of bacteriophage ϕX174, under conditions of
adaptation from new mutations. They found that the most
frequent change, repeated six times, was not the most fit,
but rather the fourth most fit. These results were not in
agreement with the model of Orr [79], which assumes uni-
form mutation, prompting the authors to seek a mutational
explanation. They found that an origin-fixation model incor-
porating (i) measured selection coefficients, and (ii) a model
of nucleotide mutation rates (from comparative data) per-
formed better in predicting outcomes than Orr’s [79] model,
which assumes homogeneity in mutation rates. Thus knowl-
edge of mutation rates improved the predictability of
adaptive outcomes.

As explained in §2, Cano et al. [56] developed a method
to capture the influence of the mutation spectrum with a
single coefficient of mutational influence β that ranges from
0 (no influence) to 1 (proportional influence). They also applied
this method to three datasets of adaptive amino acid
substitutions, including substitutions implicated in natural
adaptation of Mycobacterium tuberculosis to antibiotics, as well
as laboratory adaptation of E. coli and Saccharomyces cerevisiae
to environmental stress, using independently curated species-
specific mutation spectra that describe the relative rates of the
six possible nucleotide changes within double-stranded DNA.
For each species, they found that β is close to 1 and significantly
different from 0, indicating a proportional influence of the
mutation spectrum. Moreover, they showed this was not just
an effect of transition bias, but rather of the entire distribution
of rates across the six types of single-nucleotide changes.
Indeed, the frequencies of the six types of nucleotide changes
among adaptive substitutions are strongly correlated with the
independently curated species-specific mutation spectra
(figure 3). The authors note that the three species differ in
important population genetic conditions, such as mutation
supply. WhereasM. tuberculosis has one of the lowest mutation
rates of all bacteria [80] and is therefore likely to experience only
limited clonal interference during adaptation to a new human
host [81,82], E. coli and S. cerevisiae have relatively higher
mutation rates [83,84] and often experience clonal interference
in laboratory evolution experiments [85,86]. The results of
Cano et al. [56] therefore provide empirical support for the
theoretical result that mutation bias can influence adaptation
across a broad range of population genetic conditions [29,57].
(c) Scope of applicability
Now, having established causal agency and the potential for
large effect-sizes, let us consider the scope and generality of
this kind of cause-effect relationship. How widely can we
expect it to apply? An ideal way to address this question
would be to carry out a meta-analysis of published studies
of adaptation. We would want to include in this analysis all
of the relevant work, dividing it into experimental and natu-
ral adaptation, and perhaps considering other factors such as
taxonomy and population size. At present, such an analysis
would be quite difficult and would cover only a very minor
fraction of the literature. The difficulties may be summarized
as follows. In over a century of experimental studies of adap-
tation, the vast majority do not include a genetic analysis.
Those with a genetic analysis typically implicate loci or alleles
(e.g. involved in the adaptation of quantitative traits) without
identifying specific mutations. The adaptation studies that
implicate specific mutations (a tiny fraction of all adaptation
studies) typically do not have sufficient replicates to support
powerful tests, e.g. sometimes they are a one-off case [87].
In addition, most reports implicating adaptive mutations
do not follow a rigorous standard for making this determi-
nation, so that mis-attributions are common [88], a serious
problem given the prior expectation that non-adaptive
changes will show effects of mutation biases. Furthermore,
even in cases where adaptation can be traced confidently to
specific mutations, we rarely have the kind of information
on mutation biases and selection coefficients that would be
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needed to reach the conclusion that mutational effects are
consequential once selection is taken into account.

The meta-analysis strategy of Stoltzfus & McCandlish
[89], focused on transition-transversion bias among amino
acid changes, was designed to maximize the use of available
data given these difficulties. Briefly, it takes advantage of the
following: (i) many contemporary studies of adaptation
implicate specific amino acid changes, typically caused by
single-nucleotide substitutions, doing so in a rigorous way
based on verifying effects with genetic comparisons or engin-
eering, (ii) for a broad range of taxa, nucleotide mutations
show a bias towards transitions, typically two- to fourfold
above null expectations [30,90], and (iii) experimental studies
of mutational effects do not reveal any substantial tendency
for transitions to be more benign than transversions [90,91],
so that a reasonable null expectation for beneficial (or neutral)
changes in the absence of mutation bias is a simple 1 : 2 ratio,
given that there are twice as many possible transversions, as
argued by Stoltzfus & McCandlish [89]. A substantial excess
of transitions, e.g. a 1 : 1 or 2 : 1 ratio, would indicate an effect
of mutation bias. Note that, in the literature of molecular
evolution, it was long supposed that transitions are more
conservative in their effects on proteins, as discussed by
Stoltzfus & Norris [90]. However, this idea is not supported
by systematic fitness measurements for amino acid-changing
mutations, which show that transitions and transversions
hardly differ at the upper end of the fitness distribution
[90,91], though there may be some differences at the lower
end, as argued by Lyons & Lauring [91].

On this basis, one may gather qualifying results and
combine them, applying statistical tests for an excess of tran-
sitions relative to the 1 : 2 expectation. For instance, Meyer
et al. [92] carried out replicate laboratory evolution exper-
iments with bacteriophage λ under conditions that favour
changes in the J gene, the product of which helps the virus
target its bacterial host. Among 241 putatively adaptive
changes, the ratio of transitions to transversions was 192 :
49, roughly eightfold higher than the 1 : 2 null expectation.
The meta-analysis by Stoltzfus & McCandlish [89] covers
experimental and natural adaptation using this approach,
with the added safeguard that results are restricted to recur-
rent amino acid changes, i.e. their dataset is conditioned on
parallel evolution. The experimental dataset covers five
different experimental systems, the largest of which are the
study of Meyer et al. [92] and the studies of Crill et al. [93]
and Bull et al. [94] that uncovered numerous reversals and
parallels in lines of ϕX174 propagated through successive
host reversals (between E. coli and Salmonella typhimurium).
Combining the data from all five studies, Stoltzfus &
McCandlish [89] find a highly significant 304 : 83 ratio of tran-
sitions to transversions among events of parallel adaptive
amino acid changes.

