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Abstract

Motivation: Interactions between proteins help us understand how genes are functionally related and how they
contribute to phenotypes. Experiments provide imperfect ‘ground truth’ information about a small subset of
potential interactions in a specific biological context, which can then be extended to the whole genome across
different contexts, such as conditions, tissues or species, through machine learning methods. However, evaluating
the performance of these methods remains a critical challenge. Here, we propose to evaluate the generalizability of
gene characterizations through the shape of performance curves.

Results: We identify Functional Equivalence Classes (FECs), subsets of annotated and unannotated genes that jointly
drive performance, by assessing the presence of straight lines in ROC curves built from gene-centric prediction
tasks, such as function or interaction predictions. FECs are widespread across data types and methods, they can be
used to evaluate the extent and context-specificity of functional annotations in a data-driven manner. For example,
FECs suggest that B cell markers can be decomposed into shared primary markers (10–50 genes), and
tissue-specific secondary markers (100–500genes). In addition, FECs suggest the existence of functional modules
that span a wide range of the genome, with marker sets spanning at most 5% of the genome and data-driven
extensions of Gene Ontology sets spanning up to 40% of the genome. Simple to assess visually and statistically, the
identification of FECs in performance curves paves the way for novel functional characterization and increased
robustness in the definition of functional gene sets.

Availability and implementation: Code for analyses and figures is available at https://github.com/yexilein/pyroc.

Contact: jgillis@cshl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Characterizing the functional properties of genes across conditions,
species and other perturbations is a central challenge in post-genome
biology. As datasets increase in size and complexity, exploiting
methods from machine learning and AI research has become increas-
ingly valuable to parse vast data collections for subtle convergent
signals (Berger et al., 2013; Le, 2020; Libbrecht and Noble, 2015;
Mahood et al., 2020; Mostafavi et al., 2008). However, the com-
plexity and variety in formalism of these methods create interpret-
ation problems of their own. Establishing a consensus framework to
evaluate prediction accuracy and identify features driving prediction
accuracy has been essential to progress, often using systematic data
resources, and with well-defined performance metrics. In particular,
many problems in genomics map to a supervised learning frame-
work with a goal of determining functional sets of genes from

partial annotations and feature data. A correspondingly high num-
ber of methods and assessments report comparative evaluation using
traditional machine learning statistics, such as the area under the
receiver-operator characteristic curve (AUROC). However, genom-
ics poses unique challenges and opportunities relating to the extreme
scalability of data collection and analyses, both across novel con-
texts, such as conditions, tissues or species, and the ability to collect
high-throughput data in consistent assays.

The shared ancestry of organisms forms the basis of many ways
we extend results from one system to another. Across species, this
shared ancestry is the basis for functional annotation using hom-
ology (Altenhoff et al., 2015); within species, it is the basis for a
shared reference to align functional genomics data (Eraslan et al.,
2019; Mostafavi et al., 2008). Both of these foundational ideas ex-
ploit the shared existence of the same set of genes across systems,
placing data collected from heterogeneous sources into a common
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framework. Whenever a gene is described as linked to a disease (Le,
2020; Wong et al., 2021), annotated with a Gene Ontology (GO)
function (Ashburner et al., 2000; The Gene Ontology Consortium,
2021) or described with respect to structure or biochemical activity
(Capra and Singh, 2007; Lee et al., 2007), we imply a standardized
description of the ‘same’ gene found in different systems.
Analytically, this frequently creates an oddity within machine learn-
ing of gene function: because samples are genes, we are learning
over the same sample space, again and again, extending an initial
positive set to include more and more of what were originally nega-
tives (Le, 2020). This is unlike supervised learning in any other field
where the intent is to learn a classifier that can be applied to ‘new’
samples, as opposed to the same samples over again. As a result,
generalizability can only be assessed across systems, such as condi-
tions, rather than samples; i.e. we ask does this new experiment also
imply a gene possesses a given function? Combined with using pri-
marily sparse positive annotations without explicit negatives
(Dessimoz et al., 2013; Thomas et al., 2012; Youngs et al., 2014),
this separate ‘closed universe’ problem of resampling across novel
feature spaces makes it difficult to interpret annotation performance
from traditional machine learning metrics alone.

