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Pyramidal cell types drive functionally 
distinct cortical activity patterns during 
decision-making

Simon Musall    1,2,8  , Xiaonan R. Sun    3,4,8, Hemanth Mohan    3,5, Xu An    3,5, 
Steven Gluf3, Shu-Jing Li3, Rhonda Drewes3, Emma Cravo2, Irene Lenzi1,2, 
Chaoqun Yin    6, Björn M. Kampa2,7 & Anne K. Churchland    3,6 

Understanding how cortical circuits generate complex behavior requires 
investigating the cell types that comprise them. Functional differences 
across pyramidal neuron (PyN) types have been observed within cortical 
areas, but it is not known whether these local differences extend throughout 
the cortex, nor whether additional differences emerge when larger-scale 
dynamics are considered. We used genetic and retrograde labeling to target 
pyramidal tract, intratelencephalic and corticostriatal projection neurons 
and measured their cortex-wide activity. Each PyN type drove unique neural 
dynamics, both at the local and cortex-wide scales. Cortical activity and 
optogenetic inactivation during an auditory decision task revealed distinct 
functional roles. All PyNs in parietal cortex were recruited during perception 
of the auditory stimulus, but, surprisingly, pyramidal tract neurons had 
the largest causal role. In frontal cortex, all PyNs were required for accurate 
choices but showed distinct choice tuning. Our results reveal that rich, 
cell-type-specific cortical dynamics shape perceptual decisions.

The neocortex is organized into discrete layers that form a conserved 
microcircuit motif. Each layer consists of distinct cell types that can be 
categorized by genetic markers, morphology, anatomical projections 
or developmental lineage1. The precise interplay across cell types is cru-
cial for cortical computations and their functional roles are intensely 
studied. For cortical interneurons, cell-type-specific mouse lines have 
enabled tremendous progress and revealed the functional arrangement 
of inhibitory circuit motifs2–4, for example, for network synchroniza-
tion5–7 and state-dependent sensory processing8–11. However, the roles of 
glutamatergic PyN types are less well established, although PyNs make up 
~80% of all cortical neurons and form almost all long-range projections 
that enable the communication between cortex and other brain areas.

While often treated as a monolithic group, PyNs are far more 
diverse than interneurons. RNA sequencing indicates at least 100 
putative subtypes that are often intermingled within the same lay-
ers12–17. PyNs are also broadly categorized into two major types based 
on their long-range projections: intratelencephalic (IT) neurons pro-
ject to other cortical areas and the striatum, while pyramidal tract 
(PT) neurons project to subcortical structures, such as the pons and 
thalamus. PT and IT neurons also differ in their electrophysiological 
properties, dendritic arborization, local connectivity and sensory 
tuning15–17. Moreover, only PT neurons in sensory cortex are required 
for perception of tactile or visual stimuli, suggesting that PT and IT 
neurons encode separate streams of information18,19. Correspondingly, 
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Next, we tested if spatial sNMF components, representing 
cortex-wide maps of positively correlated areas, were PyN-type spe-
cific. Indeed, components from different mice of the same PyN type 
strongly resembled each other but differed from other PyN types 
(Fig. 2b). To assess if most components were PyN-type specific, we 
performed a uniform manifold approximation and projection (UMAP) 
analysis of the first 20 components from all recordings, nonlinearly 
embedding the pixels of each component in a two-dimensional space 
(Fig. 2c)35. In agreement with the notion that components of the same 
PyN type resembled each other, PT and IT components formed strong 
clusters (green/blue markers). EMX neurons formed a third set of nono-
verlapping clusters, likely reflecting the combined cortical dynamics 
from diverse PyN types beyond PT and IT neurons (red markers).

A simple classifier reliably identified each group, based on the 
nearest neighbors in a UMAP projection using data from other animals. 
Remarkably, even single-component classification achieved very high 
prediction accuracy, although components were pooled over many 
sessions and mice (Fig. 2d). UMAP clusters therefore reflect consistent 
PyN-type-specific activity patterns, rather than idiosyncratic differ-
ences or noise. These results clearly demonstrate that PyN types differ 
in the complexity of cortical dynamics, contain independent variance 
and exhibit unique cortex-wide correlation patterns.

An important concern is that nonuniform Cre expression could 
contribute to PyN-specific spatial components. However, in vivo 
GCaMP-related fluorescence was largely uniform, with no clear rela-
tionship between widefield fluorescence or PyN-type-specific spatial 
components and Cre expression patterns (Extended Data Fig. 2). Nev-
ertheless, particularly distinct PyN-type activity in specific cortical 
areas could lead to cortex-wide correlation patterns either that are 
dominated by highly active areas or where inactive areas are ‘miss-
ing’. We therefore used localized sNMF (LocaNMF)33, which extracts 
components that are restricted to a specific cortical ‘seed’ region  
(Fig. 2e). Analyzing LocaNMF components therefore allowed us to 
reveal if PyN-specific differences mostly occur on a cortex-wide level 
(reflecting the interactions between cortical areas) or extend to specific 
properties of local cortical areas (reflecting PyN-type-specific differ-
ences in the shape or localization of individual areas).

The number of LocaNMF components was greater than sNMF and, 
interestingly, more similar across PyN types (Fig. 2f). PyN-type-specific 
differences in cortex-wide correlation patterns are therefore not due 
to low activity in specific cortical areas (which would reduce the total 
number of required components, for example, in PT mice) but reflect 
differences in the coordinated activation of multi-area cortical net-
works. UMAP embedding of LocaNMF components also uncovered 
PyN-type-specific clustering (Fig. 2g), which accurately identified each 
PyN type across most cortical regions (Fig. 2h and Extended Data Fig. 2d).  
PyN-type specificity of LocaNMF components could indicate either 
specific ‘subregions’, where PyN types are most active in smaller parts of 
a given cortical area, or larger ‘superregions’, where PyN-type-specific 
activity extends across area borders. We compared the size of LocaNMF 
components that accurately predicted their respective PyN type (clas-
sifier accuracy > 99%) versus nonspecific components. Interestingly, 
PyN-predictive components were significantly smaller than nonspe-
cific components (Fig. 2i), suggesting that different PyNs might be most 
active in distinct subregions instead of larger multi-area components. 
This indicates that smaller, PyN-type-specific subregions may reside 
within the coarser, traditionally defined cortical areas.

Pyramidal tract and intratelencephalic neurons show distinct 
task-related activity
We next assessed functional PyN-type-specific cortical dynamics by 
imaging animals during auditory decision-making (Fig. 3a)36. Mice 
touched small handles, triggering the simultaneous presentation of 
click sequences to their left side and right side. After a delay, choosing 
one of two water spouts was rewarded when licking on the side where 

specific PT neurons in secondary motor cortex (M2) are involved in 
motor generation13,20. The functional divergence of PyN types could 
therefore be key for understanding cortical microcircuits, with PT and 
IT neurons forming functionally distinct, parallel subnetworks that 
independently process different information. However, the functional 
tuning of individual PyNs in frontal cortex remains best predicted by 
cortical area location instead of laminar location or projection type21. 
Because PyN-type-specific activity has only been studied in single areas, 
it is therefore not known whether PyN-specific subcircuits are the rule 
or the exception across cortical areas.

An ideal method to address this question is widefield calcium 
imaging, allowing neural measures across the dorsal cortex with 
cell-type specificity22–24. Interneuron-specific widefield imaging 
revealed distinct spatiotemporal dynamics for different inhibitory cell 
types during an odor detection task25. However, cortex-wide studies of 
different PyN types are lacking, partly due to the limited availability of 
PyN-specific driver lines26–28. Here, we used two novel knock-in lines26 
and measured cortex-wide PT or IT activity while animals performed a 
perceptual decision-making task. Moreover, we used retrograde labe-
ling to measure the activity of corticostriatal (CStr) projection neurons 
throughout the dorsal cortex. Dimensionality-reduction and clustering 
analyses revealed unique cortex-wide dynamics for each PyN type, 
suggesting the existence of specialized subcircuits. Cortical dynam-
ics of different PyNs were further segregated based on their role in 
decision-making, with encoder and decoder approaches revealing the 
strongest stimulus-related and choice-related modulation in sensory, 
parietal and frontal cortices. This was confirmed by PyN-type-specific 
inactivation experiments. In parietal cortex, PT neurons were most 
important for sensory processing, while all PyN types in frontal cor-
tex were needed for choice formation and retention. Taken together, 
our results demonstrate that different PyN types exhibit functionally 
distinct, cortex-wide neural dynamics with separate roles during per-
ceptual decision-making.

Results
Pyramidal tract and intratelencephalic neurons show distinct 
cortex-wide activity patterns
We used CreER lines to measure the activity of two developmentally dis-
tinct PyN types: Fezf2-CreER targeting PT neurons and PlexinD1-CreER tar-
geting IT neurons26, crossed with Ai162 mice29 to achieve PyN-type-specific 
expression of the calcium indicator GCaMP6s. As expected for corticofu-
gal PT neurons, GCaMP expression in Fezf2 mice was concentrated in layer 
5b with axonal projections to subcortical regions and the corticospinal 
tract (Fig. 1a). In PlexinD1 mice, expression was restricted to layers 2/3 
and 5a with axonal projections in the corpus callosum and the striatum, 
matching intracortical and corticostriatal IT neurons (Fig. 1b).

We then measured PyN-type-specific cortical activity with wide-
field imaging. In both lines, we observed rich neural dynamics across 
cortex (Supplementary Videos 1–3) and retinotopic mapping revealed 
known visual area locations (Fig. 1c)30,31. Retinotopic maps were simi-
lar to those in Ai93D;Emx-Cre;LSL-tTA (EMX) mice with nonspecific 
GCaMP6f expression across PyNs32, suggesting that the functional 
architecture of visual areas is comparable across PyN types. However, 
the variance of cortical activity was clearly PyN-type specific, being 
largest in parietal and frontal regions in PT neurons, and visual and 
somatosensory regions in IT neurons (Fig. 1d). Variance maps were also 
highly consistent across individual mice in the same group (Extended 
Data Fig. 1a), indicating PyN-type-specific differences in cortex-wide 
activity patterns. To isolate activity patterns, we therefore performed 
semi-nonnegative matrix factorization (sNMF), reducing the imag-
ing data to a small number of spatial and temporal components that 
capture >99% of all variance23,33. Surprisingly, PT neurons had a lower 
dimension than IT neurons (Fig. 2a), potentially because IT neurons 
encompass a larger number of specialized subtypes than PT neurons 
and thus support a wider range of functions34.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-022-01245-9

more clicks were presented. To reduce temporal correlations across 
task events, the durations of the initiation, stimulus and delay periods 
were randomly varied across trials. In all mice, decisions varied system-
atically with stimulus strength (Fig. 3b) and were equally affected by 
clicks throughout the stimulus period (Extended Data Fig. 3a).