Several subsequent studies have shown effects of tran-
sition-transversion bias. Sackman et al. [95] extended the
earlier study of Rokyta et al. [59] by applying the same 20-
replicate protocol to three additional types of phages, for a
total of 80 adaptive changes. For each of the four phages,
the most common variant to evolve was not the one with
the largest fitness benefit. Out of 20 × 4 = 80 changes, the tran-
sition-transversion ratio was 74 : 6, a striking result. Likewise,
Bertels et al. [96] observed a strong enrichment of transitions
among adaptive mutations in propagation of HIV-1 in
human T-cell lines, and Katz et al. [97] observed a bias
towards transitions during adaptation of E. coli to long-
term stationary phase.

What about adaptation in nature? The meta-analysis of
Stoltzfus & McCandlish [89] includes data from 10 cases of
natural adaptation traced to specific mutations, with results
shown in table 1. For example, species such as monarch
butterflies (Danaus plexippus) evolve resistance to cardiac glyco-
sides by changes in the sodium pump ATPα1 [98–100], which
not only allows them to eat Apocynaceae, but also to sequester
the toxin in their tissues, making them noxious to predators.
Other cases involved adaptation to natural or anthropogenic
toxins (tetrodotoxin, insecticides, benzimidazole and the anti-
viral agent Ritonavir), altitude adaptation via haemoglobin
changes, convergent foregut fermentation, trichromatic vision
and echolocation. Combining the data from these cases of natu-
ral adaptation, Stoltzfus & McCandlish [89] uncovered a ratio
of 132 transitions to 99 transversions (table 1)—a 2.7-fold
enrichment over the null.

Another example of transition-transversion bias in
natural adaptation involves a very large set of resistance
mutations identified clinically in the global human pathogen
M. tuberculosis, which exhibits a strong mutation bias towards
transitions [101] and evolves resistance to antibiotics exclu-
sively through chromosomal mutations [102]. Examining
two independently curated datasets, Payne et al. [103]
uncovered transition-transversion ratios of 1755 : 1020 and
1771 : 900, a 3.4-fold and 3.9-fold enrichment over the null,
respectively. They also took advantage of the special case of
Met-to-Ile replacements, which can occur via one transition



Table 1. Transition bias among natural parallelisms [89]. (For 10 different study systems implicating diverse taxa, the counts of parallel events are given for
transitions (Ti) and transversions (Tv) (because this study is conditioned on parallelism, each type of change has at least two events). The results show a strong
bias towards transitions. Note that some cases (marked by *) represent recent local adaptation of sub-populations to anthropogenic substances, while the rest
refer to episodes of adaptation from the distant past.)

phenotype taxon target

Ti events Tv events

counts sum counts sum

insecticide resistance* insecta Rdl, Kdr, Ace 2, 2, 5, 2, 3 14 9, 2, 4 15

tetrodotoxin resistance vertebrata Na channels 2, 6, 3 11 2, 2, 2, 3, 3 12

dlycoside resistance metazoa Na+/K+-ATPase 4, 4, 2, 2 12 7, 2, 2, 4 15

herbicide resistance* Poaceae ACCase 5, 2 7 7, 2, 4, 5 18

altitude adaptation Aves β-haemoglobin 4, 13 17 2, 3, 2 7

trichromatic vision vertebrata opsins 2, 5 7 6, 4, 2 12

echolocation mammalia prestin 2, 2, 2 6 3, 2 5

growth in Ritonavir* HIV1 protease 25, 7, 9 41 4 4

foregut fermentation vertebrata ribonucleases 2, 4, 4 10 0

benzimidazole resistance* ascomycota β-tubulin 7 7 5, 6 11

totals 132 99
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(ATG→ATA) and two transversions (ATG→ATT and
ATG→ATC). Thus a 1 : 2 ratio is expected under the null
hypothesis in which mutation bias has no effect. Instead,
they observed ratios of 88 : 49 and 96 : 39 in the two datasets,
roughly in fourfold excess of the null expectation.

What about other forms of mutation bias? In mammals
and birds, mutation rates are elevated at cytosine-guanine
dinucleotides (CpG) relative to other sequence contexts,
owing to the effects of cytosine methylation on DNA
damage and repair [104–106]. Genetic studies of high-altitude
birds provided the first hints that this form of mutation bias
may influence adaptation in nature, specifically the evolution
of increased affinity of haemoglobin for oxygen, which is
probably adaptive in hypoxic conditions and preferentially
occurs via missense mutations at CpG dinucleotides
[107,108]. Building off these observations, Storz et al. [109]
systematically analysed the genetic sequences of haemo-
globins in 35 matched, phylogenetically independent pairs
of high- and low-altitude bird populations. Among the 35
pairs, they found 22 changes in oxygen affinity plausibly
linked to altitude adaptation, implicating 10 different amino
acid changes in haemoglobins. Of these 10 amino acid
changes, six involved CpG mutations, whereas only one
CpG mutation would be expected by chance, a significant
excess. Thus, altitude adaptation in natural bird populations
shows a significant enrichment of mutationally likely genetic
changes, specifically mutations at CpG dinucleotides.

