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Non-symmetric pinning of topological defects in
living liquid crystals
Nuris Figueroa-Morales1,2,3, Mikhail M. Genkin4, Andrey Sokolov 3 & Igor S. Aranson 1✉

Topological defects, such as vortices and disclinations, play a crucial role in spatiotemporal

organization of equilibrium and non-equilibrium systems. The defect immobilization or pin-

ning is a formidable challenge in the context of the out-of-equilibrium system, like a living

liquid crystal, a suspension of swimming bacteria in lyotropic liquid crystal. Here we control

the emerged topological defects in a living liquid crystal by arrays of 3D-printed microscopic

obstacles (pillars). Our studies show that while −1/2 defects may be easily immobilized by

the pillars, +1/2 defects remain motile. Due to attraction between oppositely charged

defects, positive defects remain in the vicinity of pinned negative defects, and the diffusivity

of positive defects is significantly reduced. Experimental findings are rationalized by com-

putational modeling of living liquid crystals. Our results provide insight into the engineering of

active systems via targeted immobilization of topological defects.
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Point topological defects are singularities of the orientational
field. They are topologically stable entities that form when a
certain continuum symmetry is broken, for example at a

phase transition1. The examples include Abrikosov vortices in
type-II superconductors2, quantized vortices in superfluid
Helium3, point disclinations in nematic liquid crystals4, sky-
rmions in ferromagnets5, and even cosmic strings6. Near the
symmetry-breaking phase transition, the system can be uni-
versally described by the Ginzburg-Landau equation for the
corresponding order parameter7.

Various strategies of superconducting vortex pinning were
proposed, like the creation of artificial periodic defect arrays in
superconducting films, e.g., holes8,9 or magnetic nanodots10. It is
tempting to apply a similar strategy to control the spatiotemporal
response of active matter11–14. As it was pointed out by de
Gennes15, there is a deep analogy between Abrikosov vortices and
half-integer defects in liquid crystals in 2D.

However, the defect motion in active systems is more subtle
than at equilibrium. Dynamics of topological defects at equili-
brium is relatively simple: their mutual motion and annihilation
minimize the free energy. In non-equilibrium systems, such as
active nematics, exemplified by cytoskeletal extracts16–20, cells
tissues21,22, or living liquid crystals (LLC)23, the entire concept of
thermodynamics is in question. Half-integer topological defects
exhibit rich spatiotemporal behavior, like persistent creation and
annihilation of disclination pairs, the onset of long-range
dynamic order24–26, etc. Furthermore, activity makes the
dynamics of individual defects non-symmetric:+ 1/2 defects drift
spontaneously while isolated −1/2 defect remain at rest24,25,27.
Thus, defect pinning in active systems is more subtle, and little is
known about how active defects can be immobilized28,29.

Among the realm of active nematic-like systems16,17,22,30,31, a
suspension of swimming bacteria mixed with a liquid crystal,
a living liquid crystal11,23 displays the guidance of bacteria along
the nematic director23,32–34, transport of cargo along bacterial
trajectories35, and dynamic self-assembly of bacterial clusters36.
Bacteria swim away from the cores of −1/2 defects and accu-
mulate in the cores of +1/2 topological defects25 (Fig. 1a). The
system is simple in preparation and amenable to effective com-
putational modeling25,37–39.

To investigate pinning of active topological defects, we conduct
experiments with a realization of living liquid crystal: motile
bacteria Bacillus subtilis suspended in lyotropic liquid crystal
disodium cromoglycate (DSCG). The measurements are per-
formed in a Hele-Shaw-type cell geometry with 3D printed
microobstacle arrays. We show that− 1/2 disclinations can be
successfully pinned by the obstacles whereas+ 1/2 defects remain
mobile. Furthermore, we have found that pinning of negative
defects results in the overall reduction of mobility of the positive
ones. The experimental findings are supported by computational
analysis based on models of living liquid crystal developed in25,37.
Overall, we obtained good agreement between our theory and the
experiment. Our results stimulate new strategies for control and
manipulation of active matter via targeting topological defects, in
systems where topological charge can be manipulated by
designing arbitrary arrays of specifically shaped microscopic
irregularities.