Trial-averaged temporal sNMF and LocaNMF components also 
showed pronounced clustering, suggesting that PyN types exhibit 
unique task-related temporal dynamics (Extended Data Fig. 3b). Cor-
respondingly, trial-averaged neural activity between PyN types was 
clearly distinct, especially during stimulus presentation when EMX 
activity was uniformly suppressed, IT activity was partially suppressed 
in somatosensory and visual cortex, and PT activity was uniformly 
elevated (Fig. 3c,d). Cortical activity was largely symmetric between 
hemispheres, even when only analyzing trials where both stimuli and 
subsequent choices were leftward (Extended Data Fig. 4). Moreover, 
stimulus responses were much weaker than movement-related activ-
ity, such as trial initiation or licking (Fig. 3d). Lateralized, task-related 
activity could have therefore been obscured by cortical activity due to 
animal movements32,37–39.

To isolate task-related activity, we used a linear encoding model, 
combining many task-related and movement-related variables (Supple-
mentary Table 1) to predict single-trial fluctuations in cortical activity 
(Fig. 4a)32. Task variables included sensory stimuli, and past and current 
choices. Movement variables included licking, handle touch or facial 
movements (see Methods for a complete variable list). After combin-
ing all variables and fitting the model, we obtained time-varying event 
kernels, showing how each variable (for example, the sensory stimulus) 
relates to cortical activity. This allowed us to separate task-related and 
movement-related activity.

To assess the accuracy of model predictions, we computed the 
cross-validated explained variance (cvR2). Across PyNs, the model 
captured a large fraction of single-trial variance throughout dorsal 
cortex (Fig. 4b) and, consistent with earlier results32,37, movements 
captured more variance than task variables (Fig. 4c). We then focused 
on the event kernels for stimulus and choice, to reveal their respec-
tive PyN-type-specific cortical dynamics. To ensure that stimulus 
and choice accounted for a sizable amount of the neural activity, we 
computed the variance that each kernel contributed to the full model 
compared to the sum of all movement variables (Fig. 4d). While move-
ment variables made the largest model contributions (~60% explained 

variance), both stimulus and choice also made sizable contributions 
(10–20% explained variance). Stimulus and choice therefore remain 
important for understanding cortical activity patterns and can be 
leveraged to selectively isolate task-related activity.

We first investigated responses to the auditory stimulus. In con-
trast to trial averages of ΔF/F (Fig. 3c), EMX stimulus kernels uncovered 
lateralized responses in auditory, parietal and frontal cortex while 
somatosensory and visual cortex, were inhibited (Figs. 4a and 5a). 
Sensory-locked responses were also present in auditory, parietal and 
frontal cortices of PT and IT mice but no inhibition was apparent in PT 
mice. Sensory responses were particularly PyN-type-specific in the 
parietal cortex: EMX and IT responses were localized in area A, while PT 
responses were most prominent at the border between areas AM and 
RS (Fig. 5b). While some areas, such as auditory cortex, preferentially 
responded to contralateral stimuli, PT neurons in parietal cortex were 
activated bilaterally in response to ipsilateral or contralateral stimuli. 
To assess such side-specificity, we subtracted ipsilateral from con-
tralateral stimulus kernels (Fig. 5c). EMX responses were lateralized 
in auditory, frontal, and to a lesser extent parietal cortex (Fig. 5c,d). 
Lateralized IT responses were found in auditory and parietal but not 
frontal cortex. In contrast, PT responses were lateralized in auditory 
and frontal but not in parietal cortex. Such differences in unilateral 
versus bilateral responses in PT and IT neurons may also reflect diver-
gent functional roles, with unilateral responses encoding the spatial 
location of sensory information and bilateral responses representing 
stimulus salience.

Pyramidal neuron-type-specific choice signals in frontal 
cortex
Having identified PyN-type-specific sensory responses, we then exam-
ined choice-dependent activity and again observed clear differences 
across PyN types. In EMX mice, choice-related activity was strongest in 
the frontal cortex, while sensory and parietal regions were only weakly 
modulated (Fig. 6a). We also found choice signals in whiskers and nose 
somatosensory areas that slowly increased during the trial (Extended 
Data Fig. 5a), potentially because of subtle, choice-predictive whisker 
or facial movements40. In contrast, frontal choice-specific activity 
strongly increased after stimulus onset and remained elevated into 
the delay period (Fig. 6a). While PT neurons showed similarly robust 
choice signals, there was little evidence of IT choice activity (Fig. 6b and 
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from retinotopic mapping experiments. IT and PT populations showed clear 
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maps from same mice as in c, showing most modulated cortical regions in each 
PyN type.
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Extended Data Fig. 5b,c). In EMX and PT mice, positive contralateral 
choice signals were concentrated in the medial M2 with some inhibi-
tion in primary motor cortex (M1). This could indicate accumulation 
of sensory evidence and motor preparation in M2, and inhibition in 
parts of M1 when early lick responses must be witheld41.

Although choice kernels revealed PyN-type-specific differences, 
they only accounted for a small amount of the total neural variance 
(Fig. 4d). Because the encoding model maximizes explained variance, 
we hypothesized that it might miss specific but low-magnitude choice 
signals. To isolate all choice-related activity, we therefore used a logistic 
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LocaNMF analysis. f, Number of LocaNMF components, accounting for 99% of 
variance per PyN type. Conventions as in a. g, UMAP projection embedding of 
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types. Maps show example LocaNMF components (I–III). h, Accuracy of a PyN 
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sum test: P < 10−10). Examples of PyN-predictive (I and II) and nonspecific (III) 
components in right parietal cortex.
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regression classifier with L1 penalty. In contrast to the encoding model, 
this decoder approach isolates cortical signals that are best suited 
to predict choices, regardless of their magnitude. Across PyNs, the 
decoder predicted trial-by-trial choices with high accuracy (Extended 
Data Fig. 5d). When analyzing the decoder weights, we found compa-
rable patterns to the encoding model’s choice kernels but with much 
clearer separation of cortical areas (compare the top row for ‘Delay’ in 
Fig. 6c to left of Fig. 6a). Here, positive decoder weights denote areas 
that are most predictive for contralateral choices but, importantly, this 

does not suggest that these areas are necessarily the most active. We 
found substantial choice signals in multiple areas of the anterior cortex 
that evolved during decisions (Fig. 6c and Extended Data Figs. 5e and 6).  
In EMX and PT mice (top and bottom rows), large parts of M2 were 
again highly choice predictive, including the anterior lateral motor 
cortex (ALM) and the medial motor cortex (MM)21. M2 choice weights 
strongly increased immediately after stimulus onset and remained 
elevated during the subsequent delay period (Fig. 6c,d). Additionally, 
cortical choice signals persisted after removing movement-related 
activity from the data, suggesting that they are not explained by 
choice-predictive animal movements but instead reflect the forma-
tion of sensory-driven decisions in frontal cortex (Extended Data Fig. 7).

Surprisingly, we also found a mild ipsilateral choice preference 
for M2 in IT mice, despite strong bilateral activation of frontal cortex 
during the delay period (Fig. 3c). Ipsilateral choice signals evolved 
more slowly during the stimulus and delay periods (Fig. 6c,d) and were 
spatially restricted to the ALM (Fig. 6e). No choice signals were seen in 
parietal cortex of any PyN type (Fig. 6d), suggesting that parietal cortex 
is mostly involved in sensory processing instead of choice formation 
or motor execution42,43.

Corticostriatal projections neurons are a functionally 
divergent intratelencephalic subclass
The decoder recovered fine-structured choice maps, especially in fron-
tal cortex, revealing contralateral and ipsilateral choice signals in PT 
and IT mice, respectively. This unexpected inversion could be due to 
different choice selectivity of specific IT subtypes: intracortical versus 
CStr projection neurons. Earlier work suggested an even distribution 
of ipsilateral and contralateral choice selectivity in frontal intracortical 
projection neurons20,21. We thus hypothesized that IT choice selectiv-
ity is shaped by CStr neurons. To address this, we developed a retro-
grade labeling approach by injecting CAV-2-Cre in reporter mice to 
induce widespread expression of GCaMP6s in CStr neurons (Fig. 7a,b).

Using widefield imaging, we observed robust CStr-related fluo-
rescence (Supplementary Video 5) and identified visual areas using 
retinotopic mapping (Extended Data Fig. 8a). sNMF showed that the 
dimensionality of CStr mice was intermediate between PT and IT activ-
ity, with spatial components forming independent clusters from other 
PyN types (Extended Data Fig. 8b,c). The clear difference between 
IT and CStr mice suggests that IT dynamics represent a mixture of 
intracortical-projecting and corticostriatal-projecting IT neurons with 
distinct activity patterns.

Trial-averaged CStr activity during the auditory task partially 
resembled IT activity (for example, in frontal cortex) but also showed 
clear differences, such as a lack of pre-stimulus suppression in sensory 
cortex (Fig. 7c,d). CStr and IT mice also differed in their respective 
stimulus kernels: stimulus-related CStr activity in parietal cortex was 
stronger than in sensory and frontal cortex but the peak parietal activity 
was more medial compared to IT mice (Fig. 7e). Interestingly, the loca-
tion of stimulus-driven parietal regions (Fig. 7f) closely resembled the 
anatomical and functional topography to the dorsomedial striatum44,45. 
As with PT neurons (Fig. 5b,d), parietal CStr responses were similar for 
contralateral and ipsilateral stimulation (Fig. 7f).

To determine if CStr activity contributed to ipsilateral-preferring 
IT choice signals, we used the decoder that predicted choices with 
equally high accuracy as for PT and IT mice (Extended Data Fig. 8d). 
We then extracted choice weights for each task episode. CStr activity 
was overall similar to IT mice, with an even stronger ipsilateral choice 
preference in frontal cortex that started after stimulus onset and lasted 
throughout the delay and response periods (Fig. 7g). This inversion 
from contralateral to ipsilateral choice preference was again prominent 
in ALM but did not extend to MM, strongly suggesting that ipsilateral 
choice preference is driven by IT-CStr neurons.