Taken together, the evidence summarized in this section
provides robust support for a large and predictable influence
of mutation biases on the changes involved in adaptation.
The most common adaptive variants are often not the most
fit, but the ones with the highest mutation rates. Quantitative
biases in nucleotide mutation rates can have proportional
effects, leading to a detailed match between the mutation
spectrum and the spectrum of adaptive changes, and results
from episodes of natural adaptation traced to the molecular
level suggest a broad taxonomic scope.
4. Applications
Addressing ecological, agricultural and biomedical chal-
lenges often involves seeking to limit the reproduction of
threatening biological agents such as microbial pathogens
and parasites. Accordingly, understanding the evolutionary
processes that give rise to problems of drug and pesticide
resistance can lead to marked advancements in the agricul-
tural and biomedical sciences. Extrapolating from its
general use in evolutionary modelling, here we discuss how
considerations of mutation-biased evolution shows tremen-
dous potential in addressing challenges of widespread
human concern, with a particular focus on evolutionary
dynamics in somatic contexts such as cancer, drug and
pesticide resistance and infectious disease.
(a) Somatic evolution
Human somatic DNA mutates throughout adulthood in a
manner that can cause disease, particularly as repeated
rounds of genome replication inmitotically active cells provide
opportunities for the emergence of mutant cells that have a
replicative advantage, often to the detriment of the organism.
Accounting for biases in mutation rates can provide improved
insight into the evolutionary dynamics that occur among
somatic cells [110]. In recent years, several studies exploring
the evolutionary conversion of healthy somatic cells to cancer
cells have shed valuable insights on the roles played by
mutation biases [110,111]. These are typically characterized as
so-calledmutation signatures [112,113], which describe nucleo-
tide mutation rates within a triplet context. When such
signatures are constructed using DNA sequencing data from
cancer cells, they simultaneously reflect mutation biases from
endogenous sources such as DNA repair processes, as well
as exogenous sources such as tobacco smoke [114]. Bioinfor-
matic techniques can then be used to decompose this global
mutation signature into underlying mutation signatures that
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can be attributed to these endogenous and exogenous sources
[112]. For example, the mutational signature associated with
APOBEC enzymes, which catalyse the deamination of cytosine
bases, is a major contributor to mutational burden in head and
neck squamous cell carcinomas [112]. A recent analysis of such
mutations found that the relative importance of mutations for
the cancer phenotype often differed from their prevalence,
with some variants occurring infrequently despite being
highly favoured by selection [115]. A more comprehensive
analysis featuring 7815 cancer exomes identified dozens of
highly statistically significant associations between cancer-
driving mutations and specific mutational signatures such
as those associated with environmental carcinogens and
mutagenic enzyme activity [116]. The vast majority of these
associations include deamination byAPOBEC and deficiencies
in proofreading and mismatch repair during replication. Intri-
guingly, this study also identified a negative association
between tobacco smoke and the G12D substitution in KRAS;
in other words, KRAS G12D is more common among the
lung cancers of non-smokers [116]. Consistent with this find-
ing, lung cancers harbouring the KRAS G12D substitution
were recently associated with a lower tumour mutation
burden [117,118], for which reason this mutation may serve
as a negative biomarker for the success of immunotherapy.
In addition to showing that the mutations most strongly
favoured by selection are not necessarily the most prevalent
among cancer patients, these findings suggest that mutational
biases facilitate a link between the source of carcinogenesis and
the predicted success of a given treatment.

What other factors may alter mutation rates in a manner
that predictably influences the progression and treatability of
cancer? Importantly, chemotherapy itself represents a source
of mutagenesis, suggesting that attempts to treat cancer may
inadvertently induce adaptive changes in the cancer that com-
plicates further treatment options. For example, although
mutations at residues 12 and 13 of the cell-signalling GTPase
KRAS have a higher selective advantage, the Q61H mutation
is common in colorectal cancers with resistance to the anti-
EGFR antibody cetuximab [119], owing to a mutational signa-
ture associated with chemotherapy that elevates T >G
transversions. Importantly, this work suggests that mutation
signatures can serve as a basis for predicting the evolution of
drug resistance in cancer patients. More recent investigation
has also found that depending on the cancer type, the predomi-
nant driver mutations can arise from ‘actionable’ mutation
signatures. In addition to tobacco, these drivers include
mutations associated with exposure to ultraviolet light and
endogenous processes associated with ageing [120]. By identi-
fying specific causal factors underlying the likelihood of driver
and drug-resistance mutations across different types of can-
cers, these findings provide a basis for predicting the efficacy
of preventative and therapeutic strategies.

Finally, in tissues such as skin and blood, the relative over-
proliferation of cell lineages with mutations conferring growth
advantages is another medically important evolutionary pro-
cess, and a target for prediction that may be informed by
mutation rates. For instance, in the case of clonal haematopoesis,
context-dependent nucleotidemutation rates play an important
role in determining the prevalance of different variants [121].
The most frequent variant in the most frequently implicated
gene, DNMT3a, is a CpG hotspot mutation changing Arg882
to histidine; but a change from Arg882 to cysteine, which
occurs with a lower mutation rate, confers a larger growth
advantage [121]. Similarly, a recent study of chronic myelogen-
ous leukaemia found that for the tyrosine kinase inhibitor
imatinib, epidemiological incidences of mutations conferring
drug resistance are best predicted by the likelihood of the
mutations rather than by their fitness effects [122]. Together,
these results highlight mutation bias as an important predictor
of somatic disease risk as well as drug resistance.
(b) Resistance to biochemical agents
The evolution of resistance to drugs and host immunity
represent substantial obstacles in the fight against disease.
Accordingly, by providing insights on the processes under-
lying adaptive evolution, accounting for the combined
roles of mutation and selection can improve our ability to
understand and thus predict how resistance evolves among
microbial pathogens. Specifically, are some mutational
trajectories towards drug resistance enriched for higher-
probability mutations than others, and can this information
be used to fight infectious disease, in particular by tailoring
treatment approaches that minimize the predicted likelihood
of drug resistance? Recent work exploring large datasets of
drug-resistance mutations has begun to shed light on these
questions. For example, the study by Payne et al. [103] dis-
cussed in the previous section suggests the evolution of
antibiotic resistance in M. tuberculosis is at least partially pre-
dictable, with some mutational paths towards resistance
occurring more frequently than others depending on the
relative abundance of transition mutations. Moving forward,
it will be greatly informative to comprehensively characterize
mutational paths towards resistance in a greater diversity
of infectious pathogens and across a wide panel of antibiotics.
By identifying drugs or drug cocktails for which mutational
paths towards resistance tend to be relatively depleted of
high-probability mutations, it may be possible to employ
treatment regimens that minimize the predicted likelihood
of evolved resistance, enabling treatments with longer-lasting
effectiveness.