Results and discussion
Experimental observations. The micro-chamber for measurements
contains a square lattice of 20 μm-tall microscopic pillars resembling
negatively curved triangles raising from the glass substrate, alongside
a pillar-free control area [see Fig. 1b–e, Supplementary Video 1, and
Methods for experimental details]. LLC was sandwiched between
the bottom glass slide and a thin film of PDMS supported by the

3D-printed pillars. In this configuration oxygen permeates through
the PDMS film, promoting the motility of aerobic bacteria and
enabling activity of LLC. The dynamic of LLC is captured by a
Prosilica digital camera (1600 × 1200 pixels, 10 frames per second)
using bright-field microscopy. A custom MATLAB script recon-
structs the nematic field lines of LLC from local bacterial orientations
on the snapshots. These field lines allow identification of topological
defects, which can then be tracked [Fig. 1f and Supplementary
Video 2]. Note that although this method depends on non-zero local
concentration of bacteria to identify field lines and defects, at these
high concentrations the entire space is occupied by bacteria at almost
all times.

Negative nematic defects residing on the pillars is the most
distinct feature of active nematics with obstacles, Fig. 1f. The
fraction of pillars occupied by −1/2 defects is as high as 0.94,
starting from a few seconds after flow in the measurement
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Fig. 1 Schematics of experiment and defect snapshots. a Nematic field in
the vicinity of +1/2 and −1/2 topological defects. b A schematic view of 3D
model of a square lattice of pillars on a glass slide. c A side view of the
microscopic pillar inside the experimental microfluidic chamber. d Bright
field microscope image of a living liquid crystal in the presence of pillars
lattice. Scale bar is 100 μm. e Snapshot illustrating position of bacteria
around the pillar. Scale bar is 10 μm. f Reconstructed nematic field lines and
topological defects in the vicinity of the pillar, the observation area
100 μm× 100 μm. Scale bar is 20 μm.
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chamber has settled to zero. Supplementary Video 3 shows a
pillar that is initially not occupied by a defect, then, a− 1/2 defect
in its vicinity drifts and settles on the pillar. The average filling
fraction was obtained by average over all the pillars and the entire
duration of the experiment – 6.2 minutes. However, the instant
filling fraction can be smaller in some moments of time.

The observed negative charging of pillars is attributed to
several factors. The first factor may be considered in the context
of equilibrium physics: if the curvature of the obstacle surface is
relatively small, the liquid crystal (DSCG) tends to align parallel
to the surface40–42. This minimizes the free energy by reduction
of anchoring energy at a smaller cost of bending deformation.
Therefore, orienting action of the pillar facilitates the formation
and pinning of a negative defect. However, this effect is not
dominant in the phenomenon that we here show. For an
equivalent passive system (liquid crystal without bacteria)
negative charging of pillars takes place only after several
(~20) minutes of relaxation of the nematic director, while at
previous times the nematic orientation is dominated by the initial
flow established when the micro-chamber is closed [see
Supplementary Note 1, Figs. S1, S2, and Video 4]. Additional
experiments on a non-active nematic containing 2 μm-long gold
rods, Figs. S1 and S2, show non-organized orientation of rods
around pillars, also demonstrating that the pillars themselves do
not template− 1/2 defects in the corresponding timescale.