To confirm these results at cellular resolution, we recorded all 
PyNs in frontal cortex with two-photon calcium imaging and identified 

c

d

ResponseStimulusInitiate Delay

–3

3

∆F
/F

 (%
)

IT

ResponseStimulusInitiate Delay

–6

6

∆F
/F

 (%
)

PT

ResponseStimulusInitiate Delay

–1

1

∆F
/F

 (%
)

EM
X

a

Initiate Response

Handle

Left stim
Right stim
Licks (L)
Water

Initiate
0.25–0.75 s

1–1.5 s

Delay
0–1 s

b

0 50 100

Right clicks (%)

0

25

50

75

100

Ri
gh

t c
ho

ic
e 

(%
)

EMX
IT
PT

SD
U

s

Frontal

1

0

0–1

Time (s)
1 2

stimulus
EMX
IT
PT

EMX
IT
PT

Auditory

0–1

Time (s)
1 2

1

0

–1

stimulus

Fig. 3 | An auditory decision-making task reveals distinct functional activity 
patterns in each pyramidal neuron type. a, Auditory discrimination task 
structure. Mice touched paw handles to initiate randomized click sequences on 
the left and/or right side. After a delay period, a lick response on the correct side 
was rewarded with water. b, Psychometric functions fit to behavioral data from 
the discrimination task in a for individual EMX (red), IT (green) and PT (blue) 
mice. c, Trial-averaged response maps for all correct, leftward trials in different 
PyN types. Shown are averages for the ‘initiation’, ‘stimulus’, ‘delay’ and ‘response’ 
periods in a. d, Averaged activity of each PyN type in auditory (left) and frontal 
cortex (right) (dashed circles in c). Averages were separately aligned to each 
of the four trial periods, indicated by short gaps. The left dashed line indicates 
time of initiation, the gray box indicates stimulus presentation and the right 
dashed line indicates the animal’s response. Traces show standard deviation units 
(SDUs). Colors as in b. Shading shows the s.e.m.; nEMX = 4, nIT = 4, nPT = 5 mice. ΔF/F, 
fluorescence intensity change.
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CStr neurons through retrograde viral labeling (Fig. 7i). Comparing 
the choice tuning of CStr and unlabeled PyNs revealed a specific dif-
ference in ipsilateral versus contralateral choice preference in the 
ALM (Fig. 7j). Most choice-selective CStr neurons preferred ipsilateral 
choices, whereas unlabeled PyNs were mildly contra-selective (Fig. 7k). 
In agreement with our widefield results, these differences were seen 
in the ALM but not the MM. Interestingly, ipsilateral choice preference 
was restricted to superficial IT-CStr neurons (cortical depth, 200–
400 µm). Infragranular CStr neurons (400–600 µm), which are also 
often PT cells17, showed strong contralateral choice tuning (Extended 
Data Fig. 9a). Lastly, we tested if neuropil choice signals may have 
masked somatic activity in our widefield measures. Neuropil largely 
resembled somatic choice tuning of unlabeled neurons (Extended 
Data Fig. 9b), confirming that PyN-type-specific widefield measures 
indeed represented local somatic activity. Here, IT-specific widefield 
signals matched the mixed choice-selectivity of superficial layers, while 
PT-specific imaging was well aligned with the clear contralateral choice 
tuning in deeper cortical layers.

Pyramidal neuron-type-specific causal contributions to 
perception and choice formation
The observed differences between PyNs suggest that each type may 
drive distinct aspects of decision-making. To causally test their func-
tional role, we performed PyN-type-specific optogenetic inactivation 
in auditory, parietal and frontal cortex, using the inhibitory opsin stG-
tACR2 (ref. 46; Fig. 8a,b). For CStr neurons, we used an intersectional 
approach to maximize the efficiency of retrograde expression and 
reduce potential viral tropism47. Cortical inactivation coordinates were 
determined from our stimulus and choice analyses (Figs. 5a and 6a). 
To test whether optogenetic effects are area specific, we also targeted 
the primary visual cortex (V1) in a subset of EMX mice.

As expected, decision accuracy was impaired by bilateral silencing 
of EMX neurons in auditory, parietal or frontal cortex but unaffected 
by silencing V1 (Fig. 8c). We then inactivated each area for 0.5 s during 
four different task episodes: early and late stimulus (the first and last 
0.5 s of the stimulus), delay and response (Fig. 8d). Consistent with 
the notion that auditory and parietal cortex reflect stimulus-driven 
activity (Fig. 5a), silencing either area strongly impaired task perfor-
mance, particularly during the stimulus period (Fig. 8e,f). Behavioral 
impairments (the normalized difference between performance in 
non-optogenetic trials and chance) were weaker during the subsequent 
periods, indicating that these areas are most important for early pro-
cessing of auditory stimuli.

Consistent with earlier work48, silencing CStr neurons in A1 
impaired auditory decisions (Fig. 8e). However, the effects were more 
transient and weaker compared to silencing EMX neurons, suggest-
ing that CStr neurons were not exclusively required for accurate task 
performance. Inactivating IT or CStr neurons in parietal cortex caused 
surprisingly mild effects, while silencing PT neurons robustly impaired 
performance (Fig. 8f). This indicates that subcortical PT projection 
from parietal cortex are more important for sensory processing than 
intracortical IT or CStr projections, suggesting a role for PT neurons 
beyond movement preparation and execution.

Frontal inactivations resulted in the strongest impairment, with IT 
and CStr inactivation causing similar effects during the stimulus and 
delay periods (Fig. 8g). Impairments in IT mice are therefore not solely 
due to the disruption of intracortical processing20 but also involve 
alterations of CStr neurons. Inactivating PT neurons equally impaired 
performance during the stimulus and delay period but showed stronger 
effects during the final response period. Impairments in the response 
period were similar for EMX and PT mice, suggesting that PT neurons 
are particularly involved in licking responses. Multiple PyN types in 
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frontal cortex are therefore involved in the formation and maintenance 
of choices, despite clear differences in their respective choice tuning. 
Lastly, we also analyzed licking patterns to test if optogenetic inhibition 
broadly disrupted animal movements. Frontal inactivation in the delay 
period had a mild effect on response latency but did not affect response 
probability or licking patterns, arguing against a strong motor impair-
ment (Extended Data Fig. 10). PyN-type-specific inhibition therefore 
selectively reduced the animals’ response accuracy rather than broadly 
disrupting their ability for movement initiation and execution.

Discussion
We measured and manipulated PyN types to determine whether they 
play distinct roles in decision-making. Cortex-wide activity patterns 
were PyN-type specific, each reflecting distinct neural dynamics at 
multiple spatial scales. Functional specificity across PyN types was also 
evident during decision-making: each PyN type exhibited unique cor-
tical localization and specificity associated with stimulus and choice. 
These response patterns were not seen when imaging from PyNs 

nonspecifically. PyN-type-specific optogenetic inactivation confirmed 
distinct functional roles in parietal and frontal cortex, highlighting the 
importance of subcortical projections for decision formation. Our 
results suggest that different PyN types are functionally distinct, and 
perform separate roles during auditory decision-making.
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Dimensionality reduction of cortical dynamics33,49,50 revealed 
that nearly all spatial components were PyN-type specific. Large-scale 
activity patterns are therefore shaped by PyN-specific dynamics. This 
has important implications for studies of cortex-wide neural dynam-
ics, which are often based on nonspecific measures of neural activ-
ity51–54. Earlier work revealed functional modules that span the entire 
cortex49,53–56 and follow intracortical connectivity patterns57,58. Our 
results point to the existence of additional, PyN-type-specific motifs, 
especially for subcortical projections, such as PT or CStr neurons. 
Furthermore, most PyN-specific LocaNMF components consisted 
of spatially precise subregions that were smaller than classic cortical 

areas. Future studies could reveal even more detailed cortical struc-
tures by combining large-scale measures of multiple PyN types with 
multicolor widefield imaging24,59 and observing interactions between 
PyN-specific cortical dynamics within the same animal.

We also observed unique sensory response patterns for each PyN 
type. This is in line with recent results from primary somatosensory18,60 
and visual cortex19, arguing that different PyN types play separate roles 
during sensory processing. The clear differences in magnitude, locali-
zation and lateralization of sensory responses in parietal and frontal 
cortex demonstrate that the functional specialization of different PyN 
types is a general feature of cortical circuit function.
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Data are presented as the mean ± 95% confidence intervals. Asterisks indicate 
Bonferroni-corrected P < 0.01, two-sided binomial test.
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Correspondingly, we found diverse behavioral effects when inac-
tivating PyN types. Consistent with earlier work, inactivating CStr 
neurons in auditory cortex impaired task performance48, suggesting 
that corticostriatal projections are important for sensory perception. 
Inactivating parietal cortex also caused strong behavioral impairments 
during sensory stimulation but not when silencing CStr or IT neurons. 
This shows that the importance of CStr projections does not general-
ize from auditory to parietal cortex and also argues against models in 
which sensory information is intracortically transmitted from parietal 
to frontal cortex during decision formation42,61,62. Instead, silencing 
parietal PT neurons during the stimulus presentation strongly dis-
rupted decisions, highlighting the importance of subcortical projec-
tions for decision-making63.

These results are at odds with earlier studies in rats, showing little 
or no impact of parietal inactivation on auditory performance64,65. Con-
versely, other work in head-fixed mice reported robust impairments 
in visual43,66–68 and auditory62 tasks. This could be due to differences 
between rats and mice or the precise location of parietal inactivation. 
Sensory modalities are processed along a mediolateral gradient in pari-
etal cortex, emphasizing the need to precisely target specific parietal 
areas to obtain a modality-specific behavioral effect62. Our task also 
requires evidence accumulation and working memory, which engage 
a wider range of cortical regions and could explain the involvement of 
parietal cortex for accurate decisions67.

The accumulation and memory requirements might also 
explain why we found clear cortical choice signals, whereas recent 
cortex-wide studies reported little choice selectivity39,69. The lack 
of side-specific choice tuning in IT populations matches earlier 
work, showing that intracortical projections in ALM equally include 

contralateral and ipsilateral choice-preferring cells20,21. In contrast, 
CStr populations were more selective for ipsilateral choices and 
we confirmed that this was also present in individual CStr neurons. 
PyN-specific widefield signals therefore selectively reflect somatic 
activity and not just superficial neuropil signals. Ipsilateral choice 
signals in CStr neurons were restricted to superficial ALM, which is 
mostly implicated in movement generation13,70. A recent study showed 
that CStr projections from the anterior cingulate cortex inhibit stri-
atal activity and motor behavior71. Ipsilateral choice tuning of CStr 
neurons could therefore serve to disinhibit striatal circuits when 
releasing a targeted licking response.