Besides transition-transversion bias, how else might biases
in mutation rate guide the evolution of drug resistance? The
idea that the most mutationally probable changes are not
necessarily the most strongly favoured by selection implies
the existence of potential mutations that would be highly adap-
tive but whose rates of occurrence are negligible. Accordingly,
by altering the relative rates of mutation types, changes in the
sources of mutation may promote adaptation by enhancing
access to otherwise-rare beneficial mutations [50,53]. In one
recent example, point mutations in a DNA topoisomerase
gene, which is important for relieving topological stress in
DNA strands, were reported to introduce mutation hotspots
that result in new adaptive paths towards antibiotic resistance
in E. coli [123]. Although the relevance to infectious pathogens
remains unclear, these findings highlight a promising approach
towards identifying new potential mutational paths to the
evolution of antibiotic resistance. In particular, future work
may be able to determinewhether mutations in DNAmainten-
ance or repair genes shift the mutation spectrum in a manner
that promotes drug resistance evolution in pathogenic
bacteria. Granting such insights, we anticipate the potential
for bacterial genotyping as a predictor for the likelihood of
evolved resistance to specific classes of antibiotic.

As with antibiotics, the widespread use of pesticides and
fungicides in agriculture can select for the evolution of
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resistance, which has been reported in hundreds of species
[124,125]. Similar to many examples discussed in the previous
sections, mutation biases have been implicated in instances of
insecticide, fungicide and herbicide resistance (table 1) [89],
suggesting a broad range of potential agricultural applications
for incorporating mutation bias into evolutionary forecasting.
In addition to transition-transversion biases, how else might
mutation biases improve the predictability of resistance evol-
ution? To address this question, we consider examples of
natural mutators. Powdery mildews are fungal plant patho-
gens that belong to the genera Erysiphe and Blumeria and
represent a major agricultural threat [126]. These taxa have
undergone extensive loss of DNA mismatch repair genes
throughout their evolutionary history, leading to rapid,
mutation-biased genome evolution [73]. Importantly, heavy
use of fungicide has been reported to accelerate the evolution
of resistance in these taxa [126]. Whether variation in the mis-
match repair pathway predictably alters the likelihood of
resistance evolution remains unclear. However, the number
of mismatch repair genes lost during evolution varies greatly
across taxa and correlates with nucleotide substitution and
composition biases [73], which raises the interesting possibility
that the tendency for the genomic changes that facilitate fungi-
cide resistance might also correlatewith the loss of these genes.
It would be fascinating to address this possibility in future
work, in particular by interrogating the mutation spectra pro-
duced from targeted disruption of mismatch repair for their
tendencies towards fungicide resistance.
(c) Infectious disease
The COVID-19 pandemic represents an exceptional case study
in the importance of forecasting evolutionary trajectories
among both real and potential pathogens. Since the start of
the pandemic, scientists and medical professionals have
sought to understand themechanisms underlying both disease
severity and viral evolution, with the goal of maximizing
mitigation efforts and vaccine effectiveness. Toward this end,
numerous investigations of SARS-CoV-2 genomes have ident-
ified mutation biases strongly favouring uracil content,
with potential implications ranging fromvaccine design to per-
sonalized therapies and the emergence of new viral variants.
For example, Rice et al. [127] recently reported that although
mutation bias strongly favours U content, selection largely
occurs against U content, which raises the question about
how informative this mutation bias may be towards predicting
adaptive changes. On the other hand, a strongC-to-Umutation
bias was more recently reported to drive the diversification of
CD8+ T-cell epitopes and the depletion of proline residues,
which has been suggested to compromise T-cell immunity
among individuals carrying the human leucocyte antigen B7
serotype [128]. Because host immunity represents a strong
source of selection pressure on viral replication, the C-to-U
bias may be helping to sustain high COVID-19 infection rates
by facilitating immunity evasion within at least a subset of
the population. Thus, in addition to the evolution of drug
resistance as described above, mutation bias may shape
the evolution of viral pathogens in a manner that predictably
disrupts host immunity.

Given the abundance of recent changes in the spike protein
[129], it may be possible to draw statistical inferences about
whether, and to what extent, recent adaptations in SARS-
CoV-2 are mutation-biased. This will greatly inform our ability
to develop and implement accurate pandemic forecasting. In
particular, the most commonly observed adaptive mutations
are not necessarily the most fit. Accordingly, if the recent evol-
ution of SARS-CoV-2 has been largely determined by amino
acid changes that are mutationally favoured but selectively
suboptimal, then there may exist adaptive ‘jackpot’ mutations
that have yet to be sampled. In this case, a prolonged high rate
of infections could be expected to enable the eventual occur-
rence of low-probability mutations that substantially enhance
viral transmission. This scenario seems consistent with the
recurrent emergence of increasingly transmissible variants.
On the other hand, high COVID-19 infection rates raise
the question of whether the evolution of SARS-CoV-2 is
mutation-limited, especially given the ability of new variants
to spread between geographical regions and populations.
In either case, the rapid accumulation of amino acid replace-
ments provides a considerable sample of empirical data.
These data could be combined with estimates of mutation
rates in order to determinewhether recent or future emergence
of increasingly transmissible variants are driven by systematic
relationships between mutation rates and fitness effects.