A second challenge relates to the magnitude of genome-scale
data. In modern genomics, many assays are designed to be compre-
hensive across the genome, with significance arising from the com-
bination of information across genes. This is used in differential
expression (de la Fuente, 2010), enrichment analysis (Irizarry et al.,
2009; Subramanian et al., 2005) and more generally, network analy-
ses that aim to capture gene associations of all types (Barabási and
Oltvai, 2004; Mostafavi et al., 2008). Thus, networks can be inter-
rogated for overlaps in disease genes or other sets, with even a small
number of genes contributing to generating a significant result if
they are ‘surprisingly’ close in the network. More broadly, there are
two potentially complementary models for gene associations: in the
first model, functions and phenotypes are well captured by a small
set of genes [Mendelian diseases or large effect loci in GWAS (Park
et al., 2011; Gibson, 2012)], while in the second model functions
are distributed over a large set of genes [polygenic model (Gibson,
2012; Golan et al., 2014), omnigenic model (Boyle et al., 2017)]. In
both models, proteins frequently participate in multiple functions,
resulting in overlap between gene sets (Crow et al., 2019; Gillis and
Pavlidis, 2011a), reflecting poor human definitions for functions or
true multifunctionality. Likewise, diffuse interactions may reflect
noisy data or true omnigenic robustness (Mihalik and Csermely,
2011). To understand these questions about the discreteness and ex-
tent of gene function, we need a framework that lets us interpret
conclusions drawn in one context jointly with others.

In this article, we assess the generalizability of gene associations
based on the graphical properties of performance curves. We start
by showing that genomic ROC curves endemically produce highly
significant straight segments across a selection of 50 articles cover-
ing a wide body of methods and data. Using a toy model and simu-
lated data, we illustrate how each straight segment groups together
annotated and unannotated genes that are equally likely to have the
investigated function. We show that the presence of straight lines
can be assessed using the normalized Kolmogorov–Smirnov statistic.
Systematizing our observations from published curves, we show that
straight lines are pervasive across data sources and gene functions,
suggesting the existence of large gene modules (up to 40% of the
genome). Finally, we show how straight lines in ROC curves enable
us to rapidly evaluate the generalizability of gene sets across virtual-
ly any study, and they can be used to tailor pre-existing gene sets to
a new context. Together, these results and methods for the interpret-
ation of performance curves extend our ability to rapidly and visual-
ly probe gene set generalizability across studies and systems.

2 Materials and methods

In the following, we considered three sources of ROC curves and
designed several metrics to characterize the shape of these ROC
curves.

2.1 ROC curves from the literature
We systematically sampled 35 ROC-curve-containing research articles
from the PLoS One journal during one calendar year (genomics-
related Subject Areas) and selected 15 high-profile research articles
(see Supplementary Appendix S1 for a detailed list of papers and fig-
ures extracted). We used the Engauge Digitizer (https://doi.org/10.
5281/zenodo.3941227) software to extract curves from the selected
figures, following the standard procedure (selection of 3 axis points
for scale, automatic segment detection). In instances where the figure
contained too many overlapping curves and individual curves proved
too difficult to extract, we removed the figure from the analysis. After
the extraction process, Engauge Digitizer generated CSV files with
data points evenly distributed along the curve. To harmonize the
curve resolution, we interpolated the curves such that they contained
200 total points evenly spaced along the x-axis (FPR axis).

2.2 ROC curves from PPI, co-expression and co-domain

data
We downloaded the mouse PPI data BIOGRID-ALL version 4.4.197
from the BIOGRID website (Oughtred et al., 2019; Stark et al.,
2006). We filtered the BIOGRID data for mouse (taxonomy ID
10090) and physical interaction (‘Experimental.System.Type’ =¼
‘physical’). This initial network contained 57 337 interactions across
10 172 genes. To take into account indirect connections (Gillis and
Pavlidis, 2011b), we propagated the existing interactions, setting the
weight for each pair of proteins as the inverse of the shortest path
between the two proteins.

We downloaded the mouse co-expression network from the
CoCoCoNet (Lee et al., 2020) website (last updated on April 20,
2021). We converted Ensembl identifiers gene to symbols using the
mapIds function from the AnnotationDbi and the org. Mm.eg.db R
packages (last updated on April 21, 2021), resulting in a dense net-
work of 17 834 genes. Finally, we subset the co-expression and PPI
networks to common genes, resulting in networks of 9058 genes.

We downloaded protein domain information from UniprotKB
(The UniProt Consortium, 2021) using the REST API. For each
mouse protein, we extracted domain information from the ‘Domain
[FT]’ column, obtaining a one-hot encoded matrix for 7269 proteins
and 2161 domains. We computed a protein–protein similarity ma-
trix by normalizing the one-hot matrix using the TF-IDF transform-
ation, then taking the cosine similarity. Finally, we propagated
similarities using the same shortest path algorithm as used previous-
ly for the PPI data.

We downloaded the Gene Ontology (GO) (Ashburner et al.,
2000; The Gene Ontology Consortium, 2021) from the GO website
(GO-basic table in OBO format, last updated December 18, 2019).
We downloaded gene ontology annotations from the MGI website
(‘gene-association’ table, last updated September 9, 2019) and auto-
matically propagated annotations to higher level terms. For down-
stream analyses, we only kept 4238 GO terms with �20 annotated
genes after restricting to the 9058 common genes.