Frontal inactivation strongly impaired animal behavior during 
the stimulus and delay periods, suggesting an important role for the 
translation of sensory inputs into behavior21,69,72–74. Impairments were 
largely similar across frontal PyN types, which appear to be equally 
required for choice formation and retention. Frontal PyNs may thus 
be more reliant on each other to maintain accurate function than 
in sensory areas18,19,48. As the only exception, PT neurons were more 
important during the response period, consistent with a specific role 
of brainstem-projecting PT neurons for motor execution13.

Our work offers a new perspective on cortex-wide dynamics by 
viewing them through the lens of different PyN types and strongly 
supports the view that cortical circuits perform parallel computa-
tions, even within the same cortical layer13,18,19,75. Future work to reveal 
how cortical circuits generate behavior should therefore include 
PyN types to resolve the heterogeneity that is often encountered 
when studying cortical decision circuits. A powerful tool to achieve 
this goal are novel mouse lines, such as inducible knock-in lines that 
permit reliable targeting of PT and IT neurons. These mouse lines 
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AAV1-SIO-hSyn1-stGtACR2-FusionRed was injected into the cortex to enhance 
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b, Laminar distribution of stGtACR2-FusionRed in EMX, PT, IT and CStr neurons. 
c, Behavioral performance (percentage correct) of EMX mice during inactivation 
of V1 (n = 2 mice), auditory (n = 5 mice), parietal (n = 3 mice) or frontal (n = 5 mice) 
cortex. Data are presented as the mean ± s.e.m. Circles denote individual mice. 

d, Schematic of optogenetic inactivation paradigm; 0.5-s-long optogenetic 
inhibition was performed during the first or last half of the stimulus period, 
the subsequent delay or the response period. Light power ramped down after 
0.3 s. e, Behavioral impairment (percentage change from control performance) 
with inhibition of EMX or CStr neurons in auditory cortex. Circles denote mean 
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also overcome several earlier problems, such as unstable expression 
patterns or cell-type mixtures due to interactions with surrounding 
genetic elements26,76. Moreover, combining genetic mouse lines with 
retrograde labeling will enable the targeting of specific PyN subtypes, 
such as projection-specific PT neurons12,13, that might serve a large 
array of functions from sensory processing, to working memory and 
motor function13,18.
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Methods
Mouse lines
All surgical and behavioral procedures conformed to the guidelines 
established by the National Institutes of Health (NIH) and were approved 
by the Institutional Animal Care and Use Committee of Cold Spring 
Harbor Laboratory. Mice were 8- to 25-week-old males (Supplementary 
Table 2). No statistical methods were used to predetermine sample 
sizes but sample sizes are similar to those reported in previous publica-
tions22,25. Mouse strains were acquired from the Jackson Laboratory, 
Allen Brain Institute, or generated at Cold Spring Harbor Laboratory. 
The mouse room had a relative humidity of 30–70%, and a room tem-
perature of 69–78 °F. Transgenic strains crossed to generate double- and 
triple-transgenic mice used for imaging were: Emx-Cre ( JAX 005628), 
LSL-tTA ( JAX 008600), Ai93D ( JAX 024103), Ai162 ( JAX 031562), 
TRE-GCaMP6s (G6s2, JAX 024742) and H2B-eGFP ( JAX 006069; Sup-
plementary Table 3). EMX mice, used for calcium imaging, were bred 
as Ai93D;Emx-Cre;LSL-tTA. To avoid potential aberrant cortical activ-
ity patterns, EMX mice were on a doxycycline (DOX)-containing diet, 
preventing GCaMP6s expression until they were 6 weeks or older22,25.

For widefield imaging of PT and IT neurons, inducible knock-in 
drivers Fezf2-2A-CreER and PlexinD1-2A-CreER, respectively, were 
crossed with Ai162 reporter mice to drive cortex-wide GCaMP6s expres-
sion. Cre expression was induced through two doses of intraperitoneal 
injections of tamoxifen (200 mg per kg body weight; 20 mg ml−1 corn oil 
solution) at postnatal day (P) 28 and P32, yielding expression patterns 
consistent with prior reports26. For widefield imaging of corticostriatal 
neurons, we crossed Ai162 with G6s2 to create a double-transgenic 
reporter strain Ai162;G6s2 with two hemizygous copies of GCaMP6s 
under tetO control. Because LSL-tTA is incorporated in tandem with 
the reporter gene in the Ai162 strain29, this hybrid reporter line permits 
Cre-dependent expression of GCaMP6s at higher levels than Ai162 
hemizygotes while avoiding potential leaky reporter gene expression. 
To achieve widespread GCaMP6s expression in corticostriatal neurons, 
we performed striatal injections of retrograde virus (CAV-2-Cre) in the 
hybrid Ai162;G6s2 reporter line (see ‘Viral injections’). For two-photon 
imaging, GCaMP6s expression in PyNs was generated using the hybrid 
strain Camk2α-tTA;G6s2.

General surgical procedures
Surgeries were performed under 1–2% isoflurane in oxygen anesthesia. 
After induction of anesthesia, 1.2 mg per kg body weight meloxicam 
was injected subcutaneously and sterile lidocaine ointment was applied 
topically to the skin incision site. After making a midline cranial inci-
sion, the skin was retracted laterally and fixed in position with tis-
sue adhesive (Vetbond, 3M). We then built an outer wall using dental 
cement (C&B Metabond, Parkell; Ortho-Jet, Lang Dental) along the 
lateral edge of the dorsal cranium (frontal and parietal bones). A custom 
titanium skull post was then attached to the dental cement. For skull 
clearing, the skull was thoroughly cleaned followed by the application 
of a thin layer of cyanoacrylate (Zap-A-Gap CA+, Pacer technology)23.

For two-photon imaging, a circular craniotomy (ø = 3 mm) over 
the right frontal cortex (1.75 mm lateral and 1.75 mm rostral to bregma), 
was made using a biopsy punch. A circular coverslip (ø = 3 mm) was 
then lowered to the surface of the brain and sealed to the skill with 
Vetbond and Metabond. Lastly, a titanium skull post was implanted 
as described above.

Viral injections
After induction with isoflurane anesthesia, animals were placed in a 
stereotaxic frame (David Kopf Instruments). Injections were made 
using a programmable nanoliter injector (Nanoject III, Drummond Sci-
entific). For widefield imaging of CStr mice, widespread corticostriatal 
GCaMP6s expression was generated in Ai162;G6s2 reporter mice by per-
forming bilateral stereotaxic injections of CAV-2-Cre (at 3–4 weeks of 
age) into the dorsal striatum at three targets per hemisphere, spanning 

the rostrocaudal (RC) axis. The target coordinates (relative to bregma 
and dura, in mm) are: (1) RC + 0.75, mediolateral (ML) ± 1.8, dorsoventral 
(DV) 3.0; (2) RC 0, ML ± 2.2, DV 3.1; (3) RC −0.75, ML ± 2.9, DV 3.1. For each 
striatal target, a burr hole was created using a small dental burr fol-
lowed by injection of 1.8 × 109 purified particles (pp) of CAV-2-Cre using 
pipettes with long taper tips pulled from borosilicate capillaries (3.5 
inch, 3-000-203-G/X, Drummond Scientific). For two-photon imaging 
experiments, CStr neurons were labeled through striatal injections of 
AAV-2-retro-CAG-tdTomato (using the same approach and coordinates 
as described above) in Camk2α-tTA;G6s2 mice.

For cell-type-specific optogenetic silencing experiments, 
we performed bilateral injections in frontal, parietal and auditory 
cortices (coordinates relative to bregma: frontal: RC + 2.5 mm, 
ML ± 1.5 mm; parietal: RC −1.7 mm, ML ± 2.5 mm; auditory: RC −2.5 mm, 
ML ± 4.6 mm) to induce expression of Cre-dependent stGtACR2 (AA
V1-hSyn-SIO-stGtACR2-FusionRed, Upenn Vector Core). Cortical injec-
tions were performed in P42 to P56 Fezf2-2A-CreER, PlexinD1-2A-CreER 
and EMX-Cre reporter mice. In CreER mice, intraperitoneal tamoxifen 
was administered 1 week after viral injections. Cortical injections were 
made at 300 and 600 µm per area. In two EMX-Cre mice, bilateral injec-
tions were performed in the frontal and visual cortex (RC −4, ML ± 2.5). 
To target CStr neurons, injections were performed in C57BL/6J mice in 
two stages. First, we utilized a viral receptor complementation strat-
egy47 by injecting both AAV-DJ-hSYN-DIO-{hCAR}off and AAV1-SIO-hSy
n1-stGtACR2-FusionRed (Supplementary Table 3) in cortex (coordi-
nates as described above) in P21–P28 mice. Second, we performed 
bilateral striatal CAV-2-Cre injections, 6 weeks after cortical injections. 
hCAR is expressed in all transfected neurons in a Cre-OFF manner, 
where Cre expression stops expression of hCAR while simultaneously 
inducing stGtACR2 expression.

Optical fiber implantation
For optogenetic silencing, we used the soma-targeted anion-conducting 
channelrhodopsin stGtACR2 (ref. 46). Optical fibers (NA = 0.36, 
ø = 0.4 mm, FT400UMT, Thorlabs) were glued into metal or ceramic 
ferrules (ø = 1.25 mm, Thorlabs) and secured above the cortex fol-
lowing viral injections. Ferrule-enclosed optical fiber implantations 
immediately followed cortical AAV (Supplementary Table 3) injections 
in Fezf2, PlexinD1 and Emx mice and striatal injections in CStr mice. 
One polished end of the optical fiber was positioned extradural to 
the site of cortical injections and interfaced with thinned skull using 
cyanoacrylate. Next, the fiber was fixed to the skull using light-cured 
glass ionomer (Vitrebond, 3M). Additional layers of dental cement and 
dental acrylic (Lang Dental Jet Repair Acrylic, 1223MEH) were applied 
around the fiber implant and the skull to reinforce for durability and 
long-term stability. After all layers were cured, a final outer coating of 
cyanoacrylate and nail polish were applied.