In addition to SARS-CoV-2, the rapid pace of adaptive
evolution has made some pathogens such as HIV notorious
for their ability to evade our efforts to employ treatments
and vaccinations with long-term efficacy. As a retrovirus,
HIV requires reverse transcriptase to infect hosts, and numer-
ous reverse transcriptase mutations can confer resistance to
reverse transcriptase inhibitors that are used to treat HIV
infection. Importantly, owing to a bias favouring the G-to-A
transition mutation, the resistance-conferring M184I replace-
ment in reverse transcriptase was found to occur more
readily than M184V, despite the latter conferring greater repli-
cative fitness [130]. Consistent with this finding, theoretical
modelling has implicated G-to-A mutations, mediated by
the APOBEC family of host deaminases, in the evolution of
drug resistance in HIV [131].

How might such biases aid in the predictability of HIV
evolution? Recent work suggests that instances of parallel evol-
ution serve as a promising source of insight on this question. In
particular, the relative number of independent occurrences of a
given type of evolutionary change reflects its underlying prob-
ability: if one of two types of evolutionary change has a
twofold greater probability of occurring, it can be expected to
occur twice as often in independent lineages. Since the
chance of parallel or repeated evolution increases with greater
variance in mutation rates (see appendix B), mutation biases
raise the probability of particular types of evolutionary
change. Consistent with these theoretical expectations, a
long-term evolution experiment involving the continued pas-
saging of HIV in human T-cells revealed numerous instances
of parallel changes, characterized by a strong bias for G-to-A
transitions [96]. Unfortunately, because long-term evolution
is bound to involve the accumulation of both adaptive
and neutral changes, such experiments pose the challenge of
disentangling the roles of mutation and selection.

To overcome this difficulty, deep mutational scanning can
be used to isolate the functional effects of massive numbers
of individual mutations. For example, Haddox et al. [132]
used deep mutational scanning to characterize the amino
acid preferences at every site in the envelope proteins from
two HIV lineages. Results from such experiments can be com-
bined with measures of mutation rates to generate pairwise
estimates of rate and fitness effect for large numbers of



royalsocietypublishing.org/journal/rs

10
potential mutations. Such pairwise estimates enable the pre-
diction of likely sequence changes during evolution, since
the rate of such changes are jointly proportional to both
mutation rate and selection coefficient (equation (2.1)).
Finally, given its rapid rate of evolution, long-term evolution
experiments with HIV such as the one performed by Bertels
et al. [96] provide a wealth of empirical sequence changes
for testing and refining evolutionary predictions. By identify-
ing adaptive paths involving low-probability mutations, such
an approach could potentially uncover new drug and vaccine
targets that minimize the likelihood of evolved resistance,
leading to treatment regimens with longer-term effectiveness.
 tb
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5. Challenges
Theory and empirical evidence indicate thatmutation biases can
have predictable effects on the genetic changes fixed in adap-
tation under a broad range of population-genetic conditions.
In the context of research on the predictability of evolution,
the obvious application of these results is simply to absorb the
science that is already well established—nucleotide substitution
biases shape short-term adaptation—and apply that by using
available information on the mutation spectrum.

Beyond these obvious applications, what further gains
would be possible with new technology or a shift in resources
and attention? In this section, we suggest specific areas
in which a stronger focus on effects of biases in variation
might yield substantial gains, including (i) improving
measurements of basic quantities, (ii) expanding our atten-
tion beyond nucleotide substitution biases, and (iii)
assessing the predictability of mutational effects across
diverse conditions and timescales.

(a) Expanding coverage of basic measurements
The results reported above show the value of obtaining fun-
damental measurements of the following three quantities, for
each possible outcome: selection coefficient (s), mutation rate
(μ) and frequency of evolution (f ). In particular, the example
of Maclean et al. [62], as employed in figure 2 and appendix B,
shows that such data are extraordinarily valuable, yet this
case is small—just 11 variants—and we know of no other
comparable dataset.

More commonly, we have access to individual measures
of functional effects via deep mutational scanning, but no
individual mutation rates, which are instead represented
by a model of average rates for classes, e.g. a model of
two rates for transitions and transversions, or a model of
six types of nucleotide substitutions. Yet, as explained in
appendix B, prediction will always suffer when models of
average rates are used. Direct and indirect evidence indicates
individual rates have a large amount of variance (i.e. useful
information) that simplified models of mutation rates
simply do not capture, e.g. Maclean et al. [62] find a 30-fold
range in mutation rates for just 11 nucleotide substitution
mutations in the same gene; Hodgkinson & Eyre-Walker
[67] use a comparative method to estimate that a triplet con-
text model captures only about one-third of the actual
variance in mutation rates.

The technical barriers to addressing this rather stunning
deficit are rapidly disappearing. Until recently, methods for
measuring mutation rates dated from the 1940s and were
used infrequently [133]. However, newmethods for identifying
and tracking mutations are now appearing rapidly, including
methods based on real-time visualization [134], and methods
specifically designed to measure mutation rates accurately in
deep sequencing experiments [135,136]. We note that, if esti-
mates of μ, s and f are used to interrogate their relationships,
it is imperative to ensure that the estimates are unbiased with
respect to these relationships. For instance, some methods
used to study somatic evolution, e.g. clonal haematopoesis in
Watson et al. [121], infer both μ and s from a joint distribution
of population frequency and somatic prevalence (measures
obviously related to f ), and this raises the question of whether
they are subject to correlated errors, e.g. if under-estimation of s
induces over-estimation of μ.

We look forward to a future in which quantitative scientists
have access to well defined sets of fundamental measurements
for diverse model systems in somatic evolution, the emergence
of resistance to toxins, and the adaptive evolution of infectious
agents exploiting host resources.
(b) Exploring diverse sources of variational bias
Most approaches to analysis and modelling that incorporate
rates for nucleotide substitution mutations use a simplified
model, e.g. a two-parameter model (i.e. transitions and
transversions) or a six-parameter model. However, as noted
above, such models capture only a minority of the variance
in individual rates [67]. This is particularly important given
the common observation that adaptive outcomes are often
highly enriched for a few high-rate mutations that happen to
be favourable. This suggests an importance for improving
models for mutation hotspots, a topic that is rarely treated
(e.g. [137]). In addition, one must not overlook the possibility
of highly consequential correlations between mutational and
functional features of genomes, e.g. as in Monroe et al. [76].
Such correlations are important to consider whether one
thinks of them as evolved features (as argued by [76]) or coinci-
dences, e.g. Monroe et al. [138] find that, in prokaryotic
genomes, transcription-replication collisions result in some
very specific and large effects, including an orientation-depen-
dent fourfold increase in point mutations affecting promoters,
mostly due to T→Cmutations at position-7 relative to the start
of transcription.