An important question here is how the shape of the pillars
affects the pinning of negative defects. One may think that only
the triangular shape enables the trapping of negative defects by
forcing LC to align along the surface. However, even for circular
obstacles, the planar alignment of LC along the circular pillar is
not necessarily stable. Changing shape from triangular to circular
does not guarantee that the nematic alignment remains planar
along the surface. We reconstructed the nematic field around
triangular star-like, round, and square pillars in a passive liquid
crystal to obtain experimental confirmation of this statement (see
Fig. S3). One observes no significant difference in the defects
distribution around different shapes’ pillars. In fact, due to
competition between bending and splay deformations, circular
alignment often becomes distorted, leading to a configuration
with defects (usually a pair of defects)43. This effect is
pronounced when the surface anchoring is not too strong (as in
our experiment). Moreover, bacteria do not necessarily move on
circular orbits in the vicinity of the pillar. A study in ref. 14

demonstrates that if the concentration of bacteria is above a
critical value, the bacteria self-organize their flow, corresponding
to a negative (saddle-like) defect.

For the active system (liquid crystal with swimming bacteria), a
coupling between bacteria trajectories and a local nematic field
orientation23 contributes to the second factor. Collisions of
swimming bacteria with obstacles leads to strong hydrodynamic
trapping along the edges44,45: bacteria swim parallel to the sides
of the pillars and align the nematic field in a shape resembling a
negative defect. The role of this factor could be controlled by
bacterial activity. An additional contribution comes from the
activity of the nematic liquid crystal but does not require
triangular shape. Significantly less mobile negative defects are
attracted to stationary interfaces25 introduced by pillars. The
defect pinning is also affected by the pillar size. Our previous
study, ref. 37, shows that the topological charge of isotropic
inclusion increases linearly with its size. A similar effect should
occur for the pillars. However, the pinning strength should vanish
when the pillar size becomes smaller than the defect’s core size,
that, in turn, of the order of the bacterial length of 5 μm.

While the majority of negative defects are pinned to pillars,
[Fig. 2a, c], positive defects tend to remain at a small distance
from the pillars, [Fig. 2b, c and Figs. S4, S5]. A spatial distribution

of positive defects clearly indicates three well-defined peaks
outside the pillar sides. At large distances from the pillars, the
distribution is almost homogeneous. There is a weak depletion of
the negative defect density at a distance of about 20 μm from a
pillar. This effect could be due to the low mobility of negative
defects and their strong attraction to the pillar. This configuration
is somewhat similar to the distribution of positive charges
forming a layer around a negatively charged colloidal particle46.

Pinned negative defects do not annihilate with positive defects
in their vicinity. Spontaneous nematic charging of pillars
increases fluctuations of topological charge, depicted in Fig. 2d
and e. The concentration of ± 1/2 defects in the area with pillars
increased roughly by 30% for our experimental conditions in
comparison with the basal concentration in the pillar-free region.

To understand how pillars modify the activity of topological
defects, we compute the mean squared displacement (MSD) and
the average speed of defects, Fig. 3. The MSD is computed as
h sðt þ ΔtÞ � sðtÞ
�� ��2i

t
, where s(t) is the (x, y) position of the defect

at time t, and 〈…〉t denotes the average along each trajectory. For
a valid statistical representation Δt is limited to 1/10 of the total
duration of the track. The analysis of the experimental data
[Fig. 3a] shows that defects in the vicinity of pillars (small value of
r) have a reduced MSD compared with free defects (larger value
of r), see Fig. S5.

Positive and negative defects are created and annihilated in
pairs. For our experimental conditions, the distribution of defect
lifetimes in the area located far from pillars can be fitted as an
exponential decay ~e−t/τ, where τ= (4.8 ± 0.1) s. The distribution
of τ is shown in Fig. S6. The typical value of τ observed in the
experiments is not long enough to accurately extract diffusion
coefficients from defect trajectories. At the same time, the
collected experimental data allows us to quantify the differences
between the MSD of the near-pillar defects (25 μm< r < 35 μm)
and unbound defects (r > 140 μm). The linear slope comparison
of a temporal evolution of the MSD presented in Fig. 3b shows
that motility of both positive and negative defects located in the
vicinity of pillars is reduced. The difference in motility is
especially noticeable for positive defects. The defect mobility is
characterized by their linear speed: the average speed increases
with the distance from the pillar, Fig. 3c.