Behavioral training
The behavioral setup was controlled with a microcontroller-based 
(Arduino Due) finite state machine (Bpod r0.5, Sanworks) using cus-
tom MATLAB code (2015b, MathWorks) running on a Linux PC. Servo 
motors (Turnigy TGY-306G-HV) and touch sensors were controlled by 
microcontrollers (Teensy 3.2, PJRC) running custom code. Fifty-four 
mice were trained on a delayed, spatial discrimination task. Mice initi-
ated trials by placing their forepaws on at least one of the two handles, 
which were mounted on servo motors that rotated out of reach dur-
ing the intertrial period. Upon trial initiation, animals placed their 
forepaws on the handles and, after a variable duration of 0.25–0.75 s 
of continuous contact, the auditory stimulus was presented. Auditory 
stimuli consisted of a sequence of Poisson-distributed, 3-ms-long audi-
tory click sounds36, presented from either a left and/or a right speaker 
for a variable duration between 1 and 1.5 s. The stimulus period was 
followed by a variable delay of up to 1 s, then the servo motors moved 
two lick spouts close to the animal’s mouth. If the animal licked twice 
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on the side where more clicks were presented, a drop of water reward 
was dispensed. The amount of water rewarded for each trial (typically 
1.5 to 3 µl) was constant within a single session but was sometimes 
adjusted daily based on the animal’s body weight. After a spout was 
licked twice, the contralateral spout moved out of reach to force the 
animal to commit to its decision.

All trained mice were housed in groups of two or more under a 
reverse light cycle (12-h dark and 12-h light) and trained during their 
active dark cycle. Animals were trained over the course of approxi-
mately 30–60 d. After 2–3 d of restricted water access, animals began 
habituation to head fixation and received water from spouts in the 
behavior chamber. During these sessions, unilateral auditory stimuli 
were presented followed by a droplet of water from the ipsilateral water 
spout. After several habituation sessions, animals were required to 
touch the handles to trigger stimulus presentation. Once mice could 
reliably reach for the handles, the required touch duration was progres-
sively increased to 0.75 s. During the next training stage, both spouts 
moved within reach of the animal following stimulus presentation. An 
animal was considered trained when its detection performance across 
two or more sessions was >80%.

Behavioral monitoring
Data were collected from multiple sensors in the behavioral setup. 
Touch sensors using a grounding circuit on handles and lick spouts 
detected contact with the animal’s forepaws and tongue, respectively. 
A piezo sensor (1740, Adafruit) below the animal’s trunk was used for 
monitoring body and hindlimb movements. Two webcams (C920 and 
B920, Logitech) were positioned to capture the animal’s face (side view) 
and the ventral surface of the body (ventral view).

Widefield imaging
Widefield imaging was done as reported previously23,32,77 using an 
inverted tandem-lens macroscope and an sCMOS camera (Edge 5.5, PCO) 
running at 30 frames per second (fps). The focal lengths of the top lens 
(DC-Nikkor, Nikon) and bottom lens (85M-S, Rokinon) were 105 mm and 
85 mm, respectively. The field of view was 12.5 × 10.5 mm2 and the imag-
ing resolution was 640 × 540 pixels after 4× spatial binning, resulting in a 
spatial resolution of ~20 μm per pixel. To capture GCaMP fluorescence, a 
525-nm bandpass filter (86-963, Edmund optics) was placed in front of the 
camera. Using excitation light at two different wavelengths, we isolated 
Ca2+-dependent fluorescence and corrected for intrinsic signals (for 
example, hemodynamic responses)22,25. Excitation light was projected on 
the cortical surface using a 495 nm long-pass dichroic mirror (T495lpxr, 
Chroma) placed between the two macro lenses. The excitation light was 
generated by a collimated blue LED (470 nm, M470L3, Thorlabs) and a 
collimated violet LED (405 nm, M405L3, Thorlabs) that were coupled 
into the same excitation path using a dichroic mirror (87-063, Edmund 
optics). We alternated illumination between the two LEDs from frame 
to frame, resulting in one set of frames with blue and the other with 
violet excitation at 15 fps each. Excitation of GCaMP at 405 nm results in 
non-calcium-dependent fluorescence78, allowing us to isolate the true 
calcium-dependent signal by rescaling and subtracting frames with 
violet illumination from the preceding frames with blue illumination. 
Subsequent analyses were based on this differential signal. Imaging data 
were then rigidly aligned to the Allen Mouse Brain Common Coordinate 
Framework (CCF), using four anatomical landmarks: the left, center and 
right points where anterior cortex meets the olfactory bulbs, and the 
medial point at the base of retrosplenial cortex. Retinotopic visual map-
ping experiments30,79 confirmed accurate CCF alignment and showed 
high correspondence between functionally identified visual areas and 
the CCF across PyN types (Fig. 1c).

Two-photon imaging
We used a two-photon resonant scanning microscope (Moveable Objec-
tive Microscope, Sutter Instruments) for continuous image acquisition 

at 30.9 Hz. A ×16, 0.8-NA Nikon objective lens was used for single-plane 
imaging with a field of view of 512 × 512 pixels (575 µm × 575 µm). 
Mode-locked illumination at 930 nm was delivered using a Ti:Sapphire 
laser (Ultra II, Coherent). The depth of focal planes was 200–600 µm 
below the dura. Emission was collected using bandpass red (670/50 nm) 
and green (525/50 nm) filters (Chroma Technologies). MScan soft-
ware (Sutter Instruments) was used for image acquisition. Recordings 
were performed in ALM (2.5 mm rostral and 1.5 mm lateral to bregma) 
or MM (1.5 mm anterior and 1 mm lateral to bregma) in randomized 
order across mice. Across imaging session, we selected planes that 
differed from those of prior sessions to maximize the number of  
unique neurons.

Raw images were processed using the Suite2P package80 to per-
form motion correction, model-based region of interest (ROI) detec-
tion, correction for neuropil contamination and spike deconvolution. 
Somatic and non-somatic (neuropil) ROI identification was performed 
through a combination of a pretrained classifier and manual cura-
tion. Somata with tdTomato expression were identified in a two-step 
process. First, potential green channel bleed-through was subtracted 
from the red channel using nonrigid regression with individual chan-
nels being divided into smaller blocks. Next, all sessions were manually 
inspected to identify a conservative red fluorescence threshold, which 
was subsequently applied to all sessions. Analyses of neural activity 
were based on deconvolved values (‘inferred spiking activity’). Because 
the deconvolved values do not represent absolute firing rates, we 
performed z-score normalization for each neuron before computing 
trial averages across cells. The total number of recorded neurons for 
each session was 396 ± 105 (mean ± s.d.).

Optogenetic inactivation
Photostimulation was performed using a 470-nm high-power LED 
(M470F3, Thorlabs) with a power density of 25 mW/mm2. Stimuli 
consisted of a square-wave stimulus that ramped down in power for 
200 ms, to avoid an excitatory post-illumination rebound due to sud-
den release of inhibition81. To prevent animals’ visual detection of 
photostimulation, through either external leakage from light-insulated 
mating sleeves or transmission to the retina across the brain, an exter-
nal LED with matching wavelength placed at the center of the animal’s 
visual field was flashed throughout the duration of every trial. Pho-
toinhibition was performed in 20% of total trials and randomly inter-
leaved between light-off trials. Once an animal was habituated and able 
to complete detection behavior trials with >90% accuracy, bilateral 
optogenetic inactivation trials were introduced. During these initial 
sessions, optogenetic inhibition was performed from the beginning 
of the stimulus epoch until the end of the delay epoch. Additionally, 
we performed 0.5-s inhibition during four predefined epochs of the 
detection behavior trials: (1) first half of the stimulus, (2) second half 
of the stimulus, (3) delay and (4) response.

Immunohistology, microscopy and image analysis
After behavioral experiments, we performed transcardial perfusion 
with PBS followed by fixation with 4% paraformaldehyde in 0.1 M phos-
phate buffer. Brains were post-fixed in 4% paraformaldehyde for an 
additional 12–18 h at 4° C. Before sectioning, brains were rinsed three 
times in PBS and embedded in 4% agarose-PBS. Then, 50-μm-thick slices 
were made using a vibrating microtome (Leica, VT100S). Sections were 
then suspended in blocking solution (10% Normal Goat Serum and 0.1% 
Triton-X100 in 1× PBS) for 1 h followed by overnight incubation at 4 °C 
with the primary antibody. Next, sections were washed with PBS, incu-
bated for 1 h at room temperature with the secondary antibody at 1:500 
dilution. For histological visualization of GCaMP6s, we used primary 
goat polyclonal anti-GFP antibody (1:500 dilution; Abcam, ab6673) and 
secondary donkey anti-goat Alexa Fluor 488 (1:500 dilution; Abcam, 
ab150129). Sections were then dry-mounted on slides using Vectash-
ield (Vector Labs, H1000) before imaging. No immunostaining was 
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performed for the visualization of FusionRed or tdTomato. Imaging 
was performed using an upright fluorescence macroscope (Olympus 
BX61). Images were acquired using Ocular Scientific Image Acquisi-
tion Software (Teledyne Imaging). Visualization and analysis were 
performed using ImageJ/FIJI software packages.

Quantification of cortex-wide gene expression
Cell-count quantification was performed using publicly available serial 
two-photon tomography datasets (http://www.brainimagelibrary.
org/)26. Cre expression patterns for IT and PT neurons were charac-
terized with data from eight mice, expressing either Cre-dependent 
GFP (PlexinD1-2A-CreER;Snap25-LSL-2A-EGFP) or tdTomato (Fezf2-
2A-CreER;Ai14), respectively. Cell counting was performed via auto-
mated soma detection, using a trained convolutional neural network82. 
Datasets were then registered to the Allen CCF v3 using the Elastix 
toolbox83. To obtain the density of Cre-expressing neurons for indi-
vidual cortical areas, we used the area outlines from the Allen CCF and 
computed the average sum of detected IT or PT neurons in each area, 
normalized by its surface area.