Although much work remains to be done in terms of
basic measurements and models regarding single-nucleotide
mutations, there is a far larger universe of possible mutations
to explore, including multi-nucleotide mutations, compound
changes affecting dispersed sites, microindels (very small
insertions and deletions), the expansions and contractions
of highly variable repeat loci, segmental duplications, transpo-
sable element insertions, inversions, and chromosome fission
and fusion. A quantitative overview of this universe of
mutations is given in (Stoltzfus [33], app. B). Within each of
these categories, the distribution of individual mutation rates
will reflect (i) the immediate sequence context [112,139], (ii)
the regional chromosomal environment including local states
of expression and chromatinization [32,140], (iii) aspects of
the state of the cell reflecting age, DNA repair activities and
cell-cycle state (e.g. differences in nucleotide precursors,
repair enzymes or reactive oxygen species) [141–143], and
(iv) broad environmental factors such as ambient radiation
(e.g. exposure to ultraviolet light) and temperature [68,69].

Opportunities to improve prediction in this regard
arise most obviously when, for some specific prediction
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problem, evolution commonly involves mutations other than
nucleotide substitutions (and they also arise, less obviously,
when such mutations are probable under some conditions
but are not observed). For instance, segmental duplications
occur commonly in experimental yeast adaptation (e.g.
[144]), transposable element insertions are commonly impli-
cated in local adaptation of bacteria in nature (e.g. [145]), and
highly variable short-tandem-repeat loci have been implicated
in cases of short-term adaptation such as the domestication of
dogs [146]. A case of particular interest are multi-nucleotide
changes to codons [147], which have been observed in studies
of cancer [148], developmental disorders [149], SARS-CoV2
[150,151], and resistance to antimicrobials, e.g. inM. tuberculo-
sis [152]. Such mutations are a target of opportunity given the
kind of information already available, namely: (i) deep muta-
tional scanning studies, which cover the amino acid changes
that occur by double- and triple-nucleotide changes to
codons, and (ii) prior information on the underlying rate for
tandem double or triple mutations in eukaryotes, which
appears to be (in total) about two or three orders of magnitude
less than the total rate of single-nucleotide changes [147].

Finally, we stress that the literature on natural and exper-
imental evolution covers a variety of phenomena—under
the headings of predictability, contingency (repeatability),
constraints, genotype–phenotype maps, and so on—that are
not usually associated with the concept of mutation
bias but which are subject to the same rules of population
genetics as mutational effects under a scheme of aggregation
(appendix B). For instance, the genetic code is a genotype–
phenotype map dictating that there is one single-nucleotide
mutational path from Met (ATG) to Val (GTG), two paths
from Met to Leu (TTG, CTG) and three paths from Met to
Ile (ATT, ATC and ATA). The biases induced by this mapping
are not the same thing as mutation biases in the narrow sense
of biases imposed by the mechanism of mutagenesis: instead,
they are induced by an asymmetric mapping of genetic
changes into a phenotype space. Nevertheless, from the per-
spective of understanding effects of biases in the introduction
of variation, a scheme of aggregation that imposes twofold or
threefold biases has the same impact as a twofold or threefold
mutation bias. Likewise, when the mutational target size
of a trait or the mutational accessibility of an alternative
phenotype is identified [48,63,153–155], this corresponds
to a scheme of aggregation over elementary mutational
events. For instance, the series of studies from [155,156]
dissecting the emergence of the wrinkly spreader phenotype
in P. fluorescens provides a detailed look at asymmetries in the
mutational accessibility of an alternative phenotype. Ana-
lyses of genotype–phenotype maps in a wide diversity of
biological systems reveal that such asymmetries are
common [157]. In long-term evolution, the phenotypes that
have more genotypes are on the whole more ‘findable’
[51,158,159]. Understanding the extent to which these biases
have predictable effects on the genetic changes fixed in adap-
tation is an important direction for future research, i.e. the
challenge is to measure the predictive accuracy of different
kinds of aggregation (and some guidance for doing so is
provided in appendix B).
(c) Considering diverse conditions and timescales
The most robust empirical and theoretical results available
today focus on short-term or one-step adaptation, and the
effects are best understood for the case of mutation-limited
conditions, although we are beginning to get a clear sense of
what happens asmutation supply increases and clonal interfer-
ence becomes common in finite spaces [29,56,58] or infinite
ones (appendix B, [57]). These results are relevant to many
challenges in prediction, as we have argued above, e.g. anti-
biotic resistance. However, a challenge for future research is
to expand the consideration of mutational effects to cover
longer timescales and a greater diversity of contexts, including
evolution from standing variation and synthetic evolution.
Attempts to predict long-term effects of mutation bias, for
instance, can take advantage of limited theory currently avail-
able on how mutation bias influences multi-step trajectories to
adaptation [49–53].

Regarding evolution from standing genetic variation,
when multiple beneficial alleles are present in numbers
high enough to escape random loss, the most fit allele
typically wins [63]. This appears to leave no room for
effects of mutation bias, but actually it just pushes the
question of origination biases into a different realm,
where the primary question concerns how the distribution of
standing variation is shaped by tendencies of mutation. For
instance, the rate of length changes in short tandem repeat
loci is so high that the vast majority of such loci will exhibit
standing variation for length in a moderately sized population,
and this is relevant for cases such as short-term evolution of
gene expression [160].