Computational results. To support our findings and extend the
analysis beyond experimental limitations we conducted computa-
tional studies. We analyzed the system in the framework of a con-
tinuous model for living liquid crystals developed previously25,34,37.
See Methods and Supplementary Note 2 for details. In this two-
dimensional model, the dynamics of a liquid crystal is described by
the Beris–Edwards equations for the nematic tensor Q, and the
hydrodynamic velocity v!. These equations are coupled with
equations for the bacterial orientation tensor P, and concentrations
of bacteria c+, c− moving in opposite directions along the nematic
field. Pillars are modeled as isotropic tactoids (normal inclusions),
where the nematic order parameter Q is strongly suppressed by
modulation of the Landau-de Gennes (LdG) coefficient (see ref. 37).
The spatially-modulated LdG coefficient introduces the shapes and
positions of the pillars, and the conditions at the interface are
simulated by adding a term that anchors the nematic tensor parallel
to the surface of the pillars. We solved Eqs. (1)–(7) in a square
512 × 512 μm2 domain with four identical pillars arranged in
2 × 2 squared grid [see Fig. 4a]. Defect positions were determined
using a custom defect detection algorithm37 and recorded every 0.1s
of equivalent simulations time units and later used to track defects.

We obtained good agreement between theory and experiment,
comparing experimental Figs. 2, 3 and computational Fig. 4.
Numerical simulations confirm that negative defects reside on the
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pillar center, while positive defects accumulate at d ≈ 15− 20 μm
distance from the pillar center [Fig. 4a–d], in agreement with the
experimental findings [Figs. 2 and 3] and Supplementary
experimental Videos 3, 4 and simulation Videos 5, 6. Like in
the experiment, the distribution of positive defects has maxima
near the concave segments of the pillar, Figs. 2b and 4c. The
proximity of pillars also leads to a reduction of defect mobility

(Fig. 4e, f). The effective diffusivity of positive and negative
defects drops from D+= 24.7 μm2 s−1, D−= 5.6 μm2 s−1 to D
+= 13.9 μm2 s−1 and D−= 4 μm2 s−1. Since the motion of
defects is not a purely normal diffusion, the provided values are
given for a typical lifetime of defects Δt= 5–8 s.

We have found from the simulations that while positive defect
accumulation near a pillar is robust, the defect distributions are
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Fig. 2 Defect and topological charge distributions. Heat map of the average concentration of negative (a) and positive (b) defects. Color bars represent
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Fig. 3 Activity of topological defects. a The mean squared displacement (MSD) of defects (obtained by moving average along the trajectory) as a function
of time interval (Δt) and the average distance to the nearest pillar (r). Inset: The MSD vs r in semilogarithmic scale for two time intervals Δt. Each point
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(thin lines) and the standard error of the mean (thick lines).
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sensitive to the director anchoring details. For example, if the
anchoring is relatively strong and planar, the bend dominates the
splay, as shown in supplementary Fig. S7a. Therefore, it will be
more energetically favorable for the defect to bind to the concave
segment of the pillar, as in the experiment and in our simulations.
The opposite case of weak planar/hybrid anchoring is sketched in
supplementary Fig. S7b: splay deformations are dominant at the
vertices, and the defects preferentially bind near the tips. This
situation can be possibly realized by treating the pillars with a
substance favoring a homeotropic anchoring47. Similar to the
experiment, there is also a depression of the negative defect
density at a certain distance from the pillar; compare computa-
tional Fig. 4d and experimental Fig. 2c.

To extend our study beyond experimental conditions, we
numerically investigate the effect of circular pillars [see Fig. 5 and
Supplementary Videos 7, 8]. While defect trapping by pillars is
robust, the form of the probability distributions depends on the
pillar’s shape. Like in the triangular case, Fig. 4b, c, the
distribution of negative defects for circular pillars has a maximum
in the center while positive defects have a minimum, Fig. 5b, c.