Preprocessing of neural data
We used a rigid-body image registration method implemented in the 
frequency domain84 to align each imaging frame to the median over 
all frames in the first trial. To reduce the computational cost of subse-
quent analyses, we then computed the 200 highest-variance compo-
nents using singular value decomposition (SVD). These components 
accounted for at least 95% of the total variance in each recording, 
whereas computing 500 components accounted for little additional 
variance (~0.15%). SVD reduces the raw imaging data Y to a matrix 
of ‘spatial components’ U (of size pixels by components), ‘temporal 
components’ VT (of size components by frames) and singular values S 
(of size components by components) to scale temporal components to 
the original data. The resulting decomposition has the form Y = USVT. 
All subsequent analysis in the time domain (such as the encoder and 
decoder models described below) were performed on the product SVT 
and the respective results were later multiplied by U, to recover results 
for the original pixel space. To avoid slow drift in the imaging data, SVT 
was high-pass filtered above 0.1 Hz using a zero-phase, second-order 
Butterworth filter.

To compute trial averages and perform choice decoder analy-
sis (see below), imaging data in individual trials were aligned to the 
four trial periods, each marked by a specific event. This was required 
because the duration of different trial events was randomized to 
reduce temporal correlations, for example, between trial initiation, 
the stimulus presentation and subsequent lick responses. The first 
period (initiate) was aligned to the time when animal initiated a trial 
by touching the handles, the second (stimulus) was aligned to the 
stimulus onset, the third (delay) to the end of the stimulus sequence, 
and the fourth (response) to the time when spouts were moved in to 
allow a lick response. After alignment, the total trial duration was 2 s and 
durations of respective trial episodes were 0.5 s (initiate), 1 s (stimulus), 
0.2 s (delay) and 0.3 s (response).

Spatial clustering and classification
To obtain more interpretable spatial components and assess the dimen-
sionality of cortical activity in different PyN types, we used sNMF. As 
with SVD, sNMF creates spatial and temporal components for each ses-
sion but enforces positive spatial components. Temporal components 
were not enforced to be nonnegative because hemodynamic correc-
tion produces temporal dynamics that can be positive or negative, 
relative to baseline. We used the LocaNMF toolbox33 (https://github.
com/ikinsella/locaNMF/) to transform the spatial and temporal com-
ponents U and SVT into corresponding matrices A and C. A is a matrix 
of nonnegative spatial components (of size pixels by components). 
C is the corresponding temporal components (of size components 

by frames). In addition to regular sNMF, the LocaNMF toolbox can be 
initialized with spatial constraints based on the Allen CCF. To obtain 
spatially restricted localized LocaNMF components, we constructed a 
map of larger seed regions by merging areas in the Allen CCF together 
(Fig. 2e). This region map was then used to enforce that each compo-
nent in A is sparse outside the boundary of a given region. To obtain 
dense spatial components, we used a localization threshold of 50%. For 
sNMF components, we used the LocaNMF toolbox with a single region 
that spanned the entire cortex to obtain cortex-wide components 
while ensuring that all other analysis steps were identical for sNMF 
and LocaNMF components. In both cases, we determined how many 
components in A and C were needed to explain 99% of the variance of 
Y (with Y = AC) after the initial SVD.

To compare spatial sNMF and LocaNMF components from differ-
ent PyN types, we embedded them in a two-dimensional space, using 
UMAP analysis (Fig. 2c,g). UMAP analysis was performed with the UMAP 
toolbox35 (https://github.com/lmcinnes/umap/). For each recording, 
the first 20 spatial components in A were downsampled by a factor 
of 2, smoothed with a two-dimensional Gaussian filter (5 × 5 pixels, 
2-pixel standard deviation) and peak normalized. Components from 
all recordings and animals were then combined into a larger matrix 
(of size pixels by components). We used UMAP to project pixels into 
two, maximally separating nonlinear dimensions. Each point in the 
two-dimensional space (Fig. 2c,g) reflects a single component from 
one animal in one imaging session. The same approach was used for 
temporal sNMF and LocaNMF components. Before the UMAP projec-
tion, we first computed the trial-averaged and z-scored activity of each 
component to achieve temporal dynamics that are comparable across 
sessions and individual mice.

To identify PyN types based on individual spatial components  
(Fig. 2d,h), we performed a separate UMAP analysis for each mouse. 
Each of these projections excluded all components from the test ani-
mal, ensuring that the UMAP projection was not shaped by potential 
noise patterns or other unknown features of the test components 
that could affected the classifier result. We then tested the first 20 
components of each session of the test animal with 100 repetitions 
per component. In every repetition, 1,000 components from each PyN 
type were randomly selected from the pre-computed UMAP space. We 
assigned the PyN type of the test component based on the identity of 
its ten nearest neighbors in UMAP space. For LocaNMF components, 
we performed the same procedure but additionally enforced an equal 
number of components from each seed region and PyN type. This 
prevented PyN types with a larger number of components in a region 
from biasing the classifier result. Classifier accuracy for each session 
(Fig. 2d,h) was computed as the mean probability over all repetitions 
to accurately identify the PyN type.

To determine the size of PyN-predictive LocaNMF components, we 
selected all spatial components that achieved a classification accuracy 
of 99% or higher (all other components were assigned as nonspecific) 
and thresholded each component above 0.2 to obtain binary images. 
The size of each component was then computed as the square root of 
the sum of all pixels and converted to square millimeters.

Linear encoding model
The linear encoding model included task-related and movement-related 
variables (Supplementary Table 1), as described previously32. Each 
variable consisted of multiple regressors that were combined into 
a larger design matrix. Binary regressors contained a single pulse 
that signaled the occurrence of specific events, such as the stimulus 
onset, and additional regression copies that were shifted forward or 
backward in time to account for changes in cortical activity before 
or after the respective event. For auditory stimuli, the time-shifted 
copies spanned all frames from the onset of the auditory sequence 
until the end of the trial. Individual click sounds were also captured 
by an additional regressor set that spanned the 2 s after click onset. 
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For licks and whisks, the time-shifted copies spanned the frames from 
1 s before until 2 s after each event. For some variables, for example, 
previous choice, the time-shifted copies spanned the whole trial. Other 
variables were analog, such as measures from the piezo sensor, pupil 
diameter and the 200 highest temporal components of video informa-
tion from both cameras (using SVD as described above). This ensured 
that the model could account for animal movements and accurately 
isolate task-related activity. Movement and task variables were addi-
tionally decorrelated due to the variable durations of the initiation, 
stimulus and delay period. The model was fit using ridge regression 
to allow for similar contributions from different correlated variables. 
To determine the regularization penalty λ for each column of the wide-
field data, we used marginal maximum likelihood estimation (MLE)85. 
MLE expresses the encoding model as a Bayesian linear model and 
determines the ridge penalty λ by maximizing the marginal likelihood 
π(D|λ) of the model, given data D. This was done iteratively by testing 
different λ values to determine a global minimum for the negative 
log-likelihood −log π(D|λ). The main advantage of this approach is that λ 
can be determined without computationally expensive cross-validation 
procedures, resulting in a ~50-fold decrease in required compute time 
on a regular work station. Moreover, the faster MLE approach allows 
adjusting λ values for individual widefield data components, resulting 
in higher cross-validated explained variance of the encoding model, 
compared to a regular cross-validation approach.

Variance analysis
Explained variance (cvR2) was obtained using tenfold cross-validation. 
This was done by fitting the model weights to a continuous 90%-large 
section of the imaging data and then computing the explained variance 
in the remaining 10% of the data. The procedure was repeated ten times, 
while shifting the training and test data to ensure that each part of the 
recording was used in the test data in one of the folds. To assess unique 
explained variance by individual variables (ΔR2), we created reduced 
models in which all regressors of a specific variable were shuffled in 
time. Shuffling of each regressor was done within individual trials to 
account for a potential impact of very slow temporal correlations due 
to the kinetics of the calcium indicator. The difference in explained 
variance between the full and the reduced models yielded the unique 
contribution ΔR2 of that model variable that could not be explained by 
other variables in the model. The same approach was used to compute 
unique contributions for groups of variables, that is, ‘movements’ 
and ‘task’. Here, all variables that corresponded to a given group were 
shuffled together.

Decoding model
To predict animal’s left/right choices from widefield data, we trained 
logistic regression decoders with an L1 penalty on the temporal 
component matrix SVT in each session. The L1 penalty was defined 
as the inverse of the number of observations in the test dataset dur-
ing cross-validation, which yielded a good balance between the 
cross-validated prediction accuracy of the decoder and the number 
of nonzero model regressors. When decoding choice, we randomly 
removed trials until there were equal numbers of correct and incorrect 
trials where mice chose the left and the right side. By balancing left/
right choices and correct/incorrect trials, we ensured that the decoder 
would not reflect choices due to corresponding sensory information or 
side biases. The logistic regression model was implemented in MATLAB 
using the ‘fitclinear’ function and run repeatedly for each time point 
in individual trials after realigning them to trial periods as described 
above. In each session, all decoder runs were performed with the same 
number of trials (at least 250). We used tenfold cross-validation to 
compute decoder accuracy at each time point. β-weights were aver-
aged from all models created during cross-validation and convolved 
with the spatial component matrix U to create cortical maps of the 
choice decoder weights.

Receiver-operating characteristic analysis
We computed the area under the receiver-operating characteristic curve 
(AUC) to quantify choice preference of single neurons obtained from 
two-photon imaging. AUC values were computed by comparing the mean 
neural activity during the stimulus and delay period in all trials with ipsilat-
eral versus contralateral choices. AUC values denote the specificity of the 
neural activity to ipsilateral or contralateral choices, with values below 0.5 
signifying ipsilateral choice selectivity and AUC values above 0.5 denot-
ing contralateral choice selectivity. To identify statistically significant 
choice-selective neurons, AUC values were also computed for shuffled 
trial labels (randomly assigning ipsilateral and contralateral choices across 
trials) for each neuron. This procedure was repeated 100 times to create 
a distribution of shuffled AUC values for each neuron. A neuron’s choice 
selectivity was then deemed significant if the probability of obtaining the 
actual AUC from the shuffled AUC distribution was less than 0.05.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The data from this study are available at https://doi.org/10.25452/ 
figshare.plus.21538458. A link to the data repository with a description of 
the behavioral and imaging data can be found at https://churchlandlab. 
dgsom.ucla.edu/pages/code/.