Finally, mutation bias may improve evolutionary forecast-
ing in synthetic evolution [161], such as in laboratory
evolution experiments with genomically recoded organisms
[162–165] or engineered mutagenesis mechanisms [166]. For
instance, a directed evolution technique called Orthorep
uses an orthogonal DNA polymerase to introduce mutations
to plasmid-borne target genes [166]. The polymerase’s
mutation spectrum is heavily biased towards G : C→A : T
transversions [167], which may influence evolutionary out-
comes, such as the primary and promiscuous functions of
enzymes [168]. More broadly, synthetic evolution provides
a useful testbed for mutation-biased adaptation theory, as
the mutation spectrum can be manipulated under controlled
laboratory conditions, and evolutionary outcomes can be
quantified with DNA sequencing and phenotypic assays.
6. Conclusion
We have presented theoretical arguments and empirical evi-
dence that mutation bias can have predictable effects on the
genetic changes fixed in adaptation. In studies of adaptation
in diverse contexts, where fitness effects have been measured,
it is regularly observed that the most common outcome is
not the most fit: instead, it is often a beneficial variant with
an extreme rate of mutational origin. More generally, the
spectrum of changes observed in adaptation reflects the
mutation spectrum. Sometimes this effect can be quite
strong, even proportional. The study of mutation-biased
adaptation has achieved some degree of quantitative and
theoretical sophistication, although much remains to be
determined about factors such as the influence of popu-
lation-genetic conditions, and the scope of applicability in
natural adaptation.

On this basis, we can make a strong argument that knowl-
edge of mutation bias can be used to improve evolutionary
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forecasting. We have highlighted applications where we think
this approach may prove particularly valuable, in relation to
somatic evolution, resistance to toxins and the adaptation of
infectious agents to make use of host resources. Our hope is
that this review will serve as a useful source of guidance
for those implementing approaches to prediction, and that
the information contained in it will be quickly eclipsed by
more diverse, general and precise results.
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Appendix A. Mutational biases in models with
finite and infinite sites
Consider the case where there are m possible beneficial
mutations, and the ith beneficial mutation has selection coef-
ficient si and mutation rate μi. We assume that the si’s are
drawn independently from the same distribution of muta-
tional effects on fitness. For a population of size N, under
what circumstances do the μi’s influence which of these m
mutations will be the first to reach fixation?

To gain some intuition for this question it is helpful to
consider two limiting situations:

(i) in the limit of very large mutation supply, in particular
if Nμi≫ 1 for all μi, i ¼ 1, . . ., m, all possible beneficial
mutations are introduced into the population in each
generation. These mutations will all compete with
each other and, assuming that mutation rates are
small relative to selection coefficients, ultimately the
fittest of the m mutations will go to fixation. To see
the consequences of this result, consider single-nucleo-
tide substitutions, which can be classified as either
transitions or transversions. Because there are twice
as many transversions than transitions, the fittest
variant, that is the one that will eventually go to fix-
ation, has two times the probability of being a
transversion than being a transition. Thus, under
these conditions, the expected transition : transversion
ratio among adaptive substitutions would be 1 : 2,
regardless of whether transitions arise at a higher
rate; and

(ii) now let us consider the limit where all the Nμi are
small (specifically, assume

P
i Nmisi � mini si= logN,

so that the first beneficial mutation to become estab-
lished in the population will typically have sufficient
time to reach fixation before the next beneficial
mutation is able to become established, [54]). In this
setting, the probability that a mutation will be the
first to go to fixation is proportional to both its
mutation rate and its selection coefficient (equation
(2.1)), so that all other things being equal, we expect
that classes of mutation with high mutation rates,
such as transitions, will be over-represented among
fixed mutations. For instance, if the mutation rate for
individual transitions is κ times the mutation rate for
individual transversions (μi/μj = κ if i is a transition
and j is a transversion), then we expect a transition :
transversion ratio of κ : 2 among fixed mutations.

Thus, broadly speaking, mutational biases will tend to
have a stronger influence on molecular adaptation when
the beneficial mutation supply is low, because in this
regime the first beneficial mutation that becomes established
in the population is likely to go to fixation rather than the
fittest possible mutation, and the waiting time until a
mutation becomes established is inversely proportional to
its mutation rate.

Another common class of models are the infinite sites
models, where we assume that each new mutation has a
selection coefficient that is drawn independently from
some distribution of fitness effects. In this class of models,
if different types of mutations share the same distribution
of fitness effects, then the relative proportions of different
types of mutations among fixed mutations always varies
in a manner directly proportional to the mutational bias.
For example, if we consider transitions and transversions,
for each selection coefficient s, the transitions : transversion
ratio among mutations with that selection coefficient is κ : 2.
Thus no matter how competition between co-segregating
mutations alters the distribution of fixed selection coefficients
relative to the overall distribution of fitness effects, the
expected transition : transversion ratio among fixed
mutations will always be κ : 2. The results of this intuition
are shown graphically using evolutionary simulations in
figure 4. Even though we see the effects of competition
between multiple adaptive mutations as a departures from
the origin-fixation expectation that sets in at a total mutation
supply 2Nμ≈ 1 (figure 4), the ratios of fixed mutations
are proportional to the introduction rates regardless of the
value of the mutation supply (figure 4). In the more general
case of infinite sites models for mutational types that do
not share the same distribution of fitness effects, the strict
proportionality with mutation rates need not hold, however
a similar intuition applies in that we can consider the relative
proportion of each mutational type for each possible selection
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dashed lines show the expectation under the origin-fixation regime (i.e. no clonal interference) for the favoured class and the disfavoured class in black and grey,
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figure S1.
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coefficient s, and then the relative frequencies of fixed
mutations can be determined by averaging these proportions
over the characteristic distribution of selection coefficients
[55] fixed during adaptation.