However, the defect distributions for circular pillars are
axisymmetric, and the distribution for negative defects is about
twice wider than that for triangular pillars. The defect mobility in
the proximity of pillars does not exhibit significant differences
compared to the triangular case, see Fig. S8.

Fokker–Planck model. As an alternative mathematical descrip-
tion of the system, we model the defect dynamics with a one-
dimensional probabilistic model derived from the Langevin defect
dynamics, see Methods and ref. 37. A somewhat similar approach
was later considered in ref. 48. Here the deterministic drift force is
a sum of inter-defects interaction forces and the force on tactoid’s
(pillar’s) surface that prevents defects from escaping the tactoid
region. Stochastic forces depend on defects’ diffusivities, where
positive defects are more mobile than the negative ones, in
agreement with the experiment, Figs. 3a and 5a. The corre-
sponding system of two Fokker–Planck (FP) equations for posi-
tive and negative defects densities is solved numerically, see
Methods. The model provides a qualitative insight into the

Fig. 4 Simulations of the computational model. a Nematic field around four star-like pillars. Director orientation is shown with thick lines and amplitude of
the order parameter with color. The color bar represents the magnitude of the order parameter. Negative (b) and positive (c) defect concentrations around
a pillar. The pillar contour is depicted by white dots. The color bars represents the defect concentrations. d The probability density function of positive and
negative defects vs the distance from the pillar center. e MSD vs time for positive and negative defects near pillars (25 μm< r < 50 μm) and far from pillars
(r > 140 μm). Shaded regions represent the standard error of the mean value (SEM), red for positive and blue for negative defects, correspondingly.
f Average defect speeds as a function of their average distance to the nearest pillar, calculated for Δt= 8 s. Error bars show standard deviation. The
graininess of b, c is due to the coarse binning of the defect probability densities.

Fig. 5 Simulations for pillars of circular cross-section. a The probability density function of positive and negative defects vs the distance from the pillar
center. The concentration of negative (b) and positive (c) defects, the pillars' contours are depicted by the white lines. The color bars represent the defect
concentrations. The graininess of (b), (c) is due to the coarse binning of the defect probability densities.
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experiment. The steady-state concentration of positive and
negative defects are shown in Fig. S9. This approach explains
defects clustering at pillar’s boundary: less active negative defects
tend to cluster inside the pillar, while more mobile positive
defects escape the potential barrier and spread across the entire
domain. The model predicts that the concentration of positive
defects approaches the background value faster than that for the
negative ones. The discrepancy for the defect concentrations
inside the pillar is due to the ambiguity of defect identification in
isotropic phase: Unlike the continuous model, in 1D simulations
the defects were not allowed to annihilate.

Conclusions
Our work provides a new strategy for tuning the physical prop-
erties of active nematics. We demonstrate that microscopic
obstacles robustly pin −1/2 topological defects, while the +1/2
defects remain mobile while some of them are trapped in the
vicinity of pillars. Our experiments and simulations show that the
pinning of negative defects also results in the overall reduction of
motility of the positive defects. The experimental findings are
supported by computational analysis based on the model of a
living liquid crystal. Further numerical studies suggest that the
observed phenomenon is not sensitive to the shape of obstacles:
qualitatively similar behavior was observed for an array of round
obstacles. In addition, we have shown that artificial imperfections
can change the overall balance between positive and negative
defects. As a result, the active fluid becomes topologically
charged, with materials properties that are likely to differ from a
“neutral” active fluid. Our work opens up an important future
direction on experimental study of a topologically charged fluid.

In the context of equilibrium physics, the interplay between
correlated disorder and vortex matter results in a variety of
nontrivial glassy states49,50. An intriguing question is: whether
topological defects in active systems form states similar to “spin
glasses”51 or their interaction with the disorder is very different.