Code availability
The MATLAB and Python code used for the data analysis in this study 
is available as a public GitHub repository. The link to the repository 
can be found at https://churchlandlab.dgsom.ucla.edu/pages/code/.
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Extended Data Fig. 1 | Pyn-specific cortical maps of total variance and 
inter-regional correlations. (a) Maps of variance over all frames for individual 
mice in each PyN type group. Colors are normalized between zero and the 95th 
percentile for each animal. Distinct variance patterns for each PyN type were 
largely conserved across individual mice. (b) Map of cortical regions, used for 
correlation analysis. V1 = primary visual cortex, V2 = secondary visual cortex, 
RS = retrosplenial cortex, Aud = auditory cortex, PPC = posterior parietal cortex, 
SSw = somatosensory whisker area, SSb = somatosensory body area, SSf = 
somatosensory face area, M1 = primary motor cortex, M2p = posterior secondary 
motor cortex, M2a = anterior secondary motor cortex. (c) Correlations between 
cortical regions in EMX, PT and IT neurons averaged over all sessions and mice. 
Inter-region correlations were comparable between EMX and IT neurons but 
overall increased for PT neurons. (d) R2 of EMX, IT and PT reconstructions (top to 

bottom panels), using components from different PyN types (red, green, and blue 
traces). For within-group reconstructions, only components from other mice 
were used. (e) Single-frame reconstructions of IT data, using PT components. 
IT imaging data (original) was projected onto PT components to assess if they 
would be applicable to capture IT variance. While the reconstruction captured a 
large fraction of variance (~93%, Supplementary Video 4, comparing individual 
frames showed that PT components did not recreate more fine-grained spatial 
features of the IT data. (f) R2 of EMX, IT and PT reconstructions, using locaNMF 
components from different PyN types (formatting as in panel a)). Shown are 
results for different number of components per region, using 24 regions in total. 
The minimum number of components was therefore 24 (1 component per region) 
and the maximum 96 (4 components per region).
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Extended Data Fig. 2 | Cortex-wide expression patterns of PT and IT neurons. 
(a) Brain slices from IT and PT neurons show robust cortex-wide expression of 
GCaMP6. (b) Left: Raw fluorescence from widefield imaging of 3 different PT and 
IT mice. In both lines, we obtained strong fluorescence throughout the cortex, 
although minor fluctuations in brightness were visible across regions. Right: 
Example sNMF components from an individual PT/IT mouse (mouse #3 for both 
lines). sNMF components did not strongly reflect differences in raw fluorescence 
across cortex. We also observed no clear relationship between fluorescence 
patterns to total variance (Fig. 1D) or ongoing activity patterns (Supplementary. 
Movies 2, 3). (c) Left: Example brain slices from IT- and PT-Cre mice to quantify 

the density of Cre-expressing neurons in each line. Blow-up shows a magnified 
region in cortex with individual somata. Right: Expression density was largely 
even across dorsal cortex with higher density of IT neurons in lateral regions and 
no expression in the olfactory bulb. Density was slightly reduced in M2 for both 
lines. (d) Map of PyN type decoding accuracy with locaNMF components for 
different cortical regions. Decoding accuracy was high across cortical regions 
and we found no clear relation between expression patterns and regions with 
particularly high locaNMF decoding accuracy. Olfactory bulb was omitted from 
the analysis, due to the lack of strong fluorescence signals.
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Extended Data Fig. 3 | Temporal structure in animal behavior and cortical 
activity patterns. (a) Mice in all PyN groups integrate sensory information 
throughout the stimulus period. Shown is the normalized difference between 
auditory clicks on the left or right side, when animals successfully responded 
to the left (green) or the right (red). Binsize is 50 ms. Positive numbers indicate 
a higher probability of observing a leftward click sound, negative numbers 
indicate more clicks on the right. In all mice, the probability of observing more 
stimuli on the correct side is consistently higher throughout the stimulus period. 
This shows that mice integrate sensory evidence from the entire stimulus period 
and auditory clicks equally influence animal decisions, regardless of whether 
they occur early or late in the stimulus sequence. (b) Clustering of temporal 

components. UMAP embedding of temporal sNMF components for EMX (red), 
IT (green) and PT (blue) mice. Clustering for cell types is weaker as with spatial 
components (Fig. 2c) but clearly visible, suggesting that sNMF components 
are both spatially and functionally distinct. Insets show 10 example traces of 
trial-averaged activity from cell-type specific clusters (left, bold line shows 
the mean) and an example of a corresponding spatial component (right). (c) 
UMAP embedding of temporal locaNMF components from left frontal cortex. 
Conventions as in a). Temporal locaNMF components also show cell- type- 
specific clustering, revealing task-specific dynamics (inset, left). Spatial locaNMF 
components also show separate shapes for each cell type (inset, right).
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Extended Data Fig. 4 | Symmetric bilateral activation during decision-
making and unique explained variance. (a) Trial-averaged response maps for 
all correct, leftward trials across different PyN types. Cortical maps are as shown 
in Fig. 3a and Fig. 7c. (b) Average activity in auditory, parietal, and frontal cortex 
on the left (black) and right hemisphere (green), which are contra- and ipsilateral 
to the chosen side, respectively. In all PyN types, different trial events, such as 
initiation, sensory stimulation and animal responses increased neural activity. 
However, surprisingly few differences were seen between cortical hemispheres. 
To resolve differences in inter-hemispheric activation for left- versus rightward 
choices we therefore employed the choice decoder analysis (Figs. 6 and 7). Note 
that low or negative weights from the choice decoder (as seen for IT and CStr 
neurons in frontal cortex) do not reflect a lack of choice-related activity activity 
but are rather based on small differences in the activation of hemispheres 
that are either ipsi- or contralateral to the chosen side. (c) To isolate unique 
contributions from movement or task variables, we computed averaged maps of 
the loss in predicted variance (ΔR2) by removing either group of variables from 
the full model. This allowed us to separately examine their respective impact 
on cortex-wide activity by determining, for each PyN type, where in the cortex 
predictive power was lost. While movement ΔR2 patterns were comparable 

across PyN types (top row), PyN-type-specific differences were uncovered when 
removing task variables: ΔR2 was highest in frontal cortex of EMX and PT mice, 
but more diffuse in IT mice with the highest ΔR2 in auditory cortex (bottom row). 
Note differences in scale between two rows. (d) Examination of ΔR2 for individual 
task variables further suggest distinct roles for each PyN type. Here, the ‘choice’ 
variable had the highest contributions in PT neurons but was overall weaker in 
IT neurons. Conversely, contributions from other task variables were higher in 
IT neurons. This dichotomy was not observed in EMX neurons, indicating that 
IT and PT neurons might have different functional roles that cannot be resolved 
without PyN-type specific measurements. Each row represent a mouse. (e) 
Comparison of ΔR2 for choice (top) and stimulus variables (bottom) between PyN 
types. IT mice had significantly lower ΔR2 for choice (pEMX = 1.4 × 10−22, pIT = 1.1 × 
10−7; nEMX = 62, nIT = 71, nPT = 59 sessions) but higher ΔR 2 for the stimulus as EMX 
or PT mice (pEMX = 1.2 × 10−5, pIT = 4.9 × 10−14). Note that lower ΔR2 for choice in IT 
mice does not imply a lack of involvement in decision formation but rather that 
their population activity does not clearly differ for left versus right choices. Dots 
indicate individual sessions. Stars indicate significant differences across sessions 
(two-sided unpaired t-test, p < 0.01, bonferroni-corrected).
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Extended Data Fig. 5 | Choice-related activity in somatosensory cortex. 
(a) Averaged choice kernel maps for EMX mice during the initiation and delay 
period. Dashed circles show location of somatosensory whisker (SSWhisker), 
somatosensory nose (SSNose), and frontal cortex. SSWhisker (blue trace) and SSNose 
(red trace) were constantly positive or negative, respectively, even during the 
initiation period. In contrast to frontal cortex (yellow trace), both areas were 
only weakly modulation by the stimulus onset (gray box). (b) Choice kernel 
maps for IT mice during the delay period. Dashed circles show location of 
auditory, SSWhisker, and frontal cortex. Choice-related activity in SSWhisker (red 
trace) increased over the course of the trial. No choice-related modulation was 
apparent in frontal cortex. (c) Choice kernel maps for PT mice during the delay 
period. Conventions as in (b). Choice-related activity strongly increased in 
frontal cortex after stimulus onset and was weaker in other cortical areas. (d) 
10x cross-validated decoder performance, predicting animal’s left/right choices 
at different times during the trial. In all PyN types, decoder performance was 

above chance at all times, including the initiation period before the stimulus 
(gray box). This suggests that, in some trials, animals follow a pre-conceived 
choice that is stimulus-independent and can be decoded from cortical activity. 
Decoder performance was highest in the response period (dashed vertical 
line) when animals performed licking movements. (e) Contralateral choice 
weight maps during the delay period (same as in Fig. 6c). Dashed circles show 
the location of somatosensory whisker cortex (SSWhisker). In all PyN types, choice 
weights in SSWhisker were increased in the initiation period before the stimulus 
(gray box). A potential explanation could be that pre-stimulus choices are 
reflected in choice-specific whisker movements. However, choice signals in 
SSWhisker persisted when removing movement-related activity from the imaging 
data (Supplementary Fig. 12). Whisker or other facial movements might therefore 
be too subtle to be captured by our analysis or choice signals in SSWhisker reflect 
non-overt choice-related activity.
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Extended Data Fig. 6 | Significance of choice decoder weights. To assess 
significant weights of the choice decoder, we combined spatially downsampled 
choice maps from all sessions in each PyN type and subsequently performed a 
t-test in each pixel to determine which decoder weights are significantly different 
from zero. The resulting maps show significant pixels for different trial periods 

in white (t-test, p < 0.05, bonferroni-corrected for 3364 pixels). Significant 
pixels closely match choice decoder weights (Fig. 6c) with significant regions 
being largely tied to anterior cortex. In all PyN types, weights in frontal cortex 
are significant in the stimulus and delay period, thus supporting the main 
conclusions of the choice kernel analysis.
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Extended Data Fig. 7 | Movement-corrected choice decoder. (a) Using a model 
based on movement variables, we subtracted all movement-related activity from 
raw fluorescence data and applied the choice decoder analysis to the resulting 
residuals. (b) Removing movement-related activity reduced choice prediction 
accuracy, in particular during the delay and response period when most 