We computed ROC curves by assessing whether GO terms are
preferentially connected in the three networks using EGAD (Ballouz
et al., 2017). We re-implemented EGAD’s modularity metric in
Python. Following the original algorithm, we implemented 3-fold
Cross-Validation (CV), with 2/3 of positives used for training, and
1/3 of positives held-out for testing. In detail, let Xij be a positive
symmetric adjacency matrix representing a weighted network,
where i and j range from 1 to N (number of genes). Let Pi be the
one-hot encoding of the training positives. The EGAD algorithm
was reproduced by computing the node degree Di ¼

P
jXij, the

neighbor votes V ¼ X:P and the normalized neighbor vote
V 0i ¼ Vi = Di. The normalized neighbor votes were used as a predict-
or of held-out positives, yielding one ROC curve per CV fold. For a
given gene set, the final ROC curve is reported as the average ROC
curve (across the 3 CV folds), the final AUROC as the average
AUROC.

We downloaded drug-target interaction information from
STITCH v5.0 (Szklarczyk et al., 2016) from the EMBL website. We
extracted the top 10% protein–target interactions according to the
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‘combined_score’ column, resulting in a binary matrix with 14 190
proteins and 449 815 drugs. For downstream analyses, we only kept
drugs with interactions with more than 20 proteins. We computed
ROC curves using EGAD as described above, except using drugs as
labels instead of GO terms.

2.3 ROC curves from single-cell RNA sequencing data
We downloaded the Tabula Muris (Schaum et al., 2018) single-cell
RNA sequencing (scRNAseq) dataset from FigShare, specifically
Version 2 of the 10� [Single-cell RNA-seq data from microfluidic
emulsion (v2), 2018] and Smart-Seq2 [Single-cell RNA-seq data
from Smart-seq2 sequencing of FACS sorted cells (v2), 2018] data,
along with metadata and annotations, keeping all annotated cells
(100 605 cells). We applied CP10K (counts per 10k) normalization
for the 10� data and CPM (counts per million) normalization for
the SmartSeq data.

We computed markers for each mouse by tissue combination
using the MetaMarkers package (Fischer and Gillis, 2021). We sub-
set the datasets to a given mouse using the ‘mouse_id’ metadata,
then ran the compute_markers function on the normalized counts,
using the ‘cell_ontology_class’ as cell type labels, and ‘tissue’ meta-
data as group labels (stratifying marker search by tissue). We
removed genes with low detection rate (<10% in all mice by tissue
by cell type combinations) and only kept markers inferred for cell
types containing at least 20 cells.

To compute ROC curves, we asked if a set of reference markers
were the top markers in other mouse by tissue combinations. For
each mouse by tissue combination, we ordered genes according to
the effect size of the ROC test, ‘auroc’ column in the MetaMarkers
table, then used this list as a predictor for the reference markers. We
used the ‘prediction’ and ‘performance’ functions from the R ROCR
package to compute the ROC curve (‘tpr’ and ‘fpr’ statistics) and the
AUROC (‘auc’ statistic).

We obtained a first set of reference markers by selecting the top
20 markers for the ‘3_10_M’ mouse from the Smart-Seq dataset, for
the ‘B cell’ cell type in the ‘Fat’ tissue. To determine the second set
of reference markers, we visually estimated that the top 2 FECs in
‘Lung’ spanned 5% of negatives. We extracted and pooled the top
5% markers (ranked by MetaMarkers ‘auroc’) in all 4 individuals
(‘3_39_F’, ‘3-F-57’, ‘3-F-56’, ‘3-M-7/8’), resulting in a marker set of
480 genes. To determine the third set of reference markers, we visu-
ally estimated that the top 2 FECs in ‘Spleen’ spanned 1% of nega-
tives. We extracted and pooled the top 1% markers in all 8
individuals (‘3-M-8’, ‘3-F-56’, ‘3_8_M’, ‘3_9_M’, ‘3_11_M’,
‘3_10_M’, ‘3_38_F’, ‘3_39_F’), resulting in a marker set of 216
genes.

2.4 Simulated ROC curves
To investigate how straight segments arise in ROC curves, we
designed two simulation models with controlled modularity. We
refer to these models as the Gaussian model and the network-based
model.

In the Gaussian model, we consider an ensemble of 10 000
genes. When a gene’s functionality is assessed, it obtains a score that
follows a Nðl,r) Gaussian distribution. The parameter l reflects the
gene’s functional state. In the simple ‘on/off’ model, l ¼ 0 if the
gene is non-functional, l ¼ 1 if the gene is functional; 20% of genes
are labeled as functional. We also consider a ‘on/low/off’ model
(l 2 f0; 0:5; 1g, mixing proportions f0.5, 0.3, 0.2g) and a ‘continu-
ous’ model with 4 states (l 2f0,1/3,2/3,1g, mixing proportions
f0.4,0.3,0.2,0.1g). We simulate two assessments. The first assess-
ment is used to annotate genes: it is simulated under a given noise
level r (r ¼ 1/2, 1/3 and 1/4 for the ‘on/off’, ‘on/low/off’ and ‘con-
tinuous’ models, respectively), all genes that exceed a score of 0.2
are considered functional and annotated as positives. The second as-
sessment independently re-evaluates the gene’s functionalities at
increasing levels of noise (r 2 f0:1;0:2;0:3;0:4g) and compares
them with the initial annotation.