Methods
Pillars manufacturing. An array of pillars is 3D-printed on a glass slide by direct
laser lithography using Nanoscribe Photonic Professional GT system. The mate-
rials used for printing is a high-resolution negative photoresist IP-Dip manu-
factured by Nanoscribe. The exposed photoresist is developed with Propylene
glycol monomethyl ether acetate (PGMEA) from Sigma Aldrich for 20 min and
then rinsed with Isopropanol. For best experimental conditions the pillars are made
20 μm tall.

Living liquid crystal preparation. Bacillus subtilis (strain 1085) bacteria initially
grown on a Lysogeny Broth (Sigma Aldrich) agar plate are transferred to Terrific
Broth (TB) liquid growth medium and kept at 30 ∘C for ≈8−12 h. The experiments
are performed with a population of bacteria in the early logarithmic phase of
growth. The bacteria are concentrated by centrifugation and mixed with a liquid
crystal to achieve the final bacteria concentration of ≈5 × 109 cell/cm3. The liquid
crystal is obtained by mixing disodium cromoglycate (DSCG) purchased from
Spectrum Chemicals with TB at a concentration of 20% by weight. The final
concentration of DSCG after mixing with is the concentrated bacterial suspension
is 11.5% by weight.

Image acquisition and processing. The dynamics of the system was examined via
an inverted microscope Olympus IX71 and recorded by a monochrome camera
Prosilica GX 1660 (resolution 1600 × 1200 pixels) at 10 frames per second. The
images were processed in MATLAB. The director field was reconstructed from the
local bacterial orientations. For finding bacterial orientation, we used a gradient
method and assumed that the largest variation of image intensity in the area
around a single bacterium is perpendicular to a bacterial body. The director field
was interpolated for the areas with no bacteria.

Advection-diffusion computational model of a living liquid crystal. We used
the Beris–Edwards (BE) equations for the nematodynamics coupled with two
advection-diffusion equations for bacterial concentrations37. The first BE equation
describes the evolution of the tensorial order parameter Q:

ð∂t þ v!� ∇ÞQ� S� ΓHþ Fanch ¼ 0; ð1Þ

where v! is the fluid velocity, tensor S describes the nematic flow alignment, H is
the tensorial molecular field and Γ is the relaxation rate of the director, see Sup-
plementary Note 2 for the definitions and Table S1 for the parameters used in
simulations. The molecular field H is a variational derivative of Landau-de Gennes
free energy and takes the following form:

H ¼ aQ� cQTrQ2 þ K∇2Q; ð2Þ
where a and c are the Landau-de Gennes coefficients, K is the elastic constant (a
one-constant approximation is used). We model pillars as isotropic tactoids. Pillars
of the desired shape are created by prescribing the coefficient a to a negative value
in the region of the pillars, strongly suppressing the magnitude of the order
parameter. a is positive in the rest of the domain, which has a nematic phase. The
coefficient c ¼ const> 0 everywhere in the domain. The equilibrium magnitude of
the order parameter remains zero in isotropic tactoids, while for the nematic phase
qeq ¼

ffiffiffiffiffiffiffi
a=c

p
> 0.

The last term in Eq. (1) imposes strong planar alignment on the pillar’s surfaces.
Similar to ref. 37, this term only alters the director orientation and does not change
the amplitude of the order parameter:

Fanch ¼ 4ξanchQRπ=2Tr Qð f e
!

f e
!� I=2ÞRπ=2

� �
Ið r!Þ ð3Þ

here ξanch is the anchoring strength, Rπ/2 is a π/2 rotation matrix, f
!

e is a vector
parallel to the pillar’s surface, and I ð r!Þ is the indicator function: I ð r!Þ is one near
the pillars’ surfaces and zero everywhere else. As shown in ref. 25, this form leads to

relaxation of the director orientation towards the vector f
!

e as follows:

_θ ¼ 4ξanchq
2 sinð2ϕ� 2θÞ; ð4Þ

where q is the amplitude of the order parameter, ϕ is the orientation angle of the

vector f
!