The simulation code is available in a GitHub repository at
https://github.com/alejvcano/infiniteSites.
Appendix B. Quantifying contributions of
mutation and selection to repeatability
How do mutation and selection contribute to the predictabil-
ity of evolution? Can we partition their effects? One sense of
predictability is repeatability, the chance that the outcome of
evolution will match what we have seen before. Let us define
repeatability as the chance of parallel evolution between a
pair of trials. If we have n elementary outcomes, each hap-
pening with some probability pi, then repeatability Ppara is
the sum of squares of pi:

Ppara ¼
Xn
i¼1

p2i : ðB 1Þ

This is equivalent to the measure known as Simpson’s
index S(p), where by p we denote the vector of pi’s (analo-
gously, we use bold symbols to denote vectors of variables
in the following). Simpson’s index has a simple relationship
to the variance VarðpÞ or coefficient of variation c(p) of the
distribution of elementary probabilities:

Ppara ¼ SðpÞ ¼ nVarðpÞ þ 1
n
¼ cðpÞ2 þ 1

n
: ðB 2Þ

Under uniformity, VarðpÞ ¼ cðpÞ ¼ 0, and Ppara = 1/n. The
greater the variance in probabilities, the greater the chance
of parallelism. Any factor that increases variance, increases
parallelism. Likewise, any approach to prediction that ignores
variance, e.g. by aggregating outcomes into classes whose
members are assigned the average behaviour of the class,
will underestimate parallelism.
One of the ways to quantify the effect of heterogeneity is
to compute an effective number of options with the same
chance of recurrence under uniformity, equal to the inverse
of the probability of parallelism, i.e. ne = 1/Ppara, comparing
that to n. If one state has p = 1 and the others have p = 0,
then repeatability is 1, and ne = 1. If all states are equally
likely, then pi = 1/n for all i, ne = n and the repeatability isPð1=nÞ2 ¼ 1=n. From the 20 replicates of Rokyta et al. [59],
the counts ranked by selection coefficient are k = [1, 5, 3, 6,
1, 1, 1, 1, 1], thus repeatability is

P
iðki=20Þ2 ¼ 0:19, and

ne = 5.2, i.e. the effect of heterogeneity in pi’s is like reducing
the choices from 9 to 5.2. Note this calculation ignores
sampling error by treating the observed frequency fi as the
true probability pi.

How could we partition repeatability to effects of
mutation and selection? This is possible for the special case
of origin-fixation dynamics [47]. For event i, an origin-fixation
process specifies a rate Nμiπi, with πi being the fixation prob-
ability of the event, so that its application in the current
context means that pi∝ μiπi. Then the chance of parallelism
is given by

Ppara ¼ ðcðmÞ2 þ 1ÞðcðpÞ2 þ 1Þ
n

, ðB 3Þ

if we can assume that covariance of μ and π, as well as the
covariance of the squares of μi’s and squares of πi’s is
0. In general, the fixation probability π( · ) is a function of s,
the selection coefficient, and N, population size [60].
However, under strong selection weak mutation conditions
π(s, N )≈ 2s [42], and this leads directly to the result of
Chevin et al. [61]:

Ppara � ðcðmÞ2 þ 1ÞðcðsÞ2 þ 1Þ
n

: ðB 4Þ

Consider some applications of equation (B 3). For the results
of Rokyta et al. [59], c(π)2 + 1 = 1.086 for the probabilities of
fixation computed from the reported selection coefficients,
and c(μ)2 + 1 = 1.33 for mutation rates (given the model

https://github.com/alejvcano/infiniteSites
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described by the authors), so mutational heterogeneity con-
tributes slightly more. For the 11 variants from Maclean
et al. [62] with known mutation rates, c(μ)2 + 1 = 7.93 and
c(π)2 + 1 = 1.05, so mutational heterogeneity is contributing
much more. This disparity reflects a 30-fold variability in
mutation rates, but only about twofold range in probabilities
of fixation, given that all the resistant variants have large
selection coefficients (because π(s, N )≈ 2s does not apply
for large s, we must use equation (B 3) instead of (B 4)).
Note that this framework does not fully partition the effects
of mutation and selection, as these factors are conflated in
determining n, which in practice reflects the number
of mutations that are both sufficiently beneficial and suffi-
ciently mutationally likely to have an appreciable chance of
being detected.

Finally, it is of interest to consider repeatability when out-
comes are aggregated. In the case of predicting phenotypes, a
genotype–phenotype map is used to assign a phenotype to
each of the n elementary outcomes. Alternatively, the cat-
egories could be defined by genes [63,64], pathways, or
gene ontology (GO) categories, as per Tenaillon et al. [65].
Suppose that the n elementary outcomes are assigned fully
to mutually exclusive groups of size m1, m2,…mℓ by a func-
tion f such that f (i) = j when outcome i is in group j, and
suppose further that f ( · ) assigns outcomes randomly. Then
(as given in the mathematical appendix), the expected
probability Pgpara that two outcomes of evolution are in the
same group is:

EPgpara ¼
X‘

j¼1

X
ijf ðiÞ¼j

p2i

0
@

1
A¼ n

n� 1
SðpÞþSðgÞ�SðpÞSðgÞ� 1

n

� �

� SðpÞþSðgÞ�SðpÞSðgÞ,
ðB5Þ

where S(p) is Simpson’s index over n elementary outcomes
and SðgÞ ¼ P‘

j¼1ðmj=nÞ2 is Simpson’s index of the partition
into ℓ groups (and where the approximation is valid for
large n). The effect of aggregation is always to increase paral-
lelism. Note that equation (B 5) is symmetric in S(p) and S(g),
so that the effect of the probability distribution for elementary
events is the same as the effect of the probability distribution
of categories. The use of this formula is that the prediction
success of a concrete scheme of aggregation (e.g. GO
categories) can be compared to the baseline expectation
for a random aggregation with the same distribution of
category sizes.
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