In the network-based model, we consider a network of 10 000
genes composed of 4 pre-defined communities of 2500 genes each.

For the initial annotation assessment, each gene’s label is set accord-
ing to an annotation probability P that depends on the functional
state of each community. We consider four models: non-modular
function (P ¼ 0:5 for all communities), on/off function (P ¼ 0:8
for the functional community, P ¼ 0:1 otherwise), on/low/off
function (P 2 f0:8; 0:5; 0:1g) and a continuous function
(P 2 f0:4;0:3;0:2;0:1g). Once the labels have been drawn, the
modularity of annotated modules is re-evaluated using the EGAD al-
gorithm (see Section 2.2) under varying levels of observed modular-
ity. Starting from the pre-defined communities, the observed
modularity follows the following block structure: any two nodes
from different communities are connected with a weight following a
Nð2; 2Þ distribution, while two nodes from the same community are
connected with a weight following a Nðl; 2Þ distribution where l 2
f2;2:1;2:2;2:3Þ (increasing observed modularity).

2.5 Assessment of linearity using the

Kolmogorov–Smirnov statistic
Conceptually, the one-sample Kolmogorov–Smirnov (KS) statistic
measures the maximal deviation of a Brownian bridge, a random
walk with fixed starting and ending points. Under random labeling
of positives and negatives, the ROC curve can be seen as a random
walk in (TPR, FPR) space (Fig. 2); the ‘randomness’ of annotation
(local equivalence of positives and negatives) can thus be evaluated
from the KS statistic.

Formally, we assessed the linearity of an ROC subcurve by
rescaling it to a [0,1] by [0,1] square, then computing the deviation
from the diagonal line. Mathematically, given a subcurve starting at
the (FPR0,TPR0) point and ending at the (FPR1,TPR1) point, the
rescaled subcurve is given by FPR

0 ¼ FPR� FPR0ð Þ=ðFPR1 �
FPR0Þ and TPR

0 ¼ TPR� TPR0ð Þ=ðTPR1 � TPR0Þ. The deviation
from the diagonal (KS statistic) is Dn ¼ sup TPR

0 � FPR
0j jð Þ and the

normalized KS statistic is D0 ¼ Dn:
ffiffiffi
n
p

, where n is the number of
positives. To compute P-values, we used the C_pKS2 function used
by the R function ks.test, corresponding to a one-sample test with
uniform distribution and parameter ‘exact¼FALSE’.

For ROC curves computed from PPI data, co-expression data,
co-domain data and curves extracted from articles, we automatically
identified the longest linear segments. We considered all possible
subcurves (start/end point combinations) spanning at least 5% nega-
tives (FPR1 � FPR0 � 0:05Þ, then computed the normalized KS stat-
istic D0 as described above. For articles, the number of positives was
generally unknown and was set to n¼100. We tagged all subcurves
with D0 � 1 (asymptotic P-value of P�0.27) as linear, then estab-
lished the final list of FECs by iteratively extracting the longest non-
overlapping straight lines. For ROC curves computed from single-
cell data, we visually assessed the extent of the initial FEC segments,
then confirmed their significance using the KS test.

2.6 Longest segment approximation of ROC curves
For each ROC curve, we extract the longest linear segment as
described above, then reduced the ROC curve to 4 points: (0,0),
(FPR0,TPR0), (FPR1,TPR1), (1,1), where (FPR0,TPR0) and
(FPR1,TPR1) are the two extremities of the longest linear segment.
We then computed the AUROC using the trapezoidal rule.

2.7 Extraction of optimal ROC subcurve flip
For each ROC curve, we recomputed the AUROC after flipping
each possible subcurve using the trapezoidal rule, then identified the
subcurve flip that resulted in the highest AUROC.

3 Results

3.1 Straight lines in ROC curves are pervasive in the

genomics literature
While reviewing the genomics literature, we were struck by the re-
currence of straight lines in published ROC curves. To confirm our
intuition that straight segments are surprisingly common, we
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extracted ROC curves from 50 research articles, composed of an un-
biased selection of 35 articles from the PLoS One journal and 15
manually curated high-profile articles (Supplementary Appendix
S1). In total, we extracted 77 ROC curves using the Engauge
Digitizer (see Section 2) software (Fig. 1a).