choice-related movements occur. In all PyN types, predictions remained above 
chance levels, suggesting that part of the choice-related activity is independent 
of observable movements. (c) Movement-corrected choice kernels revealed 
the same cortical patterns as seen in the regular choice decoder (Fig. 6c), 
demonstrating that choice signals are not solely driven by movements.
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Extended Data Fig. 8 | Retrograde labeling of CStr neurons reveals distinct 
cortical dynamics. (a) Visual sign maps from retinotopic mapping experiments. 
CStr neurons responded to visual stimulation and reveal comparable retinotopic 
organization as other PyN types. (b) Number of sNMF components, accounting 
for 99% of cortical variance in EMX and CStr mice, dots represent individual 
sessions. CStr neurons required less components as EMX and IT but more 
components as PT neurons (compare with Fig. 2a). (c) UMAP embedding of 

spatial sNMF components for EMX (red), IT (green), PT (blue) and CSt (black) 
mice. Dots show individual spatial components. CStr components were clearly 
distinct from other PyN types. (d) Cross-validated choice-decoder accuracy. 
Results are shown for EMX (red) and CStr mice (black). Decoder accuracy 
continuously increased throughout the trial for all PyN types. Dashed line 
indicates time of response, gray area is the stimulus period.
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Extended Data Fig. 9 | Infragranular CStr neurons are tuned to contralateral 
choices. (a) Left: Overview of significantly choice-tuned neurons in deeper 
layers (400–600 μm) of ALM (top) and MM (bottom). Orange line: CStr neurons, 
labeled by tdTomato. Gray lines: unlabeled PyNs. AUC values below 0.5 indicate 
stronger responses for ipsilateral choices. Right: Trial-averaged activity for all 
choice-selective neurons, separated for ipsi- (red) versus contralateral choices 
(blue). Both CStr and unlabeled neurons show strong contralateral choice tuning 
with no clear difference between PyN-types (p < 1 × 10−10 for all conditions). 
This suggest that ipsilateral choice tuning is limited to IT-CStr neurons in 
superficial layers of ALM. (b) Fraction of cells responding selectively for ipsi- 
(red) versus contralateral choices (blue) in ALM and MM. CStr and unlabeled 
neurons in both show similar contralateral choice tuning. (ALM: nCStr = 177 cells, 
nUnlabeled = 1190 cells; MM: nCStr = 287 cells, nUnlabeled = 2620 cells). (c) To differentiate 
somatic versus neuropil choice signals, we quantified ipsi- and contralateral 
choice tuning for neuropil ROIs. Each neuropil ROI represents the background 

fluorescence that surrounded a given somatic ROI. Conventions as in a). (d) 
Fraction of neuropil ROIs responding selectively for ipsi- versus contralateral 
choices. Conventions as in (b). Neuropil ROIs were equally tuned to ipsi- and 
contralateral choices in superficial ALM layers (p = 0.14) but otherwise showed 
contralateral choice-specificity (p < 1 × 10−10 for other conditions), generally 
recapitulating choice-specificity from unlabeled neurons. The symmetry found 
in neuropil choice tuning might explain the bilateral ALM activation observed 
with IT-specific widefield imaging (Fig. 3c), suggesting that IT-specific widefield 
signals are comprised of somatic and neuropil activity in the superficial cortex. 
In contrast, the stronger choice-selectivity in EMX- and PT-specific widefield 
imaging, suggests that these signals may emerge from infragranular neural 
activity . (ALM: nCStr = 177 cells, nUnlabeled = 1190 cells; MM: nCStr = 287 cells, 
nUnlabeled = 2620 cells). Data are presented as mean +/− 95% confidence intervals. 
Stars indicate bonferroni-corrected p < 0.01, all tests are two-sided binomial test.
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Extended Data Fig. 10 | Effects of optogenetic perturbation in frontal and 
parietal cortex on licking behavior. (a) To test if frontal or parietal inactivation 
impairs movement planning or execution, we computed the fraction of missed 
trials with and without optogenetic inhibition in frontal cortex. No increase in 
missed trials was detected, demonstrating that the animals’ ability to respond 
was not impaired (nEMX = 2009, nPT = 1192, nIT = 669, nCStr = 1408 trials). (b) Same 
as in a) for parietal inactivation (nEMX = 1721, nPT = 1108, nIT = 844, nCStr = 1093 
trials). (c) Top: Quantification of licking behavior after spouts were moved in 
for all correct trials in a single EMX animal (10 ms bins). Licking probability 
varies rhythmically at ~10 Hz as the animal licks the spout repeatedly (black 
line). The same pattern is observed with frontal optogenetic inactivation in 
different trial episodes (colored lines), demonstrating that motor generation 

is not generally perturbed. Bottom: While the lick pattern is largely similar with 
optogenetics, inactivation during the delay period (yellow line) reduces the 
lick probability during the first 40 ms (gray area). Frontal inactivation during 
the delay might thus increase animals’ reaction times. (d) Same as in (c) but for 
parietal inactivation. (e) Quantification of lick probability in the first 40 ms for 
all cell types. Frontal inactivation during the delay period reduces early lick 
probability in EMX, PT and IT mice but not CStr mice (nEMX = 2009, nPT = 1192, 
nIT = 669, nCStr = 1408 trials). (f) Same as in (e) for parietal inactivation. Only EMX 
inactivation during the delay caused a small reduction in first lick probability 
(nEMX = 1721, nPT = 1108, nIT = 844, nCStr = 1093 trials). Data are presented as mean 
+/− 95% confidence intervals. Stars indicate bonferroni-corrected p < 0.005, 
two-sided binomial test.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data collection Behavioral data was collected using Bpod r0.5, a commercially available data acquisition system (https://www.sanworks.io/shop/

products.php?productFamily=bpod). Imaging data was collected using custom Matlab (2015b) software (for widefield data) and MScan 2.3 

(commercially available through Sutter Instruments and used to acquire 2-photon data). 

Data analysis Data were analyzed using custom Matlab (2018b) code. As in previous papers, we will make all code available for public use via GitHub  
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were selected based on our extensive knowledge of mouse-to-mouse variability in behavior (quantified in (Odoemene et al, 

2018). This led us to include 54 animals in total.  The number of animals for each cell type is listed in the Methods section. Sample sizes were 

based on previous studies of widefield/2-photon imaging (Musall*, Kaufman* et al, 2019) and optogenetics (Odoemene et al, 2018).

Data exclusions All animals tested were included in the study.

Replication For both encoding and decoding analyses, we report only cross-validated data; that is, the results from "held out" trials that are not used to fit 

the model parameters. This demonstrates that our results are not due to over fitting of the model. We also replicated previous results (Musall 

2019) that demonstrate movements dominate neural activity in this new dataset (see Figure 4B). We did not perform additional replication 

experiments. 

Randomization Animals were presented with stimuli of randomized difficulty. In optogenetics experiments, stimulation trials were randomly interleaved (20% 

of trials). Animals were randomly selected for participation in widefield imaging vs. optogenetics experiments. Controls are all done within 

each animal (e.g., stimulating in primary visual cortex and in parietal cortex in the same animal) so that comparisons were not usually made 

across groups. When we did make comparisons across groups (e.g., optogenetics for PT vs. IT neurons), animals were assigned to each group 

based on their genetic background (e.g., whether they were Fezf2-creER or PlexinD1-creER mice).

Blinding Experimenters were not blinded to which cell type expressed calcium indicators in a given mouse. However, the data collection process is 

entirely computer controlled and automatic so that experimenter's knowledge of the animal's genetic background was not able to influence 

stimulus presentation, stimulus difficulty, or any other experimental parameters. During data analysis, we often used existing pipelines (e.g., 

encoding and decoding models in Figs 4-6). Experimenters' were not blinded to group membership, but also had no opportunity to intervene 

because the analysis is entirely automated and is run in the same way for all subjects. For other analyses, e.g., sNMF and LocaNMF (Fig 2), we 

re-purposed existing analysis tools designed for other experiments (see S. Saxena et al, 2020). These analyses were not blinded, but the 

analysis consists of decomposing matrices into spatial and temporal components and there is no opportunity for the user to influence the 

outcome. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used For histological visualization of GCaMP6s, we used primary goat polyclonal anti-GFP antibody (1/500 dilution, Abcam ab6673) and 

secondary donkey anti-goat Alexa Fluor 488 (1/500 dilution, Abcam ab150129)

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 

manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals All mouse strains were acquired from the Jackson Laboratory, the Allen Brain Institute, or generated at Cold Spring Harbor 

Laboratory. Transgenic strains crossed to generate double- and triple-transgenic mice used for imaging: Emx-Cre (JAX 005628), LSL-

tTA (JAX 008600), Ai93D (JAX 024103), Ai162 (JAX 031562), G6s2 (JAX 024742) and H2B-eGFP (JAX 006069). EMX mice, used for 

calcium imaging, were bred as Ai93D;Emx-Cre;LSL-tTA. To avoid potential aberrant cortical activity patterns, EMX mice were on a 

doxycycline-containing diet (DOX), preventing GCaMP6 expression until they were 6 weeks or older. To obtain PT- and IT-specific 

transgenic lines, we used two inducible knock-in mouse lines (Fezf2-2A-CreER and PlexinD1-2A-CreER) that were generated by 

inserting a 2A-CreER or 2A-Flp cassette in-frame before the STOP codon of the targeted gene. Both strains have been extensively 

characterized to reflect endogenous gene expression patterns that are closely linked to specific excitatory neuron types and induce 

robust and uniform expression throughout the cortex. Only male animals were used. We have since designed a subsequent study 

including sex as a biological variable. Mice/rats were housed as breeding pairs or were weaned and housed by sex in individually 

ventilated autoclaved caging (Thoren Caging Systems, Hazelton, PA). Animals were maintained on sanitized cages and irradiated 

bedding with 1/4 inch corn cob bedding (The Andersons, Maumee, OH) and were fed a closed-formula, natural-ingredient, γ-

irradiated diet (PicoLab Mouse Diet 5053, Purina LabDiet, St. Louis MO) ad libitum. A complete cage change was performed every 

7-10 days within a biological safety cabinet (model Nu602-400Class II Type Nuaire, Plymouth, MN). The room was maintained on a 

12:12-h light:dark cycle with a relative humidity of 30 – 70%, and room temperature ranging from 69-78oF.

Wild animals The study did not involve wild animals. 

Field-collected samples The study did not involve samples collected from the field. 

Ethics oversight The Cold Spring Harbor Laboratory Animal Care and Use Committee approved all animal procedures and experiments.  All surgical 

and behavioral procedures conformed to the guidelines, established by the National Institutes of Health.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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