e, and θ is the director orientation angle. In addition to Eq. (1), the system
includes the following equations:

∇ � σa þ σs þ σact þ σvisc � pI
� �� ζ v!¼ 0: ð5Þ

∂tP ¼ apP� 4cpP
3 � FQ

τ0
þ Dp∇

2P ð6Þ

∂t c
þ þ ∇ � V0 p

!cþ þ v!cþ
� �

¼ � cþ�c�
τ þ Dc∇2cþ;

∂t c
� þ ∇ � �V0 p

!c� þ v!c�
� �

¼ � c��cþ
τ þ Dc∇2c�

ð7Þ

Equation (5) is the balance of linear momentum. The stress includes the elastic
σs (symmetric) and σa (antisymmetric), and viscous σvisc contributions, see
Supplementary Note 2 for the definitions. σact is the active stress that depends on
the bacterial concentration, p is the fluid pressure and ζ v! is the viscous friction
which depends on the sample thickness. Equation (6) describes the evolution of the
bacterial orientation tensor P ¼ Pj jð p! p!� I=2Þ. The two first terms on the right-
hand side control the amplitude ∣P∣. Similar to Eq. (3), the third term aligns P with
the nematic field Q37:

FQ ¼ 4PRπ=2Tr PQRπ=2

� �
ð8Þ

here τ0 is an alignment time for a bacterium with respect imposed nematic
direction (about a second), and Dp is the bacterial orientation diffusion. Eqs. (7)
account for the bacterial concentrations c± that swim parallel and antiparallel to the

orientation vector p!. τ is the bacterial reversal rate and Dc is the concentration
diffusion, V0 is the magnitude of bacterial velocity.

We positioned four identical pillars in a 2 × 2 squared grid (see Fig. 4(a)). Their
shape and size were similar to the experimental ones. Their boundaries in polar
coordinates were described by: f ðrÞ ¼ r0

0:2þ cosð1:5θÞj j, where we set r0= 2.5 μm. This

formula was used to create spatially-modulated Landau-de Gennes coefficient
a(x, y), which was negative inside and positive outside of the regions of pillars.
Additional details for this computational model can be found in37. Simulation
parameters are listed in Table S1.

Simplified Fokker-Planck model. We model the transport of defects with the 1D
Langevin equation37. We assume that the system contains equal number of positive
and negative defects N± residing either in the nematic phase or on the pillar
modeled by a isotropic tactoid. We assume that well-separated defects interact
similarly to electrical charges (those with the same topological charge repel, those
with different attract) and the interaction strength decays with distance as 1/x.
Thus, two contributions: one due to defect interaction and another due to a barrier
on the tactoid’s surface control the defect dynamics. Our computational 1D
domain x 2 0; L½ � consists of a small tactoid region x 2 0; a½ �, and the rest is
occupied by a nematic medium. The potential barrier prevents the defects from
escaping isotropic phase and has a form of a step function:

UðxÞ ¼ 0; for 0< x < a;

A; for x > a;

�
ð9Þ
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The Langevine equations for the positions xi of each individual defect can cast as
following:

∂tx
þ
i ¼ U 0ðxþi Þ þ μ ∑

N

j¼0

1
x�j �xþi

� ∑
N

j¼0;j≠i

1
xþj �xþi

	 

þ ξþ;

∂tx
�
i ¼ U 0ðx�i Þ þ μ ∑

N

j¼0

1
xþj �x�i

� ∑
N

j¼0;j≠i

1
x�j �x�i

	 

þ ξ�;

ð10Þ

where μ is the interaction strength, ξ± are random forces with the magnitude D±.
Following ref. 37, we introduce the probability density distribution functions of

positive and negative defects P±. Then, the sums in Eq. (10) can be cast as integrals
over P±. The corresponding Fokker-Planck equations for the probability density
distribution of positive (P+) and negative (P−) defects are then of the form37:

∂tP
þðx; tÞ ¼ Dþ∂xxP

þ � ∂x �U 0ðxÞ þ μ
R L
0

Pþðx0 ; tÞ�P�ðx0 ; tÞ
x�x0 dx0

� �
Pþðx; tÞ

h i
;

∂tP
�ðx; tÞ ¼ D�∂xxP

� � ∂x �U 0ðxÞ � μ
R L
0

Pþðx0 ; tÞ�P�ðx0 ; tÞ
x�x0 dx0

� �
P�ðx; tÞ

h i
;

ð11Þ

where and D± are the diffusivities of positive and negative defects correspondingly.
The diffusivities are expressed via magnitude of the noise terms ξ±. We assume that
D+ >D−, reflecting the fact that positive defects are more mobile (see Fig. 3(c)).

We are looking for a stationary solution to Eqs. (11). Integrating both
equations, we obtain:

Dþ ∂xP
þ þ Rþ� � ¼ �U 0ðxÞ þ μ

R L
0

Pþðx0 ; tÞ�P�ðx0 ; tÞ
x�x0 dx0

� �
Pþðx; tÞ;

D� ∂xP
� þ R�� � ¼ �U 0ðxÞ � μ

R L
0

Pþðx0 ; tÞ�P�ðx0 ; tÞ
x�x0 dx0

� �
P�ðx; tÞ;

ð12Þ

where R± are the integration constants to be determined. Eqs. (12) can be
transformed using a general formula for the solution of a 1st order inhomogenious
ordinary differential equation (integration factor):

P ± ðxÞ ¼ s±a ðxÞ C ± � s ±b ðxÞ
� �

; ð13Þ
where C± are another pair of integration constants and the following notations are
introduced:

zðxÞ ¼
Z L

0
Pþðx0Þ � P�ðx0Þ� �

log x � x0
�� ��dx0; ð14Þ

s±a ðxÞ ¼ exp
Z x

0
�U 0ðxÞ

D± ±
μ

D±

Z L

0

Pþðx0; tÞ � P�ðx0; tÞ
x � x0

dx0
	 


dx

� �
exp

1
D± �UðxÞ± zðxÞð Þ

� �
;

ð15Þ

s ±b ðxÞ ¼
Z x

0

R±

s±a ðx0Þ
dx0; ð16Þ

To find the integration constant R±, we use the Neumann boundary condition
(which also accounts for probability reflection on the boundary, since the potential
is constant at the boundaries) at the right boundary, δxP±(L)= 0. Substituting it
into Eq. (12), we obtain:

R ± ¼ ±
μP ± ðLÞ
D±

Z L

0

Pþðx0Þ � P�ðx0Þ
L� x0

dx0 ð17Þ

To find the integration constants C±, we use the normalization condition for
positive and negative defect densities

R L
0 P ± ðxÞdx ¼ LP0. From Eq. (13) we find:

C ± ¼ LP0 þ
R L
0 s±a ðxÞs ±b ðxÞdxR L
0 s±a ðxÞdx

ð18Þ

We obtain P±(x) using the iterative relaxation method. Given initial guesses P ±
0 ðxÞ,

we calculate tentative ~P
±
0 ðxÞ using Eq. (13). We then update the probability

densities by weighted average of the previous and current values:

P ±
n ðxÞ ¼ αP ±

n�1ðxÞ þ ð1� αÞ~P ±
n�1ðxÞ; ð19Þ

where α= 0.999. Such method rapidly converges to the stationary solutions P ±
� ðxÞ.

The results are shown on Fig. S9. While the results generally agree with the
experiment, especially for round pillars. There are also some discrepancies. The
main difference is that positive defects also peak inside the tactoid, although
positive peak amplitude is smaller than the negative one. This can be attributed to
an oversimplification of the Fokker-Planck model. For example, mutual
annihilation can lead to depletion of positive defects inside the tactoid.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the authors upon a request.

Code availability
The code to carry out the simulations is available from the corresponding author on a
request.
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