The predictions summarized by the ROC curves were either
gene-centric predictions (74/77 curves) or interaction predictions
(3/77 curves). From the methods description and the figures, we esti-
mated that the number of positives ranged from 24 to 6000, while
the total number of objects ranged from 121 to 119 149. In most
cases, the prediction problem was heavily class imbalanced, with

positives representing 1–10% of objects, but we identified at least 4
curves with matching numbers of positives and negatives. Overall,
the extracted curves sample a wide variety of learning problems as
they are typically formulated in the genomics field.

We assessed the presence of straight lines using the normalized
Kolmogorov–Smirnov statistic (Section 2) and found that 92%
(71/77) curves contained straight segments, spanning 71% of the
curve on average (Fig. 2b). 31/77 curves were composed almost en-
tirely of straight lines (covering >90% of the curve), with 39/77
curves contained exactly 2 or 3 segments (Fig. 2c and d). In sum-
mary, straight segments are extraordinarily recurrent in the genom-
ics literature and a surprising number of curves are piecewise-linear.

3.2 Straight lines in ROC space suggest the presence of

discrete functional modules
Why are straight lines so common in genomics ROC curves? To pro-
vide an initial intuition, we consider a toy example of protein func-
tion prediction (Fig. 2). A machine learning classifier is applied to a
high-throughput dataset measuring the likelihood that two proteins
interact (Fig. 2a). The classifier is trained on sparse annotations
obtained by a low-throughput assay that labeled a subset of genes
with 50% True Positive Rate (TPR) and 10% False Negative Rate
(FNR) (Fig. 1a). In this ideal scenario, the classifier identifies a func-
tional module containing an even mix of previously annotated genes
and unannotated functional genes.

The presence of this functional module in the data is immediately
visible on the ROC curve through the presence of straight lines. This
can be intuitively appreciated when visualizing the gene scores as a
two-dimensional ranked list (Fig. 2b). Compared to a simple one-
dimensional ranking of genes, the annotation labels are also repre-
sented by organizing genes according to a ‘random’ walk: if a gene
was previously annotated, the walk steps up, otherwise, the walk
steps right. This representation makes it visually obvious that, in the
predictions, there is a group of genes that contains a high density of
previously annotated gene in the form of a quasi-straight segment at
the beginning of the walk (Fig. 2b). Up to the rescaling of axes, this
2D ranked list representation is identical to the ROC curve (Fig. 2c).

To further illustrate when we expect to find straight lines along
the ROC curve, we consider a simple simulation model of discrete
groups of genes with varying degrees of functionality (e.g. not func-
tional, lowly functional, strongly functional, Fig. 2d). In an initial
assessment, all the genes that pass a certain score are annotated as
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functional. Since the assessment is noisy, some functional genes are
missed and some non-functional genes are incorrectly annotated.
In a second independent assessment, the genes’ functionality is re-
evaluated and compared against the initial annotation in the form of
an ROC curve. The aspect of the curve critically depends on the
quality of the second assessment: at low levels of noise, straight lines
in the ROC curves reveal the number and extent of functional states,
while at higher levels of noise, the ROC becomes curved, hiding the
latent discrete nature of the data. We obtained similar conclusions
for simulations of a network model with varying degrees of modu-
larity and guilt-by-association predictions (Supplementary Fig. S1).

In summary, the presence of a straight segment in ROC space
suggests: (i) the existence of a discrete module of genes with high
prediction scores, (ii) a potential mismatch between existing annota-
tions and the module suggested by the predictions, (iii) the equiva-
lence or interchangeability of genes within the module, which causes
previously annotated genes and unannotated genes to be evenly
mixed. As a result, the initial straight line on the ROC curve suggests
that the annotation can be ‘naturally’ extended to some unannotated
genes as, locally, annotated and unannotated genes are equivalent.

To emphasize the interchangeability of annotated and unanno-
tated genes, we refer to straight lines as Functional Equivalence
Classes (FECs). Note that we are specifically interested in straight
lines in the absence of ties, which arise when the score distribution
of a subset of negatives and positives is identical (Fig. 2d), i.e. the
class labels are locally interchangeable (Supplementary Fig. S2). The
permutability of class labels can be assessed with the normalized
Kolmogorov–Smirnov statistic, allowing us to automatically detect
straight lines in any ROC curve (see Section 2).

3.3 FECs are pervasive across the functional landscape
The common occurrence of FECs in the published literature may be
explained in the light of network biology, which identifies fundamen-
tal functional building blocks by analyzing the global topology of mo-
lecular interaction networks (Barabási and Oltvai, 2004). The central
hypothesis is that there are robust building blocks whose interactions
are shaped by evolution. This hypothesis serves as the foundation of
widespread applications such as gene set enrichment analyses
(Irizarry et al., 2009; Subramanian et al., 2005), which look for func-
tional enrichment across a pre-defined hierarchy of discrete gene sets
[such as the Gene Ontology (Ashburner et al., 2000; The Gene
Ontology Consortium, 2021) or MSigDB (Subramanian et al.,
2005)]. However, it remains difficult to test how well discrete gene
sets are supported by the data, and how context-dependent they are.

To assess the presence and extent of discrete modules across the
functional landscape, we turned to a broad set of functions as
defined by the GO and investigated the presence of FECs across two
types of network data offering wide meta-analytic resources and
capturing different aspects of function: Protein–protein interaction
(PPI) networks and co-expression networks. PPI networks are binary
networks where nodes are proteins and edges connect pairs of pro-
teins that physically interact. In contrast, co-expression networks
are weighted networks where nodes are genes and edges reflect the
propensity of two genes to be expressed in the same contexts (condi-
tions, tissues or cell types).

We built a PPI network by aggregating all interactions from the
BIOGRID (Oughtred et al., 2019; Stark et al., 2006) database anno-
tated as ‘Mouse’ and ‘Physical Interaction’, resulting in a network
containing 10 172 proteins and 57 337 interactions. As PPI net-
works are typically sparse, we used a propagation algorithm to ob-
tain a dense network, which accounts for indirect interactions
between proteins (see Section 2). We downloaded the mouse co-
expression network from the CoCoCoNet (Lee et al., 2020) data-
base. The network was obtained by aggregating 3359 samples over
85 experiments, resulting in a dense network containing 17 834
genes. To allow comparisons between the two modalities, we
restricted the two networks to 9058 common genes.

To assess whether a function is supported by a network’s top-
ology, we used the guilt-by-association framework implemented by
the EGAD (Ballouz et al., 2017) algorithm. Briefly, EGAD uses a
neighbor voting algorithm to assess whether genes that are annotated

with the same function tend to be neighbors in the network (Fig. 3a).
Some of the annotated genes are held-out and serve as positives, while
all other genes are annotated as negatives [closed world assumption,
(Dessimoz et al., 2013)]. Taking neighbor votes as a predictor for
held-out genes, we build one ROC curve for each function and net-
work. A high AUROC indicates that the annotations are supported
by the network, i.e. genes annotated with this function tend to belong
to the same module. Overall, GO functions were strongly supported
by both the PPI (median AUROC¼0.72) and co-expression networks
(median AUROC¼0.70, Fig. 3b). Performance was only partially
correlated (rho¼0.35, Supplementary Fig. S3), consistent with the
fact that PPI and co-expression capture different aspects of function.

Straight segments were extremely common in both types of data,
suggesting widespread modular structure across the genome. FECs
that spanned at least 5% of the genome were detected in 99.8%
functions and spanned 85% of the genome on average (Fig. 3c). 95/
8478 (1.1%) functions were even detected to be entirely composed
of straight lines, such as ‘meiotic cell cycle’ (2 FECs, Fig. 3d) or ‘de-
termination of left/right symmetry’ (2 FECs, Fig. 3e).

3980/8476 functions (46% in co-expression, 48% in PPI) con-
tained exactly two FECs (Fig. 4a), suggesting a binary partition of
the genome (function-associated versus non-functional). The length
of individual FECs varied substantially across functions and had a
clear bimodal shape in both modalities (Fig. 4b). The first mode con-
tained 62% of FECs and spanned 5% to 40% of the genome; it
roughly corresponded to the length of the primary FEC of each
curve, i.e. the FEC containing the highest-ranking genes
(Supplementary Fig. S4).
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genes as positives, performance can be summarized as an ROC curve, which reflects

the degree of modularity of a functional gene set. (b) Degree of modularity (EGAD

AUROC) of functional gene sets defined by the Gene Ontology (GO) in meta-ana-

lytic co-expression (COEXP) and PPI data. (c) Fraction of ROC curves detected to

be straight lines. (d, e) Examples of ROC curves composed almost exclusively of

straight lines. Each facet shows a specific GO term, colored curves show the ROC

curve for this term, black lines show the FECs detected using the KS test

Defining the extent of gene function using ROC curvature 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac692/6769888 by C

old Spring H
arbor Laboratory user on 13 D

ecem
ber 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac692#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac692#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac692#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac692#supplementary-data


Because FECs often spanned large portions of the genome and
most curves contained exactly two or three FECs, we wondered how
many functions could be explained by the presence of two or three
discrete classes of genes, corresponding to the ‘on/off’ and ‘on/low/
off’ simulation models. We identified the start and end of the longest
FEC in each curve, replaced it by a straight line, then connected this
line to the (0,0) and (1,1) points using straight segments. In cases
where the FEC contained the (0,0) or (1,1) point, the ROC curve
was approximated by two straight lines (Fig. 4c). We found that the
two or three line-approximation worked to a surprising degree:
74% of curves could be approximated with a relative error on the
AUROC lower than 5% (Fig. 4d).

Despite partially uncorrelated performance, the presence and
size of FECs was remarkably consistent across the PPI and co-
expression modalities. We show that these distributions hold across
an even larger body of data, including the ROC curves from the lit-
erature (Supplementary Fig. S5), protein function prediction from
protein domain information (Supplementary Fig. S6), and drug–tar-
get interaction predictions (Supplementary Fig. S7). Overall, these
results suggest that modular structure is widespread in the data, al-
though modules only partially overlap with existing annotations.
For most functions, the data even suggest a binary partition of genes,
with function-associated genes constituting up to 40% of the
genome.

3.4 FECs capture context-dependent views of

functionality
While the presence of FECs suggests modular structure in the data,
the slope and extent of FECs suggest that data-driven modules only
partially overlap with existing annotations. This shift in annotation
may arise from imperfect annotations, but it may also reflect the
fact that the same function is associated with different gene sets de-
pending on the context.

To obtain context-specific functional gene sets, we turned to
cell-type-defining genes identified from single-cell RNA sequencing
(scRNAseq) data. Recent cell type atlasing efforts suggest that ma-
ture cell types act as discrete transcriptomic entities and constitute
conserved building blocks of biology (Bakken et al., 2020; Baron
et al., 2016). In transcriptomic space, this discrete nature translates
into well-separated clusters and cell-type-specific marker genes.

To evaluate the replicability of marker modules across contexts,
we extracted markers from the Tabula Muris atlas (Schaum et al.,
2018), which contains 100 605 cells sampled from 7 mice (3 males
and 4 females) across 20 organs. We focused on the ‘B-cell’ cell type,
detected in 42 combinations of individuals (7 individuals), tissues (7
organs) and sequencing technologies (10X and Smart-Seq) for a
total of 10 323 cells.

We extracted the top 20 cell type markers (see Section 2) from
the ‘3_10_M’ individual in the ‘Fat’ tissue, sequenced using the
Smart-Seq technology. This corresponds to a typical marker gene ex-
traction scenario, in which a study relies on a single tissue and
sequencing technology. To study the generalizability of these 20
markers, we asked whether they are also predicted as top markers in
the remaining data. We generated one ROC curve per individual,
tissue and technology combination that contained more than 20
cells (25 combinations).

Marker replicability AUROCs ranged from 0.83 to 1 (median
0.97), suggesting high overall replicability. Performance differences
were mostly explained by variability across tissues (61% variance
explained). Compared to markers extracted from the same tissue,
but from different individuals, the markers displayed perfect replic-
ability (AUROC � 1, lines labeled “Fat” in Fig. 5a). However, per-
formance in other tissues was suboptimal (AUROC<1, lines
labeled “Lung” in Fig. 5a). In the initial portion of the ROC curves,
we identified two straight lines spanning approximately 5% of the
genome (Fig. 5a). The first FEC (perfect straight line, KS ¼ NA)
highlighted that approximately 50% (�10/20) markers picked in fat
were perfectly replicable in lung (Fig. 5b). We call these genes pri-
mary markers. In contrast, the second FEC (KS¼0.85, P¼0.47,
n¼5) contained approximately 25% of the original markers, but
also 5% of the negative genes with equivalent marker strength. This
line suggests the existence of context-dependent markers: markers
extracted from fat can be completed with previously unidentified
genes that can be used interchangeably as secondary markers in the
lung. Lung-specific secondary markers were consistent across all
individuals and technologies, suggesting that they fundamentally re-
flect differences across tissues (Supplementary Fig. S8a). As a result,
we can automatically extend the starting marker set to a larger and
more robust set of markers. The first two FECs represent a new can-
didate set with 480markers (16/20 initial genes, 464 additional
genes) which are highly replicable across tissues (AUROC>0.96,
DAUROC=-0.03–0.03), with the notable exception of the mammary
gland (DAUROC ¼ –0.09) and the spleen (DAUROC ¼ �0.36,
Supplementary Fig. S8b).

This procedure can be repeated: FECs can be used to adapt any
pre-existing gene set to a different context. Building an ROC curve
for the spleen against the 480 lung markers, the two initial FECs
(KS¼1.2, P¼0.12, n¼18 for the average ROC curve,
Supplementary Fig. S8c) contain �25% of the lung marker set and
1% negative genes with equivalent performance in the spleen, repre-
senting a total of 216 genes. This new marker set resulted in perfect
performance in the spleen and lower performance in other tissues
(AUROC range¼0.89–0.95, Supplementary Fig. S8b), suggesting
that most of the newly identified markers are spleen-specific.

Remarkably, when ROC curves are used to evaluate the general-
izability of a marker set from a context A to a context B, they tend
to contain long initial FECs, suggesting the presence of marker mod-
ules that shift across contexts, but remain discrete modules in any
given context (Fig. 5c). However, when ROC curves are averaged
across multiple contexts, the ROC curve becomes heavily non-linear
(Fig. 5c). The non-linearity suggests the existence of a functional
gradient, reflecting the fact that some genes tend to be associated
with B cell functionality more frequently when a wide variety of
contexts are considered.
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This example shows how FECs decompose a candidate gene set
into discrete classes of genes with respect to a given functional prop-
erty. A simple look at a set of ROC curves suggests the existence of
shared (primary markers) and tissue-specific properties (secondary
markers). The size of straight lines can be directly interpreted: there
are around 10–50 primary markers and 100–500 secondary
markers. The presence of FECs seems to directly depend on the as-
sessment: when a single context (tissue) is considered, the gene or-
ganization is modular, across multiple contexts, there is a hierarchy
of genes that tend to be more frequently associated with the
function.

4 Discussion

In this study, we showed that the shape of ROC curves offers a vis-
ual and data-driven interpretation of the extent of biological func-
tions. The presence of straight lines in the ROC curve suggests that
the data are compatible with the extension of a functional gene set
to unannotated genes. We call these straight lines FECs, because
they define discrete classes of genes that are equivalent with respect
to the functional property investigated. Our examples show that the
extensibility of gene sets is context specific: we found that a subset
of B-cell markers was conserved across tissues, while secondary
markers varied from tissue to tissue. One of the strengths of FECs is
that the generalizability and extensibility of a gene set can be probed

with one look at the ROC curve. Either the gene set works perfectly
well in the new context (AUROC¼1), or performance is suboptimal
and FECs suggest how the gene set can be reorganized in the new
context.

The omnipresence of FECs is compatible with the discrete organ-
ization of genes in gene sets (such as GO sets, MSigDB signatures or
marker sets) and reminiscent of the polygenic model, where disease
risk is distributed over a larger set of genomic loci (Golan et al.,
2014; Khera et al., 2018; Lewis and Vassos, 2020). However, these
discrete sets are usually observed in one biological (e.g. a given tissue
in the marker space) or technological (PPI, co-expression data) con-
text. Our analysis of marker generalizability across tissues suggests
that, integrated across enough contexts, the degree of functionality
of genes may start to appear continuous, consistent with the omni-
genic model, which posits that all expressed genes are likely to con-
tribute a disease due to the interconnections of regulatory networks
(Boyle et al., 2017).

Despite their rich history in genomic assessments, AUROCs are
often deemed unintuitive in the presence of extreme class imbalance
(Megahed et al., 2021; Saito and Rehmsmeier, 2015). For example,
in ROC curves extracted from the literature, positives often repre-
sented around 1% of genes (Supplementary Appendix S1). Because
ROC curves set positives and negatives on the same scale, a segment
of slope 10 would contribute highly to the AUROC but, within the
segment, negatives would actually outnumber positives 10:1. This
led to a more particular focus on the evaluation of top predictions
[ROC50 (Qiu and Noble, 2008), partial AUCs (McClish, 1989;
Walter, 2005) and precision-recall curves (Altman and Krzywinski,
2021; Saito and Rehmsmeier, 2015)]. On the other hand, since the
shape of the ROC curve is independent of class imbalance, they fa-
cilitate global visual interpretations, e.g. local class equivalence is
clearly visible as a straight line, along with other striking and inter-
pretable patterns (Supplementary Appendix S2). Strictly speaking,
FECs could also be extracted from the precision-recall curve, but
they become curves in precision-recall space (see e.g. Davis and
Goadrich, 2006), with highly unintuitive curvatures that depend on
class imbalance (Lopes et al., 2014). The visual interpretability of
ROC curves was previously noted by Janssens and Martens, who
attributed the occurrence of ‘angles’ to the presence of a dominant
binary predictor (Janssens and Martens, 2020). In this study, we
find that that ‘angles’ are widespread in genomic data because of the
presence of straight lines, suggesting an underlying modular organ-
ization of the data.

Our sampling of published ROC curves suggests that FECs tend
to be present regardless of the data type and prediction method
used. Our focus on large aggregate databases (PPI, co-expression,
drug–target interactions) confirms the presence of widespread
modular structure in each data type. However, recent algorithms
combine increasingly broad data resources (Gligorijevi�cet al., 2021;
Kulmanov and Hoehndorf, 2020; Rifaioglu et al., 2018; You et al.,
2021), which may smooth out the strong modularity suggested by
each data type alone, thus reducing the frequency of FECs. Another
interesting avenue is the integration of high-throughput functional
assessments generated from CRISPR screens (Bock et al., 2022), in
particular the elucidation of gene function at the single-cell reso-
lution (Replogle et al., 2022), to probe the generalizability of func-
tional modules across cell types, tissues and conditions.

In summary, FECs define a formal framework to visualize and
probe the context-specificity of functional gene sets. They are simple
to visualize and extract, providing a novel way to summarize com-
plex data. They are widely applicable, as ROC curves are frequently
used in genomic assessments, paving the way for comparative and
meta-analytic studies. Applied across a range of contexts, they pro-
vide a first step toward teasing out shared and context-specific gene
set components.
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